

 Navigation

 	
 index

 	
 next |

 	NumPy v1.9 Manual

Numpy manual contents

	NumPy User Guide
	Introduction
	What is NumPy?

	Building and installing NumPy
	Binary installers
	Windows

	Linux

	Mac OS X

	Building from source
	Prerequisites

	FORTRAN ABI mismatch
	Choosing the fortran compiler

	How to check the ABI of blas/lapack/atlas

	Disabling ATLAS and other accelerated libraries

	Supplying additional compiler flags

	Building with ATLAS support
	Ubuntu 8.10 (Intrepid) and 9.04 (Jaunty)

	Ubuntu 8.04 and lower

	How to find documentation

	Numpy basics
	Data types
	Array types and conversions between types

	Array Scalars

	Array creation
	Introduction

	Converting Python array_like Objects to Numpy Arrays

	Intrinsic Numpy Array Creation

	Reading Arrays From Disk
	Standard Binary Formats

	Common ASCII Formats

	Custom Binary Formats

	Use of Special Libraries

	I/O with Numpy
	Importing data with genfromtxt
	Defining the input

	Splitting the lines into columns
	The delimiter argument

	The autostrip argument

	The comments argument

	Skipping lines and choosing columns
	The skip_header and skip_footer arguments

	The usecols argument

	Choosing the data type

	Setting the names
	The names argument

	The defaultfmt argument

	Validating names

	Tweaking the conversion
	The converters argument

	Using missing and filling values

	missing_values

	filling_values

	usemask

	Shortcut functions

	Indexing
	Assignment vs referencing

	Single element indexing

	Other indexing options

	Index arrays

	Indexing Multi-dimensional arrays

	Boolean or “mask” index arrays

	Combining index arrays with slices

	Structural indexing tools

	Assigning values to indexed arrays

	Dealing with variable numbers of indices within programs

	Broadcasting
	General Broadcasting Rules

	Byte-swapping
	Introduction to byte ordering and ndarrays

	Changing byte ordering
	Data and dtype endianness don’t match, change dtype to match data

	Data and type endianness don’t match, change data to match dtype

	Data and dtype endianness match, swap data and dtype

	Structured arrays (aka “Record arrays”)
	Structured Arrays (and Record Arrays)
	Introduction

	Defining Structured Arrays

	Accessing and modifying field names

	Accessing field titles

	Accessing multiple fields at once

	Filling structured arrays

	More information

	Subclassing ndarray
	Credits

	Introduction
	ndarrays and object creation

	View casting

	Creating new from template

	Relationship of view casting and new-from-template

	Implications for subclassing
	A brief Python primer on __new__ and __init__

	The role of __array_finalize__

	Simple example - adding an extra attribute to ndarray

	Slightly more realistic example - attribute added to existing array

	__array_wrap__ for ufuncs

	Extra gotchas - custom __del__ methods and ndarray.base

	Performance

	Miscellaneous
	IEEE 754 Floating Point Special Values

	How numpy handles numerical exceptions

	Examples

	Interfacing to C

	Interfacing to Fortran:

	Interfacing to C++:

	Methods vs. Functions

	Using Numpy C-API
	How to extend NumPy
	Writing an extension module

	Required subroutine

	Defining functions
	Functions without keyword arguments

	Functions with keyword arguments

	Reference counting

	Dealing with array objects
	Converting an arbitrary sequence object

	Creating a brand-new ndarray

	Getting at ndarray memory and accessing elements of the ndarray

	Example

	Using Python as glue
	Calling other compiled libraries from Python

	Hand-generated wrappers

	f2py
	Creating source for a basic extension module

	Creating a compiled extension module

	Improving the basic interface

	Inserting directives in Fortran source

	A filtering example

	Calling f2py from Python

	Automatic extension module generation

	Conclusion

	Cython
	Complex addition in Cython

	Image filter in Cython

	Conclusion

	ctypes
	Having a shared library

	Loading the shared library

	Converting arguments

	Calling the function

	Complete example

	Conclusion

	Additional tools you may find useful
	SWIG

	SIP

	Boost Python

	PyFort

	Writing your own ufunc
	Creating a new universal function

	Example Non-ufunc extension

	Example Numpy ufunc for one dtype

	Example Numpy ufunc with multiple dtypes

	Example Numpy ufunc with multiple arguments/return values

	Example Numpy ufunc with structured array dtype arguments

	PyUFunc_FromFuncAndData Specification

	Beyond the Basics
	Iterating over elements in the array
	Basic Iteration

	Iterating over all but one axis

	Iterating over multiple arrays

	Broadcasting over multiple arrays

	User-defined data-types
	Adding the new data-type

	Registering a casting function

	Registering coercion rules

	Registering a ufunc loop

	Subtyping the ndarray in C
	Creating sub-types

	Specific features of ndarray sub-typing
	The __array_finalize__ method

	The __array_priority__ attribute

	The __array_wrap__ method

	NumPy Reference
	Array objects
	The N-dimensional array (ndarray)
	Constructing arrays
	numpy.ndarray
	numpy.ndarray.T

	numpy.ndarray.data

	numpy.ndarray.dtype

	numpy.ndarray.flags

	numpy.ndarray.flat

	numpy.ndarray.imag

	numpy.ndarray.real

	numpy.ndarray.size

	numpy.ndarray.itemsize

	numpy.ndarray.nbytes

	numpy.ndarray.ndim

	numpy.ndarray.shape

	numpy.ndarray.strides

	numpy.ndarray.ctypes

	numpy.ndarray.base

	numpy.ndarray.all

	numpy.ndarray.any

	numpy.ndarray.argmax

	numpy.ndarray.argmin

	numpy.ndarray.argpartition

	numpy.ndarray.argsort

	numpy.ndarray.astype

	numpy.ndarray.byteswap

	numpy.ndarray.choose

	numpy.ndarray.clip

	numpy.ndarray.compress

	numpy.ndarray.conj

	numpy.ndarray.conjugate

	numpy.ndarray.copy

	numpy.ndarray.cumprod

	numpy.ndarray.cumsum

	numpy.ndarray.diagonal

	numpy.ndarray.dot

	numpy.ndarray.dump

	numpy.ndarray.dumps

	numpy.ndarray.fill

	numpy.ndarray.flatten

	numpy.ndarray.getfield

	numpy.ndarray.item

	numpy.ndarray.itemset

	numpy.ndarray.max

	numpy.ndarray.mean

	numpy.ndarray.min

	numpy.ndarray.newbyteorder

	numpy.ndarray.nonzero

	numpy.ndarray.partition

	numpy.ndarray.prod

	numpy.ndarray.ptp

	numpy.ndarray.put

	numpy.ndarray.ravel

	numpy.ndarray.repeat

	numpy.ndarray.reshape

	numpy.ndarray.resize

	numpy.ndarray.round

	numpy.ndarray.searchsorted

	numpy.ndarray.setfield

	numpy.ndarray.setflags

	numpy.ndarray.sort

	numpy.ndarray.squeeze

	numpy.ndarray.std

	numpy.ndarray.sum

	numpy.ndarray.swapaxes

	numpy.ndarray.take

	numpy.ndarray.tobytes

	numpy.ndarray.tofile

	numpy.ndarray.tolist

	numpy.ndarray.tostring

	numpy.ndarray.trace

	numpy.ndarray.transpose

	numpy.ndarray.var

	numpy.ndarray.view

	Indexing arrays

	Internal memory layout of an ndarray

	Array attributes
	Memory layout
	numpy.ndarray.flags

	numpy.ndarray.shape

	numpy.ndarray.strides

	numpy.ndarray.ndim

	numpy.ndarray.data

	numpy.ndarray.size

	numpy.ndarray.itemsize

	numpy.ndarray.nbytes

	numpy.ndarray.base

	Data type
	numpy.ndarray.dtype

	Other attributes
	numpy.ndarray.T

	numpy.ndarray.real

	numpy.ndarray.imag

	numpy.ndarray.flat

	numpy.ndarray.ctypes

	Array interface

	ctypes foreign function interface
	numpy.ndarray.ctypes

	Array methods
	Array conversion
	numpy.ndarray.item

	numpy.ndarray.tolist

	numpy.ndarray.itemset

	numpy.ndarray.tostring

	numpy.ndarray.tobytes

	numpy.ndarray.tofile

	numpy.ndarray.dump

	numpy.ndarray.dumps

	numpy.ndarray.astype

	numpy.ndarray.byteswap

	numpy.ndarray.copy

	numpy.ndarray.view

	numpy.ndarray.getfield

	numpy.ndarray.setflags

	numpy.ndarray.fill

	Shape manipulation
	numpy.ndarray.reshape

	numpy.ndarray.resize

	numpy.ndarray.transpose

	numpy.ndarray.swapaxes

	numpy.ndarray.flatten

	numpy.ndarray.ravel

	numpy.ndarray.squeeze

	Item selection and manipulation
	numpy.ndarray.take

	numpy.ndarray.put

	numpy.ndarray.repeat

	numpy.ndarray.choose

	numpy.ndarray.sort

	numpy.ndarray.argsort

	numpy.ndarray.partition

	numpy.ndarray.argpartition

	numpy.ndarray.searchsorted

	numpy.ndarray.nonzero

	numpy.ndarray.compress

	numpy.ndarray.diagonal

	Calculation
	numpy.ndarray.argmax

	numpy.ndarray.min

	numpy.ndarray.argmin

	numpy.ndarray.ptp

	numpy.ndarray.clip

	numpy.ndarray.conj

	numpy.ndarray.round

	numpy.ndarray.trace

	numpy.ndarray.sum

	numpy.ndarray.cumsum

	numpy.ndarray.mean

	numpy.ndarray.var

	numpy.ndarray.std

	numpy.ndarray.prod

	numpy.ndarray.cumprod

	numpy.ndarray.all

	numpy.ndarray.any

	Arithmetic and comparison operations
	numpy.ndarray.__lt__

	numpy.ndarray.__le__

	numpy.ndarray.__gt__

	numpy.ndarray.__ge__

	numpy.ndarray.__eq__

	numpy.ndarray.__ne__

	numpy.ndarray.__nonzero__

	numpy.ndarray.__neg__

	numpy.ndarray.__pos__

	numpy.ndarray.__abs__

	numpy.ndarray.__invert__

	numpy.ndarray.__add__

	numpy.ndarray.__sub__

	numpy.ndarray.__mul__

	numpy.ndarray.__div__

	numpy.ndarray.__truediv__

	numpy.ndarray.__floordiv__

	numpy.ndarray.__mod__

	numpy.ndarray.__divmod__

	numpy.ndarray.__pow__

	numpy.ndarray.__lshift__

	numpy.ndarray.__rshift__

	numpy.ndarray.__and__

	numpy.ndarray.__or__

	numpy.ndarray.__xor__

	numpy.ndarray.__iadd__

	numpy.ndarray.__isub__

	numpy.ndarray.__imul__

	numpy.ndarray.__idiv__

	numpy.ndarray.__itruediv__

	numpy.ndarray.__ifloordiv__

	numpy.ndarray.__imod__

	numpy.ndarray.__ipow__

	numpy.ndarray.__ilshift__

	numpy.ndarray.__irshift__

	numpy.ndarray.__iand__

	numpy.ndarray.__ior__

	numpy.ndarray.__ixor__

	Special methods
	numpy.ndarray.__copy__

	numpy.ndarray.__deepcopy__

	numpy.ndarray.__reduce__

	numpy.ndarray.__setstate__

	numpy.ndarray.__new__

	numpy.ndarray.__array__

	numpy.ndarray.__array_wrap__

	numpy.ndarray.__len__

	numpy.ndarray.__getitem__

	numpy.ndarray.__setitem__

	numpy.ndarray.__getslice__

	numpy.ndarray.__setslice__

	numpy.ndarray.__contains__

	numpy.ndarray.__int__

	numpy.ndarray.__long__

	numpy.ndarray.__float__

	numpy.ndarray.__oct__

	numpy.ndarray.__hex__

	numpy.ndarray.__str__

	numpy.ndarray.__repr__

	Scalars
	Built-in scalar types

	Attributes
	numpy.generic.flags

	numpy.generic.shape

	numpy.generic.strides

	numpy.generic.ndim

	numpy.generic.data

	numpy.generic.size

	numpy.generic.itemsize

	numpy.generic.base

	numpy.generic.dtype

	numpy.generic.real

	numpy.generic.imag

	numpy.generic.flat

	numpy.generic.T

	numpy.generic.__array_interface__

	numpy.generic.__array_struct__

	numpy.generic.__array_priority__

	numpy.generic.__array_wrap__

	Indexing

	Methods
	numpy.generic
	numpy.generic.T

	numpy.generic.base

	numpy.generic.data

	numpy.generic.dtype

	numpy.generic.flags

	numpy.generic.flat

	numpy.generic.imag

	numpy.generic.itemsize

	numpy.generic.nbytes

	numpy.generic.ndim

	numpy.generic.real

	numpy.generic.shape

	numpy.generic.size

	numpy.generic.strides

	numpy.generic.all

	numpy.generic.any

	numpy.generic.argmax

	numpy.generic.argmin

	numpy.generic.argsort

	numpy.generic.astype

	numpy.generic.byteswap

	numpy.generic.choose

	numpy.generic.clip

	numpy.generic.compress

	numpy.generic.conj

	numpy.generic.conjugate

	numpy.generic.copy

	numpy.generic.cumprod

	numpy.generic.cumsum

	numpy.generic.diagonal

	numpy.generic.dump

	numpy.generic.dumps

	numpy.generic.fill

	numpy.generic.flatten

	numpy.generic.getfield

	numpy.generic.item

	numpy.generic.itemset

	numpy.generic.max

	numpy.generic.mean

	numpy.generic.min

	numpy.generic.newbyteorder

	numpy.generic.nonzero

	numpy.generic.prod

	numpy.generic.ptp

	numpy.generic.put

	numpy.generic.ravel

	numpy.generic.repeat

	numpy.generic.reshape

	numpy.generic.resize

	numpy.generic.round

	numpy.generic.searchsorted

	numpy.generic.setfield

	numpy.generic.setflags

	numpy.generic.sort

	numpy.generic.squeeze

	numpy.generic.std

	numpy.generic.sum

	numpy.generic.swapaxes

	numpy.generic.take

	numpy.generic.tobytes

	numpy.generic.tofile

	numpy.generic.tolist

	numpy.generic.tostring

	numpy.generic.trace

	numpy.generic.transpose

	numpy.generic.var

	numpy.generic.view

	numpy.generic.__array__

	numpy.generic.__array_wrap__

	numpy.generic.squeeze

	numpy.generic.byteswap

	numpy.generic.__reduce__

	numpy.generic.__setstate__

	numpy.generic.setflags

	Defining new types

	Data type objects (dtype)
	Specifying and constructing data types
	numpy.dtype
	numpy.dtype.base

	numpy.dtype.descr

	numpy.dtype.fields

	numpy.dtype.hasobject

	numpy.dtype.isalignedstruct

	numpy.dtype.isbuiltin

	numpy.dtype.isnative

	numpy.dtype.metadata

	numpy.dtype.name

	numpy.dtype.names

	numpy.dtype.shape

	numpy.dtype.str

	numpy.dtype.subdtype

	numpy.dtype.newbyteorder

	dtype
	Attributes
	numpy.dtype.type

	numpy.dtype.kind

	numpy.dtype.char

	numpy.dtype.num

	numpy.dtype.str

	numpy.dtype.name

	numpy.dtype.itemsize

	numpy.dtype.byteorder

	numpy.dtype.fields

	numpy.dtype.names

	numpy.dtype.subdtype

	numpy.dtype.shape

	numpy.dtype.hasobject

	numpy.dtype.flags

	numpy.dtype.isbuiltin

	numpy.dtype.isnative

	numpy.dtype.descr

	numpy.dtype.alignment

	Methods
	numpy.dtype.newbyteorder

	numpy.dtype.__reduce__

	numpy.dtype.__setstate__

	Indexing
	Basic Slicing and Indexing

	Advanced Indexing
	Integer array indexing
	Purely integer array indexing

	Combining advanced and basic indexing

	Boolean array indexing

	Detailed notes

	Record Access

	Flat Iterator indexing

	Iterating Over Arrays
	Single Array Iteration
	Controlling Iteration Order

	Modifying Array Values

	Using an External Loop

	Tracking an Index or Multi-Index

	Buffering the Array Elements

	Iterating as a Specific Data Type

	Broadcasting Array Iteration
	Iterator-Allocated Output Arrays

	Outer Product Iteration

	Reduction Iteration

	Putting the Inner Loop in Cython

	Standard array subclasses
	Special attributes and methods

	Matrix objects
	numpy.matrix.T

	numpy.matrix.H

	numpy.matrix.I

	numpy.matrix.A

	numpy.matrix
	numpy.matrix.A

	numpy.matrix.A1

	numpy.matrix.H

	numpy.matrix.I

	numpy.matrix.T

	numpy.matrix.base

	numpy.matrix.ctypes

	numpy.matrix.data

	numpy.matrix.dtype

	numpy.matrix.flags

	numpy.matrix.flat

	numpy.matrix.imag

	numpy.matrix.itemsize

	numpy.matrix.nbytes

	numpy.matrix.ndim

	numpy.matrix.real

	numpy.matrix.shape

	numpy.matrix.size

	numpy.matrix.strides

	numpy.matrix.all

	numpy.matrix.any

	numpy.matrix.argmax

	numpy.matrix.argmin

	numpy.matrix.argpartition

	numpy.matrix.argsort

	numpy.matrix.astype

	numpy.matrix.byteswap

	numpy.matrix.choose

	numpy.matrix.clip

	numpy.matrix.compress

	numpy.matrix.conj

	numpy.matrix.conjugate

	numpy.matrix.copy

	numpy.matrix.cumprod

	numpy.matrix.cumsum

	numpy.matrix.diagonal

	numpy.matrix.dot

	numpy.matrix.dump

	numpy.matrix.dumps

	numpy.matrix.fill

	numpy.matrix.flatten

	numpy.matrix.getA

	numpy.matrix.getA1

	numpy.matrix.getH

	numpy.matrix.getI

	numpy.matrix.getT

	numpy.matrix.getfield

	numpy.matrix.item

	numpy.matrix.itemset

	numpy.matrix.max

	numpy.matrix.mean

	numpy.matrix.min

	numpy.matrix.newbyteorder

	numpy.matrix.nonzero

	numpy.matrix.partition

	numpy.matrix.prod

	numpy.matrix.ptp

	numpy.matrix.put

	numpy.matrix.ravel

	numpy.matrix.repeat

	numpy.matrix.reshape

	numpy.matrix.resize

	numpy.matrix.round

	numpy.matrix.searchsorted

	numpy.matrix.setfield

	numpy.matrix.setflags

	numpy.matrix.sort

	numpy.matrix.squeeze

	numpy.matrix.std

	numpy.matrix.sum

	numpy.matrix.swapaxes

	numpy.matrix.take

	numpy.matrix.tobytes

	numpy.matrix.tofile

	numpy.matrix.tolist

	numpy.matrix.tostring

	numpy.matrix.trace

	numpy.matrix.transpose

	numpy.matrix.var

	numpy.matrix.view

	numpy.asmatrix

	numpy.bmat

	Memory-mapped file arrays
	numpy.memmap
	numpy.memmap.flush

	numpy.memmap.flush

	Character arrays (numpy.char)
	numpy.chararray
	numpy.chararray.T

	numpy.chararray.base

	numpy.chararray.ctypes

	numpy.chararray.data

	numpy.chararray.dtype

	numpy.chararray.flags

	numpy.chararray.flat

	numpy.chararray.imag

	numpy.chararray.itemsize

	numpy.chararray.nbytes

	numpy.chararray.ndim

	numpy.chararray.real

	numpy.chararray.shape

	numpy.chararray.size

	numpy.chararray.strides

	numpy.chararray.astype

	numpy.chararray.copy

	numpy.chararray.count

	numpy.chararray.decode

	numpy.chararray.dump

	numpy.chararray.dumps

	numpy.chararray.encode

	numpy.chararray.endswith

	numpy.chararray.expandtabs

	numpy.chararray.fill

	numpy.chararray.find

	numpy.chararray.flatten

	numpy.chararray.getfield

	numpy.chararray.index

	numpy.chararray.isalnum

	numpy.chararray.isalpha

	numpy.chararray.isdecimal

	numpy.chararray.isdigit

	numpy.chararray.islower

	numpy.chararray.isnumeric

	numpy.chararray.isspace

	numpy.chararray.istitle

	numpy.chararray.isupper

	numpy.chararray.item

	numpy.chararray.join

	numpy.chararray.ljust

	numpy.chararray.lower

	numpy.chararray.lstrip

	numpy.chararray.nonzero

	numpy.chararray.put

	numpy.chararray.ravel

	numpy.chararray.repeat

	numpy.chararray.replace

	numpy.chararray.reshape

	numpy.chararray.resize

	numpy.chararray.rfind

	numpy.chararray.rindex

	numpy.chararray.rjust

	numpy.chararray.rsplit

	numpy.chararray.rstrip

	numpy.chararray.searchsorted

	numpy.chararray.setfield

	numpy.chararray.setflags

	numpy.chararray.sort

	numpy.chararray.split

	numpy.chararray.splitlines

	numpy.chararray.squeeze

	numpy.chararray.startswith

	numpy.chararray.strip

	numpy.chararray.swapaxes

	numpy.chararray.swapcase

	numpy.chararray.take

	numpy.chararray.title

	numpy.chararray.tofile

	numpy.chararray.tolist

	numpy.chararray.tostring

	numpy.chararray.translate

	numpy.chararray.transpose

	numpy.chararray.upper

	numpy.chararray.view

	numpy.chararray.zfill

	numpy.core.defchararray.array

	Record arrays (numpy.rec)
	numpy.recarray
	numpy.recarray.T

	numpy.recarray.base

	numpy.recarray.ctypes

	numpy.recarray.data

	numpy.recarray.dtype

	numpy.recarray.flags

	numpy.recarray.flat

	numpy.recarray.imag

	numpy.recarray.itemsize

	numpy.recarray.nbytes

	numpy.recarray.ndim

	numpy.recarray.real

	numpy.recarray.shape

	numpy.recarray.size

	numpy.recarray.strides

	numpy.recarray.all

	numpy.recarray.any

	numpy.recarray.argmax

	numpy.recarray.argmin

	numpy.recarray.argpartition

	numpy.recarray.argsort

	numpy.recarray.astype

	numpy.recarray.byteswap

	numpy.recarray.choose

	numpy.recarray.clip

	numpy.recarray.compress

	numpy.recarray.conj

	numpy.recarray.conjugate

	numpy.recarray.copy

	numpy.recarray.cumprod

	numpy.recarray.cumsum

	numpy.recarray.diagonal

	numpy.recarray.dot

	numpy.recarray.dump

	numpy.recarray.dumps

	numpy.recarray.field

	numpy.recarray.fill

	numpy.recarray.flatten

	numpy.recarray.getfield

	numpy.recarray.item

	numpy.recarray.itemset

	numpy.recarray.max

	numpy.recarray.mean

	numpy.recarray.min

	numpy.recarray.newbyteorder

	numpy.recarray.nonzero

	numpy.recarray.partition

	numpy.recarray.prod

	numpy.recarray.ptp

	numpy.recarray.put

	numpy.recarray.ravel

	numpy.recarray.repeat

	numpy.recarray.reshape

	numpy.recarray.resize

	numpy.recarray.round

	numpy.recarray.searchsorted

	numpy.recarray.setfield

	numpy.recarray.setflags

	numpy.recarray.sort

	numpy.recarray.squeeze

	numpy.recarray.std

	numpy.recarray.sum

	numpy.recarray.swapaxes

	numpy.recarray.take

	numpy.recarray.tobytes

	numpy.recarray.tofile

	numpy.recarray.tolist

	numpy.recarray.tostring

	numpy.recarray.trace

	numpy.recarray.transpose

	numpy.recarray.var

	numpy.recarray.view

	numpy.record
	numpy.record.T

	numpy.record.base

	numpy.record.data

	numpy.record.dtype

	numpy.record.flags

	numpy.record.flat

	numpy.record.imag

	numpy.record.itemsize

	numpy.record.nbytes

	numpy.record.ndim

	numpy.record.real

	numpy.record.shape

	numpy.record.size

	numpy.record.strides

	numpy.record.all

	numpy.record.any

	numpy.record.argmax

	numpy.record.argmin

	numpy.record.argsort

	numpy.record.astype

	numpy.record.byteswap

	numpy.record.choose

	numpy.record.clip

	numpy.record.compress

	numpy.record.conj

	numpy.record.conjugate

	numpy.record.copy

	numpy.record.cumprod

	numpy.record.cumsum

	numpy.record.diagonal

	numpy.record.dump

	numpy.record.dumps

	numpy.record.fill

	numpy.record.flatten

	numpy.record.getfield

	numpy.record.item

	numpy.record.itemset

	numpy.record.max

	numpy.record.mean

	numpy.record.min

	numpy.record.newbyteorder

	numpy.record.nonzero

	numpy.record.pprint

	numpy.record.prod

	numpy.record.ptp

	numpy.record.put

	numpy.record.ravel

	numpy.record.repeat

	numpy.record.reshape

	numpy.record.resize

	numpy.record.round

	numpy.record.searchsorted

	numpy.record.setfield

	numpy.record.setflags

	numpy.record.sort

	numpy.record.squeeze

	numpy.record.std

	numpy.record.sum

	numpy.record.swapaxes

	numpy.record.take

	numpy.record.tobytes

	numpy.record.tofile

	numpy.record.tolist

	numpy.record.tostring

	numpy.record.trace

	numpy.record.transpose

	numpy.record.var

	numpy.record.view

	Masked arrays (numpy.ma)

	Standard container class
	numpy.lib.user_array.container
	numpy.lib.user_array.container.astype

	numpy.lib.user_array.container.byteswap

	numpy.lib.user_array.container.copy

	numpy.lib.user_array.container.tostring

	Array Iterators
	Default iteration

	Flat iteration
	numpy.ndarray.flat

	N-dimensional enumeration
	numpy.ndenumerate
	numpy.ndenumerate.next

	Iterator for broadcasting
	numpy.broadcast
	numpy.broadcast.index

	numpy.broadcast.iters

	numpy.broadcast.shape

	numpy.broadcast.size

	numpy.broadcast.next

	numpy.broadcast.reset

	Masked arrays
	The numpy.ma module
	Rationale

	What is a masked array?

	The numpy.ma module

	Using numpy.ma
	Constructing masked arrays
	numpy.ma.array

	numpy.ma.masked_array

	numpy.ma.asarray

	numpy.ma.asanyarray

	numpy.ma.fix_invalid

	numpy.ma.masked_equal

	numpy.ma.masked_greater

	numpy.ma.masked_greater_equal

	numpy.ma.masked_inside

	numpy.ma.masked_invalid

	numpy.ma.masked_less

	numpy.ma.masked_less_equal

	numpy.ma.masked_not_equal

	numpy.ma.masked_object

	numpy.ma.masked_outside

	numpy.ma.masked_values

	numpy.ma.masked_where

	Accessing the data

	Accessing the mask

	Accessing only the valid entries

	Modifying the mask
	Masking an entry

	Unmasking an entry

	Indexing and slicing

	Operations on masked arrays

	Examples
	Data with a given value representing missing data

	Filling in the missing data

	Numerical operations

	Ignoring extreme values

	Constants of the numpy.ma module

	The MaskedArray class
	Attributes and properties of masked arrays
	numpy.ma.MaskedArray.base

	numpy.ma.MaskedArray.ctypes

	numpy.ma.MaskedArray.dtype

	numpy.ma.MaskedArray.flags

	numpy.ma.MaskedArray.itemsize

	numpy.ma.MaskedArray.nbytes

	numpy.ma.MaskedArray.ndim

	numpy.ma.MaskedArray.shape

	numpy.ma.MaskedArray.size

	numpy.ma.MaskedArray.strides

	numpy.ma.MaskedArray.imag

	numpy.ma.MaskedArray.real

	numpy.ma.MaskedArray.flat

	numpy.ma.MaskedArray.__array_priority__

	MaskedArray methods
	Conversion
	numpy.ma.MaskedArray.__float__

	numpy.ma.MaskedArray.__hex__

	numpy.ma.MaskedArray.__int__

	numpy.ma.MaskedArray.__long__

	numpy.ma.MaskedArray.__oct__

	numpy.ma.MaskedArray.view

	numpy.ma.MaskedArray.astype

	numpy.ma.MaskedArray.byteswap

	numpy.ma.MaskedArray.compressed

	numpy.ma.MaskedArray.filled

	numpy.ma.MaskedArray.tofile

	numpy.ma.MaskedArray.toflex

	numpy.ma.MaskedArray.tolist

	numpy.ma.MaskedArray.torecords

	numpy.ma.MaskedArray.tostring

	numpy.ma.MaskedArray.tobytes

	Shape manipulation
	numpy.ma.MaskedArray.flatten

	numpy.ma.MaskedArray.ravel

	numpy.ma.MaskedArray.reshape

	numpy.ma.MaskedArray.resize

	numpy.ma.MaskedArray.squeeze

	numpy.ma.MaskedArray.swapaxes

	numpy.ma.MaskedArray.transpose

	numpy.ma.MaskedArray.T

	Item selection and manipulation
	numpy.ma.MaskedArray.argmax

	numpy.ma.MaskedArray.argmin

	numpy.ma.MaskedArray.argsort

	numpy.ma.MaskedArray.choose

	numpy.ma.MaskedArray.compress

	numpy.ma.MaskedArray.diagonal

	numpy.ma.MaskedArray.fill

	numpy.ma.MaskedArray.item

	numpy.ma.MaskedArray.nonzero

	numpy.ma.MaskedArray.put

	numpy.ma.MaskedArray.repeat

	numpy.ma.MaskedArray.searchsorted

	numpy.ma.MaskedArray.sort

	numpy.ma.MaskedArray.take

	Pickling and copy
	numpy.ma.MaskedArray.copy

	numpy.ma.MaskedArray.dump

	numpy.ma.MaskedArray.dumps

	Calculations
	numpy.ma.MaskedArray.all

	numpy.ma.MaskedArray.anom

	numpy.ma.MaskedArray.any

	numpy.ma.MaskedArray.clip

	numpy.ma.MaskedArray.conj

	numpy.ma.MaskedArray.conjugate

	numpy.ma.MaskedArray.cumprod

	numpy.ma.MaskedArray.cumsum

	numpy.ma.MaskedArray.max

	numpy.ma.MaskedArray.mean

	numpy.ma.MaskedArray.min

	numpy.ma.MaskedArray.prod

	numpy.ma.MaskedArray.product

	numpy.ma.MaskedArray.ptp

	numpy.ma.MaskedArray.round

	numpy.ma.MaskedArray.std

	numpy.ma.MaskedArray.sum

	numpy.ma.MaskedArray.trace

	numpy.ma.MaskedArray.var

	Arithmetic and comparison operations
	Comparison operators:
	numpy.ma.MaskedArray.__lt__

	numpy.ma.MaskedArray.__le__

	numpy.ma.MaskedArray.__gt__

	numpy.ma.MaskedArray.__ge__

	numpy.ma.MaskedArray.__eq__

	numpy.ma.MaskedArray.__ne__

	Truth value of an array (bool):
	numpy.ma.MaskedArray.__nonzero__

	Arithmetic:
	numpy.ma.MaskedArray.__abs__

	numpy.ma.MaskedArray.__add__

	numpy.ma.MaskedArray.__radd__

	numpy.ma.MaskedArray.__sub__

	numpy.ma.MaskedArray.__rsub__

	numpy.ma.MaskedArray.__mul__

	numpy.ma.MaskedArray.__rmul__

	numpy.ma.MaskedArray.__div__

	numpy.ma.MaskedArray.__rdiv__

	numpy.ma.MaskedArray.__truediv__

	numpy.ma.MaskedArray.__rtruediv__

	numpy.ma.MaskedArray.__floordiv__

	numpy.ma.MaskedArray.__rfloordiv__

	numpy.ma.MaskedArray.__mod__

	numpy.ma.MaskedArray.__rmod__

	numpy.ma.MaskedArray.__divmod__

	numpy.ma.MaskedArray.__rdivmod__

	numpy.ma.MaskedArray.__pow__

	numpy.ma.MaskedArray.__rpow__

	numpy.ma.MaskedArray.__lshift__

	numpy.ma.MaskedArray.__rlshift__

	numpy.ma.MaskedArray.__rshift__

	numpy.ma.MaskedArray.__rrshift__

	numpy.ma.MaskedArray.__and__

	numpy.ma.MaskedArray.__rand__

	numpy.ma.MaskedArray.__or__

	numpy.ma.MaskedArray.__ror__

	numpy.ma.MaskedArray.__xor__

	numpy.ma.MaskedArray.__rxor__

	Arithmetic, in-place:
	numpy.ma.MaskedArray.__iadd__

	numpy.ma.MaskedArray.__isub__

	numpy.ma.MaskedArray.__imul__

	numpy.ma.MaskedArray.__idiv__

	numpy.ma.MaskedArray.__itruediv__

	numpy.ma.MaskedArray.__ifloordiv__

	numpy.ma.MaskedArray.__imod__

	numpy.ma.MaskedArray.__ipow__

	numpy.ma.MaskedArray.__ilshift__

	numpy.ma.MaskedArray.__irshift__

	numpy.ma.MaskedArray.__iand__

	numpy.ma.MaskedArray.__ior__

	numpy.ma.MaskedArray.__ixor__

	Representation
	numpy.ma.MaskedArray.__repr__

	numpy.ma.MaskedArray.__str__

	numpy.ma.MaskedArray.ids

	numpy.ma.MaskedArray.iscontiguous

	Special methods
	numpy.ma.MaskedArray.__copy__

	numpy.ma.MaskedArray.__deepcopy__

	numpy.ma.MaskedArray.__getstate__

	numpy.ma.MaskedArray.__reduce__

	numpy.ma.MaskedArray.__setstate__

	numpy.ma.MaskedArray.__new__

	numpy.ma.MaskedArray.__array__

	numpy.ma.MaskedArray.__array_wrap__

	numpy.ma.MaskedArray.__len__

	numpy.ma.MaskedArray.__getitem__

	numpy.ma.MaskedArray.__setitem__

	numpy.ma.MaskedArray.__delitem__

	numpy.ma.MaskedArray.__getslice__

	numpy.ma.MaskedArray.__setslice__

	numpy.ma.MaskedArray.__contains__

	Specific methods
	Handling the mask
	numpy.ma.MaskedArray.__setmask__

	numpy.ma.MaskedArray.harden_mask

	numpy.ma.MaskedArray.soften_mask

	numpy.ma.MaskedArray.unshare_mask

	numpy.ma.MaskedArray.shrink_mask

	Handling the fill_value
	numpy.ma.MaskedArray.get_fill_value

	numpy.ma.MaskedArray.set_fill_value

	Counting the missing elements
	numpy.ma.MaskedArray.count

	Masked array operations
	Constants
	numpy.ma.MaskType

	Creation
	From existing data
	numpy.ma.masked_array

	numpy.ma.array

	numpy.ma.copy

	numpy.ma.frombuffer

	numpy.ma.fromfunction

	numpy.ma.MaskedArray.copy

	Ones and zeros
	numpy.ma.empty

	numpy.ma.empty_like

	numpy.ma.masked_all

	numpy.ma.masked_all_like

	numpy.ma.ones

	numpy.ma.zeros

	Inspecting the array
	numpy.ma.all

	numpy.ma.any

	numpy.ma.count

	numpy.ma.count_masked

	numpy.ma.getmask

	numpy.ma.getmaskarray

	numpy.ma.getdata

	numpy.ma.nonzero

	numpy.ma.shape

	numpy.ma.size

	numpy.ma.is_masked

	numpy.ma.is_mask

	numpy.ma.MaskedArray.data

	numpy.ma.MaskedArray.mask

	numpy.ma.MaskedArray.recordmask

	numpy.ma.MaskedArray.all

	numpy.ma.MaskedArray.any

	numpy.ma.MaskedArray.count

	numpy.ma.MaskedArray.nonzero

	numpy.ma.shape

	numpy.ma.size

	Manipulating a MaskedArray
	Changing the shape
	numpy.ma.ravel

	numpy.ma.reshape

	numpy.ma.resize

	numpy.ma.MaskedArray.flatten

	numpy.ma.MaskedArray.ravel

	numpy.ma.MaskedArray.reshape

	numpy.ma.MaskedArray.resize

	Modifying axes
	numpy.ma.swapaxes

	numpy.ma.transpose

	numpy.ma.MaskedArray.swapaxes

	numpy.ma.MaskedArray.transpose

	Changing the number of dimensions
	numpy.ma.atleast_1d

	numpy.ma.atleast_2d

	numpy.ma.atleast_3d

	numpy.ma.expand_dims

	numpy.ma.squeeze

	numpy.ma.MaskedArray.squeeze

	numpy.ma.column_stack

	numpy.ma.concatenate

	numpy.ma.dstack

	numpy.ma.hstack

	numpy.ma.hsplit

	numpy.ma.mr

	numpy.ma.row_stack

	numpy.ma.vstack

	Joining arrays
	numpy.ma.column_stack

	numpy.ma.concatenate

	numpy.ma.append

	numpy.ma.dstack

	numpy.ma.hstack

	numpy.ma.vstack

	Operations on masks
	Creating a mask
	numpy.ma.make_mask

	numpy.ma.make_mask_none

	numpy.ma.mask_or

	numpy.ma.make_mask_descr

	Accessing a mask
	numpy.ma.getmask

	numpy.ma.getmaskarray

	numpy.ma.masked_array.mask

	Finding masked data
	numpy.ma.flatnotmasked_contiguous

	numpy.ma.flatnotmasked_edges

	numpy.ma.notmasked_contiguous

	numpy.ma.notmasked_edges

	Modifying a mask
	numpy.ma.mask_cols

	numpy.ma.mask_or

	numpy.ma.mask_rowcols

	numpy.ma.mask_rows

	numpy.ma.harden_mask

	numpy.ma.soften_mask

	numpy.ma.MaskedArray.harden_mask

	numpy.ma.MaskedArray.soften_mask

	numpy.ma.MaskedArray.shrink_mask

	numpy.ma.MaskedArray.unshare_mask

	Conversion operations
	> to a masked array
	numpy.ma.asarray

	numpy.ma.asanyarray

	numpy.ma.fix_invalid

	numpy.ma.masked_equal

	numpy.ma.masked_greater

	numpy.ma.masked_greater_equal

	numpy.ma.masked_inside

	numpy.ma.masked_invalid

	numpy.ma.masked_less

	numpy.ma.masked_less_equal

	numpy.ma.masked_not_equal

	numpy.ma.masked_object

	numpy.ma.masked_outside

	numpy.ma.masked_values

	numpy.ma.masked_where

	> to a ndarray
	numpy.ma.compress_cols

	numpy.ma.compress_rowcols

	numpy.ma.compress_rows

	numpy.ma.compressed

	numpy.ma.filled

	numpy.ma.MaskedArray.compressed

	numpy.ma.MaskedArray.filled

	> to another object
	numpy.ma.MaskedArray.tofile

	numpy.ma.MaskedArray.tolist

	numpy.ma.MaskedArray.torecords

	numpy.ma.MaskedArray.tobytes

	Pickling and unpickling
	numpy.ma.dump

	numpy.ma.dumps

	numpy.ma.load

	numpy.ma.loads

	Filling a masked array
	numpy.ma.common_fill_value

	numpy.ma.default_fill_value

	numpy.ma.maximum_fill_value

	numpy.ma.maximum_fill_value

	numpy.ma.set_fill_value

	numpy.ma.MaskedArray.get_fill_value

	numpy.ma.MaskedArray.set_fill_value

	numpy.ma.MaskedArray.fill_value

	Masked arrays arithmetics
	Arithmetics
	numpy.ma.anom

	numpy.ma.anomalies

	numpy.ma.average

	numpy.ma.conjugate

	numpy.ma.corrcoef

	numpy.ma.cov

	numpy.ma.cumsum

	numpy.ma.cumprod

	numpy.ma.mean

	numpy.ma.median

	numpy.ma.power

	numpy.ma.prod

	numpy.ma.std

	numpy.ma.sum

	numpy.ma.var

	numpy.ma.MaskedArray.anom

	numpy.ma.MaskedArray.cumprod

	numpy.ma.MaskedArray.cumsum

	numpy.ma.MaskedArray.mean

	numpy.ma.MaskedArray.prod

	numpy.ma.MaskedArray.std

	numpy.ma.MaskedArray.sum

	numpy.ma.MaskedArray.var

	Minimum/maximum
	numpy.ma.argmax

	numpy.ma.argmin

	numpy.ma.max

	numpy.ma.min

	numpy.ma.ptp

	numpy.ma.MaskedArray.argmax

	numpy.ma.MaskedArray.argmin

	numpy.ma.MaskedArray.max

	numpy.ma.MaskedArray.min

	numpy.ma.MaskedArray.ptp

	Sorting
	numpy.ma.argsort

	numpy.ma.sort

	numpy.ma.MaskedArray.argsort

	numpy.ma.MaskedArray.sort

	Algebra
	numpy.ma.diag

	numpy.ma.dot

	numpy.ma.identity

	numpy.ma.inner

	numpy.ma.innerproduct

	numpy.ma.outer

	numpy.ma.outerproduct

	numpy.ma.trace

	numpy.ma.transpose

	numpy.ma.MaskedArray.trace

	numpy.ma.MaskedArray.transpose

	Polynomial fit
	numpy.ma.vander

	numpy.ma.polyfit

	Clipping and rounding
	numpy.ma.around

	numpy.ma.clip

	numpy.ma.round

	numpy.ma.MaskedArray.clip

	numpy.ma.MaskedArray.round

	Miscellanea
	numpy.ma.allequal

	numpy.ma.allclose

	numpy.ma.apply_along_axis

	numpy.ma.arange

	numpy.ma.choose

	numpy.ma.ediff1d

	numpy.ma.indices

	numpy.ma.where

	The Array Interface
	Python side

	C-struct access

	Type description examples

	Differences with Array interface (Version 2)

	Datetimes and Timedeltas
	Basic Datetimes

	Datetime and Timedelta Arithmetic

	Datetime Units

	Business Day Functionality
	np.is_busday():

	np.busday_count():
	Custom Weekmasks

	Differences Between 1.6 and 1.7 Datetimes
	String Parsing

	Unit Conversion

	Datetime Arithmetic

	Universal functions (ufunc)
	Broadcasting

	Output type determination

	Use of internal buffers
	numpy.setbufsize

	Error handling
	numpy.seterr

	numpy.seterrcall

	Casting Rules

	Overriding Ufunc behavior

	ufunc
	Optional keyword arguments

	Attributes
	numpy.ufunc.nin

	numpy.ufunc.nout

	numpy.ufunc.nargs

	numpy.ufunc.ntypes

	numpy.ufunc.types

	numpy.ufunc.identity

	Methods
	numpy.ufunc.reduce

	numpy.ufunc.accumulate

	numpy.ufunc.reduceat

	numpy.ufunc.outer

	numpy.ufunc.at

	Available ufuncs
	Math operations

	Trigonometric functions

	Bit-twiddling functions

	Comparison functions

	Floating functions

	Routines
	Array creation routines
	Ones and zeros
	numpy.empty

	numpy.empty_like

	numpy.eye

	numpy.identity

	numpy.ones

	numpy.ones_like

	numpy.zeros

	numpy.zeros_like

	numpy.full

	numpy.full_like

	From existing data
	numpy.array

	numpy.asarray

	numpy.asanyarray

	numpy.ascontiguousarray

	numpy.asmatrix

	numpy.copy

	numpy.frombuffer

	numpy.fromfile

	numpy.fromfunction

	numpy.fromiter

	numpy.fromstring

	numpy.loadtxt

	Creating record arrays (numpy.rec)
	numpy.core.records.array

	numpy.core.records.fromarrays

	numpy.core.records.fromrecords

	numpy.core.records.fromstring

	numpy.core.records.fromfile

	Creating character arrays (numpy.char)
	numpy.core.defchararray.array

	numpy.core.defchararray.asarray

	Numerical ranges
	numpy.arange

	numpy.linspace

	numpy.logspace

	numpy.meshgrid

	numpy.mgrid

	numpy.ogrid

	Building matrices
	numpy.diag

	numpy.diagflat

	numpy.tri

	numpy.tril

	numpy.triu

	numpy.vander

	The Matrix class
	numpy.mat

	numpy.bmat

	Array manipulation routines
	Basic operations
	numpy.copyto

	Changing array shape
	numpy.reshape

	numpy.ravel

	numpy.ndarray.flat

	numpy.ndarray.flatten

	Transpose-like operations
	numpy.rollaxis

	numpy.swapaxes

	numpy.ndarray.T

	numpy.transpose

	Changing number of dimensions
	numpy.atleast_1d

	numpy.atleast_2d

	numpy.atleast_3d

	numpy.broadcast
	numpy.broadcast.index

	numpy.broadcast.iters

	numpy.broadcast.shape

	numpy.broadcast.size

	numpy.broadcast.next

	numpy.broadcast.reset

	numpy.broadcast_arrays

	numpy.expand_dims

	numpy.squeeze

	Changing kind of array
	numpy.asarray

	numpy.asanyarray

	numpy.asmatrix

	numpy.asfarray

	numpy.asfortranarray

	numpy.ascontiguousarray

	numpy.asarray_chkfinite

	numpy.asscalar

	numpy.require

	Joining arrays
	numpy.column_stack

	numpy.concatenate

	numpy.dstack

	numpy.hstack

	numpy.vstack

	Splitting arrays
	numpy.array_split

	numpy.dsplit

	numpy.hsplit

	numpy.split

	numpy.vsplit

	Tiling arrays
	numpy.tile

	numpy.repeat

	Adding and removing elements
	numpy.delete

	numpy.insert

	numpy.append

	numpy.resize

	numpy.trim_zeros

	numpy.unique

	Rearranging elements
	numpy.fliplr

	numpy.flipud

	numpy.reshape

	numpy.roll

	numpy.rot90

	Binary operations
	Elementwise bit operations
	numpy.bitwise_and

	numpy.bitwise_or

	numpy.bitwise_xor

	numpy.invert

	numpy.left_shift

	numpy.right_shift

	Bit packing
	numpy.packbits

	numpy.unpackbits

	Output formatting
	numpy.binary_repr

	String operations
	String operations
	numpy.core.defchararray.add

	numpy.core.defchararray.multiply

	numpy.core.defchararray.mod

	numpy.core.defchararray.capitalize

	numpy.core.defchararray.center

	numpy.core.defchararray.decode

	numpy.core.defchararray.encode

	numpy.core.defchararray.join

	numpy.core.defchararray.ljust

	numpy.core.defchararray.lower

	numpy.core.defchararray.lstrip

	numpy.core.defchararray.partition

	numpy.core.defchararray.replace

	numpy.core.defchararray.rjust

	numpy.core.defchararray.rpartition

	numpy.core.defchararray.rsplit

	numpy.core.defchararray.rstrip

	numpy.core.defchararray.split

	numpy.core.defchararray.splitlines

	numpy.core.defchararray.strip

	numpy.core.defchararray.swapcase

	numpy.core.defchararray.title

	numpy.core.defchararray.translate

	numpy.core.defchararray.upper

	numpy.core.defchararray.zfill

	Comparison
	numpy.core.defchararray.equal

	numpy.core.defchararray.not_equal

	numpy.core.defchararray.greater_equal

	numpy.core.defchararray.less_equal

	numpy.core.defchararray.greater

	numpy.core.defchararray.less

	String information
	numpy.core.defchararray.count

	numpy.core.defchararray.find

	numpy.core.defchararray.index

	numpy.core.defchararray.isalpha

	numpy.core.defchararray.isdecimal

	numpy.core.defchararray.isdigit

	numpy.core.defchararray.islower

	numpy.core.defchararray.isnumeric

	numpy.core.defchararray.isspace

	numpy.core.defchararray.istitle

	numpy.core.defchararray.isupper

	numpy.core.defchararray.rfind

	numpy.core.defchararray.rindex

	numpy.core.defchararray.startswith

	Convenience class
	numpy.core.defchararray.chararray
	numpy.core.defchararray.chararray.T

	numpy.core.defchararray.chararray.base

	numpy.core.defchararray.chararray.ctypes

	numpy.core.defchararray.chararray.data

	numpy.core.defchararray.chararray.dtype

	numpy.core.defchararray.chararray.flags

	numpy.core.defchararray.chararray.flat

	numpy.core.defchararray.chararray.imag

	numpy.core.defchararray.chararray.itemsize

	numpy.core.defchararray.chararray.nbytes

	numpy.core.defchararray.chararray.ndim

	numpy.core.defchararray.chararray.real

	numpy.core.defchararray.chararray.shape

	numpy.core.defchararray.chararray.size

	numpy.core.defchararray.chararray.strides

	numpy.core.defchararray.chararray.astype

	numpy.core.defchararray.chararray.copy

	numpy.core.defchararray.chararray.count

	numpy.core.defchararray.chararray.decode

	numpy.core.defchararray.chararray.dump

	numpy.core.defchararray.chararray.dumps

	numpy.core.defchararray.chararray.encode

	numpy.core.defchararray.chararray.endswith

	numpy.core.defchararray.chararray.expandtabs

	numpy.core.defchararray.chararray.fill

	numpy.core.defchararray.chararray.find

	numpy.core.defchararray.chararray.flatten

	numpy.core.defchararray.chararray.getfield

	numpy.core.defchararray.chararray.index

	numpy.core.defchararray.chararray.isalnum

	numpy.core.defchararray.chararray.isalpha

	numpy.core.defchararray.chararray.isdecimal

	numpy.core.defchararray.chararray.isdigit

	numpy.core.defchararray.chararray.islower

	numpy.core.defchararray.chararray.isnumeric

	numpy.core.defchararray.chararray.isspace

	numpy.core.defchararray.chararray.istitle

	numpy.core.defchararray.chararray.isupper

	numpy.core.defchararray.chararray.item

	numpy.core.defchararray.chararray.join

	numpy.core.defchararray.chararray.ljust

	numpy.core.defchararray.chararray.lower

	numpy.core.defchararray.chararray.lstrip

	numpy.core.defchararray.chararray.nonzero

	numpy.core.defchararray.chararray.put

	numpy.core.defchararray.chararray.ravel

	numpy.core.defchararray.chararray.repeat

	numpy.core.defchararray.chararray.replace

	numpy.core.defchararray.chararray.reshape

	numpy.core.defchararray.chararray.resize

	numpy.core.defchararray.chararray.rfind

	numpy.core.defchararray.chararray.rindex

	numpy.core.defchararray.chararray.rjust

	numpy.core.defchararray.chararray.rsplit

	numpy.core.defchararray.chararray.rstrip

	numpy.core.defchararray.chararray.searchsorted

	numpy.core.defchararray.chararray.setfield

	numpy.core.defchararray.chararray.setflags

	numpy.core.defchararray.chararray.sort

	numpy.core.defchararray.chararray.split

	numpy.core.defchararray.chararray.splitlines

	numpy.core.defchararray.chararray.squeeze

	numpy.core.defchararray.chararray.startswith

	numpy.core.defchararray.chararray.strip

	numpy.core.defchararray.chararray.swapaxes

	numpy.core.defchararray.chararray.swapcase

	numpy.core.defchararray.chararray.take

	numpy.core.defchararray.chararray.title

	numpy.core.defchararray.chararray.tofile

	numpy.core.defchararray.chararray.tolist

	numpy.core.defchararray.chararray.tostring

	numpy.core.defchararray.chararray.translate

	numpy.core.defchararray.chararray.transpose

	numpy.core.defchararray.chararray.upper

	numpy.core.defchararray.chararray.view

	numpy.core.defchararray.chararray.zfill

	C-Types Foreign Function Interface (numpy.ctypeslib)

	Datetime Support Functions
	Business Day Functions
	numpy.busdaycalendar
	numpy.busdaycalendar.weekmask

	numpy.busdaycalendar.holidays

	numpy.is_busday

	numpy.busday_offset

	numpy.busday_count

	Data type routines
	numpy.can_cast

	numpy.promote_types

	numpy.min_scalar_type

	numpy.result_type

	numpy.common_type

	numpy.obj2sctype

	Creating data types
	numpy.dtype
	numpy.dtype.base

	numpy.dtype.descr

	numpy.dtype.fields

	numpy.dtype.hasobject

	numpy.dtype.isalignedstruct

	numpy.dtype.isbuiltin

	numpy.dtype.isnative

	numpy.dtype.metadata

	numpy.dtype.name

	numpy.dtype.names

	numpy.dtype.shape

	numpy.dtype.str

	numpy.dtype.subdtype

	numpy.dtype.newbyteorder

	numpy.format_parser

	Data type information
	numpy.finfo

	numpy.iinfo
	numpy.iinfo.min

	numpy.iinfo.max

	numpy.MachAr

	Data type testing
	numpy.issctype

	numpy.issubdtype

	numpy.issubsctype

	numpy.issubclass

	numpy.find_common_type

	Miscellaneous
	numpy.typename

	numpy.sctype2char

	numpy.mintypecode

	Optionally Scipy-accelerated routines (numpy.dual)
	Linear algebra

	FFT

	Other

	Mathematical functions with automatic domain (numpy.emath)

	Floating point error handling
	Setting and getting error handling
	numpy.seterr

	numpy.geterr

	numpy.seterrcall

	numpy.geterrcall

	numpy.errstate

	Internal functions
	numpy.seterrobj

	numpy.geterrobj

	Discrete Fourier Transform (numpy.fft)
	Standard FFTs
	numpy.fft.fft

	numpy.fft.ifft

	numpy.fft.fft2

	numpy.fft.ifft2

	numpy.fft.fftn

	numpy.fft.ifftn

	Real FFTs
	numpy.fft.rfft

	numpy.fft.irfft

	numpy.fft.rfft2

	numpy.fft.irfft2

	numpy.fft.rfftn

	numpy.fft.irfftn

	Hermitian FFTs
	numpy.fft.hfft

	numpy.fft.ihfft

	Helper routines
	numpy.fft.fftfreq

	numpy.fft.rfftfreq

	numpy.fft.fftshift

	numpy.fft.ifftshift

	Background information

	Implementation details

	Real and Hermitian transforms

	Higher dimensions

	References

	Examples

	Financial functions
	Simple financial functions
	numpy.fv

	numpy.pv

	numpy.npv

	numpy.pmt

	numpy.ppmt

	numpy.ipmt

	numpy.irr

	numpy.mirr

	numpy.nper

	numpy.rate

	Functional programming
	numpy.apply_along_axis

	numpy.apply_over_axes

	numpy.vectorize
	numpy.vectorize.__call__

	numpy.frompyfunc

	numpy.piecewise

	Numpy-specific help functions
	Finding help
	numpy.lookfor

	Reading help
	numpy.info

	numpy.source

	Indexing routines
	Generating index arrays
	numpy.c

	numpy.r

	numpy.s

	numpy.nonzero

	numpy.where

	numpy.indices

	numpy.ix

	numpy.ogrid

	numpy.ravel_multi_index

	numpy.unravel_index

	numpy.diag_indices

	numpy.diag_indices_from

	numpy.mask_indices

	numpy.tril_indices

	numpy.tril_indices_from

	numpy.triu_indices

	numpy.triu_indices_from

	Indexing-like operations
	numpy.take

	numpy.choose

	numpy.compress

	numpy.diag

	numpy.diagonal

	numpy.select

	Inserting data into arrays
	numpy.place

	numpy.put

	numpy.putmask

	numpy.fill_diagonal

	Iterating over arrays
	numpy.nditer
	numpy.nditer.copy

	numpy.nditer.debug_print

	numpy.nditer.enable_external_loop

	numpy.nditer.iternext

	numpy.nditer.next

	numpy.nditer.remove_axis

	numpy.nditer.remove_multi_index

	numpy.nditer.reset

	numpy.ndenumerate
	numpy.ndenumerate.next

	numpy.ndindex
	numpy.ndindex.ndincr

	numpy.ndindex.next

	numpy.flatiter
	numpy.flatiter.coords

	numpy.flatiter.copy

	numpy.flatiter.next

	Input and output
	NPZ files
	numpy.load

	numpy.save

	numpy.savez

	numpy.savez_compressed

	Text files
	numpy.loadtxt

	numpy.savetxt

	numpy.genfromtxt

	numpy.fromregex

	numpy.fromstring

	numpy.ndarray.tofile

	numpy.ndarray.tolist

	Raw binary files

	String formatting
	numpy.array_repr

	numpy.array_str

	Memory mapping files
	numpy.memmap
	numpy.memmap.flush

	Text formatting options
	numpy.set_printoptions

	numpy.get_printoptions

	numpy.set_string_function

	Base-n representations
	numpy.binary_repr

	numpy.base_repr

	Data sources
	numpy.DataSource
	numpy.DataSource.abspath

	numpy.DataSource.exists

	numpy.DataSource.open

	Linear algebra (numpy.linalg)
	Matrix and vector products
	numpy.dot

	numpy.vdot

	numpy.inner

	numpy.outer

	numpy.tensordot

	numpy.einsum

	numpy.linalg.matrix_power

	numpy.kron

	Decompositions
	numpy.linalg.cholesky

	numpy.linalg.qr

	numpy.linalg.svd

	Matrix eigenvalues
	numpy.linalg.eig

	numpy.linalg.eigh

	numpy.linalg.eigvals

	numpy.linalg.eigvalsh

	Norms and other numbers
	numpy.linalg.norm

	numpy.linalg.cond

	numpy.linalg.det

	numpy.linalg.matrix_rank

	numpy.linalg.slogdet

	numpy.trace

	Solving equations and inverting matrices
	numpy.linalg.solve

	numpy.linalg.tensorsolve

	numpy.linalg.lstsq

	numpy.linalg.inv

	numpy.linalg.pinv

	numpy.linalg.tensorinv

	Exceptions
	numpy.linalg.LinAlgError

	Linear algebra on several matrices at once

	Logic functions
	Truth value testing
	numpy.all

	numpy.any

	Array contents
	numpy.isfinite

	numpy.isinf

	numpy.isnan

	numpy.isneginf

	numpy.isposinf

	Array type testing
	numpy.iscomplex

	numpy.iscomplexobj

	numpy.isfortran

	numpy.isreal

	numpy.isrealobj

	numpy.isscalar

	Logical operations
	numpy.logical_and

	numpy.logical_or

	numpy.logical_not

	numpy.logical_xor

	Comparison
	numpy.allclose

	numpy.isclose

	numpy.array_equal

	numpy.array_equiv

	numpy.greater

	numpy.greater_equal

	numpy.less

	numpy.less_equal

	numpy.equal

	numpy.not_equal

	Masked array operations
	Constants
	numpy.ma.MaskType

	Creation
	From existing data
	numpy.ma.masked_array

	numpy.ma.array

	numpy.ma.copy

	numpy.ma.frombuffer

	numpy.ma.fromfunction

	numpy.ma.MaskedArray.copy

	Ones and zeros
	numpy.ma.empty

	numpy.ma.empty_like

	numpy.ma.masked_all

	numpy.ma.masked_all_like

	numpy.ma.ones

	numpy.ma.zeros

	Inspecting the array
	numpy.ma.all

	numpy.ma.any

	numpy.ma.count

	numpy.ma.count_masked

	numpy.ma.getmask

	numpy.ma.getmaskarray

	numpy.ma.getdata

	numpy.ma.nonzero

	numpy.ma.shape

	numpy.ma.size

	numpy.ma.is_masked

	numpy.ma.is_mask

	numpy.ma.MaskedArray.data

	numpy.ma.MaskedArray.mask

	numpy.ma.MaskedArray.recordmask

	numpy.ma.MaskedArray.all

	numpy.ma.MaskedArray.any

	numpy.ma.MaskedArray.count

	numpy.ma.MaskedArray.nonzero

	numpy.ma.shape

	numpy.ma.size

	Manipulating a MaskedArray
	Changing the shape
	numpy.ma.ravel

	numpy.ma.reshape

	numpy.ma.resize

	numpy.ma.MaskedArray.flatten

	numpy.ma.MaskedArray.ravel

	numpy.ma.MaskedArray.reshape

	numpy.ma.MaskedArray.resize

	Modifying axes
	numpy.ma.swapaxes

	numpy.ma.transpose

	numpy.ma.MaskedArray.swapaxes

	numpy.ma.MaskedArray.transpose

	Changing the number of dimensions
	numpy.ma.atleast_1d

	numpy.ma.atleast_2d

	numpy.ma.atleast_3d

	numpy.ma.expand_dims

	numpy.ma.squeeze

	numpy.ma.MaskedArray.squeeze

	numpy.ma.column_stack

	numpy.ma.concatenate

	numpy.ma.dstack

	numpy.ma.hstack

	numpy.ma.hsplit

	numpy.ma.mr

	numpy.ma.row_stack

	numpy.ma.vstack

	Joining arrays
	numpy.ma.column_stack

	numpy.ma.concatenate

	numpy.ma.append

	numpy.ma.dstack

	numpy.ma.hstack

	numpy.ma.vstack

	Operations on masks
	Creating a mask
	numpy.ma.make_mask

	numpy.ma.make_mask_none

	numpy.ma.mask_or

	numpy.ma.make_mask_descr

	Accessing a mask
	numpy.ma.getmask

	numpy.ma.getmaskarray

	numpy.ma.masked_array.mask

	Finding masked data
	numpy.ma.flatnotmasked_contiguous

	numpy.ma.flatnotmasked_edges

	numpy.ma.notmasked_contiguous

	numpy.ma.notmasked_edges

	Modifying a mask
	numpy.ma.mask_cols

	numpy.ma.mask_or

	numpy.ma.mask_rowcols

	numpy.ma.mask_rows

	numpy.ma.harden_mask

	numpy.ma.soften_mask

	numpy.ma.MaskedArray.harden_mask

	numpy.ma.MaskedArray.soften_mask

	numpy.ma.MaskedArray.shrink_mask

	numpy.ma.MaskedArray.unshare_mask

	Conversion operations
	> to a masked array
	numpy.ma.asarray

	numpy.ma.asanyarray

	numpy.ma.fix_invalid

	numpy.ma.masked_equal

	numpy.ma.masked_greater

	numpy.ma.masked_greater_equal

	numpy.ma.masked_inside

	numpy.ma.masked_invalid

	numpy.ma.masked_less

	numpy.ma.masked_less_equal

	numpy.ma.masked_not_equal

	numpy.ma.masked_object

	numpy.ma.masked_outside

	numpy.ma.masked_values

	numpy.ma.masked_where

	> to a ndarray
	numpy.ma.compress_cols

	numpy.ma.compress_rowcols

	numpy.ma.compress_rows

	numpy.ma.compressed

	numpy.ma.filled

	numpy.ma.MaskedArray.compressed

	numpy.ma.MaskedArray.filled

	> to another object
	numpy.ma.MaskedArray.tofile

	numpy.ma.MaskedArray.tolist

	numpy.ma.MaskedArray.torecords

	numpy.ma.MaskedArray.tobytes

	Pickling and unpickling
	numpy.ma.dump

	numpy.ma.dumps

	numpy.ma.load

	numpy.ma.loads

	Filling a masked array
	numpy.ma.common_fill_value

	numpy.ma.default_fill_value

	numpy.ma.maximum_fill_value

	numpy.ma.maximum_fill_value

	numpy.ma.set_fill_value

	numpy.ma.MaskedArray.get_fill_value

	numpy.ma.MaskedArray.set_fill_value

	numpy.ma.MaskedArray.fill_value

	Masked arrays arithmetics
	Arithmetics
	numpy.ma.anom

	numpy.ma.anomalies

	numpy.ma.average

	numpy.ma.conjugate

	numpy.ma.corrcoef

	numpy.ma.cov

	numpy.ma.cumsum

	numpy.ma.cumprod

	numpy.ma.mean

	numpy.ma.median

	numpy.ma.power

	numpy.ma.prod

	numpy.ma.std

	numpy.ma.sum

	numpy.ma.var

	numpy.ma.MaskedArray.anom

	numpy.ma.MaskedArray.cumprod

	numpy.ma.MaskedArray.cumsum

	numpy.ma.MaskedArray.mean

	numpy.ma.MaskedArray.prod

	numpy.ma.MaskedArray.std

	numpy.ma.MaskedArray.sum

	numpy.ma.MaskedArray.var

	Minimum/maximum
	numpy.ma.argmax

	numpy.ma.argmin

	numpy.ma.max

	numpy.ma.min

	numpy.ma.ptp

	numpy.ma.MaskedArray.argmax

	numpy.ma.MaskedArray.argmin

	numpy.ma.MaskedArray.max

	numpy.ma.MaskedArray.min

	numpy.ma.MaskedArray.ptp

	Sorting
	numpy.ma.argsort

	numpy.ma.sort

	numpy.ma.MaskedArray.argsort

	numpy.ma.MaskedArray.sort

	Algebra
	numpy.ma.diag

	numpy.ma.dot

	numpy.ma.identity

	numpy.ma.inner

	numpy.ma.innerproduct

	numpy.ma.outer

	numpy.ma.outerproduct

	numpy.ma.trace

	numpy.ma.transpose

	numpy.ma.MaskedArray.trace

	numpy.ma.MaskedArray.transpose

	Polynomial fit
	numpy.ma.vander

	numpy.ma.polyfit

	Clipping and rounding
	numpy.ma.around

	numpy.ma.clip

	numpy.ma.round

	numpy.ma.MaskedArray.clip

	numpy.ma.MaskedArray.round

	Miscellanea
	numpy.ma.allequal

	numpy.ma.allclose

	numpy.ma.apply_along_axis

	numpy.ma.arange

	numpy.ma.choose

	numpy.ma.ediff1d

	numpy.ma.indices

	numpy.ma.where

	Mathematical functions
	Trigonometric functions
	numpy.sin

	numpy.cos

	numpy.tan

	numpy.arcsin

	numpy.arccos

	numpy.arctan

	numpy.hypot

	numpy.arctan2

	numpy.degrees

	numpy.radians

	numpy.unwrap

	numpy.deg2rad

	numpy.rad2deg

	Hyperbolic functions
	numpy.sinh

	numpy.cosh

	numpy.tanh

	numpy.arcsinh

	numpy.arccosh

	numpy.arctanh

	Rounding
	numpy.around

	numpy.round

	numpy.rint

	numpy.fix

	numpy.floor

	numpy.ceil

	numpy.trunc

	Sums, products, differences
	numpy.prod

	numpy.sum

	numpy.nansum

	numpy.cumprod

	numpy.cumsum

	numpy.diff

	numpy.ediff1d

	numpy.gradient

	numpy.cross

	numpy.trapz

	Exponents and logarithms
	numpy.exp

	numpy.expm1

	numpy.exp2

	numpy.log

	numpy.log10

	numpy.log2

	numpy.log1p

	numpy.logaddexp

	numpy.logaddexp2

	Other special functions
	numpy.i0

	numpy.sinc

	Floating point routines
	numpy.signbit

	numpy.copysign

	numpy.frexp

	numpy.ldexp

	Arithmetic operations
	numpy.add

	numpy.reciprocal

	numpy.negative

	numpy.multiply

	numpy.divide

	numpy.power

	numpy.subtract

	numpy.true_divide

	numpy.floor_divide

	numpy.fmod

	numpy.mod

	numpy.modf

	numpy.remainder

	Handling complex numbers
	numpy.angle

	numpy.real

	numpy.imag

	numpy.conj

	Miscellaneous
	numpy.convolve

	numpy.clip

	numpy.sqrt

	numpy.square

	numpy.absolute

	numpy.fabs

	numpy.sign

	numpy.maximum

	numpy.minimum

	numpy.fmax

	numpy.fmin

	numpy.nan_to_num

	numpy.real_if_close

	numpy.interp

	Matrix library (numpy.matlib)
	numpy.matlib.empty

	numpy.matlib.zeros

	numpy.matlib.ones

	numpy.matlib.eye

	numpy.matlib.identity

	numpy.matlib.repmat

	numpy.matlib.rand

	numpy.matlib.randn

	Miscellaneous routines
	Buffer objects
	numpy.getbuffer

	numpy.newbuffer

	Performance tuning
	numpy.alterdot

	numpy.restoredot

	numpy.setbufsize

	numpy.getbufsize

	Padding Arrays
	numpy.pad

	Polynomials
	Transition notice
	Polynomial Package
	Using the Convenience Classes
	Basics

	Calculus

	Other Polynomial Constructors

	Fitting

	Polynomial Module (numpy.polynomial.polynomial)
	Polynomial Class
	numpy.polynomial.polynomial.Polynomial
	numpy.polynomial.polynomial.Polynomial.__call__

	numpy.polynomial.polynomial.Polynomial.basis

	numpy.polynomial.polynomial.Polynomial.cast

	numpy.polynomial.polynomial.Polynomial.convert

	numpy.polynomial.polynomial.Polynomial.copy

	numpy.polynomial.polynomial.Polynomial.cutdeg

	numpy.polynomial.polynomial.Polynomial.degree

	numpy.polynomial.polynomial.Polynomial.deriv

	numpy.polynomial.polynomial.Polynomial.fit

	numpy.polynomial.polynomial.Polynomial.fromroots

	numpy.polynomial.polynomial.Polynomial.has_samecoef

	numpy.polynomial.polynomial.Polynomial.has_samedomain

	numpy.polynomial.polynomial.Polynomial.has_sametype

	numpy.polynomial.polynomial.Polynomial.has_samewindow

	numpy.polynomial.polynomial.Polynomial.identity

	numpy.polynomial.polynomial.Polynomial.integ

	numpy.polynomial.polynomial.Polynomial.linspace

	numpy.polynomial.polynomial.Polynomial.mapparms

	numpy.polynomial.polynomial.Polynomial.roots

	numpy.polynomial.polynomial.Polynomial.trim

	numpy.polynomial.polynomial.Polynomial.truncate

	Basics
	numpy.polynomial.polynomial.polyval

	numpy.polynomial.polynomial.polyval2d

	numpy.polynomial.polynomial.polyval3d

	numpy.polynomial.polynomial.polygrid2d

	numpy.polynomial.polynomial.polygrid3d

	numpy.polynomial.polynomial.polyroots

	numpy.polynomial.polynomial.polyfromroots

	Fitting
	numpy.polynomial.polynomial.polyfit

	numpy.polynomial.polynomial.polyvander

	numpy.polynomial.polynomial.polyvander2d

	numpy.polynomial.polynomial.polyvander3d

	Calculus
	numpy.polynomial.polynomial.polyder

	numpy.polynomial.polynomial.polyint

	Algebra
	numpy.polynomial.polynomial.polyadd

	numpy.polynomial.polynomial.polysub

	numpy.polynomial.polynomial.polymul

	numpy.polynomial.polynomial.polymulx

	numpy.polynomial.polynomial.polydiv

	numpy.polynomial.polynomial.polypow

	Miscellaneous
	numpy.polynomial.polynomial.polycompanion

	numpy.polynomial.polynomial.polydomain

	numpy.polynomial.polynomial.polyzero

	numpy.polynomial.polynomial.polyone

	numpy.polynomial.polynomial.polyx

	numpy.polynomial.polynomial.polytrim

	numpy.polynomial.polynomial.polyline

	Chebyshev Module (numpy.polynomial.chebyshev)
	Chebyshev Class
	numpy.polynomial.chebyshev.Chebyshev
	numpy.polynomial.chebyshev.Chebyshev.__call__

	numpy.polynomial.chebyshev.Chebyshev.basis

	numpy.polynomial.chebyshev.Chebyshev.cast

	numpy.polynomial.chebyshev.Chebyshev.convert

	numpy.polynomial.chebyshev.Chebyshev.copy

	numpy.polynomial.chebyshev.Chebyshev.cutdeg

	numpy.polynomial.chebyshev.Chebyshev.degree

	numpy.polynomial.chebyshev.Chebyshev.deriv

	numpy.polynomial.chebyshev.Chebyshev.fit

	numpy.polynomial.chebyshev.Chebyshev.fromroots

	numpy.polynomial.chebyshev.Chebyshev.has_samecoef

	numpy.polynomial.chebyshev.Chebyshev.has_samedomain

	numpy.polynomial.chebyshev.Chebyshev.has_sametype

	numpy.polynomial.chebyshev.Chebyshev.has_samewindow

	numpy.polynomial.chebyshev.Chebyshev.identity

	numpy.polynomial.chebyshev.Chebyshev.integ

	numpy.polynomial.chebyshev.Chebyshev.linspace

	numpy.polynomial.chebyshev.Chebyshev.mapparms

	numpy.polynomial.chebyshev.Chebyshev.roots

	numpy.polynomial.chebyshev.Chebyshev.trim

	numpy.polynomial.chebyshev.Chebyshev.truncate

	Basics
	numpy.polynomial.chebyshev.chebval

	numpy.polynomial.chebyshev.chebval2d

	numpy.polynomial.chebyshev.chebval3d

	numpy.polynomial.chebyshev.chebgrid2d

	numpy.polynomial.chebyshev.chebgrid3d

	numpy.polynomial.chebyshev.chebroots

	numpy.polynomial.chebyshev.chebfromroots

	Fitting
	numpy.polynomial.chebyshev.chebfit

	numpy.polynomial.chebyshev.chebvander

	numpy.polynomial.chebyshev.chebvander2d

	numpy.polynomial.chebyshev.chebvander3d

	Calculus
	numpy.polynomial.chebyshev.chebder

	numpy.polynomial.chebyshev.chebint

	Algebra
	numpy.polynomial.chebyshev.chebadd

	numpy.polynomial.chebyshev.chebsub

	numpy.polynomial.chebyshev.chebmul

	numpy.polynomial.chebyshev.chebmulx

	numpy.polynomial.chebyshev.chebdiv

	numpy.polynomial.chebyshev.chebpow

	Quadrature
	numpy.polynomial.chebyshev.chebgauss

	numpy.polynomial.chebyshev.chebweight

	Miscellaneous
	numpy.polynomial.chebyshev.chebcompanion

	numpy.polynomial.chebyshev.chebdomain

	numpy.polynomial.chebyshev.chebzero

	numpy.polynomial.chebyshev.chebone

	numpy.polynomial.chebyshev.chebx

	numpy.polynomial.chebyshev.chebtrim

	numpy.polynomial.chebyshev.chebline

	numpy.polynomial.chebyshev.cheb2poly

	numpy.polynomial.chebyshev.poly2cheb

	Legendre Module (numpy.polynomial.legendre)
	Legendre Class
	numpy.polynomial.legendre.Legendre
	numpy.polynomial.legendre.Legendre.__call__

	numpy.polynomial.legendre.Legendre.basis

	numpy.polynomial.legendre.Legendre.cast

	numpy.polynomial.legendre.Legendre.convert

	numpy.polynomial.legendre.Legendre.copy

	numpy.polynomial.legendre.Legendre.cutdeg

	numpy.polynomial.legendre.Legendre.degree

	numpy.polynomial.legendre.Legendre.deriv

	numpy.polynomial.legendre.Legendre.fit

	numpy.polynomial.legendre.Legendre.fromroots

	numpy.polynomial.legendre.Legendre.has_samecoef

	numpy.polynomial.legendre.Legendre.has_samedomain

	numpy.polynomial.legendre.Legendre.has_sametype

	numpy.polynomial.legendre.Legendre.has_samewindow

	numpy.polynomial.legendre.Legendre.identity

	numpy.polynomial.legendre.Legendre.integ

	numpy.polynomial.legendre.Legendre.linspace

	numpy.polynomial.legendre.Legendre.mapparms

	numpy.polynomial.legendre.Legendre.roots

	numpy.polynomial.legendre.Legendre.trim

	numpy.polynomial.legendre.Legendre.truncate

	Basics
	numpy.polynomial.legendre.legval

	numpy.polynomial.legendre.legval2d

	numpy.polynomial.legendre.legval3d

	numpy.polynomial.legendre.leggrid2d

	numpy.polynomial.legendre.leggrid3d

	numpy.polynomial.legendre.legroots

	numpy.polynomial.legendre.legfromroots

	Fitting
	numpy.polynomial.legendre.legfit

	numpy.polynomial.legendre.legvander

	numpy.polynomial.legendre.legvander2d

	numpy.polynomial.legendre.legvander3d

	Calculus
	numpy.polynomial.legendre.legder

	numpy.polynomial.legendre.legint

	Algebra
	numpy.polynomial.legendre.legadd

	numpy.polynomial.legendre.legsub

	numpy.polynomial.legendre.legmul

	numpy.polynomial.legendre.legmulx

	numpy.polynomial.legendre.legdiv

	numpy.polynomial.legendre.legpow

	Quadrature
	numpy.polynomial.legendre.leggauss

	numpy.polynomial.legendre.legweight

	Miscellaneous
	numpy.polynomial.legendre.legcompanion

	numpy.polynomial.legendre.legdomain

	numpy.polynomial.legendre.legzero

	numpy.polynomial.legendre.legone

	numpy.polynomial.legendre.legx

	numpy.polynomial.legendre.legtrim

	numpy.polynomial.legendre.legline

	numpy.polynomial.legendre.leg2poly

	numpy.polynomial.legendre.poly2leg

	Laguerre Module (numpy.polynomial.laguerre)
	Laguerre Class
	numpy.polynomial.laguerre.Laguerre
	numpy.polynomial.laguerre.Laguerre.__call__

	numpy.polynomial.laguerre.Laguerre.basis

	numpy.polynomial.laguerre.Laguerre.cast

	numpy.polynomial.laguerre.Laguerre.convert

	numpy.polynomial.laguerre.Laguerre.copy

	numpy.polynomial.laguerre.Laguerre.cutdeg

	numpy.polynomial.laguerre.Laguerre.degree

	numpy.polynomial.laguerre.Laguerre.deriv

	numpy.polynomial.laguerre.Laguerre.fit

	numpy.polynomial.laguerre.Laguerre.fromroots

	numpy.polynomial.laguerre.Laguerre.has_samecoef

	numpy.polynomial.laguerre.Laguerre.has_samedomain

	numpy.polynomial.laguerre.Laguerre.has_sametype

	numpy.polynomial.laguerre.Laguerre.has_samewindow

	numpy.polynomial.laguerre.Laguerre.identity

	numpy.polynomial.laguerre.Laguerre.integ

	numpy.polynomial.laguerre.Laguerre.linspace

	numpy.polynomial.laguerre.Laguerre.mapparms

	numpy.polynomial.laguerre.Laguerre.roots

	numpy.polynomial.laguerre.Laguerre.trim

	numpy.polynomial.laguerre.Laguerre.truncate

	Basics
	numpy.polynomial.laguerre.lagval

	numpy.polynomial.laguerre.lagval2d

	numpy.polynomial.laguerre.lagval3d

	numpy.polynomial.laguerre.laggrid2d

	numpy.polynomial.laguerre.laggrid3d

	numpy.polynomial.laguerre.lagroots

	numpy.polynomial.laguerre.lagfromroots

	Fitting
	numpy.polynomial.laguerre.lagfit

	numpy.polynomial.laguerre.lagvander

	numpy.polynomial.laguerre.lagvander2d

	numpy.polynomial.laguerre.lagvander3d

	Calculus
	numpy.polynomial.laguerre.lagder

	numpy.polynomial.laguerre.lagint

	Algebra
	numpy.polynomial.laguerre.lagadd

	numpy.polynomial.laguerre.lagsub

	numpy.polynomial.laguerre.lagmul

	numpy.polynomial.laguerre.lagmulx

	numpy.polynomial.laguerre.lagdiv

	numpy.polynomial.laguerre.lagpow

	Quadrature
	numpy.polynomial.laguerre.laggauss

	numpy.polynomial.laguerre.lagweight

	Miscellaneous
	numpy.polynomial.laguerre.lagcompanion

	numpy.polynomial.laguerre.lagdomain

	numpy.polynomial.laguerre.lagzero

	numpy.polynomial.laguerre.lagone

	numpy.polynomial.laguerre.lagx

	numpy.polynomial.laguerre.lagtrim

	numpy.polynomial.laguerre.lagline

	numpy.polynomial.laguerre.lag2poly

	numpy.polynomial.laguerre.poly2lag

	Hermite Module, “Physicists’” (numpy.polynomial.hermite)
	Hermite Class
	numpy.polynomial.hermite.Hermite
	numpy.polynomial.hermite.Hermite.__call__

	numpy.polynomial.hermite.Hermite.basis

	numpy.polynomial.hermite.Hermite.cast

	numpy.polynomial.hermite.Hermite.convert

	numpy.polynomial.hermite.Hermite.copy

	numpy.polynomial.hermite.Hermite.cutdeg

	numpy.polynomial.hermite.Hermite.degree

	numpy.polynomial.hermite.Hermite.deriv

	numpy.polynomial.hermite.Hermite.fit

	numpy.polynomial.hermite.Hermite.fromroots

	numpy.polynomial.hermite.Hermite.has_samecoef

	numpy.polynomial.hermite.Hermite.has_samedomain

	numpy.polynomial.hermite.Hermite.has_sametype

	numpy.polynomial.hermite.Hermite.has_samewindow

	numpy.polynomial.hermite.Hermite.identity

	numpy.polynomial.hermite.Hermite.integ

	numpy.polynomial.hermite.Hermite.linspace

	numpy.polynomial.hermite.Hermite.mapparms

	numpy.polynomial.hermite.Hermite.roots

	numpy.polynomial.hermite.Hermite.trim

	numpy.polynomial.hermite.Hermite.truncate

	Basics
	numpy.polynomial.hermite.hermval

	numpy.polynomial.hermite.hermval2d

	numpy.polynomial.hermite.hermval3d

	numpy.polynomial.hermite.hermgrid2d

	numpy.polynomial.hermite.hermgrid3d

	numpy.polynomial.hermite.hermroots

	numpy.polynomial.hermite.hermfromroots

	Fitting
	numpy.polynomial.hermite.hermfit

	numpy.polynomial.hermite.hermvander

	numpy.polynomial.hermite.hermvander2d

	numpy.polynomial.hermite.hermvander3d

	Calculus
	numpy.polynomial.hermite.hermder

	numpy.polynomial.hermite.hermint

	Algebra
	numpy.polynomial.hermite.hermadd

	numpy.polynomial.hermite.hermsub

	numpy.polynomial.hermite.hermmul

	numpy.polynomial.hermite.hermmulx

	numpy.polynomial.hermite.hermdiv

	numpy.polynomial.hermite.hermpow

	Quadrature
	numpy.polynomial.hermite.hermgauss

	numpy.polynomial.hermite.hermweight

	Miscellaneous
	numpy.polynomial.hermite.hermcompanion

	numpy.polynomial.hermite.hermdomain

	numpy.polynomial.hermite.hermzero

	numpy.polynomial.hermite.hermone

	numpy.polynomial.hermite.hermx

	numpy.polynomial.hermite.hermtrim

	numpy.polynomial.hermite.hermline

	numpy.polynomial.hermite.herm2poly

	numpy.polynomial.hermite.poly2herm

	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)
	HermiteE Class
	numpy.polynomial.hermite_e.HermiteE
	numpy.polynomial.hermite_e.HermiteE.__call__

	numpy.polynomial.hermite_e.HermiteE.basis

	numpy.polynomial.hermite_e.HermiteE.cast

	numpy.polynomial.hermite_e.HermiteE.convert

	numpy.polynomial.hermite_e.HermiteE.copy

	numpy.polynomial.hermite_e.HermiteE.cutdeg

	numpy.polynomial.hermite_e.HermiteE.degree

	numpy.polynomial.hermite_e.HermiteE.deriv

	numpy.polynomial.hermite_e.HermiteE.fit

	numpy.polynomial.hermite_e.HermiteE.fromroots

	numpy.polynomial.hermite_e.HermiteE.has_samecoef

	numpy.polynomial.hermite_e.HermiteE.has_samedomain

	numpy.polynomial.hermite_e.HermiteE.has_sametype

	numpy.polynomial.hermite_e.HermiteE.has_samewindow

	numpy.polynomial.hermite_e.HermiteE.identity

	numpy.polynomial.hermite_e.HermiteE.integ

	numpy.polynomial.hermite_e.HermiteE.linspace

	numpy.polynomial.hermite_e.HermiteE.mapparms

	numpy.polynomial.hermite_e.HermiteE.roots

	numpy.polynomial.hermite_e.HermiteE.trim

	numpy.polynomial.hermite_e.HermiteE.truncate

	Basics
	numpy.polynomial.hermite_e.hermeval

	numpy.polynomial.hermite_e.hermeval2d

	numpy.polynomial.hermite_e.hermeval3d

	numpy.polynomial.hermite_e.hermegrid2d

	numpy.polynomial.hermite_e.hermegrid3d

	numpy.polynomial.hermite_e.hermeroots

	numpy.polynomial.hermite_e.hermefromroots

	Fitting
	numpy.polynomial.hermite_e.hermefit

	numpy.polynomial.hermite_e.hermevander

	numpy.polynomial.hermite_e.hermevander2d

	numpy.polynomial.hermite_e.hermevander3d

	Calculus
	numpy.polynomial.hermite_e.hermeder

	numpy.polynomial.hermite_e.hermeint

	Algebra
	numpy.polynomial.hermite_e.hermeadd

	numpy.polynomial.hermite_e.hermesub

	numpy.polynomial.hermite_e.hermemul

	numpy.polynomial.hermite_e.hermemulx

	numpy.polynomial.hermite_e.hermediv

	numpy.polynomial.hermite_e.hermepow

	Quadrature
	numpy.polynomial.hermite_e.hermegauss

	numpy.polynomial.hermite_e.hermeweight

	Miscellaneous
	numpy.polynomial.hermite_e.hermecompanion

	numpy.polynomial.hermite_e.hermedomain

	numpy.polynomial.hermite_e.hermezero

	numpy.polynomial.hermite_e.hermeone

	numpy.polynomial.hermite_e.hermex

	numpy.polynomial.hermite_e.hermetrim

	numpy.polynomial.hermite_e.hermeline

	numpy.polynomial.hermite_e.herme2poly

	numpy.polynomial.hermite_e.poly2herme

	Poly1d
	Basics
	numpy.poly1d
	numpy.poly1d.__call__

	numpy.poly1d.deriv

	numpy.poly1d.integ

	numpy.polyval

	numpy.poly

	numpy.roots

	Fitting
	numpy.polyfit

	Calculus
	numpy.polyder

	numpy.polyint

	Arithmetic
	numpy.polyadd

	numpy.polydiv

	numpy.polymul

	numpy.polysub

	Warnings
	numpy.RankWarning

	Random sampling (numpy.random)
	Simple random data
	numpy.random.rand

	numpy.random.randn

	numpy.random.randint

	numpy.random.random_integers

	numpy.random.random_sample

	numpy.random.random

	numpy.random.ranf

	numpy.random.sample

	numpy.random.choice

	numpy.random.bytes

	Permutations
	numpy.random.shuffle

	numpy.random.permutation

	Distributions
	numpy.random.beta

	numpy.random.binomial

	numpy.random.chisquare

	numpy.random.dirichlet

	numpy.random.exponential

	numpy.random.f

	numpy.random.gamma

	numpy.random.geometric

	numpy.random.gumbel

	numpy.random.hypergeometric

	numpy.random.laplace

	numpy.random.logistic

	numpy.random.lognormal

	numpy.random.logseries

	numpy.random.multinomial

	numpy.random.multivariate_normal

	numpy.random.negative_binomial

	numpy.random.noncentral_chisquare

	numpy.random.noncentral_f

	numpy.random.normal

	numpy.random.pareto

	numpy.random.poisson

	numpy.random.power

	numpy.random.rayleigh

	numpy.random.standard_cauchy

	numpy.random.standard_exponential

	numpy.random.standard_gamma

	numpy.random.standard_normal

	numpy.random.standard_t

	numpy.random.triangular

	numpy.random.uniform

	numpy.random.vonmises

	numpy.random.wald

	numpy.random.weibull

	numpy.random.zipf

	Random generator
	numpy.random.RandomState
	numpy.random.RandomState.beta

	numpy.random.RandomState.binomial

	numpy.random.RandomState.bytes

	numpy.random.RandomState.chisquare

	numpy.random.RandomState.choice

	numpy.random.RandomState.dirichlet

	numpy.random.RandomState.exponential

	numpy.random.RandomState.f

	numpy.random.RandomState.gamma

	numpy.random.RandomState.geometric

	numpy.random.RandomState.get_state

	numpy.random.RandomState.gumbel

	numpy.random.RandomState.hypergeometric

	numpy.random.RandomState.laplace

	numpy.random.RandomState.logistic

	numpy.random.RandomState.lognormal

	numpy.random.RandomState.logseries

	numpy.random.RandomState.multinomial

	numpy.random.RandomState.multivariate_normal

	numpy.random.RandomState.negative_binomial

	numpy.random.RandomState.noncentral_chisquare

	numpy.random.RandomState.noncentral_f

	numpy.random.RandomState.normal

	numpy.random.RandomState.pareto

	numpy.random.RandomState.permutation

	numpy.random.RandomState.poisson

	numpy.random.RandomState.power

	numpy.random.RandomState.rand

	numpy.random.RandomState.randint

	numpy.random.RandomState.randn

	numpy.random.RandomState.random_integers

	numpy.random.RandomState.random_sample

	numpy.random.RandomState.rayleigh

	numpy.random.RandomState.seed

	numpy.random.RandomState.set_state

	numpy.random.RandomState.shuffle

	numpy.random.RandomState.standard_cauchy

	numpy.random.RandomState.standard_exponential

	numpy.random.RandomState.standard_gamma

	numpy.random.RandomState.standard_normal

	numpy.random.RandomState.standard_t

	numpy.random.RandomState.tomaxint

	numpy.random.RandomState.triangular

	numpy.random.RandomState.uniform

	numpy.random.RandomState.vonmises

	numpy.random.RandomState.wald

	numpy.random.RandomState.weibull

	numpy.random.RandomState.zipf

	numpy.random.seed

	numpy.random.get_state

	numpy.random.set_state

	Set routines
	Making proper sets
	numpy.unique

	Boolean operations
	numpy.in1d

	numpy.intersect1d

	numpy.setdiff1d

	numpy.setxor1d

	numpy.union1d

	Sorting, searching, and counting
	Sorting
	numpy.sort

	numpy.lexsort

	numpy.argsort

	numpy.ndarray.sort

	numpy.msort

	numpy.sort_complex

	numpy.partition

	numpy.argpartition

	Searching
	numpy.argmax

	numpy.nanargmax

	numpy.argmin

	numpy.nanargmin

	numpy.argwhere

	numpy.nonzero

	numpy.flatnonzero

	numpy.where

	numpy.searchsorted

	numpy.extract

	Counting
	numpy.count_nonzero

	Statistics
	Order statistics
	numpy.amin

	numpy.amax

	numpy.nanmin

	numpy.nanmax

	numpy.ptp

	numpy.percentile

	Averages and variances
	numpy.median

	numpy.average

	numpy.mean

	numpy.std

	numpy.var

	numpy.nanmean

	numpy.nanstd

	numpy.nanvar

	Correlating
	numpy.corrcoef

	numpy.correlate

	numpy.cov

	Histograms
	numpy.histogram

	numpy.histogram2d

	numpy.histogramdd

	numpy.bincount

	numpy.digitize

	Test Support (numpy.testing)
	Asserts
	numpy.testing.assert_almost_equal

	numpy.testing.assert_approx_equal

	numpy.testing.assert_array_almost_equal

	numpy.testing.assert_allclose

	numpy.testing.assert_array_almost_equal_nulp

	numpy.testing.assert_array_max_ulp

	numpy.testing.assert_array_equal

	numpy.testing.assert_array_less

	numpy.testing.assert_equal

	numpy.testing.assert_raises

	numpy.testing.assert_raises_regex

	numpy.testing.assert_warns

	numpy.testing.assert_string_equal

	Decorators
	numpy.testing.decorators.deprecated

	numpy.testing.decorators.knownfailureif

	numpy.testing.decorators.setastest

	numpy.testing.decorators.skipif

	numpy.testing.decorators.slow

	numpy.testing.decorate_methods

	Test Running
	numpy.testing.Tester

	numpy.testing.run_module_suite

	numpy.testing.rundocs

	Window functions
	Various windows
	numpy.bartlett

	numpy.blackman

	numpy.hamming

	numpy.hanning

	numpy.kaiser

	Packaging (numpy.distutils)
	Modules in numpy.distutils
	misc_util
	numpy.distutils.misc_util.get_numpy_include_dirs

	numpy.distutils.misc_util.dict_append

	numpy.distutils.misc_util.appendpath

	numpy.distutils.misc_util.allpath

	numpy.distutils.misc_util.dot_join

	numpy.distutils.misc_util.generate_config_py

	numpy.distutils.misc_util.get_cmd

	numpy.distutils.misc_util.terminal_has_colors

	numpy.distutils.misc_util.red_text

	numpy.distutils.misc_util.green_text

	numpy.distutils.misc_util.yellow_text

	numpy.distutils.misc_util.blue_text

	numpy.distutils.misc_util.cyan_text

	numpy.distutils.misc_util.cyg2win32

	numpy.distutils.misc_util.all_strings

	numpy.distutils.misc_util.has_f_sources

	numpy.distutils.misc_util.has_cxx_sources

	numpy.distutils.misc_util.filter_sources

	numpy.distutils.misc_util.get_dependencies

	numpy.distutils.misc_util.is_local_src_dir

	numpy.distutils.misc_util.get_ext_source_files

	numpy.distutils.misc_util.get_script_files

	Other modules
	numpy.distutils.system_info.get_info

	numpy.distutils.system_info.get_standard_file

	numpy.distutils.cpuinfo.cpu

	numpy.distutils.log.set_verbosity

	numpy.distutils.exec_command

	Building Installable C libraries
	npy-pkg-config files

	Reusing a C library from another package

	Conversion of .src files
	Fortran files
	Named repeat rule

	Short repeat rule

	Pre-defined names

	Other files

	Numpy C-API
	Python Types and C-Structures
	New Python Types Defined
	PyArray_Type

	PyArrayDescr_Type

	PyUFunc_Type

	PyArrayIter_Type

	PyArrayMultiIter_Type

	PyArrayNeighborhoodIter_Type

	PyArrayFlags_Type

	ScalarArrayTypes

	Other C-Structures
	PyArray_Dims

	PyArray_Chunk

	PyArrayInterface

	Internally used structures

	System configuration
	Data type sizes

	Platform information

	Data Type API
	Enumerated Types

	Defines
	Max and min values for integers

	Number of bits in data types

	Bit-width references to enumerated typenums

	Integer that can hold a pointer

	C-type names
	Boolean

	(Un)Signed Integer

	(Complex) Floating point

	Bit-width names

	Printf Formatting

	Array API
	Array structure and data access
	Data access

	Creating arrays
	From scratch

	From other objects

	Dealing with types
	General check of Python Type

	Data-type checking

	Converting data types

	New data types

	Special functions for NPY_OBJECT

	Array flags
	Basic Array Flags

	Combinations of array flags

	Flag-like constants

	Flag checking

	Array method alternative API
	Conversion

	Shape Manipulation

	Item selection and manipulation

	Calculation

	Functions
	Array Functions

	Other functions

	Auxiliary Data With Object Semantics

	Array Iterators

	Broadcasting (multi-iterators)

	Neighborhood iterator

	Array Scalars

	Data-type descriptors

	Conversion Utilities
	For use with PyArg_ParseTuple

	Other conversions

	Miscellaneous
	Importing the API

	Checking the API Version

	Internal Flexibility

	Memory management

	Threading support
	Group 1

	Group 2

	Priority

	Default buffers

	Other constants

	Miscellaneous Macros

	Enumerated Types

	Array Iterator API
	Array Iterator

	Converting from Previous NumPy Iterators

	Simple Iteration Example

	Simple Multi-Iteration Example

	Iterator Data Types

	Construction and Destruction

	Functions For Iteration

	UFunc API
	Constants

	Macros

	Functions

	Generic functions

	Importing the API

	Generalized Universal Function API
	Definitions

	Details of Signature

	C-API for implementing Elementary Functions

	Numpy core libraries
	Numpy core math library
	Floating point classification

	Useful math constants

	Low-level floating point manipulation

	Complex functions

	Linking against the core math library in an extension

	Half-precision functions

	C API Deprecations
	Background

	Deprecation Mechanism NPY_NO_DEPRECATED_API

	Numpy internals
	Numpy C Code Explanations
	Memory model

	Data-type encapsulation

	N-D Iterators

	Broadcasting

	Array Scalars

	Advanced (“Fancy”) Indexing
	Fancy-indexing check

	Fancy-indexing implementation
	Creating the mapping object

	Binding the mapping object

	Getting (or Setting)

	Universal Functions
	Setup

	Function call
	One Loop

	Strided Loop

	Buffered Loop

	Final output manipulation

	Methods
	Setup

	Reduce

	Accumulate

	Reduceat

	Internal organization of numpy arrays

	Multidimensional Array Indexing Order Issues

	Numpy and SWIG
	Numpy.i: a SWIG Interface File for NumPy
	Introduction

	Using numpy.i

	Available Typemaps
	Input Arrays

	In-Place Arrays

	Argout Arrays

	Argout View Arrays

	Memory Managed Argout View Arrays

	Output Arrays

	Other Common Types: bool

	Other Common Types: complex

	NumPy Array Scalars and SWIG
	Why is There a Second File?

	Helper Functions
	Macros

	Routines

	Beyond the Provided Typemaps
	A Common Example

	Other Situations

	A Final Note

	Summary

	Testing the numpy.i Typemaps
	Introduction

	Testing Organization

	Testing Header Files

	Testing Source Files

	Testing SWIG Interface Files

	Testing Python Scripts

	Acknowledgements

	F2PY Users Guide and Reference Manual
	Introduction
	Three ways to wrap - getting started
	The quick way

	The smart way

	The quick and smart way

	Signature file
	Python module block

	Fortran/C routine signatures
	Type declarations

	Statements

	Attributes

	Extensions
	F2PY directives

	C expressions

	Multiline blocks

	Using F2PY bindings in Python
	Scalar arguments

	String arguments

	Array arguments

	Call-back arguments
	Resolving arguments to call-back functions

	Common blocks

	Fortran 90 module data
	Allocatable arrays

	Using F2PY
	Command f2py

	Python module f2py2e

	Using via numpy.distutils

	Advanced F2PY usages
	Adding self-written functions to F2PY generated modules

	Modifying the dictionary of a F2PY generated module

	Contributing to Numpy
	Working with NumPy source code
	Introduction
	Install git
	Overview

	In detail

	Following the latest source
	Get the local copy of the code

	Updating the code

	Git for development
	Getting started with Git development
	Basic Git setup

	Making your own copy (fork) of NumPy
	Set up and configure a github account

	Create your own forked copy of NumPy

	Set up your fork
	Overview

	In detail
	Clone your fork

	Linking your repository to the upstream repo

	Git configuration
	Overview

	In detail
	user.name and user.email

	Aliases

	Editor

	Merging

	Development workflow
	Basic workflow
	Making a new feature branch

	The editing workflow
	Overview

	In more detail

	Writing the commit message

	Rebasing on master
	Recovering from mess-ups

	Asking for your changes to be merged with the main repo
	Asking for code review

	Filing a pull request

	Pushing changes to the main repo

	Additional things you might want to do
	Rewriting commit history

	Deleting a branch on github

	Several people sharing a single repository

	Exploring your repository

	Backporting

	git resources
	Tutorials and summaries

	Advanced git workflow

	Manual pages online

	Numpy Enhancement Proposals
	Implemented NEPs
	A Mechanism for Overriding Ufuncs
	Executive summary

	Motivation

	Proposed interface
	In combination with Python’s binary operations

	Demo

	Generalized Universal Functions
	Definitions

	Details of Signature

	C-API for implementing Elementary Functions

	Optimizing Iterator/UFunc Performance
	Table of Contents

	Abstract

	Motivation
	Image Compositing Example

	Improving Cache-Coherency
	Output Layout Selection Algorithm

	Coalescing Dimensions

	Inner Loop Specialization

	Implementation Details
	Iterator Rewrite

	Proposed Iterator Memory Layout

	Proposed Iterator API
	Old -> New Iterator API Conversion

	Iterator Pointer Type

	Construction and Destruction

	Functions For Iteration

	Examples

	Python Lambda UFunc Example

	Python Addition Example

	Image Compositing Example Revisited

	Image Compositing With NumExpr

	A Simple File Format for NumPy Arrays
	Abstract

	Rationale

	Use Cases

	Requirements

	Format Specification: Version 1.0

	Conventions

	Alternatives

	Implementation

	References

	Copyright

	Other NEPs
	Missing Data Functionality in NumPy
	Table of Contents

	Abstract

	Definition of Missing Data
	Unknown Yet Existing Data (NA)

	Data That Doesn’t Exist Or Is Being Skipped (IGNORE)

	Implementation Techniques For Missing Values
	Bit Patterns Signalling Missing Values (bitpattern)

	Boolean Masks Signalling Missing Values (mask)

	Glossary of Terms

	Missing Values as Seen in Python
	Working With Missing Values

	Accessing a Boolean Mask

	Creating NA-Masked Arrays

	NA-Masks When Constructing From Lists

	Mask Implementation Details

	New ndarray Methods

	Element-wise UFuncs With Missing Values

	Reduction UFuncs With Missing Values

	Parameterized NA Data Types

	Future Expansion to multi-NA Payloads

	Differences with numpy.ma

	Boolean Indexing

	PEP 3118

	Cython

	Hard Masks

	Shared Masks

	Interaction With Pre-existing C API Usage
	Numpy Documentation - How to extend NumPy

	Tutorial From Cython Website

	Numerical Python - JPL website

	C Implementation Details
	Mask Binary Format

	C Iterator API Changes: Iteration With Masks
	Iterator Mask Features

	Iterator NA-array Features

	Rejected Alternative
	Parameterized Data Type Which Adds Additional Memory for the NA Flag

	Acknowledgments

	Cleaning the math configuration of numpy.core
	Executive summary

	Current problems

	Requirements

	Proposal

	Issues

	License

	A proposal for adding groupby functionality to NumPy
	Executive summary

	Example Use Case

	Ufunc methods proposed

	Functions proposed

	A proposal to build numpy without warning with a big set of warning flags
	Executive summary

	Warning flags

	Kind of warnings
	unused parameter

	signed/unsigned comparison

	half-initialized structures

	Replacing Trac with a different bug tracker
	Scenario
	new release

	subcomponent maintainer

	Review, newcoming code

	Current trac limitation

	Possible candidates
	Updated trac + plugins

	Redmine

	Roundup

	Deferred UFunc Evaluation
	Abstract

	Motivation

	Example Python Code

	Proposed Deferred Evaluation API
	Error Handling

	Interaction With UPDATEIFCOPY

	Other Implementation Details

	Further Optimization

	Structured array extensions

	A proposal for implementing some date/time types in NumPy
	Executive summary

	Types proposed

	Time units

	datetime64
	Building a datetime64 dtype

	Setting and getting values

	Comparisons

	Compatibility issues

	timedelta64
	Building a timedelta64 dtype

	Setting and getting values

	Comparisons

	Compatibility issues

	Examples of use

	Operating with date/time arrays
	datetime64 vs datetime64
	Casting rules

	datetime64 vs timedelta64
	Casting rules

	timedelta64 vs timedelta64
	Casting rules

	dtype vs time units conversions

	Necessary changes to NumPy
	Addition of metadata to dtypes

	Ufunc interface extension

	Array Intervace Extensions

	Final considerations
	Why the fractional time and events: [3Y/12]//50

	Why the origin metadata disappeared

	Operations with mixed time units

	A (third) proposal for implementing some date/time types in NumPy
	Executive summary

	Types proposed
	datetime64
	Time units

	Building a datetime64 dtype

	Setting and getting values

	Comparisons

	Compatibility issues

	timedelta64
	Time units

	Building a timedelta64 dtype

	Setting and getting values

	Comparisons

	Compatibility issues

	Examples of use

	Operating with date/time arrays
	datetime64 vs datetime64
	Casting rules

	datetime64 vs timedelta64
	Casting rules

	timedelta64 vs timedelta64
	Casting rules

	dtype vs time units conversions

	Final considerations
	Why the origin metadata disappeared

	Operations with mixed time units

	Why there is not a quarter time unit?

	Release Notes
	NumPy 1.10.0 Release Notes
	Highlights

	Dropped Support

	Future Changes

	Compatibility notes

	New Features
	np.cbrt to compute cube root for real floats

	numpy.distutils now allows parallel compilation

	Improvements
	np.digitize using binary search

	np.poly now casts integer inputs to float

	np.interp can now be used with periodic functions

	Changes
	dotblas functionality moved to multiarray

	stricter check of gufunc signature compliance

	Deprecations
	SafeEval

	alterdot, restoredot

	pkgload, PackageLoader

	NumPy 1.9.1 Release Notes
	Issues fixed

	NumPy 1.9.0 Release Notes
	Highlights

	Dropped Support

	Future Changes

	Compatibility notes
	The diagonal and diag functions return readonly views.

	Special scalar float values don’t cause upcast to double anymore

	Percentile output changes

	ndarray.tofile exception type

	Invalid fill value exceptions

	Polynomial Classes no longer derived from PolyBase

	Using numpy.random.binomial may change the RNG state vs. numpy < 1.9

	Random seed enforced to be a 32 bit unsigned integer

	Argmin and argmax out argument

	Einsum

	Indexing

	Non-integer reduction axis indexes are deprecated

	promote_types and string dtype

	can_cast and string dtype

	astype and string dtype

	npyio.recfromcsv keyword arguments change

	The doc/swig directory moved

	The npy_3kcompat.h header changed

	Negative indices in C-Api sq_item and sq_ass_item sequence methods

	NDIter

	zeros_like for string dtypes now returns empty strings

	New Features
	Percentile supports more interpolation options

	Generalized axis support for median and percentile

	Dtype parameter added to np.linspace and np.logspace

	More general np.triu and np.tril broadcasting

	tobytes alias for tostring method

	Build system

	Compatibility to python numbers module

	increasing parameter added to np.vander

	unique_counts parameter added to np.unique

	Support for median and percentile in nanfunctions

	NumpyVersion class added

	Allow saving arrays with large number of named columns

	Full broadcasting support for np.cross

	Improvements
	Better numerical stability for sum in some cases

	Percentile implemented in terms of np.partition

	Performance improvement for np.array

	Performance improvement for np.searchsorted

	Optional reduced verbosity for np.distutils

	Covariance check in np.random.multivariate_normal

	Polynomial Classes no longer template based

	More GIL releases

	MaskedArray support for more complicated base classes

	C-API

	Deprecations
	Non-integer scalars for sequence repetition

	select input deprecations

	rank function

	Object array equality comparisons

	C-API

	NumPy 1.8.2 Release Notes
	Issues fixed

	NumPy 1.8.1 Release Notes
	Issues fixed

	Changes
	NDIter

	Optional reduced verbosity for np.distutils

	Deprecations
	C-API

	NumPy 1.8.0 Release Notes
	Highlights

	Dropped Support

	Future Changes

	Compatibility notes
	NPY_RELAXED_STRIDES_CHECKING

	Binary operations with non-arrays as second argument

	Function median used with overwrite_input only partially sorts array

	Fix to financial.npv

	Runtime warnings when comparing NaN numbers

	New Features
	Support for linear algebra on stacked arrays

	In place fancy indexing for ufuncs

	New functions partition and argpartition

	New functions nanmean, nanvar and nanstd

	New functions full and full_like

	IO compatibility with large files

	Building against OpenBLAS

	New constant

	New modes for qr

	New invert argument to in1d

	Advanced indexing using np.newaxis

	C-API

	runtests.py

	Improvements
	IO performance improvements

	Performance improvements to pad

	Performance improvements to isnan, isinf, isfinite and byteswap

	Performance improvements via SSE2 vectorization

	Performance improvements to median

	Overrideable operand flags in ufunc C-API

	Changes
	General

	C-API Array Additions

	C-API Ufunc Additions

	C-API Developer Improvements

	Deprecations
	General

	Authors

	NumPy 1.7.2 Release Notes
	Issues fixed

	NumPy 1.7.1 Release Notes
	Issues fixed

	NumPy 1.7.0 Release Notes
	Highlights

	Compatibility notes

	New features
	Reduction UFuncs Generalize axis= Parameter

	Reduction UFuncs New keepdims= Parameter

	Datetime support

	Custom formatter for printing arrays

	New function numpy.random.choice

	New function isclose

	Preliminary multi-dimensional support in the polynomial package

	Ability to pad rank-n arrays

	New argument to searchsorted

	Build system

	C API

	Changes
	General

	Casting Rules

	Deprecations
	General

	C-API

	NumPy 1.6.2 Release Notes
	Issues fixed
	numpy.core

	numpy.lib

	numpy.distutils

	numpy.random

	Changes
	numpy.f2py

	numpy.poly

	NumPy 1.6.1 Release Notes
	Issues Fixed

	NumPy 1.6.0 Release Notes
	Highlights

	New features
	New 16-bit floating point type

	New iterator

	Legendre, Laguerre, Hermite, HermiteE polynomials in numpy.polynomial

	Fortran assumed shape array and size function support in numpy.f2py

	Other new functions

	Changes
	default error handling

	numpy.distutils

	numpy.testing

	C API

	Deprecated features

	Removed features
	numpy.fft

	numpy.memmap

	numpy.lib

	numpy.ma

	numpy.distutils

	NumPy 1.5.0 Release Notes
	Highlights
	Python 3 compatibility

	PEP 3118 compatibility

	New features
	Warning on casting complex to real

	Dot method for ndarrays

	linalg.slogdet function

	new header

	Changes
	polynomial.polynomial

	polynomial.chebyshev

	histogram

	correlate

	NumPy 1.4.0 Release Notes
	Highlights

	New features
	Extended array wrapping mechanism for ufuncs

	Automatic detection of forward incompatibilities

	New iterators

	New polynomial support

	New C API

	New ufuncs

	New defines

	Testing

	Reusing npymath

	Improved set operations

	Improvements

	Deprecations

	Internal changes
	Use C99 complex functions when available

	split multiarray and umath source code

	Separate compilation

	Separate core math library

	NumPy 1.3.0 Release Notes
	Highlights
	Python 2.6 support

	Generalized ufuncs

	Experimental Windows 64 bits support

	New features
	Formatting issues

	Nan handling in max/min

	Nan handling in sign

	New ufuncs

	Masked arrays

	gfortran support on windows

	Arch option for windows binary

	Deprecated features
	Histogram

	Documentation changes

	New C API
	Multiarray API

	Ufunc API

	New defines

	Portable NAN, INFINITY, etc...

	Internal changes
	numpy.core math configuration revamp

	umath refactor

	Improvements to build warnings

	Separate core math library

	CPU arch detection

	About NumPy
	NumPy community

	About this documentation
	Conventions

	Reporting bugs

	Numpy License

	Glossary
	Jargon

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

NumPy User Guide

This guide is intended as an introductory overview of NumPy and
explains how to install and make use of the most important features of
NumPy. For detailed reference documentation of the functions and
classes contained in the package, see the NumPy Reference.

Warning

This “User Guide” is still a work in progress; some of the material
is not organized, and several aspects of NumPy are not yet covered
sufficient detail. We are an open source community continually
working to improve the documentation and eagerly encourage interested
parties to contribute. For information on how to do so, please visit
the NumPy doc wiki [http://docs.scipy.org/numpy/Front%20Page].

More documentation for NumPy can be found on the numpy.org [http://www.numpy.org] website.

Thanks!

	Introduction
	What is NumPy?

	Building and installing NumPy

	How to find documentation

	Numpy basics
	Data types

	Array creation

	I/O with Numpy

	Indexing

	Broadcasting

	Byte-swapping

	Structured arrays (aka “Record arrays”)

	Subclassing ndarray

	Performance

	Miscellaneous
	IEEE 754 Floating Point Special Values

	How numpy handles numerical exceptions

	Examples

	Interfacing to C

	Interfacing to Fortran:

	Interfacing to C++:

	Methods vs. Functions

	Using Numpy C-API
	How to extend NumPy

	Using Python as glue

	Writing your own ufunc

	Beyond the Basics

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

Introduction

	What is NumPy?

	Building and installing NumPy
	Binary installers
	Windows

	Linux

	Mac OS X

	Building from source
	Prerequisites

	FORTRAN ABI mismatch
	Choosing the fortran compiler

	How to check the ABI of blas/lapack/atlas

	Disabling ATLAS and other accelerated libraries

	Supplying additional compiler flags

	Building with ATLAS support
	Ubuntu 8.10 (Intrepid) and 9.04 (Jaunty)

	Ubuntu 8.04 and lower

	How to find documentation

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Introduction

What is NumPy?

NumPy is the fundamental package for scientific computing in Python.
It is a Python library that provides a multidimensional array object,
various derived objects (such as masked arrays and matrices), and an
assortment of routines for fast operations on arrays, including
mathematical, logical, shape manipulation, sorting, selecting, I/O,
discrete Fourier transforms, basic linear algebra, basic statistical
operations, random simulation and much more.

At the core of the NumPy package, is the ndarray object. This
encapsulates n-dimensional arrays of homogeneous data types, with
many operations being performed in compiled code for performance.
There are several important differences between NumPy arrays and the
standard Python sequences:

	NumPy arrays have a fixed size at creation, unlike Python lists
(which can grow dynamically). Changing the size of an ndarray will
create a new array and delete the original.

	The elements in a NumPy array are all required to be of the same
data type, and thus will be the same size in memory. The exception:
one can have arrays of (Python, including NumPy) objects, thereby
allowing for arrays of different sized elements.

	NumPy arrays facilitate advanced mathematical and other types of
operations on large numbers of data. Typically, such operations are
executed more efficiently and with less code than is possible using
Python’s built-in sequences.

	A growing plethora of scientific and mathematical Python-based
packages are using NumPy arrays; though these typically support
Python-sequence input, they convert such input to NumPy arrays prior
to processing, and they often output NumPy arrays. In other words,
in order to efficiently use much (perhaps even most) of today’s
scientific/mathematical Python-based software, just knowing how to
use Python’s built-in sequence types is insufficient - one also
needs to know how to use NumPy arrays.

The points about sequence size and speed are particularly important in
scientific computing. As a simple example, consider the case of
multiplying each element in a 1-D sequence with the corresponding
element in another sequence of the same length. If the data are
stored in two Python lists, a and b, we could iterate over
each element:

c = []
for i in range(len(a)):
 c.append(a[i]*b[i])

This produces the correct answer, but if a and b each contain
millions of numbers, we will pay the price for the inefficiencies of
looping in Python. We could accomplish the same task much more
quickly in C by writing (for clarity we neglect variable declarations
and initializations, memory allocation, etc.)

for (i = 0; i < rows; i++): {
 c[i] = a[i]*b[i];
}

This saves all the overhead involved in interpreting the Python code
and manipulating Python objects, but at the expense of the benefits
gained from coding in Python. Furthermore, the coding work required
increases with the dimensionality of our data. In the case of a 2-D
array, for example, the C code (abridged as before) expands to

for (i = 0; i < rows; i++): {
 for (j = 0; j < columns; j++): {
 c[i][j] = a[i][j]*b[i][j];
 }
}

NumPy gives us the best of both worlds: element-by-element operations
are the “default mode” when an ndarray is involved, but the
element-by-element operation is speedily executed by pre-compiled C
code. In NumPy

c = a * b

does what the earlier examples do, at near-C speeds, but with the code
simplicity we expect from something based on Python. Indeed, the NumPy
idiom is even simpler! This last example illustrates two of NumPy’s
features which are the basis of much of its power: vectorization and
broadcasting.

Vectorization describes the absence of any explicit looping, indexing,
etc., in the code - these things are taking place, of course, just
“behind the scenes” in optimized, pre-compiled C code. Vectorized
code has many advantages, among which are:

	vectorized code is more concise and easier to read

	fewer lines of code generally means fewer bugs

	the code more closely resembles standard mathematical notation
(making it easier, typically, to correctly code mathematical
constructs)

	vectorization results in more “Pythonic” code. Without
vectorization, our code would be littered with inefficient and
difficult to read for loops.

Broadcasting is the term used to describe the implicit
element-by-element behavior of operations; generally speaking, in
NumPy all operations, not just arithmetic operations, but
logical, bit-wise, functional, etc., behave in this implicit
element-by-element fashion, i.e., they broadcast. Moreover, in the
example above, a and b could be multidimensional arrays of the
same shape, or a scalar and an array, or even two arrays of with
different shapes, provided that the smaller array is “expandable” to
the shape of the larger in such a way that the resulting broadcast is
unambiguous. For detailed “rules” of broadcasting see
numpy.doc.broadcasting.

NumPy fully supports an object-oriented approach, starting, once
again, with ndarray. For example, ndarray is a class, possessing
numerous methods and attributes. Many of its methods mirror
functions in the outer-most NumPy namespace, giving the programmer
complete freedom to code in whichever paradigm she prefers and/or
which seems most appropriate to the task at hand.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Introduction

Building and installing NumPy

Binary installers

In most use cases the best way to install NumPy on your system is by using an
installable binary package for your operating system.

Windows

Good solutions for Windows are, Enthought Canopy [https://www.enthought.com/products/canopy/] (which provides binary
installers for Windows, OS X and Linux) and Python (x, y) [http://www.pythonxy.com]. Both of these packages include Python, NumPy and
many additional packages.

A lightweight alternative is to download the Python
installer from www.python.org [http://www.python.org] and the NumPy
installer for your Python version from the Sourceforge download site [http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103]

The NumPy installer includes binaries for different CPU’s (without SSE
instructions, with SSE2 or with SSE3) and installs the correct one
automatically. If needed, this can be bypassed from the command line with

numpy-<1.y.z>-superpack-win32.exe /arch nosse

or ‘sse2’ or ‘sse3’ instead of ‘nosse’.

Linux

Most of the major distributions provide packages for NumPy, but these can lag
behind the most recent NumPy release. Pre-built binary packages for Ubuntu are
available on the scipy ppa [https://edge.launchpad.net/~scipy/+archive/ppa]. Redhat binaries are
available in the Enthought Canopy [https://www.enthought.com/products/canopy/].

Mac OS X

A universal binary installer for NumPy is available from the download site [http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103]. The Enthought Canopy [https://www.enthought.com/products/canopy/] provides NumPy binaries.

Building from source

A general overview of building NumPy from source is given here, with detailed
instructions for specific platforms given seperately.

Prerequisites

Building NumPy requires the following software installed:

	Python 2.6.x, 2.7.x, 3.2.x or newer

On Debian and derivatives (Ubuntu): python, python-dev (or python3-dev)

On Windows: the official python installer at
www.python.org [http://www.python.org] is enough

Make sure that the Python package distutils is installed before
continuing. For example, in Debian GNU/Linux, installing python-dev
also installs distutils.

Python must also be compiled with the zlib module enabled. This is
practically always the case with pre-packaged Pythons.

	Compilers

To build any extension modules for Python, you’ll need a C compiler.
Various NumPy modules use FORTRAN 77 libraries, so you’ll also need a
FORTRAN 77 compiler installed.

Note that NumPy is developed mainly using GNU compilers. Compilers from
other vendors such as Intel, Absoft, Sun, NAG, Compaq, Vast, Porland,
Lahey, HP, IBM, Microsoft are only supported in the form of community
feedback, and may not work out of the box. GCC 3.x (and later) compilers
are recommended.

	Linear Algebra libraries

NumPy does not require any external linear algebra libraries to be
installed. However, if these are available, NumPy’s setup script can detect
them and use them for building. A number of different LAPACK library setups
can be used, including optimized LAPACK libraries such as ATLAS, MKL or the
Accelerate/vecLib framework on OS X.

FORTRAN ABI mismatch

The two most popular open source fortran compilers are g77 and gfortran.
Unfortunately, they are not ABI compatible, which means that concretely you
should avoid mixing libraries built with one with another. In particular, if
your blas/lapack/atlas is built with g77, you must use g77 when building
numpy and scipy; on the contrary, if your atlas is built with gfortran, you
must build numpy/scipy with gfortran. This applies for most other cases
where different FORTRAN compilers might have been used.

Choosing the fortran compiler

To build with g77:

python setup.py build --fcompiler=gnu

To build with gfortran:

python setup.py build --fcompiler=gnu95

For more information see:

python setup.py build --help-fcompiler

How to check the ABI of blas/lapack/atlas

One relatively simple and reliable way to check for the compiler used to build
a library is to use ldd on the library. If libg2c.so is a dependency, this
means that g77 has been used. If libgfortran.so is a a dependency, gfortran
has been used. If both are dependencies, this means both have been used, which
is almost always a very bad idea.

Disabling ATLAS and other accelerated libraries

Usage of ATLAS and other accelerated libraries in Numpy can be disabled
via:

BLAS=None LAPACK=None ATLAS=None python setup.py build

Supplying additional compiler flags

Additional compiler flags can be supplied by setting the OPT,
FOPT (for Fortran), and CC environment variables.

Building with ATLAS support

Ubuntu 8.10 (Intrepid) and 9.04 (Jaunty)

You can install the necessary packages for optimized ATLAS with this command:

sudo apt-get install libatlas-base-dev

If you have a recent CPU with SIMD suppport (SSE, SSE2, etc...), you should
also install the corresponding package for optimal performances. For example,
for SSE2:

sudo apt-get install libatlas3gf-sse2

This package is not available on amd64 platforms.

NOTE: Ubuntu changed its default fortran compiler from g77 in Hardy to
gfortran in Intrepid. If you are building ATLAS from source and are upgrading
from Hardy to Intrepid or later versions, you should rebuild everything from
scratch, including lapack.

Ubuntu 8.04 and lower

You can install the necessary packages for optimized ATLAS with this command:

sudo apt-get install atlas3-base-dev

If you have a recent CPU with SIMD suppport (SSE, SSE2, etc...), you should
also install the corresponding package for optimal performances. For example,
for SSE2:

sudo apt-get install atlas3-sse2

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Introduction

How to find documentation

See also

Numpy-specific help functions

How to find things in NumPy.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

Numpy basics

	Data types
	Array types and conversions between types

	Array Scalars

	Array creation
	Introduction

	Converting Python array_like Objects to Numpy Arrays

	Intrinsic Numpy Array Creation

	Reading Arrays From Disk

	I/O with Numpy
	Importing data with genfromtxt

	Indexing
	Assignment vs referencing

	Single element indexing

	Other indexing options

	Index arrays

	Indexing Multi-dimensional arrays

	Boolean or “mask” index arrays

	Combining index arrays with slices

	Structural indexing tools

	Assigning values to indexed arrays

	Dealing with variable numbers of indices within programs

	Broadcasting
	General Broadcasting Rules

	Byte-swapping
	Introduction to byte ordering and ndarrays

	Changing byte ordering

	Structured arrays (aka “Record arrays”)
	Structured Arrays (and Record Arrays)

	Subclassing ndarray
	Credits

	Introduction

	View casting

	Creating new from template

	Relationship of view casting and new-from-template

	Implications for subclassing

	Simple example - adding an extra attribute to ndarray

	Slightly more realistic example - attribute added to existing array

	__array_wrap__ for ufuncs

	Extra gotchas - custom __del__ methods and ndarray.base

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

Data types

See also

Data type objects

Array types and conversions between types

Numpy supports a much greater variety of numerical types than Python does.
This section shows which are available, and how to modify an array’s data-type.

	Data type
	Description

	bool_
	Boolean (True or False) stored as a byte

	int_
	Default integer type (same as C long; normally either
int64 or int32)

	intc
	Identical to C int (normally int32 or int64)

	intp
	Integer used for indexing (same as C ssize_t; normally
either int32 or int64)

	int8
	Byte (-128 to 127)

	int16
	Integer (-32768 to 32767)

	int32
	Integer (-2147483648 to 2147483647)

	int64
	Integer (-9223372036854775808 to 9223372036854775807)

	uint8
	Unsigned integer (0 to 255)

	uint16
	Unsigned integer (0 to 65535)

	uint32
	Unsigned integer (0 to 4294967295)

	uint64
	Unsigned integer (0 to 18446744073709551615)

	float_
	Shorthand for float64.

	float16
	Half precision float: sign bit, 5 bits exponent,
10 bits mantissa

	float32
	Single precision float: sign bit, 8 bits exponent,
23 bits mantissa

	float64
	Double precision float: sign bit, 11 bits exponent,
52 bits mantissa

	complex_
	Shorthand for complex128.

	complex64
	Complex number, represented by two 32-bit floats (real
and imaginary components)

	complex128
	Complex number, represented by two 64-bit floats (real
and imaginary components)

Additionally to intc the platform dependent C integer types short,
long, longlong and their unsigned versions are defined.

Numpy numerical types are instances of dtype (data-type) objects, each
having unique characteristics. Once you have imported NumPy using

>>> import numpy as np

the dtypes are available as np.bool_, np.float32, etc.

Advanced types, not listed in the table above, are explored in
section Structured arrays (aka “Record arrays”).

There are 5 basic numerical types representing booleans (bool), integers (int),
unsigned integers (uint) floating point (float) and complex. Those with numbers
in their name indicate the bitsize of the type (i.e. how many bits are needed
to represent a single value in memory). Some types, such as int and
intp, have differing bitsizes, dependent on the platforms (e.g. 32-bit
vs. 64-bit machines). This should be taken into account when interfacing
with low-level code (such as C or Fortran) where the raw memory is addressed.

Data-types can be used as functions to convert python numbers to array scalars
(see the array scalar section for an explanation), python sequences of numbers
to arrays of that type, or as arguments to the dtype keyword that many numpy
functions or methods accept. Some examples:

>>> import numpy as np
>>> x = np.float32(1.0)
>>> x
1.0
>>> y = np.int_([1,2,4])
>>> y
array([1, 2, 4])
>>> z = np.arange(3, dtype=np.uint8)
>>> z
array([0, 1, 2], dtype=uint8)

Array types can also be referred to by character codes, mostly to retain
backward compatibility with older packages such as Numeric. Some
documentation may still refer to these, for example:

>>> np.array([1, 2, 3], dtype='f')
array([1., 2., 3.], dtype=float32)

We recommend using dtype objects instead.

To convert the type of an array, use the .astype() method (preferred) or
the type itself as a function. For example:

>>> z.astype(float)
array([0., 1., 2.])
>>> np.int8(z)
array([0, 1, 2], dtype=int8)

Note that, above, we use the Python float object as a dtype. NumPy knows
that int refers to np.int_, bool means np.bool_,
that float is np.float_ and complex is np.complex_.
The other data-types do not have Python equivalents.

To determine the type of an array, look at the dtype attribute:

>>> z.dtype
dtype('uint8')

dtype objects also contain information about the type, such as its bit-width
and its byte-order. The data type can also be used indirectly to query
properties of the type, such as whether it is an integer:

>>> d = np.dtype(int)
>>> d
dtype('int32')

>>> np.issubdtype(d, int)
True

>>> np.issubdtype(d, float)
False

Array Scalars

Numpy generally returns elements of arrays as array scalars (a scalar
with an associated dtype). Array scalars differ from Python scalars, but
for the most part they can be used interchangeably (the primary
exception is for versions of Python older than v2.x, where integer array
scalars cannot act as indices for lists and tuples). There are some
exceptions, such as when code requires very specific attributes of a scalar
or when it checks specifically whether a value is a Python scalar. Generally,
problems are easily fixed by explicitly converting array scalars
to Python scalars, using the corresponding Python type function
(e.g., int, float, complex, str, unicode).

The primary advantage of using array scalars is that
they preserve the array type (Python may not have a matching scalar type
available, e.g. int16). Therefore, the use of array scalars ensures
identical behaviour between arrays and scalars, irrespective of whether the
value is inside an array or not. NumPy scalars also have many of the same
methods arrays do.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

Array creation

See also

Array creation routines

Introduction

There are 5 general mechanisms for creating arrays:

	Conversion from other Python structures (e.g., lists, tuples)

	Intrinsic numpy array array creation objects (e.g., arange, ones, zeros,
etc.)

	Reading arrays from disk, either from standard or custom formats

	Creating arrays from raw bytes through the use of strings or buffers

	Use of special library functions (e.g., random)

This section will not cover means of replicating, joining, or otherwise
expanding or mutating existing arrays. Nor will it cover creating object
arrays or record arrays. Both of those are covered in their own sections.

Converting Python array_like Objects to Numpy Arrays

In general, numerical data arranged in an array-like structure in Python can
be converted to arrays through the use of the array() function. The most
obvious examples are lists and tuples. See the documentation for array() for
details for its use. Some objects may support the array-protocol and allow
conversion to arrays this way. A simple way to find out if the object can be
converted to a numpy array using array() is simply to try it interactively and
see if it works! (The Python Way).

Examples:

>>> x = np.array([2,3,1,0])
>>> x = np.array([2, 3, 1, 0])
>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists,
 and types
>>> x = np.array([[1.+0.j, 2.+0.j], [0.+0.j, 0.+0.j], [1.+1.j, 3.+0.j]])

Intrinsic Numpy Array Creation

Numpy has built-in functions for creating arrays from scratch:

zeros(shape) will create an array filled with 0 values with the specified
shape. The default dtype is float64.

>>> np.zeros((2, 3))
array([[0., 0., 0.], [0., 0., 0.]])

ones(shape) will create an array filled with 1 values. It is identical to
zeros in all other respects.

arange() will create arrays with regularly incrementing values. Check the
docstring for complete information on the various ways it can be used. A few
examples will be given here:

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.1)
array([2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

Note that there are some subtleties regarding the last usage that the user
should be aware of that are described in the arange docstring.

linspace() will create arrays with a specified number of elements, and
spaced equally between the specified beginning and end values. For
example:

>>> np.linspace(1., 4., 6)
array([1. , 1.6, 2.2, 2.8, 3.4, 4.])

The advantage of this creation function is that one can guarantee the
number of elements and the starting and end point, which arange()
generally will not do for arbitrary start, stop, and step values.

indices() will create a set of arrays (stacked as a one-higher dimensioned
array), one per dimension with each representing variation in that dimension.
An example illustrates much better than a verbal description:

>>> np.indices((3,3))
array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]])

This is particularly useful for evaluating functions of multiple dimensions on
a regular grid.

Reading Arrays From Disk

This is presumably the most common case of large array creation. The details,
of course, depend greatly on the format of data on disk and so this section
can only give general pointers on how to handle various formats.

Standard Binary Formats

Various fields have standard formats for array data. The following lists the
ones with known python libraries to read them and return numpy arrays (there
may be others for which it is possible to read and convert to numpy arrays so
check the last section as well)

HDF5: PyTables
FITS: PyFITS

Examples of formats that cannot be read directly but for which it is not hard to
convert are those formats supported by libraries like PIL (able to read and
write many image formats such as jpg, png, etc).

Common ASCII Formats

Comma Separated Value files (CSV) are widely used (and an export and import
option for programs like Excel). There are a number of ways of reading these
files in Python. There are CSV functions in Python and functions in pylab
(part of matplotlib).

More generic ascii files can be read using the io package in scipy.

Custom Binary Formats

There are a variety of approaches one can use. If the file has a relatively
simple format then one can write a simple I/O library and use the numpy
fromfile() function and .tofile() method to read and write numpy arrays
directly (mind your byteorder though!) If a good C or C++ library exists that
read the data, one can wrap that library with a variety of techniques though
that certainly is much more work and requires significantly more advanced
knowledge to interface with C or C++.

Use of Special Libraries

There are libraries that can be used to generate arrays for special purposes
and it isn’t possible to enumerate all of them. The most common uses are use
of the many array generation functions in random that can generate arrays of
random values, and some utility functions to generate special matrices (e.g.
diagonal).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

I/O with Numpy

	Importing data with genfromtxt
	Defining the input

	Splitting the lines into columns

	Skipping lines and choosing columns

	Choosing the data type

	Setting the names

	Tweaking the conversion

	Shortcut functions

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

 	I/O with Numpy

Importing data with genfromtxt

Numpy provides several functions to create arrays from tabular data.
We focus here on the genfromtxt function.

In a nutshell, genfromtxt runs two main loops. The first
loop converts each line of the file in a sequence of strings. The second
loop converts each string to the appropriate data type. This mechanism is
slower than a single loop, but gives more flexibility. In particular,
genfromtxt is able to take missing data into account, when
other faster and simpler functions like loadtxt cannot.

Note

When giving examples, we will use the following conventions:

>>> import numpy as np
>>> from StringIO import StringIO

Defining the input

The only mandatory argument of genfromtxt is the source of
the data. It can be a string corresponding to the name of a local or
remote file, or a file-like object with a read method (such as an
actual file or a StringIO.StringIO object). If the argument is
the URL of a remote file, this latter is automatically downloaded in the
current directory.

The input file can be a text file or an archive. Currently, the function
recognizes gzip and bz2 (bzip2) archives. The type of
the archive is determined by examining the extension of the file: if the
filename ends with '.gz', a gzip archive is expected; if it
ends with 'bz2', a bzip2 archive is assumed.

Splitting the lines into columns

The delimiter argument

Once the file is defined and open for reading, genfromtxt
splits each non-empty line into a sequence of strings. Empty or commented
lines are just skipped. The delimiter keyword is used to define
how the splitting should take place.

Quite often, a single character marks the separation between columns. For
example, comma-separated files (CSV) use a comma (,) or a semicolon
(;) as delimiter:

>>> data = "1, 2, 3\n4, 5, 6"
>>> np.genfromtxt(StringIO(data), delimiter=",")
array([[1., 2., 3.],
 [4., 5., 6.]])

Another common separator is "\t", the tabulation character. However,
we are not limited to a single character, any string will do. By default,
genfromtxt assumes delimiter=None, meaning that the line
is split along white spaces (including tabs) and that consecutive white
spaces are considered as a single white space.

Alternatively, we may be dealing with a fixed-width file, where columns are
defined as a given number of characters. In that case, we need to set
delimiter to a single integer (if all the columns have the same
size) or to a sequence of integers (if columns can have different sizes):

>>> data = " 1 2 3\n 4 5 67\n890123 4"
>>> np.genfromtxt(StringIO(data), delimiter=3)
array([[1., 2., 3.],
 [4., 5., 67.],
 [890., 123., 4.]])
>>> data = "123456789\n 4 7 9\n 4567 9"
>>> np.genfromtxt(StringIO(data), delimiter=(4, 3, 2))
array([[1234., 567., 89.],
 [4., 7., 9.],
 [4., 567., 9.]])

The autostrip argument

By default, when a line is decomposed into a series of strings, the
individual entries are not stripped of leading nor trailing white spaces.
This behavior can be overwritten by setting the optional argument
autostrip to a value of True:

>>> data = "1, abc , 2\n 3, xxx, 4"
>>> # Without autostrip
>>> np.genfromtxt(StringIO(data), dtype="|S5")
array([['1', ' abc ', ' 2'],
 ['3', ' xxx', ' 4']],
 dtype='|S5')
>>> # With autostrip
>>> np.genfromtxt(StringIO(data), dtype="|S5", autostrip=True)
array([['1', 'abc', '2'],
 ['3', 'xxx', '4']],
 dtype='|S5')

The comments [http://docs.python.org/dev/reference/lexical_analysis.html#comments] argument

The optional argument comments [http://docs.python.org/dev/reference/lexical_analysis.html#comments] is used to define a character
string that marks the beginning of a comment. By default,
genfromtxt assumes comments='#'. The comment marker may
occur anywhere on the line. Any character present after the comment
marker(s) is simply ignored:

>>> data = """#
... # Skip me !
... # Skip me too !
... 1, 2
... 3, 4
... 5, 6 #This is the third line of the data
... 7, 8
... # And here comes the last line
... 9, 0
... """
>>> np.genfromtxt(StringIO(data), comments="#", delimiter=",")
[[1. 2.]
 [3. 4.]
 [5. 6.]
 [7. 8.]
 [9. 0.]]

Note

There is one notable exception to this behavior: if the optional argument
names=True, the first commented line will be examined for names.

Skipping lines and choosing columns

The skip_header and skip_footer arguments

The presence of a header in the file can hinder data processing. In that
case, we need to use the skip_header optional argument. The
values of this argument must be an integer which corresponds to the number
of lines to skip at the beginning of the file, before any other action is
performed. Similarly, we can skip the last n lines of the file by
using the skip_footer attribute and giving it a value of n:

>>> data = "\n".join(str(i) for i in range(10))
>>> np.genfromtxt(StringIO(data),)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.genfromtxt(StringIO(data),
... skip_header=3, skip_footer=5)
array([3., 4.])

By default, skip_header=0 and skip_footer=0, meaning that no lines
are skipped.

The usecols argument

In some cases, we are not interested in all the columns of the data but
only a few of them. We can select which columns to import with the
usecols argument. This argument accepts a single integer or a
sequence of integers corresponding to the indices of the columns to import.
Remember that by convention, the first column has an index of 0. Negative
integers behave the same as regular Python negative indexes.

For example, if we want to import only the first and the last columns, we
can use usecols=(0, -1):

>>> data = "1 2 3\n4 5 6"
>>> np.genfromtxt(StringIO(data), usecols=(0, -1))
array([[1., 3.],
 [4., 6.]])

If the columns have names, we can also select which columns to import by
giving their name to the usecols argument, either as a sequence
of strings or a comma-separated string:

>>> data = "1 2 3\n4 5 6"
>>> np.genfromtxt(StringIO(data),
... names="a, b, c", usecols=("a", "c"))
array([(1.0, 3.0), (4.0, 6.0)],
 dtype=[('a', '<f8'), ('c', '<f8')])
>>> np.genfromtxt(StringIO(data),
... names="a, b, c", usecols=("a, c"))
 array([(1.0, 3.0), (4.0, 6.0)],
 dtype=[('a', '<f8'), ('c', '<f8')])

Choosing the data type

The main way to control how the sequences of strings we have read from the
file are converted to other types is to set the dtype argument.
Acceptable values for this argument are:

	a single type, such as dtype=float.
The output will be 2D with the given dtype, unless a name has been
associated with each column with the use of the names argument
(see below). Note that dtype=float is the default for
genfromtxt.

	a sequence of types, such as dtype=(int, float, float).

	a comma-separated string, such as dtype="i4,f8,|S3".

	a dictionary with two keys 'names' and 'formats'.

	a sequence of tuples (name, type), such as
dtype=[('A', int), ('B', float)].

	an existing numpy.dtype object.

	the special value None.
In that case, the type of the columns will be determined from the data
itself (see below).

In all the cases but the first one, the output will be a 1D array with a
structured dtype. This dtype has as many fields as items in the sequence.
The field names are defined with the names keyword.

When dtype=None, the type of each column is determined iteratively from
its data. We start by checking whether a string can be converted to a
boolean (that is, if the string matches true or false in lower
cases); then whether it can be converted to an integer, then to a float,
then to a complex and eventually to a string. This behavior may be changed
by modifying the default mapper of the
StringConverter class.

The option dtype=None is provided for convenience. However, it is
significantly slower than setting the dtype explicitly.

Setting the names

The names argument

A natural approach when dealing with tabular data is to allocate a name to
each column. A first possibility is to use an explicit structured dtype,
as mentioned previously:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, dtype=[(_, int) for _ in "abc"])
array([(1, 2, 3), (4, 5, 6)],
 dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])

Another simpler possibility is to use the names keyword with a
sequence of strings or a comma-separated string:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, names="A, B, C")
array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)],
 dtype=[('A', '<f8'), ('B', '<f8'), ('C', '<f8')])

In the example above, we used the fact that by default, dtype=float.
By giving a sequence of names, we are forcing the output to a structured
dtype.

We may sometimes need to define the column names from the data itself. In
that case, we must use the names keyword with a value of
True. The names will then be read from the first line (after the
skip_header ones), even if the line is commented out:

>>> data = StringIO("So it goes\n#a b c\n1 2 3\n 4 5 6")
>>> np.genfromtxt(data, skip_header=1, names=True)
array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)],
 dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])

The default value of names is None. If we give any other
value to the keyword, the new names will overwrite the field names we may
have defined with the dtype:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> ndtype=[('a',int), ('b', float), ('c', int)]
>>> names = ["A", "B", "C"]
>>> np.genfromtxt(data, names=names, dtype=ndtype)
array([(1, 2.0, 3), (4, 5.0, 6)],
 dtype=[('A', '<i8'), ('B', '<f8'), ('C', '<i8')])

The defaultfmt argument

If names=None but a structured dtype is expected, names are defined
with the standard NumPy default of "f%i", yielding names like f0,
f1 and so forth:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, dtype=(int, float, int))
array([(1, 2.0, 3), (4, 5.0, 6)],
 dtype=[('f0', '<i8'), ('f1', '<f8'), ('f2', '<i8')])

In the same way, if we don’t give enough names to match the length of the
dtype, the missing names will be defined with this default template:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, dtype=(int, float, int), names="a")
array([(1, 2.0, 3), (4, 5.0, 6)],
 dtype=[('a', '<i8'), ('f0', '<f8'), ('f1', '<i8')])

We can overwrite this default with the defaultfmt argument, that
takes any format string:

>>> data = StringIO("1 2 3\n 4 5 6")
>>> np.genfromtxt(data, dtype=(int, float, int), defaultfmt="var_%02i")
array([(1, 2.0, 3), (4, 5.0, 6)],
 dtype=[('var_00', '<i8'), ('var_01', '<f8'), ('var_02', '<i8')])

Note

We need to keep in mind that defaultfmt is used only if some names
are expected but not defined.

Validating names

Numpy arrays with a structured dtype can also be viewed as
recarray, where a field can be accessed as if it were an
attribute. For that reason, we may need to make sure that the field name
doesn’t contain any space or invalid character, or that it does not
correspond to the name of a standard attribute (like size or
shape), which would confuse the interpreter. genfromtxt
accepts three optional arguments that provide a finer control on the names:

	deletechars

	Gives a string combining all the characters that must be deleted from
the name. By default, invalid characters are
~!@#$%^&*()-=+~\|]}[{';:
/?.>,<.

	excludelist

	Gives a list of the names to exclude, such as return, file,
print... If one of the input name is part of this list, an
underscore character ('_') will be appended to it.

	case_sensitive

	Whether the names should be case-sensitive (case_sensitive=True),
converted to upper case (case_sensitive=False or
case_sensitive='upper') or to lower case
(case_sensitive='lower').

Tweaking the conversion

The converters argument

Usually, defining a dtype is sufficient to define how the sequence of
strings must be converted. However, some additional control may sometimes
be required. For example, we may want to make sure that a date in a format
YYYY/MM/DD is converted to a datetime object, or that a string
like xx% is properly converted to a float between 0 and 1. In such
cases, we should define conversion functions with the converters
arguments.

The value of this argument is typically a dictionary with column indices or
column names as keys and a conversion functions as values. These
conversion functions can either be actual functions or lambda functions. In
any case, they should accept only a string as input and output only a
single element of the wanted type.

In the following example, the second column is converted from as string
representing a percentage to a float between 0 and 1:

>>> convertfunc = lambda x: float(x.strip("%"))/100.
>>> data = "1, 2.3%, 45.\n6, 78.9%, 0"
>>> names = ("i", "p", "n")
>>> # General case
>>> np.genfromtxt(StringIO(data), delimiter=",", names=names)
array([(1.0, nan, 45.0), (6.0, nan, 0.0)],
 dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

We need to keep in mind that by default, dtype=float. A float is
therefore expected for the second column. However, the strings ' 2.3%'
and ' 78.9%' cannot be converted to float and we end up having
np.nan instead. Let’s now use a converter:

>>> # Converted case ...
>>> np.genfromtxt(StringIO(data), delimiter=",", names=names,
... converters={1: convertfunc})
array([(1.0, 0.023, 45.0), (6.0, 0.78900000000000003, 0.0)],
 dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

The same results can be obtained by using the name of the second column
("p") as key instead of its index (1):

>>> # Using a name for the converter ...
>>> np.genfromtxt(StringIO(data), delimiter=",", names=names,
... converters={"p": convertfunc})
array([(1.0, 0.023, 45.0), (6.0, 0.78900000000000003, 0.0)],
 dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

Converters can also be used to provide a default for missing entries. In
the following example, the converter convert transforms a stripped
string into the corresponding float or into -999 if the string is empty.
We need to explicitly strip the string from white spaces as it is not done
by default:

>>> data = "1, , 3\n 4, 5, 6"
>>> convert = lambda x: float(x.strip() or -999)
>>> np.genfromtxt(StringIO(data), delimiter=",",
... converter={1: convert})
array([[1., -999., 3.],
 [4., 5., 6.]])

Using missing and filling values

Some entries may be missing in the dataset we are trying to import. In a
previous example, we used a converter to transform an empty string into a
float. However, user-defined converters may rapidly become cumbersome to
manage.

The genfromtxt function provides two other complementary
mechanisms: the missing_values argument is used to recognize
missing data and a second argument, filling_values, is used to
process these missing data.

missing_values

By default, any empty string is marked as missing. We can also consider
more complex strings, such as "N/A" or "???" to represent missing
or invalid data. The missing_values argument accepts three kind
of values:

	a string or a comma-separated string

	This string will be used as the marker for missing data for all the
columns

	a sequence of strings

	In that case, each item is associated to a column, in order.

	a dictionary

	Values of the dictionary are strings or sequence of strings. The
corresponding keys can be column indices (integers) or column names
(strings). In addition, the special key None can be used to
define a default applicable to all columns.

filling_values

We know how to recognize missing data, but we still need to provide a value
for these missing entries. By default, this value is determined from the
expected dtype according to this table:

	Expected type
	Default

	bool
	False

	int
	-1

	float
	np.nan

	complex
	np.nan+0j

	string
	'???'

We can get a finer control on the conversion of missing values with the
filling_values optional argument. Like
missing_values, this argument accepts different kind of values:

	a single value

	This will be the default for all columns

	a sequence of values

	Each entry will be the default for the corresponding column

	a dictionary

	Each key can be a column index or a column name, and the
corresponding value should be a single object. We can use the
special key None to define a default for all columns.

In the following example, we suppose that the missing values are flagged
with "N/A" in the first column and by "???" in the third column.
We wish to transform these missing values to 0 if they occur in the first
and second column, and to -999 if they occur in the last column:

>>> data = "N/A, 2, 3\n4, ,???"
>>> kwargs = dict(delimiter=",",
... dtype=int,
... names="a,b,c",
... missing_values={0:"N/A", 'b':" ", 2:"???"},
... filling_values={0:0, 'b':0, 2:-999})
>>> np.genfromtxt(StringIO.StringIO(data), **kwargs)
array([(0, 2, 3), (4, 0, -999)],
 dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])

usemask

We may also want to keep track of the occurrence of missing data by
constructing a boolean mask, with True entries where data was missing
and False otherwise. To do that, we just have to set the optional
argument usemask to True (the default is False). The
output array will then be a MaskedArray.

Shortcut functions

In addition to genfromtxt, the numpy.lib.io module
provides several convenience functions derived from
genfromtxt. These functions work the same way as the
original, but they have different default values.

	ndfromtxt

	Always set usemask=False.
The output is always a standard numpy.ndarray.

	mafromtxt

	Always set usemask=True.
The output is always a MaskedArray

	recfromtxt

	Returns a standard numpy.recarray (if usemask=False) or a
MaskedRecords array (if usemaske=True). The
default dtype is dtype=None, meaning that the types of each column
will be automatically determined.

	recfromcsv

	Like recfromtxt, but with a default delimiter=",".

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

Indexing

See also

Indexing routines

Array indexing refers to any use of the square brackets ([]) to index
array values. There are many options to indexing, which give numpy
indexing great power, but with power comes some complexity and the
potential for confusion. This section is just an overview of the
various options and issues related to indexing. Aside from single
element indexing, the details on most of these options are to be
found in related sections.

Assignment vs referencing

Most of the following examples show the use of indexing when
referencing data in an array. The examples work just as well
when assigning to an array. See the section at the end for
specific examples and explanations on how assignments work.

Single element indexing

Single element indexing for a 1-D array is what one expects. It work
exactly like that for other standard Python sequences. It is 0-based,
and accepts negative indices for indexing from the end of the array.

>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8

Unlike lists and tuples, numpy arrays support multidimensional indexing
for multidimensional arrays. That means that it is not necessary to
separate each dimension’s index into its own set of square brackets.

>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]
8
>>> x[1,-1]
9

Note that if one indexes a multidimensional array with fewer indices
than dimensions, one gets a subdimensional array. For example:

>>> x[0]
array([0, 1, 2, 3, 4])

That is, each index specified selects the array corresponding to the
rest of the dimensions selected. In the above example, choosing 0
means that remaining dimension of lenth 5 is being left unspecified,
and that what is returned is an array of that dimensionality and size.
It must be noted that the returned array is not a copy of the original,
but points to the same values in memory as does the original array.
In this case, the 1-D array at the first position (0) is returned.
So using a single index on the returned array, results in a single
element being returned. That is:

>>> x[0][2]
2

So note that x[0,2] = x[0][2] though the second case is more
inefficient a new temporary array is created after the first index
that is subsequently indexed by 2.

Note to those used to IDL or Fortran memory order as it relates to
indexing. Numpy uses C-order indexing. That means that the last
index usually represents the most rapidly changing memory location,
unlike Fortran or IDL, where the first index represents the most
rapidly changing location in memory. This difference represents a
great potential for confusion.

Other indexing options

It is possible to slice and stride arrays to extract arrays of the
same number of dimensions, but of different sizes than the original.
The slicing and striding works exactly the same way it does for lists
and tuples except that they can be applied to multiple dimensions as
well. A few examples illustrates best:

>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4])
>>> x[:-7]
array([0, 1, 2])
>>> x[1:7:2]
array([1, 3, 5])
>>> y = np.arange(35).reshape(5,7)
>>> y[1:5:2,::3]
array([[7, 10, 13],
 [21, 24, 27]])

Note that slices of arrays do not copy the internal array data but
also produce new views of the original data.

It is possible to index arrays with other arrays for the purposes of
selecting lists of values out of arrays into new arrays. There are
two different ways of accomplishing this. One uses one or more arrays
of index values. The other involves giving a boolean array of the proper
shape to indicate the values to be selected. Index arrays are a very
powerful tool that allow one to avoid looping over individual elements in
arrays and thus greatly improve performance.

It is possible to use special features to effectively increase the
number of dimensions in an array through indexing so the resulting
array aquires the shape needed for use in an expression or with a
specific function.

Index arrays

Numpy arrays may be indexed with other arrays (or any other sequence-
like object that can be converted to an array, such as lists, with the
exception of tuples; see the end of this document for why this is). The
use of index arrays ranges from simple, straightforward cases to
complex, hard-to-understand cases. For all cases of index arrays, what
is returned is a copy of the original data, not a view as one gets for
slices.

Index arrays must be of integer type. Each value in the array indicates
which value in the array to use in place of the index. To illustrate:

>>> x = np.arange(10,1,-1)
>>> x
array([10, 9, 8, 7, 6, 5, 4, 3, 2])
>>> x[np.array([3, 3, 1, 8])]
array([7, 7, 9, 2])

The index array consisting of the values 3, 3, 1 and 8 correspondingly
create an array of length 4 (same as the index array) where each index
is replaced by the value the index array has in the array being indexed.

Negative values are permitted and work as they do with single indices
or slices:

>>> x[np.array([3,3,-3,8])]
array([7, 7, 4, 2])

It is an error to have index values out of bounds:

>>> x[np.array([3, 3, 20, 8])]
<type 'exceptions.IndexError'>: index 20 out of bounds 0<=index<9

Generally speaking, what is returned when index arrays are used is
an array with the same shape as the index array, but with the type
and values of the array being indexed. As an example, we can use a
multidimensional index array instead:

>>> x[np.array([[1,1],[2,3]])]
array([[9, 9],
 [8, 7]])

Indexing Multi-dimensional arrays

Things become more complex when multidimensional arrays are indexed,
particularly with multidimensional index arrays. These tend to be
more unusal uses, but theyare permitted, and they are useful for some
problems. We’ll start with thesimplest multidimensional case (using
the array y from the previous examples):

>>> y[np.array([0,2,4]), np.array([0,1,2])]
array([0, 15, 30])

In this case, if the index arrays have a matching shape, and there is
an index array for each dimension of the array being indexed, the
resultant array has the same shape as the index arrays, and the values
correspond to the index set for each position in the index arrays. In
this example, the first index value is 0 for both index arrays, and
thus the first value of the resultant array is y[0,0]. The next value
is y[2,1], and the last is y[4,2].

If the index arrays do not have the same shape, there is an attempt to
broadcast them to the same shape. If they cannot be broadcast to the
same shape, an exception is raised:

>>> y[np.array([0,2,4]), np.array([0,1])]
<type 'exceptions.ValueError'>: shape mismatch: objects cannot be
broadcast to a single shape

The broadcasting mechanism permits index arrays to be combined with
scalars for other indices. The effect is that the scalar value is used
for all the corresponding values of the index arrays:

>>> y[np.array([0,2,4]), 1]
array([1, 15, 29])

Jumping to the next level of complexity, it is possible to only
partially index an array with index arrays. It takes a bit of thought
to understand what happens in such cases. For example if we just use
one index array with y:

>>> y[np.array([0,2,4])]
array([[0, 1, 2, 3, 4, 5, 6],
 [14, 15, 16, 17, 18, 19, 20],
 [28, 29, 30, 31, 32, 33, 34]])

What results is the construction of a new array where each value of
the index array selects one row from the array being indexed and the
resultant array has the resulting shape (size of row, number index
elements).

An example of where this may be useful is for a color lookup table
where we want to map the values of an image into RGB triples for
display. The lookup table could have a shape (nlookup, 3). Indexing
such an array with an image with shape (ny, nx) with dtype=np.uint8
(or any integer type so long as values are with the bounds of the
lookup table) will result in an array of shape (ny, nx, 3) where a
triple of RGB values is associated with each pixel location.

In general, the shape of the resulant array will be the concatenation
of the shape of the index array (or the shape that all the index arrays
were broadcast to) with the shape of any unused dimensions (those not
indexed) in the array being indexed.

Boolean or “mask” index arrays

Boolean arrays used as indices are treated in a different manner
entirely than index arrays. Boolean arrays must be of the same shape
as the initial dimensions of the array being indexed. In the
most straightforward case, the boolean array has the same shape:

>>> b = y>20
>>> y[b]
array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])

The result is a 1-D array containing all the elements in the indexed
array corresponding to all the true elements in the boolean array. As
with index arrays, what is returned is a copy of the data, not a view
as one gets with slices.

The result will be multidimensional if y has more dimensions than b.
For example:

>>> b[:,5] # use a 1-D boolean whose first dim agrees with the first dim of y
array([False, False, False, True, True], dtype=bool)
>>> y[b[:,5]]
array([[21, 22, 23, 24, 25, 26, 27],
 [28, 29, 30, 31, 32, 33, 34]])

Here the 4th and 5th rows are selected from the indexed array and
combined to make a 2-D array.

In general, when the boolean array has fewer dimensions than the array
being indexed, this is equivalent to y[b, ...], which means
y is indexed by b followed by as many : as are needed to fill
out the rank of y.
Thus the shape of the result is one dimension containing the number
of True elements of the boolean array, followed by the remaining
dimensions of the array being indexed.

For example, using a 2-D boolean array of shape (2,3)
with four True elements to select rows from a 3-D array of shape
(2,3,5) results in a 2-D result of shape (4,5):

>>> x = np.arange(30).reshape(2,3,5)
>>> x
array([[[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14]],
 [[15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24],
 [25, 26, 27, 28, 29]]])
>>> b = np.array([[True, True, False], [False, True, True]])
>>> x[b]
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [20, 21, 22, 23, 24],
 [25, 26, 27, 28, 29]])

For further details, consult the numpy reference documentation on array indexing.

Combining index arrays with slices

Index arrays may be combined with slices. For example:

>>> y[np.array([0,2,4]),1:3]
array([[1, 2],
 [15, 16],
 [29, 30]])

In effect, the slice is converted to an index array
np.array([[1,2]]) (shape (1,2)) that is broadcast with the index array
to produce a resultant array of shape (3,2).

Likewise, slicing can be combined with broadcasted boolean indices:

>>> y[b[:,5],1:3]
array([[22, 23],
 [29, 30]])

Structural indexing tools

To facilitate easy matching of array shapes with expressions and in
assignments, the np.newaxis object can be used within array indices
to add new dimensions with a size of 1. For example:

>>> y.shape
(5, 7)
>>> y[:,np.newaxis,:].shape
(5, 1, 7)

Note that there are no new elements in the array, just that the
dimensionality is increased. This can be handy to combine two
arrays in a way that otherwise would require explicitly reshaping
operations. For example:

>>> x = np.arange(5)
>>> x[:,np.newaxis] + x[np.newaxis,:]
array([[0, 1, 2, 3, 4],
 [1, 2, 3, 4, 5],
 [2, 3, 4, 5, 6],
 [3, 4, 5, 6, 7],
 [4, 5, 6, 7, 8]])

The ellipsis syntax maybe used to indicate selecting in full any
remaining unspecified dimensions. For example:

>>> z = np.arange(81).reshape(3,3,3,3)
>>> z[1,...,2]
array([[29, 32, 35],
 [38, 41, 44],
 [47, 50, 53]])

This is equivalent to:

>>> z[1,:,:,2]
array([[29, 32, 35],
 [38, 41, 44],
 [47, 50, 53]])

Assigning values to indexed arrays

As mentioned, one can select a subset of an array to assign to using
a single index, slices, and index and mask arrays. The value being
assigned to the indexed array must be shape consistent (the same shape
or broadcastable to the shape the index produces). For example, it is
permitted to assign a constant to a slice:

>>> x = np.arange(10)
>>> x[2:7] = 1

or an array of the right size:

>>> x[2:7] = np.arange(5)

Note that assignments may result in changes if assigning
higher types to lower types (like floats to ints) or even
exceptions (assigning complex to floats or ints):

>>> x[1] = 1.2
>>> x[1]
1
>>> x[1] = 1.2j
<type 'exceptions.TypeError'>: can't convert complex to long; use
long(abs(z))

Unlike some of the references (such as array and mask indices)
assignments are always made to the original data in the array
(indeed, nothing else would make sense!). Note though, that some
actions may not work as one may naively expect. This particular
example is often surprising to people:

>>> x = np.arange(0, 50, 10)
>>> x
array([0, 10, 20, 30, 40])
>>> x[np.array([1, 1, 3, 1])] += 1
>>> x
array([0, 11, 20, 31, 40])

Where people expect that the 1st location will be incremented by 3.
In fact, it will only be incremented by 1. The reason is because
a new array is extracted from the original (as a temporary) containing
the values at 1, 1, 3, 1, then the value 1 is added to the temporary,
and then the temporary is assigned back to the original array. Thus
the value of the array at x[1]+1 is assigned to x[1] three times,
rather than being incremented 3 times.

Dealing with variable numbers of indices within programs

The index syntax is very powerful but limiting when dealing with
a variable number of indices. For example, if you want to write
a function that can handle arguments with various numbers of
dimensions without having to write special case code for each
number of possible dimensions, how can that be done? If one
supplies to the index a tuple, the tuple will be interpreted
as a list of indices. For example (using the previous definition
for the array z):

>>> indices = (1,1,1,1)
>>> z[indices]
40

So one can use code to construct tuples of any number of indices
and then use these within an index.

Slices can be specified within programs by using the slice() function
in Python. For example:

>>> indices = (1,1,1,slice(0,2)) # same as [1,1,1,0:2]
>>> z[indices]
array([39, 40])

Likewise, ellipsis can be specified by code by using the Ellipsis
object:

>>> indices = (1, Ellipsis, 1) # same as [1,...,1]
>>> z[indices]
array([[28, 31, 34],
 [37, 40, 43],
 [46, 49, 52]])

For this reason it is possible to use the output from the np.where()
function directly as an index since it always returns a tuple of index
arrays.

Because the special treatment of tuples, they are not automatically
converted to an array as a list would be. As an example:

>>> z[[1,1,1,1]] # produces a large array
array([[[[27, 28, 29],
 [30, 31, 32], ...
>>> z[(1,1,1,1)] # returns a single value
40

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

Broadcasting

See also

numpy.broadcast

The term broadcasting describes how numpy treats arrays with different
shapes during arithmetic operations. Subject to certain constraints,
the smaller array is “broadcast” across the larger array so that they
have compatible shapes. Broadcasting provides a means of vectorizing
array operations so that looping occurs in C instead of Python. It does
this without making needless copies of data and usually leads to
efficient algorithm implementations. There are, however, cases where
broadcasting is a bad idea because it leads to inefficient use of memory
that slows computation.

NumPy operations are usually done on pairs of arrays on an
element-by-element basis. In the simplest case, the two arrays must
have exactly the same shape, as in the following example:

>>> a = np.array([1.0, 2.0, 3.0])
>>> b = np.array([2.0, 2.0, 2.0])
>>> a * b
array([2., 4., 6.])

NumPy’s broadcasting rule relaxes this constraint when the arrays’
shapes meet certain constraints. The simplest broadcasting example occurs
when an array and a scalar value are combined in an operation:

>>> a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([2., 4., 6.])

The result is equivalent to the previous example where b was an array.
We can think of the scalar b being stretched during the arithmetic
operation into an array with the same shape as a. The new elements in
b are simply copies of the original scalar. The stretching analogy is
only conceptual. NumPy is smart enough to use the original scalar value
without actually making copies, so that broadcasting operations are as
memory and computationally efficient as possible.

The code in the second example is more efficient than that in the first
because broadcasting moves less memory around during the multiplication
(b is a scalar rather than an array).

General Broadcasting Rules

When operating on two arrays, NumPy compares their shapes element-wise.
It starts with the trailing dimensions, and works its way forward. Two
dimensions are compatible when

	they are equal, or

	one of them is 1

If these conditions are not met, a
ValueError: frames are not aligned exception is thrown, indicating that
the arrays have incompatible shapes. The size of the resulting array
is the maximum size along each dimension of the input arrays.

Arrays do not need to have the same number of dimensions. For example,
if you have a 256x256x3 array of RGB values, and you want to scale
each color in the image by a different value, you can multiply the image
by a one-dimensional array with 3 values. Lining up the sizes of the
trailing axes of these arrays according to the broadcast rules, shows that
they are compatible:

Image (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3

When either of the dimensions compared is one, the other is
used. In other words, dimensions with size 1 are stretched or “copied”
to match the other.

In the following example, both the A and B arrays have axes with
length one that are expanded to a larger size during the broadcast
operation:

A (4d array): 8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
Result (4d array): 8 x 7 x 6 x 5

Here are some more examples:

A (2d array): 5 x 4
B (1d array): 1
Result (2d array): 5 x 4

A (2d array): 5 x 4
B (1d array): 4
Result (2d array): 5 x 4

A (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array): 15 x 3 x 5

A (3d array): 15 x 3 x 5
B (2d array): 3 x 5
Result (3d array): 15 x 3 x 5

A (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): 15 x 3 x 5

Here are examples of shapes that do not broadcast:

A (1d array): 3
B (1d array): 4 # trailing dimensions do not match

A (2d array): 2 x 1
B (3d array): 8 x 4 x 3 # second from last dimensions mismatched

An example of broadcasting in practice:

>>> x = np.arange(4)
>>> xx = x.reshape(4,1)
>>> y = np.ones(5)
>>> z = np.ones((3,4))

>>> x.shape
(4,)

>>> y.shape
(5,)

>>> x + y
<type 'exceptions.ValueError'>: shape mismatch: objects cannot be broadcast to a single shape

>>> xx.shape
(4, 1)

>>> y.shape
(5,)

>>> (xx + y).shape
(4, 5)

>>> xx + y
array([[1., 1., 1., 1., 1.],
 [2., 2., 2., 2., 2.],
 [3., 3., 3., 3., 3.],
 [4., 4., 4., 4., 4.]])

>>> x.shape
(4,)

>>> z.shape
(3, 4)

>>> (x + z).shape
(3, 4)

>>> x + z
array([[1., 2., 3., 4.],
 [1., 2., 3., 4.],
 [1., 2., 3., 4.]])

Broadcasting provides a convenient way of taking the outer product (or
any other outer operation) of two arrays. The following example shows an
outer addition operation of two 1-d arrays:

>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[1., 2., 3.],
 [11., 12., 13.],
 [21., 22., 23.],
 [31., 32., 33.]])

Here the newaxis index operator inserts a new axis into a,
making it a two-dimensional 4x1 array. Combining the 4x1 array
with b, which has shape (3,), yields a 4x3 array.

See this article [http://wiki.scipy.org/EricsBroadcastingDoc]
for illustrations of broadcasting concepts.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

Byte-swapping

Introduction to byte ordering and ndarrays

The ndarray is an object that provide a python array interface to data
in memory.

It often happens that the memory that you want to view with an array is
not of the same byte ordering as the computer on which you are running
Python.

For example, I might be working on a computer with a little-endian CPU -
such as an Intel Pentium, but I have loaded some data from a file
written by a computer that is big-endian. Let’s say I have loaded 4
bytes from a file written by a Sun (big-endian) computer. I know that
these 4 bytes represent two 16-bit integers. On a big-endian machine, a
two-byte integer is stored with the Most Significant Byte (MSB) first,
and then the Least Significant Byte (LSB). Thus the bytes are, in memory order:

	MSB integer 1

	LSB integer 1

	MSB integer 2

	LSB integer 2

Let’s say the two integers were in fact 1 and 770. Because 770 = 256 *
3 + 2, the 4 bytes in memory would contain respectively: 0, 1, 3, 2.
The bytes I have loaded from the file would have these contents:

>>> big_end_str = chr(0) + chr(1) + chr(3) + chr(2)
>>> big_end_str
'\x00\x01\x03\x02'

We might want to use an ndarray to access these integers. In that
case, we can create an array around this memory, and tell numpy that
there are two integers, and that they are 16 bit and big-endian:

>>> import numpy as np
>>> big_end_arr = np.ndarray(shape=(2,),dtype='>i2', buffer=big_end_str)
>>> big_end_arr[0]
1
>>> big_end_arr[1]
770

Note the array dtype above of >i2. The > means ‘big-endian’
(< is little-endian) and i2 means ‘signed 2-byte integer’. For
example, if our data represented a single unsigned 4-byte little-endian
integer, the dtype string would be <u4.

In fact, why don’t we try that?

>>> little_end_u4 = np.ndarray(shape=(1,),dtype='<u4', buffer=big_end_str)
>>> little_end_u4[0] == 1 * 256**1 + 3 * 256**2 + 2 * 256**3
True

Returning to our big_end_arr - in this case our underlying data is
big-endian (data endianness) and we’ve set the dtype to match (the dtype
is also big-endian). However, sometimes you need to flip these around.

Changing byte ordering

As you can imagine from the introduction, there are two ways you can
affect the relationship between the byte ordering of the array and the
underlying memory it is looking at:

	Change the byte-ordering information in the array dtype so that it
interprets the undelying data as being in a different byte order.
This is the role of arr.newbyteorder()

	Change the byte-ordering of the underlying data, leaving the dtype
interpretation as it was. This is what arr.byteswap() does.

The common situations in which you need to change byte ordering are:

	Your data and dtype endianess don’t match, and you want to change
the dtype so that it matches the data.

	Your data and dtype endianess don’t match, and you want to swap the
data so that they match the dtype

	Your data and dtype endianess match, but you want the data swapped
and the dtype to reflect this

Data and dtype endianness don’t match, change dtype to match data

We make something where they don’t match:

>>> wrong_end_dtype_arr = np.ndarray(shape=(2,),dtype='<i2', buffer=big_end_str)
>>> wrong_end_dtype_arr[0]
256

The obvious fix for this situation is to change the dtype so it gives
the correct endianness:

>>> fixed_end_dtype_arr = wrong_end_dtype_arr.newbyteorder()
>>> fixed_end_dtype_arr[0]
1

Note the the array has not changed in memory:

>>> fixed_end_dtype_arr.tobytes() == big_end_str
True

Data and type endianness don’t match, change data to match dtype

You might want to do this if you need the data in memory to be a certain
ordering. For example you might be writing the memory out to a file
that needs a certain byte ordering.

>>> fixed_end_mem_arr = wrong_end_dtype_arr.byteswap()
>>> fixed_end_mem_arr[0]
1

Now the array has changed in memory:

>>> fixed_end_mem_arr.tobytes() == big_end_str
False

Data and dtype endianness match, swap data and dtype

You may have a correctly specified array dtype, but you need the array
to have the opposite byte order in memory, and you want the dtype to
match so the array values make sense. In this case you just do both of
the previous operations:

>>> swapped_end_arr = big_end_arr.byteswap().newbyteorder()
>>> swapped_end_arr[0]
1
>>> swapped_end_arr.tobytes() == big_end_str
False

An easier way of casting the data to a specific dtype and byte ordering
can be achieved with the ndarray astype method:

>>> swapped_end_arr = big_end_arr.astype('<i2')
>>> swapped_end_arr[0]
1
>>> swapped_end_arr.tobytes() == big_end_str
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

Structured arrays (aka “Record arrays”)

Structured Arrays (and Record Arrays)

Introduction

Numpy provides powerful capabilities to create arrays of structs or records.
These arrays permit one to manipulate the data by the structs or by fields of
the struct. A simple example will show what is meant.:

>>> x = np.zeros((2,),dtype=('i4,f4,a10'))
>>> x[:] = [(1,2.,'Hello'),(2,3.,"World")]
>>> x
array([(1, 2.0, 'Hello'), (2, 3.0, 'World')],
 dtype=[('f0', '>i4'), ('f1', '>f4'), ('f2', '|S10')])

Here we have created a one-dimensional array of length 2. Each element of
this array is a record that contains three items, a 32-bit integer, a 32-bit
float, and a string of length 10 or less. If we index this array at the second
position we get the second record:

>>> x[1]
(2,3.,"World")

Conveniently, one can access any field of the array by indexing using the
string that names that field. In this case the fields have received the
default names ‘f0’, ‘f1’ and ‘f2’.

>>> y = x['f1']
>>> y
array([2., 3.], dtype=float32)
>>> y[:] = 2*y
>>> y
array([4., 6.], dtype=float32)
>>> x
array([(1, 4.0, 'Hello'), (2, 6.0, 'World')],
 dtype=[('f0', '>i4'), ('f1', '>f4'), ('f2', '|S10')])

In these examples, y is a simple float array consisting of the 2nd field
in the record. But, rather than being a copy of the data in the structured
array, it is a view, i.e., it shares exactly the same memory locations.
Thus, when we updated this array by doubling its values, the structured
array shows the corresponding values as doubled as well. Likewise, if one
changes the record, the field view also changes:

>>> x[1] = (-1,-1.,"Master")
>>> x
array([(1, 4.0, 'Hello'), (-1, -1.0, 'Master')],
 dtype=[('f0', '>i4'), ('f1', '>f4'), ('f2', '|S10')])
>>> y
array([4., -1.], dtype=float32)

Defining Structured Arrays

One defines a structured array through the dtype object. There are
several alternative ways to define the fields of a record. Some of
these variants provide backward compatibility with Numeric, numarray, or
another module, and should not be used except for such purposes. These
will be so noted. One specifies record structure in
one of four alternative ways, using an argument (as supplied to a dtype
function keyword or a dtype object constructor itself). This
argument must be one of the following: 1) string, 2) tuple, 3) list, or
4) dictionary. Each of these is briefly described below.

1) String argument (as used in the above examples).
In this case, the constructor expects a comma-separated list of type
specifiers, optionally with extra shape information.
The type specifiers can take 4 different forms:

a) b1, i1, i2, i4, i8, u1, u2, u4, u8, f2, f4, f8, c8, c16, a<n>
 (representing bytes, ints, unsigned ints, floats, complex and
 fixed length strings of specified byte lengths)
b) int8,...,uint8,...,float16, float32, float64, complex64, complex128
 (this time with bit sizes)
c) older Numeric/numarray type specifications (e.g. Float32).
 Don't use these in new code!
d) Single character type specifiers (e.g H for unsigned short ints).
 Avoid using these unless you must. Details can be found in the
 Numpy book

These different styles can be mixed within the same string (but why would you
want to do that?). Furthermore, each type specifier can be prefixed
with a repetition number, or a shape. In these cases an array
element is created, i.e., an array within a record. That array
is still referred to as a single field. An example:

>>> x = np.zeros(3, dtype='3int8, float32, (2,3)float64')
>>> x
array([([0, 0, 0], 0.0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]),
 ([0, 0, 0], 0.0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]),
 ([0, 0, 0], 0.0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])],
 dtype=[('f0', '|i1', 3), ('f1', '>f4'), ('f2', '>f8', (2, 3))])

By using strings to define the record structure, it precludes being
able to name the fields in the original definition. The names can
be changed as shown later, however.

2) Tuple argument: The only relevant tuple case that applies to record
structures is when a structure is mapped to an existing data type. This
is done by pairing in a tuple, the existing data type with a matching
dtype definition (using any of the variants being described here). As
an example (using a definition using a list, so see 3) for further
details):

>>> x = np.zeros(3, dtype=('i4',[('r','u1'), ('g','u1'), ('b','u1'), ('a','u1')]))
>>> x
array([0, 0, 0])
>>> x['r']
array([0, 0, 0], dtype=uint8)

In this case, an array is produced that looks and acts like a simple int32 array,
but also has definitions for fields that use only one byte of the int32 (a bit
like Fortran equivalencing).

3) List argument: In this case the record structure is defined with a list of
tuples. Each tuple has 2 or 3 elements specifying: 1) The name of the field
(‘’ is permitted), 2) the type of the field, and 3) the shape (optional).
For example:

>>> x = np.zeros(3, dtype=[('x','f4'),('y',np.float32),('value','f4',(2,2))])
>>> x
array([(0.0, 0.0, [[0.0, 0.0], [0.0, 0.0]]),
 (0.0, 0.0, [[0.0, 0.0], [0.0, 0.0]]),
 (0.0, 0.0, [[0.0, 0.0], [0.0, 0.0]])],
 dtype=[('x', '>f4'), ('y', '>f4'), ('value', '>f4', (2, 2))])

4) Dictionary argument: two different forms are permitted. The first consists
of a dictionary with two required keys (‘names’ and ‘formats’), each having an
equal sized list of values. The format list contains any type/shape specifier
allowed in other contexts. The names must be strings. There are two optional
keys: ‘offsets’ and ‘titles’. Each must be a correspondingly matching list to
the required two where offsets contain integer offsets for each field, and
titles are objects containing metadata for each field (these do not have
to be strings), where the value of None is permitted. As an example:

>>> x = np.zeros(3, dtype={'names':['col1', 'col2'], 'formats':['i4','f4']})
>>> x
array([(0, 0.0), (0, 0.0), (0, 0.0)],
 dtype=[('col1', '>i4'), ('col2', '>f4')])

The other dictionary form permitted is a dictionary of name keys with tuple
values specifying type, offset, and an optional title.

>>> x = np.zeros(3, dtype={'col1':('i1',0,'title 1'), 'col2':('f4',1,'title 2')})
>>> x
array([(0, 0.0), (0, 0.0), (0, 0.0)],
 dtype=[(('title 1', 'col1'), '|i1'), (('title 2', 'col2'), '>f4')])

Accessing and modifying field names

The field names are an attribute of the dtype object defining the record structure.
For the last example:

>>> x.dtype.names
('col1', 'col2')
>>> x.dtype.names = ('x', 'y')
>>> x
array([(0, 0.0), (0, 0.0), (0, 0.0)],
 dtype=[(('title 1', 'x'), '|i1'), (('title 2', 'y'), '>f4')])
>>> x.dtype.names = ('x', 'y', 'z') # wrong number of names
<type 'exceptions.ValueError'>: must replace all names at once with a sequence of length 2

Accessing field titles

The field titles provide a standard place to put associated info for fields.
They do not have to be strings.

>>> x.dtype.fields['x'][2]
'title 1'

Accessing multiple fields at once

You can access multiple fields at once using a list of field names:

>>> x = np.array([(1.5,2.5,(1.0,2.0)),(3.,4.,(4.,5.)),(1.,3.,(2.,6.))],
 dtype=[('x','f4'),('y',np.float32),('value','f4',(2,2))])

Notice that x is created with a list of tuples.

>>> x[['x','y']]
array([(1.5, 2.5), (3.0, 4.0), (1.0, 3.0)],
 dtype=[('x', '<f4'), ('y', '<f4')])
>>> x[['x','value']]
array([(1.5, [[1.0, 2.0], [1.0, 2.0]]), (3.0, [[4.0, 5.0], [4.0, 5.0]]),
 (1.0, [[2.0, 6.0], [2.0, 6.0]])],
 dtype=[('x', '<f4'), ('value', '<f4', (2, 2))])

The fields are returned in the order they are asked for.:

>>> x[['y','x']]
array([(2.5, 1.5), (4.0, 3.0), (3.0, 1.0)],
 dtype=[('y', '<f4'), ('x', '<f4')])

Filling structured arrays

Structured arrays can be filled by field or row by row.

>>> arr = np.zeros((5,), dtype=[('var1','f8'),('var2','f8')])
>>> arr['var1'] = np.arange(5)

If you fill it in row by row, it takes a take a tuple
(but not a list or array!):

>>> arr[0] = (10,20)
>>> arr
array([(10.0, 20.0), (1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0)],
 dtype=[('var1', '<f8'), ('var2', '<f8')])

More information

You can find some more information on recarrays and structured arrays
(including the difference between the two) here [http://www.scipy.org/Cookbook/Recarray].

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Numpy basics

Subclassing ndarray

Credits

This page is based with thanks on the wiki page on subclassing by Pierre
Gerard-Marchant - http://www.scipy.org/Subclasses.

Introduction

Subclassing ndarray is relatively simple, but it has some complications
compared to other Python objects. On this page we explain the machinery
that allows you to subclass ndarray, and the implications for
implementing a subclass.

ndarrays and object creation

Subclassing ndarray is complicated by the fact that new instances of
ndarray classes can come about in three different ways. These are:

	Explicit constructor call - as in MySubClass(params). This is
the usual route to Python instance creation.

	View casting - casting an existing ndarray as a given subclass

	New from template - creating a new instance from a template
instance. Examples include returning slices from a subclassed array,
creating return types from ufuncs, and copying arrays. See
Creating new from template for more details

The last two are characteristics of ndarrays - in order to support
things like array slicing. The complications of subclassing ndarray are
due to the mechanisms numpy has to support these latter two routes of
instance creation.

View casting

View casting is the standard ndarray mechanism by which you take an
ndarray of any subclass, and return a view of the array as another
(specified) subclass:

>>> import numpy as np
>>> # create a completely useless ndarray subclass
>>> class C(np.ndarray): pass
>>> # create a standard ndarray
>>> arr = np.zeros((3,))
>>> # take a view of it, as our useless subclass
>>> c_arr = arr.view(C)
>>> type(c_arr)
<class 'C'>

Creating new from template

New instances of an ndarray subclass can also come about by a very
similar mechanism to View casting, when numpy finds it needs to
create a new instance from a template instance. The most obvious place
this has to happen is when you are taking slices of subclassed arrays.
For example:

>>> v = c_arr[1:]
>>> type(v) # the view is of type 'C'
<class 'C'>
>>> v is c_arr # but it's a new instance
False

The slice is a view onto the original c_arr data. So, when we
take a view from the ndarray, we return a new ndarray, of the same
class, that points to the data in the original.

There are other points in the use of ndarrays where we need such views,
such as copying arrays (c_arr.copy()), creating ufunc output arrays
(see also __array_wrap__ for ufuncs), and reducing methods (like
c_arr.mean().

Relationship of view casting and new-from-template

These paths both use the same machinery. We make the distinction here,
because they result in different input to your methods. Specifically,
View casting means you have created a new instance of your array
type from any potential subclass of ndarray. Creating new from template
means you have created a new instance of your class from a pre-existing
instance, allowing you - for example - to copy across attributes that
are particular to your subclass.

Implications for subclassing

If we subclass ndarray, we need to deal not only with explicit
construction of our array type, but also View casting or
Creating new from template. Numpy has the machinery to do this, and this
machinery that makes subclassing slightly non-standard.

There are two aspects to the machinery that ndarray uses to support
views and new-from-template in subclasses.

The first is the use of the ndarray.__new__ method for the main work
of object initialization, rather then the more usual __init__
method. The second is the use of the __array_finalize__ method to
allow subclasses to clean up after the creation of views and new
instances from templates.

A brief Python primer on __new__ and __init__

__new__ is a standard Python method, and, if present, is called
before __init__ when we create a class instance. See the python
__new__ documentation [http://docs.python.org/reference/datamodel.html#object.__new__] for more detail.

For example, consider the following Python code:

class C(object):
 def __new__(cls, *args):
 print 'Cls in __new__:', cls
 print 'Args in __new__:', args
 return object.__new__(cls, *args)

 def __init__(self, *args):
 print 'type(self) in __init__:', type(self)
 print 'Args in __init__:', args

meaning that we get:

>>> c = C('hello')
Cls in __new__: <class 'C'>
Args in __new__: ('hello',)
type(self) in __init__: <class 'C'>
Args in __init__: ('hello',)

When we call C('hello'), the __new__ method gets its own class
as first argument, and the passed argument, which is the string
'hello'. After python calls __new__, it usually (see below)
calls our __init__ method, with the output of __new__ as the
first argument (now a class instance), and the passed arguments
following.

As you can see, the object can be initialized in the __new__
method or the __init__ method, or both, and in fact ndarray does
not have an __init__ method, because all the initialization is
done in the __new__ method.

Why use __new__ rather than just the usual __init__? Because
in some cases, as for ndarray, we want to be able to return an object
of some other class. Consider the following:

class D(C):
 def __new__(cls, *args):
 print 'D cls is:', cls
 print 'D args in __new__:', args
 return C.__new__(C, *args)

 def __init__(self, *args):
 # we never get here
 print 'In D __init__'

meaning that:

>>> obj = D('hello')
D cls is: <class 'D'>
D args in __new__: ('hello',)
Cls in __new__: <class 'C'>
Args in __new__: ('hello',)
>>> type(obj)
<class 'C'>

The definition of C is the same as before, but for D, the
__new__ method returns an instance of class C rather than
D. Note that the __init__ method of D does not get
called. In general, when the __new__ method returns an object of
class other than the class in which it is defined, the __init__
method of that class is not called.

This is how subclasses of the ndarray class are able to return views
that preserve the class type. When taking a view, the standard
ndarray machinery creates the new ndarray object with something
like:

obj = ndarray.__new__(subtype, shape, ...

where subdtype is the subclass. Thus the returned view is of the
same class as the subclass, rather than being of class ndarray.

That solves the problem of returning views of the same type, but now
we have a new problem. The machinery of ndarray can set the class
this way, in its standard methods for taking views, but the ndarray
__new__ method knows nothing of what we have done in our own
__new__ method in order to set attributes, and so on. (Aside -
why not call obj = subdtype.__new__(... then? Because we may not
have a __new__ method with the same call signature).

The role of __array_finalize__

__array_finalize__ is the mechanism that numpy provides to allow
subclasses to handle the various ways that new instances get created.

Remember that subclass instances can come about in these three ways:

	explicit constructor call (obj = MySubClass(params)). This will
call the usual sequence of MySubClass.__new__ then (if it exists)
MySubClass.__init__.

	View casting

	Creating new from template

Our MySubClass.__new__ method only gets called in the case of the
explicit constructor call, so we can’t rely on MySubClass.__new__ or
MySubClass.__init__ to deal with the view casting and
new-from-template. It turns out that MySubClass.__array_finalize__
does get called for all three methods of object creation, so this is
where our object creation housekeeping usually goes.

	For the explicit constructor call, our subclass will need to create a
new ndarray instance of its own class. In practice this means that
we, the authors of the code, will need to make a call to
ndarray.__new__(MySubClass,...), or do view casting of an existing
array (see below)

	For view casting and new-from-template, the equivalent of
ndarray.__new__(MySubClass,... is called, at the C level.

The arguments that __array_finalize__ recieves differ for the three
methods of instance creation above.

The following code allows us to look at the call sequences and arguments:

import numpy as np

class C(np.ndarray):
 def __new__(cls, *args, **kwargs):
 print 'In __new__ with class %s' % cls
 return np.ndarray.__new__(cls, *args, **kwargs)

 def __init__(self, *args, **kwargs):
 # in practice you probably will not need or want an __init__
 # method for your subclass
 print 'In __init__ with class %s' % self.__class__

 def __array_finalize__(self, obj):
 print 'In array_finalize:'
 print ' self type is %s' % type(self)
 print ' obj type is %s' % type(obj)

Now:

>>> # Explicit constructor
>>> c = C((10,))
In __new__ with class <class 'C'>
In array_finalize:
 self type is <class 'C'>
 obj type is <type 'NoneType'>
In __init__ with class <class 'C'>
>>> # View casting
>>> a = np.arange(10)
>>> cast_a = a.view(C)
In array_finalize:
 self type is <class 'C'>
 obj type is <type 'numpy.ndarray'>
>>> # Slicing (example of new-from-template)
>>> cv = c[:1]
In array_finalize:
 self type is <class 'C'>
 obj type is <class 'C'>

The signature of __array_finalize__ is:

def __array_finalize__(self, obj):

ndarray.__new__ passes __array_finalize__ the new object, of our
own class (self) as well as the object from which the view has been
taken (obj). As you can see from the output above, the self is
always a newly created instance of our subclass, and the type of obj
differs for the three instance creation methods:

	When called from the explicit constructor, obj is None

	When called from view casting, obj can be an instance of any
subclass of ndarray, including our own.

	When called in new-from-template, obj is another instance of our
own subclass, that we might use to update the new self instance.

Because __array_finalize__ is the only method that always sees new
instances being created, it is the sensible place to fill in instance
defaults for new object attributes, among other tasks.

This may be clearer with an example.

Simple example - adding an extra attribute to ndarray

import numpy as np

class InfoArray(np.ndarray):

 def __new__(subtype, shape, dtype=float, buffer=None, offset=0,
 strides=None, order=None, info=None):
 # Create the ndarray instance of our type, given the usual
 # ndarray input arguments. This will call the standard
 # ndarray constructor, but return an object of our type.
 # It also triggers a call to InfoArray.__array_finalize__
 obj = np.ndarray.__new__(subtype, shape, dtype, buffer, offset, strides,
 order)
 # set the new 'info' attribute to the value passed
 obj.info = info
 # Finally, we must return the newly created object:
 return obj

 def __array_finalize__(self, obj):
 # ``self`` is a new object resulting from
 # ndarray.__new__(InfoArray, ...), therefore it only has
 # attributes that the ndarray.__new__ constructor gave it -
 # i.e. those of a standard ndarray.
 #
 # We could have got to the ndarray.__new__ call in 3 ways:
 # From an explicit constructor - e.g. InfoArray():
 # obj is None
 # (we're in the middle of the InfoArray.__new__
 # constructor, and self.info will be set when we return to
 # InfoArray.__new__)
 if obj is None: return
 # From view casting - e.g arr.view(InfoArray):
 # obj is arr
 # (type(obj) can be InfoArray)
 # From new-from-template - e.g infoarr[:3]
 # type(obj) is InfoArray
 #
 # Note that it is here, rather than in the __new__ method,
 # that we set the default value for 'info', because this
 # method sees all creation of default objects - with the
 # InfoArray.__new__ constructor, but also with
 # arr.view(InfoArray).
 self.info = getattr(obj, 'info', None)
 # We do not need to return anything

Using the object looks like this:

>>> obj = InfoArray(shape=(3,)) # explicit constructor
>>> type(obj)
<class 'InfoArray'>
>>> obj.info is None
True
>>> obj = InfoArray(shape=(3,), info='information')
>>> obj.info
'information'
>>> v = obj[1:] # new-from-template - here - slicing
>>> type(v)
<class 'InfoArray'>
>>> v.info
'information'
>>> arr = np.arange(10)
>>> cast_arr = arr.view(InfoArray) # view casting
>>> type(cast_arr)
<class 'InfoArray'>
>>> cast_arr.info is None
True

This class isn’t very useful, because it has the same constructor as the
bare ndarray object, including passing in buffers and shapes and so on.
We would probably prefer the constructor to be able to take an already
formed ndarray from the usual numpy calls to np.array and return an
object.

Slightly more realistic example - attribute added to existing array

Here is a class that takes a standard ndarray that already exists, casts
as our type, and adds an extra attribute.

import numpy as np

class RealisticInfoArray(np.ndarray):

 def __new__(cls, input_array, info=None):
 # Input array is an already formed ndarray instance
 # We first cast to be our class type
 obj = np.asarray(input_array).view(cls)
 # add the new attribute to the created instance
 obj.info = info
 # Finally, we must return the newly created object:
 return obj

 def __array_finalize__(self, obj):
 # see InfoArray.__array_finalize__ for comments
 if obj is None: return
 self.info = getattr(obj, 'info', None)

So:

>>> arr = np.arange(5)
>>> obj = RealisticInfoArray(arr, info='information')
>>> type(obj)
<class 'RealisticInfoArray'>
>>> obj.info
'information'
>>> v = obj[1:]
>>> type(v)
<class 'RealisticInfoArray'>
>>> v.info
'information'

__array_wrap__ for ufuncs

__array_wrap__ gets called at the end of numpy ufuncs and other numpy
functions, to allow a subclass to set the type of the return value
and update attributes and metadata. Let’s show how this works with an example.
First we make the same subclass as above, but with a different name and
some print statements:

import numpy as np

class MySubClass(np.ndarray):

 def __new__(cls, input_array, info=None):
 obj = np.asarray(input_array).view(cls)
 obj.info = info
 return obj

 def __array_finalize__(self, obj):
 print 'In __array_finalize__:'
 print ' self is %s' % repr(self)
 print ' obj is %s' % repr(obj)
 if obj is None: return
 self.info = getattr(obj, 'info', None)

 def __array_wrap__(self, out_arr, context=None):
 print 'In __array_wrap__:'
 print ' self is %s' % repr(self)
 print ' arr is %s' % repr(out_arr)
 # then just call the parent
 return np.ndarray.__array_wrap__(self, out_arr, context)

We run a ufunc on an instance of our new array:

>>> obj = MySubClass(np.arange(5), info='spam')
In __array_finalize__:
 self is MySubClass([0, 1, 2, 3, 4])
 obj is array([0, 1, 2, 3, 4])
>>> arr2 = np.arange(5)+1
>>> ret = np.add(arr2, obj)
In __array_wrap__:
 self is MySubClass([0, 1, 2, 3, 4])
 arr is array([1, 3, 5, 7, 9])
In __array_finalize__:
 self is MySubClass([1, 3, 5, 7, 9])
 obj is MySubClass([0, 1, 2, 3, 4])
>>> ret
MySubClass([1, 3, 5, 7, 9])
>>> ret.info
'spam'

Note that the ufunc (np.add) has called the __array_wrap__ method of the
input with the highest __array_priority__ value, in this case
MySubClass.__array_wrap__, with arguments self as obj, and
out_arr as the (ndarray) result of the addition. In turn, the
default __array_wrap__ (ndarray.__array_wrap__) has cast the
result to class MySubClass, and called __array_finalize__ -
hence the copying of the info attribute. This has all happened at the C level.

But, we could do anything we wanted:

class SillySubClass(np.ndarray):

 def __array_wrap__(self, arr, context=None):
 return 'I lost your data'

>>> arr1 = np.arange(5)
>>> obj = arr1.view(SillySubClass)
>>> arr2 = np.arange(5)
>>> ret = np.multiply(obj, arr2)
>>> ret
'I lost your data'

So, by defining a specific __array_wrap__ method for our subclass,
we can tweak the output from ufuncs. The __array_wrap__ method
requires self, then an argument - which is the result of the ufunc -
and an optional parameter context. This parameter is returned by some
ufuncs as a 3-element tuple: (name of the ufunc, argument of the ufunc,
domain of the ufunc). __array_wrap__ should return an instance of
its containing class. See the masked array subclass for an
implementation.

In addition to __array_wrap__, which is called on the way out of the
ufunc, there is also an __array_prepare__ method which is called on
the way into the ufunc, after the output arrays are created but before any
computation has been performed. The default implementation does nothing
but pass through the array. __array_prepare__ should not attempt to
access the array data or resize the array, it is intended for setting the
output array type, updating attributes and metadata, and performing any
checks based on the input that may be desired before computation begins.
Like __array_wrap__, __array_prepare__ must return an ndarray or
subclass thereof or raise an error.

Extra gotchas - custom __del__ methods and ndarray.base

One of the problems that ndarray solves is keeping track of memory
ownership of ndarrays and their views. Consider the case where we have
created an ndarray, arr and have taken a slice with v = arr[1:].
The two objects are looking at the same memory. Numpy keeps track of
where the data came from for a particular array or view, with the
base attribute:

>>> # A normal ndarray, that owns its own data
>>> arr = np.zeros((4,))
>>> # In this case, base is None
>>> arr.base is None
True
>>> # We take a view
>>> v1 = arr[1:]
>>> # base now points to the array that it derived from
>>> v1.base is arr
True
>>> # Take a view of a view
>>> v2 = v1[1:]
>>> # base points to the view it derived from
>>> v2.base is v1
True

In general, if the array owns its own memory, as for arr in this
case, then arr.base will be None - there are some exceptions to this
- see the numpy book for more details.

The base attribute is useful in being able to tell whether we have
a view or the original array. This in turn can be useful if we need
to know whether or not to do some specific cleanup when the subclassed
array is deleted. For example, we may only want to do the cleanup if
the original array is deleted, but not the views. For an example of
how this can work, have a look at the memmap class in
numpy.core.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

Performance

Placeholder for Improving Performance documentation.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

Miscellaneous

IEEE 754 Floating Point Special Values

Special values defined in numpy: nan, inf,

NaNs can be used as a poor-man’s mask (if you don’t care what the
original value was)

Note: cannot use equality to test NaNs. E.g.:

>>> myarr = np.array([1., 0., np.nan, 3.])
>>> np.where(myarr == np.nan)
>>> np.nan == np.nan # is always False! Use special numpy functions instead.
False
>>> myarr[myarr == np.nan] = 0. # doesn't work
>>> myarr
array([1., 0., NaN, 3.])
>>> myarr[np.isnan(myarr)] = 0. # use this instead find
>>> myarr
array([1., 0., 0., 3.])

Other related special value functions:

isinf(): True if value is inf
isfinite(): True if not nan or inf
nan_to_num(): Map nan to 0, inf to max float, -inf to min float

The following corresponds to the usual functions except that nans are excluded
from the results:

nansum()
nanmax()
nanmin()
nanargmax()
nanargmin()

>>> x = np.arange(10.)
>>> x[3] = np.nan
>>> x.sum()
nan
>>> np.nansum(x)
42.0

How numpy handles numerical exceptions

The default is to 'warn' for invalid, divide, and overflow
and 'ignore' for underflow. But this can be changed, and it can be
set individually for different kinds of exceptions. The different behaviors
are:

	‘ignore’ : Take no action when the exception occurs.

	‘warn’ : Print a RuntimeWarning (via the Python warnings [http://docs.python.org/dev/library/warnings.html#module-warnings] module).

	‘raise’ : Raise a FloatingPointError.

	‘call’ : Call a function specified using the seterrcall function.

	‘print’ : Print a warning directly to stdout.

	‘log’ : Record error in a Log object specified by seterrcall.

These behaviors can be set for all kinds of errors or specific ones:

	all : apply to all numeric exceptions

	invalid : when NaNs are generated

	divide : divide by zero (for integers as well!)

	overflow : floating point overflows

	underflow : floating point underflows

Note that integer divide-by-zero is handled by the same machinery.
These behaviors are set on a per-thread basis.

Examples

>>> oldsettings = np.seterr(all='warn')
>>> np.zeros(5,dtype=np.float32)/0.
invalid value encountered in divide
>>> j = np.seterr(under='ignore')
>>> np.array([1.e-100])**10
>>> j = np.seterr(invalid='raise')
>>> np.sqrt(np.array([-1.]))
FloatingPointError: invalid value encountered in sqrt
>>> def errorhandler(errstr, errflag):
... print "saw stupid error!"
>>> np.seterrcall(errorhandler)
<function err_handler at 0x...>
>>> j = np.seterr(all='call')
>>> np.zeros(5, dtype=np.int32)/0
FloatingPointError: invalid value encountered in divide
saw stupid error!
>>> j = np.seterr(**oldsettings) # restore previous
... # error-handling settings

Interfacing to C

Only a survey of the choices. Little detail on how each works.

	Bare metal, wrap your own C-code manually.

	Plusses:
	Efficient

	No dependencies on other tools

	Minuses:
	Lots of learning overhead:
	need to learn basics of Python C API

	need to learn basics of numpy C API

	need to learn how to handle reference counting and love it.

	Reference counting often difficult to get right.
	getting it wrong leads to memory leaks, and worse, segfaults

	API will change for Python 3.0!

	Cython

	Plusses:
	avoid learning C API’s

	no dealing with reference counting

	can code in pseudo python and generate C code

	can also interface to existing C code

	should shield you from changes to Python C api

	has become the de-facto standard within the scientific Python community

	fast indexing support for arrays

	Minuses:
	Can write code in non-standard form which may become obsolete

	Not as flexible as manual wrapping

	ctypes

	Plusses:

	part of Python standard library

	good for interfacing to existing sharable libraries, particularly
Windows DLLs

	avoids API/reference counting issues

	good numpy support: arrays have all these in their ctypes
attribute:

a.ctypes.data a.ctypes.get_strides
a.ctypes.data_as a.ctypes.shape
a.ctypes.get_as_parameter a.ctypes.shape_as
a.ctypes.get_data a.ctypes.strides
a.ctypes.get_shape a.ctypes.strides_as

	Minuses:

	can’t use for writing code to be turned into C extensions, only a wrapper
tool.

	SWIG (automatic wrapper generator)

	Plusses:
	around a long time

	multiple scripting language support

	C++ support

	Good for wrapping large (many functions) existing C libraries

	Minuses:
	generates lots of code between Python and the C code

	can cause performance problems that are nearly impossible to optimize
out

	interface files can be hard to write

	doesn’t necessarily avoid reference counting issues or needing to know
API’s

	scipy.weave

	Plusses:
	can turn many numpy expressions into C code

	dynamic compiling and loading of generated C code

	can embed pure C code in Python module and have weave extract, generate
interfaces and compile, etc.

	Minuses:
	Future very uncertain: it’s the only part of Scipy not ported to Python 3
and is effectively deprecated in favor of Cython.

	Psyco

	Plusses:
	Turns pure python into efficient machine code through jit-like
optimizations

	very fast when it optimizes well

	Minuses:
	Only on intel (windows?)

	Doesn’t do much for numpy?

Interfacing to Fortran:

The clear choice to wrap Fortran code is
f2py [http://docs.scipy.org/doc/numpy-dev/f2py/].

Pyfort is an older alternative, but not supported any longer.
Fwrap is a newer project that looked promising but isn’t being developed any
longer.

Interfacing to C++:

	Cython

	CXX

	Boost.python

	SWIG

	SIP (used mainly in PyQT)

Methods vs. Functions

Placeholder for Methods vs. Functions documentation.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

Using Numpy C-API

	How to extend NumPy
	Writing an extension module

	Required subroutine

	Defining functions
	Functions without keyword arguments

	Functions with keyword arguments

	Reference counting

	Dealing with array objects
	Converting an arbitrary sequence object

	Creating a brand-new ndarray

	Getting at ndarray memory and accessing elements of the ndarray

	Example

	Using Python as glue
	Calling other compiled libraries from Python

	Hand-generated wrappers

	f2py
	Creating source for a basic extension module

	Creating a compiled extension module

	Improving the basic interface

	Inserting directives in Fortran source

	A filtering example

	Calling f2py from Python

	Automatic extension module generation

	Conclusion

	Cython
	Complex addition in Cython

	Image filter in Cython

	Conclusion

	ctypes
	Having a shared library

	Loading the shared library

	Converting arguments

	Calling the function

	Complete example

	Conclusion

	Additional tools you may find useful
	SWIG

	SIP

	Boost Python

	PyFort

	Writing your own ufunc
	Creating a new universal function

	Example Non-ufunc extension

	Example Numpy ufunc for one dtype

	Example Numpy ufunc with multiple dtypes

	Example Numpy ufunc with multiple arguments/return values

	Example Numpy ufunc with structured array dtype arguments

	PyUFunc_FromFuncAndData Specification

	Beyond the Basics
	Iterating over elements in the array
	Basic Iteration

	Iterating over all but one axis

	Iterating over multiple arrays

	Broadcasting over multiple arrays

	User-defined data-types
	Adding the new data-type

	Registering a casting function

	Registering coercion rules

	Registering a ufunc loop

	Subtyping the ndarray in C
	Creating sub-types

	Specific features of ndarray sub-typing
	The __array_finalize__ method

	The __array_priority__ attribute

	The __array_wrap__ method

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Using Numpy C-API

How to extend NumPy

That which is static and repetitive is boring. That which is dynamic

and random is confusing. In between lies art.

— John A. Locke

Science is a differential equation. Religion is a boundary condition.

— Alan Turing

Writing an extension module

While the ndarray object is designed to allow rapid computation in
Python, it is also designed to be general-purpose and satisfy a wide-
variety of computational needs. As a result, if absolute speed is
essential, there is no replacement for a well-crafted, compiled loop
specific to your application and hardware. This is one of the reasons
that numpy includes f2py so that an easy-to-use mechanisms for linking
(simple) C/C++ and (arbitrary) Fortran code directly into Python are
available. You are encouraged to use and improve this mechanism. The
purpose of this section is not to document this tool but to document
the more basic steps to writing an extension module that this tool
depends on.

When an extension module is written, compiled, and installed to
somewhere in the Python path (sys.path), the code can then be imported
into Python as if it were a standard python file. It will contain
objects and methods that have been defined and compiled in C code. The
basic steps for doing this in Python are well-documented and you can
find more information in the documentation for Python itself available
online at www.python.org [http://www.python.org] .

In addition to the Python C-API, there is a full and rich C-API for
NumPy allowing sophisticated manipulations on a C-level. However, for
most applications, only a few API calls will typically be used. If all
you need to do is extract a pointer to memory along with some shape
information to pass to another calculation routine, then you will use
very different calls, then if you are trying to create a new array-
like type or add a new data type for ndarrays. This chapter documents
the API calls and macros that are most commonly used.

Required subroutine

There is exactly one function that must be defined in your C-code in
order for Python to use it as an extension module. The function must
be called init{name} where {name} is the name of the module from
Python. This function must be declared so that it is visible to code
outside of the routine. Besides adding the methods and constants you
desire, this subroutine must also contain calls to import_array()
and/or import_ufunc() depending on which C-API is needed. Forgetting
to place these commands will show itself as an ugly segmentation fault
(crash) as soon as any C-API subroutine is actually called. It is
actually possible to have multiple init{name} functions in a single
file in which case multiple modules will be defined by that file.
However, there are some tricks to get that to work correctly and it is
not covered here.

A minimal init{name} method looks like:

PyMODINIT_FUNC
init{name}(void)
{
 (void)Py_InitModule({name}, mymethods);
 import_array();
}

The mymethods must be an array (usually statically declared) of
PyMethodDef structures which contain method names, actual C-functions,
a variable indicating whether the method uses keyword arguments or
not, and docstrings. These are explained in the next section. If you
want to add constants to the module, then you store the returned value
from Py_InitModule which is a module object. The most general way to
add items to the module is to get the module dictionary using
PyModule_GetDict(module). With the module dictionary, you can add
whatever you like to the module manually. An easier way to add objects
to the module is to use one of three additional Python C-API calls
that do not require a separate extraction of the module dictionary.
These are documented in the Python documentation, but repeated here
for convenience:

	
int PyModule_AddObject(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*module, char*name, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*value)

	

	
int PyModule_AddIntConstant(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*module, char*name, longvalue)

	

	
int PyModule_AddStringConstant(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*module, char*name, char*value)

	All three of these functions require the module object (the
return value of Py_InitModule). The name is a string that
labels the value in the module. Depending on which function is
called, the value argument is either a general object
(PyModule_AddObject steals a reference to it), an integer
constant, or a string constant.

Defining functions

The second argument passed in to the Py_InitModule function is a
structure that makes it easy to to define functions in the module. In
the example given above, the mymethods structure would have been
defined earlier in the file (usually right before the init{name}
subroutine) to:

static PyMethodDef mymethods[] = {
 { nokeywordfunc,nokeyword_cfunc,
 METH_VARARGS,
 Doc string},
 { keywordfunc, keyword_cfunc,
 METH_VARARGS|METH_KEYWORDS,
 Doc string},
 {NULL, NULL, 0, NULL} /* Sentinel */
}

Each entry in the mymethods array is a PyMethodDef [http://docs.python.org/dev/c-api/structures.html#c.PyMethodDef] structure
containing 1) the Python name, 2) the C-function that implements the
function, 3) flags indicating whether or not keywords are accepted for
this function, and 4) The docstring for the function. Any number of
functions may be defined for a single module by adding more entries to
this table. The last entry must be all NULL as shown to act as a
sentinel. Python looks for this entry to know that all of the
functions for the module have been defined.

The last thing that must be done to finish the extension module is to
actually write the code that performs the desired functions. There are
two kinds of functions: those that don’t accept keyword arguments, and
those that do.

Functions without keyword arguments

Functions that don’t accept keyword arguments should be written as:

static PyObject*
nokeyword_cfunc (PyObject *dummy, PyObject *args)
{
 /* convert Python arguments */
 /* do function */
 /* return something */
}

The dummy argument is not used in this context and can be safely
ignored. The args argument contains all of the arguments passed in
to the function as a tuple. You can do anything you want at this
point, but usually the easiest way to manage the input arguments is to
call PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple] (args, format_string,
addresses_to_C_variables...) or PyArg_UnpackTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_UnpackTuple] (tuple, “name” ,
min, max, ...). A good description of how to use the first function is
contained in the Python C-API reference manual under section 5.5
(Parsing arguments and building values). You should pay particular
attention to the “O&” format which uses converter functions to go
between the Python object and the C object. All of the other format
functions can be (mostly) thought of as special cases of this general
rule. There are several converter functions defined in the NumPy C-API
that may be of use. In particular, the PyArray_DescrConverter
function is very useful to support arbitrary data-type specification.
This function transforms any valid data-type Python object into a
PyArray_Descr * object. Remember to pass in the address of the
C-variables that should be filled in.

There are lots of examples of how to use PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple]
throughout the NumPy source code. The standard usage is like this:

PyObject *input;
PyArray_Descr *dtype;
if (!PyArg_ParseTuple(args, "OO&", &input,
 PyArray_DescrConverter,
 &dtype)) return NULL;

It is important to keep in mind that you get a borrowed reference to
the object when using the “O” format string. However, the converter
functions usually require some form of memory handling. In this
example, if the conversion is successful, dtype will hold a new
reference to a PyArray_Descr * object, while input will hold a
borrowed reference. Therefore, if this conversion were mixed with
another conversion (say to an integer) and the data-type conversion
was successful but the integer conversion failed, then you would need
to release the reference count to the data-type object before
returning. A typical way to do this is to set dtype to NULL
before calling PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple] and then use Py_XDECREF [http://docs.python.org/dev/c-api/refcounting.html#c.Py_XDECREF]
on dtype before returning.

After the input arguments are processed, the code that actually does
the work is written (likely calling other functions as needed). The
final step of the C-function is to return something. If an error is
encountered then NULL should be returned (making sure an error has
actually been set). If nothing should be returned then increment
Py_None [http://docs.python.org/dev/c-api/none.html#c.Py_None] and return it. If a single object should be returned then
it is returned (ensuring that you own a reference to it first). If
multiple objects should be returned then you need to return a tuple.
The Py_BuildValue [http://docs.python.org/dev/c-api/arg.html#c.Py_BuildValue] (format_string, c_variables...) function makes
it easy to build tuples of Python objects from C variables. Pay
special attention to the difference between ‘N’ and ‘O’ in the format
string or you can easily create memory leaks. The ‘O’ format string
increments the reference count of the PyObject * C-variable it
corresponds to, while the ‘N’ format string steals a reference to the
corresponding PyObject * C-variable. You should use ‘N’ if you have
already created a reference for the object and just want to give that
reference to the tuple. You should use ‘O’ if you only have a borrowed
reference to an object and need to create one to provide for the
tuple.

Functions with keyword arguments

These functions are very similar to functions without keyword
arguments. The only difference is that the function signature is:

static PyObject*
keyword_cfunc (PyObject *dummy, PyObject *args, PyObject *kwds)
{
...
}

The kwds argument holds a Python dictionary whose keys are the names
of the keyword arguments and whose values are the corresponding
keyword-argument values. This dictionary can be processed however you
see fit. The easiest way to handle it, however, is to replace the
PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple] (args, format_string, addresses...) function with
a call to PyArg_ParseTupleAndKeywords [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTupleAndKeywords] (args, kwds, format_string,
char *kwlist[], addresses...). The kwlist parameter to this function
is a NULL -terminated array of strings providing the expected
keyword arguments. There should be one string for each entry in the
format_string. Using this function will raise a TypeError if invalid
keyword arguments are passed in.

For more help on this function please see section 1.8 (Keyword
Paramters for Extension Functions) of the Extending and Embedding
tutorial in the Python documentation.

Reference counting

The biggest difficulty when writing extension modules is reference
counting. It is an important reason for the popularity of f2py, weave,
Cython, ctypes, etc.... If you mis-handle reference counts you can get
problems from memory-leaks to segmentation faults. The only strategy I
know of to handle reference counts correctly is blood, sweat, and
tears. First, you force it into your head that every Python variable
has a reference count. Then, you understand exactly what each function
does to the reference count of your objects, so that you can properly
use DECREF and INCREF when you need them. Reference counting can
really test the amount of patience and diligence you have towards your
programming craft. Despite the grim depiction, most cases of reference
counting are quite straightforward with the most common difficulty
being not using DECREF on objects before exiting early from a routine
due to some error. In second place, is the common error of not owning
the reference on an object that is passed to a function or macro that
is going to steal the reference (e.g. PyTuple_SET_ITEM [http://docs.python.org/dev/c-api/tuple.html#c.PyTuple_SET_ITEM], and
most functions that take PyArray_Descr objects).

Typically you get a new reference to a variable when it is created or
is the return value of some function (there are some prominent
exceptions, however — such as getting an item out of a tuple or a
dictionary). When you own the reference, you are responsible to make
sure that Py_DECREF [http://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF] (var) is called when the variable is no
longer necessary (and no other function has “stolen” its
reference). Also, if you are passing a Python object to a function
that will “steal” the reference, then you need to make sure you own it
(or use Py_INCREF [http://docs.python.org/dev/c-api/refcounting.html#c.Py_INCREF] to get your own reference). You will also
encounter the notion of borrowing a reference. A function that borrows
a reference does not alter the reference count of the object and does
not expect to “hold on “to the reference. It’s just going to use the
object temporarily. When you use PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple] or
PyArg_UnpackTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_UnpackTuple] you receive a borrowed reference to the
objects in the tuple and should not alter their reference count inside
your function. With practice, you can learn to get reference counting
right, but it can be frustrating at first.

One common source of reference-count errors is the Py_BuildValue [http://docs.python.org/dev/c-api/arg.html#c.Py_BuildValue]
function. Pay careful attention to the difference between the ‘N’
format character and the ‘O’ format character. If you create a new
object in your subroutine (such as an output array), and you are
passing it back in a tuple of return values, then you should most-
likely use the ‘N’ format character in Py_BuildValue [http://docs.python.org/dev/c-api/arg.html#c.Py_BuildValue]. The ‘O’
character will increase the reference count by one. This will leave
the caller with two reference counts for a brand-new array. When the
variable is deleted and the reference count decremented by one, there
will still be that extra reference count, and the array will never be
deallocated. You will have a reference-counting induced memory leak.
Using the ‘N’ character will avoid this situation as it will return to
the caller an object (inside the tuple) with a single reference count.

Dealing with array objects

Most extension modules for NumPy will need to access the memory for an
ndarray object (or one of it’s sub-classes). The easiest way to do
this doesn’t require you to know much about the internals of NumPy.
The method is to

	Ensure you are dealing with a well-behaved array (aligned, in machine
byte-order and single-segment) of the correct type and number of
dimensions.

	By converting it from some Python object using
PyArray_FromAny or a macro built on it.

	By constructing a new ndarray of your desired shape and type
using PyArray_NewFromDescr or a simpler macro or function
based on it.

	Get the shape of the array and a pointer to its actual data.

	Pass the data and shape information on to a subroutine or other
section of code that actually performs the computation.

	If you are writing the algorithm, then I recommend that you use the
stride information contained in the array to access the elements of
the array (the PyArray_GETPTR macros make this painless). Then,
you can relax your requirements so as not to force a single-segment
array and the data-copying that might result.

Each of these sub-topics is covered in the following sub-sections.

Converting an arbitrary sequence object

The main routine for obtaining an array from any Python object that
can be converted to an array is PyArray_FromAny. This
function is very flexible with many input arguments. Several macros
make it easier to use the basic function. PyArray_FROM_OTF is
arguably the most useful of these macros for the most common uses. It
allows you to convert an arbitrary Python object to an array of a
specific builtin data-type (e.g. float), while specifying a
particular set of requirements (e.g. contiguous, aligned, and
writeable). The syntax is

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_FROM_OTF(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, inttypenum, intrequirements)

	Return an ndarray from any Python object, obj, that can be
converted to an array. The number of dimensions in the returned
array is determined by the object. The desired data-type of the
returned array is provided in typenum which should be one of the
enumerated types. The requirements for the returned array can be
any combination of standard array flags. Each of these arguments
is explained in more detail below. You receive a new reference to
the array on success. On failure, NULL is returned and an
exception is set.

obj

The object can be any Python object convertable to an ndarray.
If the object is already (a subclass of) the ndarray that
satisfies the requirements then a new reference is returned.
Otherwise, a new array is constructed. The contents of obj
are copied to the new array unless the array interface is used
so that data does not have to be copied. Objects that can be
converted to an array include: 1) any nested sequence object,
2) any object exposing the array interface, 3) any object with
an __array__ method (which should return an ndarray),
and 4) any scalar object (becomes a zero-dimensional
array). Sub-classes of the ndarray that otherwise fit the
requirements will be passed through. If you want to ensure
a base-class ndarray, then use NPY_ENSUREARRAY in the
requirements flag. A copy is made only if necessary. If you
want to guarantee a copy, then pass in NPY_ENSURECOPY
to the requirements flag.

typenum

One of the enumerated types or NPY_NOTYPE if the data-type
should be determined from the object itself. The C-based names
can be used:

NPY_BOOL, NPY_BYTE, NPY_UBYTE,
NPY_SHORT, NPY_USHORT, NPY_INT,
NPY_UINT, NPY_LONG, NPY_ULONG,
NPY_LONGLONG, NPY_ULONGLONG, NPY_DOUBLE,
NPY_LONGDOUBLE, NPY_CFLOAT, NPY_CDOUBLE,
NPY_CLONGDOUBLE, NPY_OBJECT.

Alternatively, the bit-width names can be used as supported on the
platform. For example:

NPY_INT8, NPY_INT16, NPY_INT32,
NPY_INT64, NPY_UINT8,
NPY_UINT16, NPY_UINT32,
NPY_UINT64, NPY_FLOAT32,
NPY_FLOAT64, NPY_COMPLEX64,
NPY_COMPLEX128.

The object will be converted to the desired type only if it
can be done without losing precision. Otherwise NULL will
be returned and an error raised. Use NPY_FORCECAST in the
requirements flag to override this behavior.

requirements

The memory model for an ndarray admits arbitrary strides in
each dimension to advance to the next element of the array.
Often, however, you need to interface with code that expects a
C-contiguous or a Fortran-contiguous memory layout. In
addition, an ndarray can be misaligned (the address of an
element is not at an integral multiple of the size of the
element) which can cause your program to crash (or at least
work more slowly) if you try and dereference a pointer into
the array data. Both of these problems can be solved by
converting the Python object into an array that is more
“well-behaved” for your specific usage.

The requirements flag allows specification of what kind of
array is acceptable. If the object passed in does not satisfy
this requirements then a copy is made so that thre returned
object will satisfy the requirements. these ndarray can use a
very generic pointer to memory. This flag allows specification
of the desired properties of the returned array object. All
of the flags are explained in the detailed API chapter. The
flags most commonly needed are NPY_ARRAY_IN_ARRAY,
NPY_OUT_ARRAY, and NPY_ARRAY_INOUT_ARRAY:

	
NPY_ARRAY_IN_ARRAY

	Equivalent to NPY_ARRAY_C_CONTIGUOUS |
NPY_ARRAY_ALIGNED. This combination of flags is useful
for arrays that must be in C-contiguous order and aligned.
These kinds of arrays are usually input arrays for some
algorithm.

	
NPY_ARRAY_OUT_ARRAY

	Equivalent to NPY_ARRAY_C_CONTIGUOUS |
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE. This
combination of flags is useful to specify an array that is
in C-contiguous order, is aligned, and can be written to
as well. Such an array is usually returned as output
(although normally such output arrays are created from
scratch).

	
NPY_ARRAY_INOUT_ARRAY

	Equivalent to NPY_ARRAY_C_CONTIGUOUS |
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE |
NPY_ARRAY_UPDATEIFCOPY. This combination of flags is
useful to specify an array that will be used for both
input and output. If a copy is needed, then when the
temporary is deleted (by your use of Py_DECREF [http://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF] at
the end of the interface routine), the temporary array
will be copied back into the original array passed in. Use
of the NPY_ARRAY_UPDATEIFCOPY flag requires that the input
object is already an array (because other objects cannot
be automatically updated in this fashion). If an error
occurs use PyArray_DECREF_ERR (obj) on an array
with the NPY_ARRAY_UPDATEIFCOPY flag set. This will
delete the array without causing the contents to be copied
back into the original array.

Other useful flags that can be OR’d as additional requirements are:

	
NPY_ARRAY_FORCECAST

	Cast to the desired type, even if it can’t be done without losing
information.

	
NPY_ARRAY_ENSURECOPY

	Make sure the resulting array is a copy of the original.

	
NPY_ARRAY_ENSUREARRAY

	Make sure the resulting object is an actual ndarray and not a sub-
class.

Note

Whether or not an array is byte-swapped is determined by the
data-type of the array. Native byte-order arrays are always
requested by PyArray_FROM_OTF and so there is no need for
a NPY_ARRAY_NOTSWAPPED flag in the requirements argument. There
is also no way to get a byte-swapped array from this routine.

Creating a brand-new ndarray

Quite often new arrays must be created from within extension-module
code. Perhaps an output array is needed and you don’t want the caller
to have to supply it. Perhaps only a temporary array is needed to hold
an intermediate calculation. Whatever the need there are simple ways
to get an ndarray object of whatever data-type is needed. The most
general function for doing this is PyArray_NewFromDescr. All array
creation functions go through this heavily re-used code. Because of
its flexibility, it can be somewhat confusing to use. As a result,
simpler forms exist that are easier to use.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_SimpleNew(intnd, npy_intp*dims, inttypenum)

	This function allocates new memory and places it in an ndarray
with nd dimensions whose shape is determined by the array of
at least nd items pointed to by dims. The memory for the
array is uninitialized (unless typenum is NPY_OBJECT in
which case each element in the array is set to NULL). The
typenum argument allows specification of any of the builtin
data-types such as NPY_FLOAT or NPY_LONG. The
memory for the array can be set to zero if desired using
PyArray_FILLWBYTE (return_object, 0).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_SimpleNewFromData(intnd, npy_intp*dims, inttypenum, void*data)

	Sometimes, you want to wrap memory allocated elsewhere into an
ndarray object for downstream use. This routine makes it
straightforward to do that. The first three arguments are the same
as in PyArray_SimpleNew, the final argument is a pointer to a
block of contiguous memory that the ndarray should use as it’s
data-buffer which will be interpreted in C-style contiguous
fashion. A new reference to an ndarray is returned, but the
ndarray will not own its data. When this ndarray is deallocated,
the pointer will not be freed.

You should ensure that the provided memory is not freed while the
returned array is in existence. The easiest way to handle this is
if data comes from another reference-counted Python object. The
reference count on this object should be increased after the
pointer is passed in, and the base member of the returned ndarray
should point to the Python object that owns the data. Then, when
the ndarray is deallocated, the base-member will be DECREF’d
appropriately. If you want the memory to be freed as soon as the
ndarray is deallocated then simply set the OWNDATA flag on the
returned ndarray.

Getting at ndarray memory and accessing elements of the ndarray

If obj is an ndarray (PyArrayObject *), then the data-area of the
ndarray is pointed to by the void* pointer PyArray_DATA (obj) or
the char* pointer PyArray_BYTES (obj). Remember that (in general)
this data-area may not be aligned according to the data-type, it may
represent byte-swapped data, and/or it may not be writeable. If the
data area is aligned and in native byte-order, then how to get at a
specific element of the array is determined only by the array of
npy_intp variables, PyArray_STRIDES (obj). In particular, this
c-array of integers shows how many bytes must be added to the
current element pointer to get to the next element in each dimension.
For arrays less than 4-dimensions there are PyArray_GETPTR{k}
(obj, ...) macros where {k} is the integer 1, 2, 3, or 4 that make
using the array strides easier. The arguments represent {k} non-
negative integer indices into the array. For example, suppose E is
a 3-dimensional ndarray. A (void*) pointer to the element E[i,j,k]
is obtained as PyArray_GETPTR3 (E, i, j, k).

As explained previously, C-style contiguous arrays and Fortran-style
contiguous arrays have particular striding patterns. Two array flags
(NPY_C_CONTIGUOUS and :cdata`NPY_F_CONTIGUOUS`) indicate
whether or not the striding pattern of a particular array matches the
C-style contiguous or Fortran-style contiguous or neither. Whether or
not the striding pattern matches a standard C or Fortran one can be
tested Using PyArray_ISCONTIGUOUS (obj) and
PyArray_ISFORTRAN (obj) respectively. Most third-party
libraries expect contiguous arrays. But, often it is not difficult to
support general-purpose striding. I encourage you to use the striding
information in your own code whenever possible, and reserve
single-segment requirements for wrapping third-party code. Using the
striding information provided with the ndarray rather than requiring a
contiguous striding reduces copying that otherwise must be made.

Example

The following example shows how you might write a wrapper that accepts
two input arguments (that will be converted to an array) and an output
argument (that must be an array). The function returns None and
updates the output array.

static PyObject *
example_wrapper(PyObject *dummy, PyObject *args)
{
 PyObject *arg1=NULL, *arg2=NULL, *out=NULL;
 PyObject *arr1=NULL, *arr2=NULL, *oarr=NULL;

 if (!PyArg_ParseTuple(args, "OOO!", &arg1, &arg2,
 &PyArray_Type, &out)) return NULL;

 arr1 = PyArray_FROM_OTF(arg1, NPY_DOUBLE, NPY_IN_ARRAY);
 if (arr1 == NULL) return NULL;
 arr2 = PyArray_FROM_OTF(arg2, NPY_DOUBLE, NPY_IN_ARRAY);
 if (arr2 == NULL) goto fail;
 oarr = PyArray_FROM_OTF(out, NPY_DOUBLE, NPY_INOUT_ARRAY);
 if (oarr == NULL) goto fail;

 /* code that makes use of arguments */
 /* You will probably need at least
 nd = PyArray_NDIM(<..>) -- number of dimensions
 dims = PyArray_DIMS(<..>) -- npy_intp array of length nd
 showing length in each dim.
 dptr = (double *)PyArray_DATA(<..>) -- pointer to data.

 If an error occurs goto fail.
 */

 Py_DECREF(arr1);
 Py_DECREF(arr2);
 Py_DECREF(oarr);
 Py_INCREF(Py_None);
 return Py_None;

 fail:
 Py_XDECREF(arr1);
 Py_XDECREF(arr2);
 PyArray_XDECREF_ERR(oarr);
 return NULL;
}

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Using Numpy C-API

Using Python as glue

There is no conversation more boring than the one where everybody

agrees.

— Michel de Montaigne

Duct tape is like the force. It has a light side, and a dark side, and

it holds the universe together.

— Carl Zwanzig

Many people like to say that Python is a fantastic glue language.
Hopefully, this Chapter will convince you that this is true. The first
adopters of Python for science were typically people who used it to
glue together large application codes running on super-computers. Not
only was it much nicer to code in Python than in a shell script or
Perl, in addition, the ability to easily extend Python made it
relatively easy to create new classes and types specifically adapted
to the problems being solved. From the interactions of these early
contributors, Numeric emerged as an array-like object that could be
used to pass data between these applications.

As Numeric has matured and developed into NumPy, people have been able
to write more code directly in NumPy. Often this code is fast-enough
for production use, but there are still times that there is a need to
access compiled code. Either to get that last bit of efficiency out of
the algorithm or to make it easier to access widely-available codes
written in C/C++ or Fortran.

This chapter will review many of the tools that are available for the
purpose of accessing code written in other compiled languages. There
are many resources available for learning to call other compiled
libraries from Python and the purpose of this Chapter is not to make
you an expert. The main goal is to make you aware of some of the
possibilities so that you will know what to “Google” in order to learn more.

The http://www.scipy.org website also contains a great deal of useful
information about many of these tools. For example, there is a nice
description of using several of the tools explained in this chapter at
http://www.scipy.org/PerformancePython. This link provides several
ways to solve the same problem showing how to use and connect with
compiled code to get the best performance. In the process you can get
a taste for several of the approaches that will be discussed in this
chapter.

Calling other compiled libraries from Python

While Python is a great language and a pleasure to code in, its
dynamic nature results in overhead that can cause some code (i.e.
raw computations inside of for loops) to be up 10-100 times slower
than equivalent code written in a static compiled language. In
addition, it can cause memory usage to be larger than necessary as
temporary arrays are created and destroyed during computation. For
many types of computing needs the extra slow-down and memory
consumption can often not be spared (at least for time- or memory-
critical portions of your code). Therefore one of the most common
needs is to call out from Python code to a fast, machine-code routine
(e.g. compiled using C/C++ or Fortran). The fact that this is
relatively easy to do is a big reason why Python is such an excellent
high-level language for scientific and engineering programming.

Their are two basic approaches to calling compiled code: writing an
extension module that is then imported to Python using the import
command, or calling a shared-library subroutine directly from Python
using the ctypes module (included in the standard distribution since
Python 2.5). The first method is the most common (but with the
inclusion of ctypes into Python 2.5 this status may change).

Warning

Calling C-code from Python can result in Python crashes if you are not
careful. None of the approaches in this chapter are immune. You have
to know something about the way data is handled by both NumPy and by
the third-party library being used.

Hand-generated wrappers

Extension modules were discussed in Chapter 1 . The most basic way to interface with
compiled code is to write an extension module and construct a module
method that calls the compiled code. For improved readability, your
method should take advantage of the PyArg_ParseTuple call to convert
between Python objects and C data-types. For standard C data-types
there is probably already a built-in converter. For others you may
need to write your own converter and use the “O&” format string which
allows you to specify a function that will be used to perform the
conversion from the Python object to whatever C-structures are needed.

Once the conversions to the appropriate C-structures and C data-types
have been performed, the next step in the wrapper is to call the
underlying function. This is straightforward if the underlying
function is in C or C++. However, in order to call Fortran code you
must be familiar with how Fortran subroutines are called from C/C++
using your compiler and platform. This can vary somewhat platforms and
compilers (which is another reason f2py makes life much simpler for
interfacing Fortran code) but generally involves underscore mangling
of the name and the fact that all variables are passed by reference
(i.e. all arguments are pointers).

The advantage of the hand-generated wrapper is that you have complete
control over how the C-library gets used and called which can lead to
a lean and tight interface with minimal over-head. The disadvantage is
that you have to write, debug, and maintain C-code, although most of
it can be adapted using the time-honored technique of
“cutting-pasting-and-modifying” from other extension modules. Because,
the procedure of calling out to additional C-code is fairly
regimented, code-generation procedures have been developed to make
this process easier. One of these code- generation techniques is
distributed with NumPy and allows easy integration with Fortran and
(simple) C code. This package, f2py, will be covered briefly in the
next session.

f2py

F2py allows you to automatically construct an extension module that
interfaces to routines in Fortran 77/90/95 code. It has the ability to
parse Fortran 77/90/95 code and automatically generate Python
signatures for the subroutines it encounters, or you can guide how the
subroutine interfaces with Python by constructing an interface-definition-file (or modifying the f2py-produced one).

Creating source for a basic extension module

Probably the easiest way to introduce f2py is to offer a simple
example. Here is one of the subroutines contained in a file named
add.f:

C
 SUBROUTINE ZADD(A,B,C,N)
C
 DOUBLE COMPLEX A(*)
 DOUBLE COMPLEX B(*)
 DOUBLE COMPLEX C(*)
 INTEGER N
 DO 20 J = 1, N
 C(J) = A(J)+B(J)
 20 CONTINUE
 END

This routine simply adds the elements in two contiguous arrays and
places the result in a third. The memory for all three arrays must be
provided by the calling routine. A very basic interface to this
routine can be automatically generated by f2py:

f2py -m add add.f

You should be able to run this command assuming your search-path is
set-up properly. This command will produce an extension module named
addmodule.c in the current directory. This extension module can now be
compiled and used from Python just like any other extension module.

Creating a compiled extension module

You can also get f2py to compile add.f and also compile its produced
extension module leaving only a shared-library extension file that can
be imported from Python:

f2py -c -m add add.f

This command leaves a file named add.{ext} in the current directory
(where {ext} is the appropriate extension for a python extension
module on your platform — so, pyd, etc.). This module may then be
imported from Python. It will contain a method for each subroutine in
add (zadd, cadd, dadd, sadd). The docstring of each method contains
information about how the module method may be called:

>>> import add
>>> print add.zadd.__doc__
zadd - Function signature:
 zadd(a,b,c,n)
Required arguments:
 a : input rank-1 array('D') with bounds (*)
 b : input rank-1 array('D') with bounds (*)
 c : input rank-1 array('D') with bounds (*)
 n : input int

Improving the basic interface

The default interface is a very literal translation of the fortran
code into Python. The Fortran array arguments must now be NumPy arrays
and the integer argument should be an integer. The interface will
attempt to convert all arguments to their required types (and shapes)
and issue an error if unsuccessful. However, because it knows nothing
about the semantics of the arguments (such that C is an output and n
should really match the array sizes), it is possible to abuse this
function in ways that can cause Python to crash. For example:

>>> add.zadd([1,2,3],[1,2],[3,4],1000)

will cause a program crash on most systems. Under the covers, the
lists are being converted to proper arrays but then the underlying add
loop is told to cycle way beyond the borders of the allocated memory.

In order to improve the interface, directives should be provided. This
is accomplished by constructing an interface definition file. It is
usually best to start from the interface file that f2py can produce
(where it gets its default behavior from). To get f2py to generate the
interface file use the -h option:

f2py -h add.pyf -m add add.f

This command leaves the file add.pyf in the current directory. The
section of this file corresponding to zadd is:

subroutine zadd(a,b,c,n) ! in :add:add.f
 double complex dimension(*) :: a
 double complex dimension(*) :: b
 double complex dimension(*) :: c
 integer :: n
end subroutine zadd

By placing intent directives and checking code, the interface can be
cleaned up quite a bit until the Python module method is both easier
to use and more robust.

subroutine zadd(a,b,c,n) ! in :add:add.f
 double complex dimension(n) :: a
 double complex dimension(n) :: b
 double complex intent(out),dimension(n) :: c
 integer intent(hide),depend(a) :: n=len(a)
end subroutine zadd

The intent directive, intent(out) is used to tell f2py that c is
an output variable and should be created by the interface before being
passed to the underlying code. The intent(hide) directive tells f2py
to not allow the user to specify the variable, n, but instead to
get it from the size of a. The depend(a) directive is
necessary to tell f2py that the value of n depends on the input a (so
that it won’t try to create the variable n until the variable a is
created).

After modifying add.pyf, the new python module file can be generated
by compiling both add.f95 and add.pyf:

f2py -c add.pyf add.f95

The new interface has docstring:

>>> import add
>>> print add.zadd.__doc__
zadd - Function signature:
 c = zadd(a,b)
Required arguments:
 a : input rank-1 array('D') with bounds (n)
 b : input rank-1 array('D') with bounds (n)
Return objects:
 c : rank-1 array('D') with bounds (n)

Now, the function can be called in a much more robust way:

>>> add.zadd([1,2,3],[4,5,6])
array([5.+0.j, 7.+0.j, 9.+0.j])

Notice the automatic conversion to the correct format that occurred.

Inserting directives in Fortran source

The nice interface can also be generated automatically by placing the
variable directives as special comments in the original fortran code.
Thus, if I modify the source code to contain:

C
 SUBROUTINE ZADD(A,B,C,N)
C
CF2PY INTENT(OUT) :: C
CF2PY INTENT(HIDE) :: N
CF2PY DOUBLE COMPLEX :: A(N)
CF2PY DOUBLE COMPLEX :: B(N)
CF2PY DOUBLE COMPLEX :: C(N)
 DOUBLE COMPLEX A(*)
 DOUBLE COMPLEX B(*)
 DOUBLE COMPLEX C(*)
 INTEGER N
 DO 20 J = 1, N
 C(J) = A(J) + B(J)
 20 CONTINUE
 END

Then, I can compile the extension module using:

f2py -c -m add add.f

The resulting signature for the function add.zadd is exactly the same
one that was created previously. If the original source code had
contained A(N) instead of A(*) and so forth with B and C, then I
could obtain (nearly) the same interface simply by placing the
INTENT(OUT) :: C comment line in the source code. The only difference
is that N would be an optional input that would default to the length
of A.

A filtering example

For comparison with the other methods to be discussed. Here is another
example of a function that filters a two-dimensional array of double
precision floating-point numbers using a fixed averaging filter. The
advantage of using Fortran to index into multi-dimensional arrays
should be clear from this example.

 SUBROUTINE DFILTER2D(A,B,M,N)
C
 DOUBLE PRECISION A(M,N)
 DOUBLE PRECISION B(M,N)
 INTEGER N, M
CF2PY INTENT(OUT) :: B
CF2PY INTENT(HIDE) :: N
CF2PY INTENT(HIDE) :: M
 DO 20 I = 2,M-1
 DO 40 J=2,N-1
 B(I,J) = A(I,J) +
 $ (A(I-1,J)+A(I+1,J) +
 $ A(I,J-1)+A(I,J+1))*0.5D0 +
 $ (A(I-1,J-1) + A(I-1,J+1) +
 $ A(I+1,J-1) + A(I+1,J+1))*0.25D0
 40 CONTINUE
 20 CONTINUE
 END

This code can be compiled and linked into an extension module named
filter using:

f2py -c -m filter filter.f

This will produce an extension module named filter.so in the current
directory with a method named dfilter2d that returns a filtered
version of the input.

Calling f2py from Python

The f2py program is written in Python and can be run from inside your code
to compile Fortran code at runtime, as follows:

from numpy import f2py
with open("add.f") as sourcefile:
 sourcecode = sourcefile.read()
f2py.compile(sourcecode, modulename='add')
import add

The source string can be any valid Fortran code. If you want to save
the extension-module source code then a suitable file-name can be
provided by the source_fn keyword to the compile function.

Automatic extension module generation

If you want to distribute your f2py extension module, then you only
need to include the .pyf file and the Fortran code. The distutils
extensions in NumPy allow you to define an extension module entirely
in terms of this interface file. A valid setup.py file allowing
distribution of the add.f module (as part of the package f2py_examples
so that it would be loaded as f2py_examples.add) is:

def configuration(parent_package='', top_path=None)
 from numpy.distutils.misc_util import Configuration
 config = Configuration('f2py_examples',parent_package, top_path)
 config.add_extension('add', sources=['add.pyf','add.f'])
 return config

if __name__ == '__main__':
 from numpy.distutils.core import setup
 setup(**configuration(top_path='').todict())

Installation of the new package is easy using:

python setup.py install

assuming you have the proper permissions to write to the main site-
packages directory for the version of Python you are using. For the
resulting package to work, you need to create a file named __init__.py
(in the same directory as add.pyf). Notice the extension module is
defined entirely in terms of the “add.pyf” and “add.f” files. The
conversion of the .pyf file to a .c file is handled by numpy.disutils.

Conclusion

The interface definition file (.pyf) is how you can fine-tune the
interface between Python and Fortran. There is decent documentation
for f2py found in the numpy/f2py/docs directory where-ever NumPy is
installed on your system (usually under site-packages). There is also
more information on using f2py (including how to use it to wrap C
codes) at http://www.scipy.org/Cookbook under the “Using NumPy with
Other Languages” heading.

The f2py method of linking compiled code is currently the most
sophisticated and integrated approach. It allows clean separation of
Python with compiled code while still allowing for separate
distribution of the extension module. The only draw-back is that it
requires the existence of a Fortran compiler in order for a user to
install the code. However, with the existence of the free-compilers
g77, gfortran, and g95, as well as high-quality commerical compilers,
this restriction is not particularly onerous. In my opinion, Fortran
is still the easiest way to write fast and clear code for scientific
computing. It handles complex numbers, and multi-dimensional indexing
in the most straightforward way. Be aware, however, that some Fortran
compilers will not be able to optimize code as well as good hand-
written C-code.

Cython

Cython [http://cython.org] is a compiler for a Python dialect that adds
(optional) static typing for speed, and allows mixing C or C++ code
into your modules. It produces C or C++ extensions that can be compiled
and imported in Python code.

If you are writing an extension module that will include quite a bit of your
own algorithmic code as well, then Cython is a good match. Among its
features is the ability to easily and quickly
work with multidimensional arrays.

Notice that Cython is an extension-module generator only. Unlike f2py,
it includes no automatic facility for compiling and linking
the extension module (which must be done in the usual fashion). It
does provide a modified distutils class called build_ext which lets
you build an extension module from a .pyx source. Thus, you could
write in a setup.py file:

from Cython.Distutils import build_ext
from distutils.extension import Extension
from distutils.core import setup
import numpy

setup(name='mine', description='Nothing',
 ext_modules=[Extension('filter', ['filter.pyx'],
 include_dirs=[numpy.get_include()])],
 cmdclass = {'build_ext':build_ext})

Adding the NumPy include directory is, of course, only necessary if
you are using NumPy arrays in the extension module (which is what we
assume you are using Cython for). The distutils extensions in NumPy
also include support for automatically producing the extension-module
and linking it from a .pyx file. It works so that if the user does
not have Cython installed, then it looks for a file with the same
file-name but a .c extension which it then uses instead of trying
to produce the .c file again.

If you just use Cython to compile a standard Python module, then you
will get a C extension module that typically runs a bit faster than the
equivalent Python module. Further speed increases can be gained by using
the cdef keyword to statically define C variables.

Let’s look at two examples we’ve seen before to see how they might be
implemented using Cython. These examples were compiled into extension
modules using Cython 0.21.1.

Complex addition in Cython

Here is part of a Cython module named add.pyx which implements the
complex addition functions we previously implemented using f2py:

cimport cython
cimport numpy as np
import numpy as np

We need to initialize NumPy.
np.import_array()

#@cython.boundscheck(False)
def zadd(in1, in2):
 cdef double complex[:] a = in1.ravel()
 cdef double complex[:] b = in2.ravel()

 out = np.empty(a.shape[0], np.complex64)
 cdef double complex[:] c = out.ravel()

 for i in range(c.shape[0]):
 c[i].real = a[i].real + b[i].real
 c[i].imag = a[i].imag + b[i].imag

 return out

This module shows use of the cimport statement to load the definitions
from the numpy.pxd header that ships with Cython. It looks like NumPy is
imported twice; cimport only makes the NumPy C-API available, while the
regular import causes a Python-style import at runtime and makes it
possible to call into the familiar NumPy Python API.

The example also demonstrates Cython’s “typed memoryviews”, which are like
NumPy arrays at the C level, in the sense that they are shaped and strided
arrays that know their own extent (unlike a C array addressed through a bare
pointer). The syntax double complex[:] denotes a one-dimensional array
(vector) of doubles, with arbitrary strides. A contiguous array of ints would
be int[::1], while a matrix of floats would be float[:, :].

Shown commented is the cython.boundscheck decorator, which turns
bounds-checking for memory view accesses on or off on a per-function basis.
We can use this to further speed up our code, at the expense of safety
(or a manual check prior to entering the loop).

Other than the view syntax, the function is immediately readable to a Python
programmer. Static typing of the variable i is implicit. Instead of the
view syntax, we could also have used Cython’s special NumPy array syntax,
but the view syntax is preferred.

Image filter in Cython

The two-dimensional example we created using Fortran is just as easy to write
in Cython:

cimport numpy as np
import numpy as np

np.import_array()

def filter(img):
 cdef double[:, :] a = np.asarray(img, dtype=np.double)
 out = np.zeros(img.shape, dtype=np.double)
 cdef double[:, ::1] b = out

 cdef np.npy_intp i, j

 for i in range(1, a.shape[0] - 1):
 for j in range(1, a.shape[1] - 1):
 b[i, j] = (a[i, j]
 + .5 * (a[i-1, j] + a[i+1, j]
 + a[i, j-1] + a[i, j+1])
 + .25 * (a[i-1, j-1] + a[i-1, j+1]
 + a[i+1, j-1] + a[i+1, j+1]))

 return out

This 2-d averaging filter runs quickly because the loop is in C and
the pointer computations are done only as needed. If the code above is
compiled as a module image, then a 2-d image, img, can be filtered
using this code very quickly using:

import image
out = image.filter(img)

Regarding the code, two things are of note: firstly, it is impossible to
return a memory view to Python. Instead, a NumPy array out is first
created, and then a view b onto this array is used for the computation.
Secondly, the view b is typed double[:, ::1]. This means 2-d array
with contiguous rows, i.e., C matrix order. Specifying the order explicitly
can speed up some algorithms since they can skip stride computations.

Conclusion

Cython is the extension mechanism of choice for several scientific Python
libraries, including Pandas, SAGE, scikit-image and scikit-learn,
as well as the XML processing library LXML.
The language and compiler are well-maintained.

There are several disadvantages of using Cython:

	When coding custom algorithms, and sometimes when wrapping existing C
libraries, some familiarity with C is required. In particular, when using
C memory management (malloc and friends), it’s easy to introduce
memory leaks. However, just compiling a Python module renamed to .pyx
can already speed it up, and adding a few type declarations can give
dramatic speedups in some code.

	It is easy to lose a clean separation between Python and C which makes
re-using your C-code for other non-Python-related projects more
difficult.

	The C-code generated by Cython is hard to read and modify (and typically
compiles with annoying but harmless warnings).

One big advantage of Cython-generated extension modules is that they are
easy to distribute. In summary, Cython is a very capable tool for either
gluing C code or generating an extension module quickly and should not be
over-looked. It is especially useful for people that can’t or won’t write
C or Fortran code.

ctypes

Ctypes is a Python extension module, included in the stdlib, that
allows you to call an arbitrary function in a shared library directly
from Python. This approach allows you to interface with C-code directly
from Python. This opens up an enormous number of libraries for use from
Python. The drawback, however, is that coding mistakes can lead to ugly
program crashes very easily (just as can happen in C) because there is
little type or bounds checking done on the parameters. This is especially
true when array data is passed in as a pointer to a raw memory
location. The responsibility is then on you that the subroutine will
not access memory outside the actual array area. But, if you don’t
mind living a little dangerously ctypes can be an effective tool for
quickly taking advantage of a large shared library (or writing
extended functionality in your own shared library).

Because the ctypes approach exposes a raw interface to the compiled
code it is not always tolerant of user mistakes. Robust use of the
ctypes module typically involves an additional layer of Python code in
order to check the data types and array bounds of objects passed to
the underlying subroutine. This additional layer of checking (not to
mention the conversion from ctypes objects to C-data-types that ctypes
itself performs), will make the interface slower than a hand-written
extension-module interface. However, this overhead should be neglible
if the C-routine being called is doing any significant amount of work.
If you are a great Python programmer with weak C-skills, ctypes is an
easy way to write a useful interface to a (shared) library of compiled
code.

To use c-types you must

	Have a shared library.

	Load the shared library.

	Convert the python objects to ctypes-understood arguments.

	Call the function from the library with the ctypes arguments.

Having a shared library

There are several requirements for a shared library that can be used
with c-types that are platform specific. This guide assumes you have
some familiarity with making a shared library on your system (or
simply have a shared library available to you). Items to remember are:

	A shared library must be compiled in a special way (e.g. using
the -shared flag with gcc).

	On some platforms (e.g. Windows) , a shared library requires a
.def file that specifies the functions to be exported. For example a
mylib.def file might contain.

LIBRARY mylib.dll
EXPORTS
cool_function1
cool_function2

Alternatively, you may be able to use the storage-class specifier
__declspec(dllexport) in the C-definition of the function to avoid the
need for this .def file.

There is no standard way in Python distutils to create a standard
shared library (an extension module is a “special” shared library
Python understands) in a cross-platform manner. Thus, a big
disadvantage of ctypes at the time of writing this book is that it is
difficult to distribute in a cross-platform manner a Python extension
that uses c-types and includes your own code which should be compiled
as a shared library on the users system.

Loading the shared library

A simple, but robust way to load the shared library is to get the
absolute path name and load it using the cdll object of ctypes.:

lib = ctypes.cdll[<full_path_name>]

However, on Windows accessing an attribute of the cdll method will
load the first DLL by that name found in the current directory or on
the PATH. Loading the absolute path name requires a little finesse for
cross-platform work since the extension of shared libraries varies.
There is a ctypes.util.find_library utility available that can
simplify the process of finding the library to load but it is not
foolproof. Complicating matters, different platforms have different
default extensions used by shared libraries (e.g. .dll – Windows, .so
– Linux, .dylib – Mac OS X). This must also be taken into account if
you are using c-types to wrap code that needs to work on several
platforms.

NumPy provides a convenience function called
ctypeslib.load_library (name, path). This function takes the name
of the shared library (including any prefix like ‘lib’ but excluding
the extension) and a path where the shared library can be located. It
returns a ctypes library object or raises an OSError if the library
cannot be found or raises an ImportError if the ctypes module is not
available. (Windows users: the ctypes library object loaded using
load_library is always loaded assuming cdecl calling convention.
See the ctypes documentation under ctypes.windll and/or ctypes.oledll
for ways to load libraries under other calling conventions).

The functions in the shared library are available as attributes of the
ctypes library object (returned from ctypeslib.load_library) or
as items using lib['func_name'] syntax. The latter method for
retrieving a function name is particularly useful if the function name
contains characters that are not allowable in Python variable names.

Converting arguments

Python ints/longs, strings, and unicode objects are automatically
converted as needed to equivalent c-types arguments The None object is
also converted automatically to a NULL pointer. All other Python
objects must be converted to ctypes-specific types. There are two ways
around this restriction that allow c-types to integrate with other
objects.

	Don’t set the argtypes attribute of the function object and define an
_as_parameter_ method for the object you want to pass in. The
_as_parameter_ method must return a Python int which will be passed
directly to the function.

	Set the argtypes attribute to a list whose entries contain objects
with a classmethod named from_param that knows how to convert your
object to an object that ctypes can understand (an int/long, string,
unicode, or object with the _as_parameter_ attribute).

NumPy uses both methods with a preference for the second method
because it can be safer. The ctypes attribute of the ndarray returns
an object that has an _as_parameter_ attribute which returns an
integer representing the address of the ndarray to which it is
associated. As a result, one can pass this ctypes attribute object
directly to a function expecting a pointer to the data in your
ndarray. The caller must be sure that the ndarray object is of the
correct type, shape, and has the correct flags set or risk nasty
crashes if the data-pointer to inappropriate arrays are passsed in.

To implement the second method, NumPy provides the class-factory
function ndpointer in the ctypeslib module. This
class-factory function produces an appropriate class that can be
placed in an argtypes attribute entry of a ctypes function. The class
will contain a from_param method which ctypes will use to convert any
ndarray passed in to the function to a ctypes-recognized object. In
the process, the conversion will perform checking on any properties of
the ndarray that were specified by the user in the call to ndpointer.
Aspects of the ndarray that can be checked include the data-type, the
number-of-dimensions, the shape, and/or the state of the flags on any
array passed. The return value of the from_param method is the ctypes
attribute of the array which (because it contains the _as_parameter_
attribute pointing to the array data area) can be used by ctypes
directly.

The ctypes attribute of an ndarray is also endowed with additional
attributes that may be convenient when passing additional information
about the array into a ctypes function. The attributes data,
shape, and strides can provide c-types compatible types
corresponding to the data-area, the shape, and the strides of the
array. The data attribute reutrns a c_void_p representing a
pointer to the data area. The shape and strides attributes each return
an array of ctypes integers (or None representing a NULL pointer, if a
0-d array). The base ctype of the array is a ctype integer of the same
size as a pointer on the platform. There are also methods
data_as({ctype}), shape_as(<base ctype>), and strides_as(<base
ctype>). These return the data as a ctype object of your choice and
the shape/strides arrays using an underlying base type of your choice.
For convenience, the ctypeslib module also contains c_intp as
a ctypes integer data-type whose size is the same as the size of
c_void_p on the platform (it’s value is None if ctypes is not
installed).

Calling the function

The function is accessed as an attribute of or an item from the loaded
shared-library. Thus, if ”./mylib.so” has a function named
“cool_function1” , I could access this function either as:

lib = numpy.ctypeslib.load_library('mylib','.')
func1 = lib.cool_function1 # or equivalently
func1 = lib['cool_function1']

In ctypes, the return-value of a function is set to be ‘int’ by
default. This behavior can be changed by setting the restype attribute
of the function. Use None for the restype if the function has no
return value (‘void’):

func1.restype = None

As previously discussed, you can also set the argtypes attribute of
the function in order to have ctypes check the types of the input
arguments when the function is called. Use the ndpointer factory
function to generate a ready-made class for data-type, shape, and
flags checking on your new function. The ndpointer function has the
signature

	
ndpointer(dtype=None, ndim=None, shape=None, flags=None)

	Keyword arguments with the value None are not checked.
Specifying a keyword enforces checking of that aspect of the
ndarray on conversion to a ctypes-compatible object. The dtype
keyword can be any object understood as a data-type object. The
ndim keyword should be an integer, and the shape keyword should be
an integer or a sequence of integers. The flags keyword specifies
the minimal flags that are required on any array passed in. This
can be specified as a string of comma separated requirements, an
integer indicating the requirement bits OR’d together, or a flags
object returned from the flags attribute of an array with the
necessary requirements.

Using an ndpointer class in the argtypes method can make it
significantly safer to call a C-function using ctypes and the data-
area of an ndarray. You may still want to wrap the function in an
additional Python wrapper to make it user-friendly (hiding some
obvious arguments and making some arguments output arguments). In this
process, the requires function in NumPy may be useful to return the right
kind of array from a given input.

Complete example

In this example, I will show how the addition function and the filter
function implemented previously using the other approaches can be
implemented using ctypes. First, the C-code which implements the
algorithms contains the functions zadd, dadd, sadd, cadd, and
dfilter2d. The zadd function is:

/* Add arrays of contiguous data */
typedef struct {double real; double imag;} cdouble;
typedef struct {float real; float imag;} cfloat;
void zadd(cdouble *a, cdouble *b, cdouble *c, long n)
{
 while (n--) {
 c->real = a->real + b->real;
 c->imag = a->imag + b->imag;
 a++; b++; c++;
 }
}

with similar code for cadd, dadd, and sadd that handles complex float,
double, and float data-types, respectively:

void cadd(cfloat *a, cfloat *b, cfloat *c, long n)
{
 while (n--) {
 c->real = a->real + b->real;
 c->imag = a->imag + b->imag;
 a++; b++; c++;
 }
}
void dadd(double *a, double *b, double *c, long n)
{
 while (n--) {
 *c++ = *a++ + *b++;
 }
}
void sadd(float *a, float *b, float *c, long n)
{
 while (n--) {
 *c++ = *a++ + *b++;
 }
}

The code.c file also contains the function dfilter2d:

/* Assumes b is contiguous and
 a has strides that are multiples of sizeof(double)
*/
void
dfilter2d(double *a, double *b, int *astrides, int *dims)
{
 int i, j, M, N, S0, S1;
 int r, c, rm1, rp1, cp1, cm1;

 M = dims[0]; N = dims[1];
 S0 = astrides[0]/sizeof(double);
 S1=astrides[1]/sizeof(double);
 for (i=1; i<M-1; i++) {
 r = i*S0; rp1 = r+S0; rm1 = r-S0;
 for (j=1; j<N-1; j++) {
 c = j*S1; cp1 = j+S1; cm1 = j-S1;
 b[i*N+j] = a[r+c] + \
 (a[rp1+c] + a[rm1+c] + \
 a[r+cp1] + a[r+cm1])*0.5 + \
 (a[rp1+cp1] + a[rp1+cm1] + \
 a[rm1+cp1] + a[rm1+cp1])*0.25;
 }
 }
}

A possible advantage this code has over the Fortran-equivalent code is
that it takes arbitrarily strided (i.e. non-contiguous arrays) and may
also run faster depending on the optimization capability of your
compiler. But, it is a obviously more complicated than the simple code
in filter.f. This code must be compiled into a shared library. On my
Linux system this is accomplished using:

gcc -o code.so -shared code.c

Which creates a shared_library named code.so in the current directory.
On Windows don’t forget to either add __declspec(dllexport) in front
of void on the line preceeding each function definition, or write a
code.def file that lists the names of the functions to be exported.

A suitable Python interface to this shared library should be
constructed. To do this create a file named interface.py with the
following lines at the top:

__all__ = ['add', 'filter2d']

import numpy as N
import os

_path = os.path.dirname('__file__')
lib = N.ctypeslib.load_library('code', _path)
_typedict = {'zadd' : complex, 'sadd' : N.single,
 'cadd' : N.csingle, 'dadd' : float}
for name in _typedict.keys():
 val = getattr(lib, name)
 val.restype = None
 _type = _typedict[name]
 val.argtypes = [N.ctypeslib.ndpointer(_type,
 flags='aligned, contiguous'),
 N.ctypeslib.ndpointer(_type,
 flags='aligned, contiguous'),
 N.ctypeslib.ndpointer(_type,
 flags='aligned, contiguous,'\
 'writeable'),
 N.ctypeslib.c_intp]

This code loads the shared library named code.{ext} located in the
same path as this file. It then adds a return type of void to the
functions contained in the library. It also adds argument checking to
the functions in the library so that ndarrays can be passed as the
first three arguments along with an integer (large enough to hold a
pointer on the platform) as the fourth argument.

Setting up the filtering function is similar and allows the filtering
function to be called with ndarray arguments as the first two
arguments and with pointers to integers (large enough to handle the
strides and shape of an ndarray) as the last two arguments.:

lib.dfilter2d.restype=None
lib.dfilter2d.argtypes = [N.ctypeslib.ndpointer(float, ndim=2,
 flags='aligned'),
 N.ctypeslib.ndpointer(float, ndim=2,
 flags='aligned, contiguous,'\
 'writeable'),
 ctypes.POINTER(N.ctypeslib.c_intp),
 ctypes.POINTER(N.ctypeslib.c_intp)]

Next, define a simple selection function that chooses which addition
function to call in the shared library based on the data-type:

def select(dtype):
 if dtype.char in ['?bBhHf']:
 return lib.sadd, single
 elif dtype.char in ['F']:
 return lib.cadd, csingle
 elif dtype.char in ['DG']:
 return lib.zadd, complex
 else:
 return lib.dadd, float
 return func, ntype

Finally, the two functions to be exported by the interface can be
written simply as:

def add(a, b):
 requires = ['CONTIGUOUS', 'ALIGNED']
 a = N.asanyarray(a)
 func, dtype = select(a.dtype)
 a = N.require(a, dtype, requires)
 b = N.require(b, dtype, requires)
 c = N.empty_like(a)
 func(a,b,c,a.size)
 return c

and:

def filter2d(a):
 a = N.require(a, float, ['ALIGNED'])
 b = N.zeros_like(a)
 lib.dfilter2d(a, b, a.ctypes.strides, a.ctypes.shape)
 return b

Conclusion

Using ctypes is a powerful way to connect Python with arbitrary
C-code. It’s advantages for extending Python include

	clean separation of C-code from Python code

	no need to learn a new syntax except Python and C

	allows re-use of C-code

	functionality in shared libraries written for other purposes can be
obtained with a simple Python wrapper and search for the library.

	easy integration with NumPy through the ctypes attribute

	full argument checking with the ndpointer class factory

It’s disadvantages include

	It is difficult to distribute an extension module made using ctypes
because of a lack of support for building shared libraries in
distutils (but I suspect this will change in time).

	You must have shared-libraries of your code (no static libraries).

	Very little support for C++ code and it’s different library-calling
conventions. You will probably need a C-wrapper around C++ code to use
with ctypes (or just use Boost.Python instead).

Because of the difficulty in distributing an extension module made
using ctypes, f2py is still the easiest way to extend Python for
package creation. However, ctypes is a close second and will probably
be growing in popularity now that it is part of the Python
distribution. This should bring more features to ctypes that should
eliminate the difficulty in extending Python and distributing the
extension using ctypes.

Additional tools you may find useful

These tools have been found useful by others using Python and so are
included here. They are discussed separately because they are
either older ways to do things now handled by f2py, Cython, or ctypes
(SWIG, PyFort) or because I don’t know much about them (SIP, Boost).
I have not added links to these
methods because my experience is that you can find the most relevant
link faster using Google or some other search engine, and any links
provided here would be quickly dated. Do not assume that just because
it is included in this list, I don’t think the package deserves your
attention. I’m including information about these packages because many
people have found them useful and I’d like to give you as many options
as possible for tackling the problem of easily integrating your code.

SWIG

Simplified Wrapper and Interface Generator (SWIG) is an old and fairly
stable method for wrapping C/C++-libraries to a large variety of other
languages. It does not specifically understand NumPy arrays but can be
made useable with NumPy through the use of typemaps. There are some
sample typemaps in the numpy/tools/swig directory under numpy.i together
with an example module that makes use of them. SWIG excels at wrapping
large C/C++ libraries because it can (almost) parse their headers and
auto-produce an interface. Technically, you need to generate a .i
file that defines the interface. Often, however, this .i file can
be parts of the header itself. The interface usually needs a bit of
tweaking to be very useful. This ability to parse C/C++ headers and
auto-generate the interface still makes SWIG a useful approach to
adding functionalilty from C/C++ into Python, despite the other
methods that have emerged that are more targeted to Python. SWIG can
actually target extensions for several languages, but the typemaps
usually have to be language-specific. Nonetheless, with modifications
to the Python-specific typemaps, SWIG can be used to interface a
library with other languages such as Perl, Tcl, and Ruby.

My experience with SWIG has been generally positive in that it is
relatively easy to use and quite powerful. I used to use it quite
often before becoming more proficient at writing C-extensions.
However, I struggled writing custom interfaces with SWIG because it
must be done using the concept of typemaps which are not Python
specific and are written in a C-like syntax. Therefore, I tend to
prefer other gluing strategies and would only attempt to use SWIG to
wrap a very-large C/C++ library. Nonetheless, there are others who use
SWIG quite happily.

SIP

SIP is another tool for wrapping C/C++ libraries that is Python
specific and appears to have very good support for C++. Riverbank
Computing developed SIP in order to create Python bindings to the QT
library. An interface file must be written to generate the binding,
but the interface file looks a lot like a C/C++ header file. While SIP
is not a full C++ parser, it understands quite a bit of C++ syntax as
well as its own special directives that allow modification of how the
Python binding is accomplished. It also allows the user to define
mappings between Python types and C/C++ structrues and classes.

Boost Python

Boost is a repository of C++ libraries and Boost.Python is one of
those libraries which provides a concise interface for binding C++
classes and functions to Python. The amazing part of the Boost.Python
approach is that it works entirely in pure C++ without introducing a
new syntax. Many users of C++ report that Boost.Python makes it
possible to combine the best of both worlds in a seamless fashion. I
have not used Boost.Python because I am not a big user of C++ and
using Boost to wrap simple C-subroutines is usually over-kill. It’s
primary purpose is to make C++ classes available in Python. So, if you
have a set of C++ classes that need to be integrated cleanly into
Python, consider learning about and using Boost.Python.

PyFort

PyFort is a nice tool for wrapping Fortran and Fortran-like C-code
into Python with support for Numeric arrays. It was written by Paul
Dubois, a distinguished computer scientist and the very first
maintainer of Numeric (now retired). It is worth mentioning in the
hopes that somebody will update PyFort to work with NumPy arrays as
well which now support either Fortran or C-style contiguous arrays.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Using Numpy C-API

Writing your own ufunc

I have the Power!

— He-Man

Creating a new universal function

Before reading this, it may help to familiarize yourself with the basics
of C extensions for Python by reading/skimming the tutorials in Section 1
of Extending and Embedding the Python Interpreter [http://docs.python.org/extending/index.html] and in How to extend
Numpy [http://docs.scipy.org/doc/numpy/user/c-info.how-to-extend.html]

The umath module is a computer-generated C-module that creates many
ufuncs. It provides a great many examples of how to create a universal
function. Creating your own ufunc that will make use of the ufunc
machinery is not difficult either. Suppose you have a function that
you want to operate element-by-element over its inputs. By creating a
new ufunc you will obtain a function that handles

	broadcasting

	N-dimensional looping

	automatic type-conversions with minimal memory usage

	optional output arrays

It is not difficult to create your own ufunc. All that is required is
a 1-d loop for each data-type you want to support. Each 1-d loop must
have a specific signature, and only ufuncs for fixed-size data-types
can be used. The function call used to create a new ufunc to work on
built-in data-types is given below. A different mechanism is used to
register ufuncs for user-defined data-types.

In the next several sections we give example code that can be
easily modified to create your own ufuncs. The examples are
successively more complete or complicated versions of the logit
function, a common function in statistical modeling. Logit is also
interesting because, due to the magic of IEEE standards (specifically
IEEE 754), all of the logit functions created below
automatically have the following behavior.

>>> logit(0)
-inf
>>> logit(1)
inf
>>> logit(2)
nan
>>> logit(-2)
nan

This is wonderful because the function writer doesn’t have to
manually propagate infs or nans.

Example Non-ufunc extension

For comparison and general edificaiton of the reader we provide
a simple implementation of a C extension of logit that uses no
numpy.

To do this we need two files. The first is the C file which contains
the actual code, and the second is the setup.py file used to create
the module.

#include <Python.h>
#include <math.h>

/*
 * spammodule.c
 * This is the C code for a non-numpy Python extension to
 * define the logit function, where logit(p) = log(p/(1-p)).
 * This function will not work on numpy arrays automatically.
 * numpy.vectorize must be called in python to generate
 * a numpy-friendly function.
 *
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org .
 */

/* This declares the logit function */
static PyObject* spam_logit(PyObject *self, PyObject *args);

/*
 * This tells Python what methods this module has.
 * See the Python-C API for more information.
 */
static PyMethodDef SpamMethods[] = {
 {"logit",
 spam_logit,
 METH_VARARGS, "compute logit"},
 {NULL, NULL, 0, NULL}
};

/*
 * This actually defines the logit function for
 * input args from Python.
 */

static PyObject* spam_logit(PyObject *self, PyObject *args)
{
 double p;

 /* This parses the Python argument into a double */
 if(!PyArg_ParseTuple(args, "d", &p)) {
 return NULL;
 }

 /* THE ACTUAL LOGIT FUNCTION */
 p = p/(1-p);
 p = log(p);

 /*This builds the answer back into a python object */
 return Py_BuildValue("d", p);
}

/* This initiates the module using the above definitions. */
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
 PyModuleDef_HEAD_INIT,
 "spam",
 NULL,
 -1,
 SpamMethods,
 NULL,
 NULL,
 NULL,
 NULL
};

PyMODINIT_FUNC PyInit_spam(void)
{
 PyObject *m;
 m = PyModule_Create(&moduledef);
 if (!m) {
 return NULL;
 }
 return m;
}
#else
PyMODINIT_FUNC initspam(void)
{
 PyObject *m;

 m = Py_InitModule("spam", SpamMethods);
 if (m == NULL) {
 return;
 }
}
#endif

To use the setup.py file, place setup.py and spammodule.c in the same
folder. Then python setup.py build will build the module to import,
or setup.py install will install the module to your site-packages
directory.

'''
 setup.py file for spammodule.c

 Calling
 $python setup.py build_ext --inplace
 will build the extension library in the current file.

 Calling
 $python setup.py build
 will build a file that looks like ./build/lib*, where
 lib* is a file that begins with lib. The library will
 be in this file and end with a C library extension,
 such as .so

 Calling
 $python setup.py install
 will install the module in your site-packages file.

 See the distutils section of
 'Extending and Embedding the Python Interpreter'
 at docs.python.org for more information.
'''

from distutils.core import setup, Extension

module1 = Extension('spam', sources=['spammodule.c'],
 include_dirs=['/usr/local/lib'])

setup(name = 'spam',
 version='1.0',
 description='This is my spam package',
 ext_modules = [module1])

Once the spam module is imported into python, you can call logit
via spam.logit. Note that the function used above cannot be applied
as-is to numpy arrays. To do so we must call numpy.vectorize on it.
For example, if a python interpreter is opened in the file containing
the spam library or spam has been installed, one can perform the
following commands:

>>> import numpy as np
>>> import spam
>>> spam.logit(0)
-inf
>>> spam.logit(1)
inf
>>> spam.logit(0.5)
0.0
>>> x = np.linspace(0,1,10)
>>> spam.logit(x)
TypeError: only length-1 arrays can be converted to Python scalars
>>> f = np.vectorize(spam.logit)
>>> f(x)
array([-inf, -2.07944154, -1.25276297, -0.69314718, -0.22314355,
 0.22314355, 0.69314718, 1.25276297, 2.07944154, inf])

THE RESULTING LOGIT FUNCTION IS NOT FAST! numpy.vectorize simply
loops over spam.logit. The loop is done at the C level, but the numpy
array is constantly being parsed and build back up. This is expensive.
When the author compared numpy.vectorize(spam.logit) against the
logit ufuncs constructed below, the logit ufuncs were almost exactly
4 times faster. Larger or smaller speedups are, of course, possible
depending on the nature of the function.

Example Numpy ufunc for one dtype

For simplicity we give a ufunc for a single dtype, the ‘f8’ double.
As in the previous section, we first give the .c file and then the
setup.py file used to create the module containing the ufunc.

The place in the code corresponding to the actual computations for
the ufunc are marked with /*BEGIN main ufunc computation*/ and
/*END main ufunc computation*/. The code in between those lines is
the primary thing that must be changed to create your own ufunc.

#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/npy_3kcompat.h"

/*
 * single_type_logit.c
 * This is the C code for creating your own
 * Numpy ufunc for a logit function.
 *
 * In this code we only define the ufunc for
 * a single dtype. The computations that must
 * be replaced to create a ufunc for
 * a different funciton are marked with BEGIN
 * and END.
 *
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org .
 */

static PyMethodDef LogitMethods[] = {
 {NULL, NULL, 0, NULL}
};

/* The loop definition must precede the PyMODINIT_FUNC. */

static void double_logit(char **args, npy_intp *dimensions,
 npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp n = dimensions[0];
 char *in = args[0], *out = args[1];
 npy_intp in_step = steps[0], out_step = steps[1];

 double tmp;

 for (i = 0; i < n; i++) {
 /*BEGIN main ufunc computation*/
 tmp = *(double *)in;
 tmp /= 1-tmp;
 *((double *)out) = log(tmp);
 /*END main ufunc computation*/

 in += in_step;
 out += out_step;
 }
}

/*This a pointer to the above function*/
PyUFuncGenericFunction funcs[1] = {&double_logit};

/* These are the input and return dtypes of logit.*/
static char types[2] = {NPY_DOUBLE, NPY_DOUBLE};

static void *data[1] = {NULL};

#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
 PyModuleDef_HEAD_INIT,
 "npufunc",
 NULL,
 -1,
 LogitMethods,
 NULL,
 NULL,
 NULL,
 NULL
};

PyMODINIT_FUNC PyInit_npufunc(void)
{
 PyObject *m, *logit, *d;
 m = PyModule_Create(&moduledef);
 if (!m) {
 return NULL;
 }

 import_array();
 import_umath();

 logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 1, 1,
 PyUFunc_None, "logit",
 "logit_docstring", 0);

 d = PyModule_GetDict(m);

 PyDict_SetItemString(d, "logit", logit);
 Py_DECREF(logit);

 return m;
}
#else
PyMODINIT_FUNC initnpufunc(void)
{
 PyObject *m, *logit, *d;

 m = Py_InitModule("npufunc", LogitMethods);
 if (m == NULL) {
 return;
 }

 import_array();
 import_umath();

 logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 1, 1,
 PyUFunc_None, "logit",
 "logit_docstring", 0);

 d = PyModule_GetDict(m);

 PyDict_SetItemString(d, "logit", logit);
 Py_DECREF(logit);
}
#endif

This is a setup.py file for the above code. As before, the module
can be build via calling python setup.py build at the command prompt,
or installed to site-packages via python setup.py install.

'''
 setup.py file for logit.c
 Note that since this is a numpy extension
 we use numpy.distutils instead of
 distutils from the python standard library.

 Calling
 $python setup.py build_ext --inplace
 will build the extension library in the current file.

 Calling
 $python setup.py build
 will build a file that looks like ./build/lib*, where
 lib* is a file that begins with lib. The library will
 be in this file and end with a C library extension,
 such as .so

 Calling
 $python setup.py install
 will install the module in your site-packages file.

 See the distutils section of
 'Extending and Embedding the Python Interpreter'
 at docs.python.org and the documentation
 on numpy.distutils for more information.
'''

def configuration(parent_package='', top_path=None):
 import numpy
 from numpy.distutils.misc_util import Configuration

 config = Configuration('npufunc_directory',
 parent_package,
 top_path)
 config.add_extension('npufunc', ['single_type_logit.c'])

 return config

if __name__ == "__main__":
 from numpy.distutils.core import setup
 setup(configuration=configuration)

After the above has been installed, it can be imported and used as follows.

>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([-inf, -1.09861229, 0. , 1.09861229, inf])

Example Numpy ufunc with multiple dtypes

We finally give an example of a full ufunc, with inner loops for
half-floats, floats, doubles, and long doubles. As in the previous
sections we first give the .c file and then the corresponding
setup.py file.

The places in the code corresponding to the actual computations for
the ufunc are marked with /*BEGIN main ufunc computation*/ and
/*END main ufunc computation*/. The code in between those lines is
the primary thing that must be changed to create your own ufunc.

#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"

/*
 * multi_type_logit.c
 * This is the C code for creating your own
 * Numpy ufunc for a logit function.
 *
 * Each function of the form type_logit defines the
 * logit function for a different numpy dtype. Each
 * of these functions must be modified when you
 * create your own ufunc. The computations that must
 * be replaced to create a ufunc for
 * a different funciton are marked with BEGIN
 * and END.
 *
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org .
 *
 */

static PyMethodDef LogitMethods[] = {
 {NULL, NULL, 0, NULL}
};

/* The loop definitions must precede the PyMODINIT_FUNC. */

static void long_double_logit(char **args, npy_intp *dimensions,
 npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp n = dimensions[0];
 char *in = args[0], *out=args[1];
 npy_intp in_step = steps[0], out_step = steps[1];

 long double tmp;

 for (i = 0; i < n; i++) {
 /*BEGIN main ufunc computation*/
 tmp = *(long double *)in;
 tmp /= 1-tmp;
 *((long double *)out) = logl(tmp);
 /*END main ufunc computation*/

 in += in_step;
 out += out_step;
 }
}

static void double_logit(char **args, npy_intp *dimensions,
 npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp n = dimensions[0];
 char *in = args[0], *out = args[1];
 npy_intp in_step = steps[0], out_step = steps[1];

 double tmp;

 for (i = 0; i < n; i++) {
 /*BEGIN main ufunc computation*/
 tmp = *(double *)in;
 tmp /= 1-tmp;
 *((double *)out) = log(tmp);
 /*END main ufunc computation*/

 in += in_step;
 out += out_step;
 }
}

static void float_logit(char **args, npy_intp *dimensions,
 npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp n = dimensions[0];
 char *in=args[0], *out = args[1];
 npy_intp in_step = steps[0], out_step = steps[1];

 float tmp;

 for (i = 0; i < n; i++) {
 /*BEGIN main ufunc computation*/
 tmp = *(float *)in;
 tmp /= 1-tmp;
 *((float *)out) = logf(tmp);
 /*END main ufunc computation*/

 in += in_step;
 out += out_step;
 }
}

static void half_float_logit(char **args, npy_intp *dimensions,
 npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp n = dimensions[0];
 char *in = args[0], *out = args[1];
 npy_intp in_step = steps[0], out_step = steps[1];

 float tmp;

 for (i = 0; i < n; i++) {

 /*BEGIN main ufunc computation*/
 tmp = *(npy_half *)in;
 tmp = npy_half_to_float(tmp);
 tmp /= 1-tmp;
 tmp = logf(tmp);
 *((npy_half *)out) = npy_float_to_half(tmp);
 /*END main ufunc computation*/

 in += in_step;
 out += out_step;
 }
}

/*This gives pointers to the above functions*/
PyUFuncGenericFunction funcs[4] = {&half_float_logit,
 &float_logit,
 &double_logit,
 &long_double_logit};

static char types[8] = {NPY_HALF, NPY_HALF,
 NPY_FLOAT, NPY_FLOAT,
 NPY_DOUBLE,NPY_DOUBLE,
 NPY_LONGDOUBLE, NPY_LONGDOUBLE};
static void *data[4] = {NULL, NULL, NULL, NULL};

#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
 PyModuleDef_HEAD_INIT,
 "npufunc",
 NULL,
 -1,
 LogitMethods,
 NULL,
 NULL,
 NULL,
 NULL
};

PyMODINIT_FUNC PyInit_npufunc(void)
{
 PyObject *m, *logit, *d;
 m = PyModule_Create(&moduledef);
 if (!m) {
 return NULL;
 }

 import_array();
 import_umath();

 logit = PyUFunc_FromFuncAndData(funcs, data, types, 4, 1, 1,
 PyUFunc_None, "logit",
 "logit_docstring", 0);

 d = PyModule_GetDict(m);

 PyDict_SetItemString(d, "logit", logit);
 Py_DECREF(logit);

 return m;
}
#else
PyMODINIT_FUNC initnpufunc(void)
{
 PyObject *m, *logit, *d;

 m = Py_InitModule("npufunc", LogitMethods);
 if (m == NULL) {
 return;
 }

 import_array();
 import_umath();

 logit = PyUFunc_FromFuncAndData(funcs, data, types, 4, 1, 1,
 PyUFunc_None, "logit",
 "logit_docstring", 0);

 d = PyModule_GetDict(m);

 PyDict_SetItemString(d, "logit", logit);
 Py_DECREF(logit);
}
#endif

This is a setup.py file for the above code. As before, the module
can be build via calling python setup.py build at the command prompt,
or installed to site-packages via python setup.py install.

'''
 setup.py file for logit.c
 Note that since this is a numpy extension
 we use numpy.distutils instead of
 distutils from the python standard library.

 Calling
 $python setup.py build_ext --inplace
 will build the extension library in the current file.

 Calling
 $python setup.py build
 will build a file that looks like ./build/lib*, where
 lib* is a file that begins with lib. The library will
 be in this file and end with a C library extension,
 such as .so

 Calling
 $python setup.py install
 will install the module in your site-packages file.

 See the distutils section of
 'Extending and Embedding the Python Interpreter'
 at docs.python.org and the documentation
 on numpy.distutils for more information.
'''

def configuration(parent_package='', top_path=None):
 import numpy
 from numpy.distutils.misc_util import Configuration
 from numpy.distutils.misc_util import get_info

 #Necessary for the half-float d-type.
 info = get_info('npymath')

 config = Configuration('npufunc_directory',
 parent_package,
 top_path)
 config.add_extension('npufunc',
 ['multi_type_logit.c'],
 extra_info=info)

 return config

if __name__ == "__main__":
 from numpy.distutils.core import setup
 setup(configuration=configuration)

After the above has been installed, it can be imported and used as follows.

>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([-inf, -1.09861229, 0. , 1.09861229, inf])

Example Numpy ufunc with multiple arguments/return values

Our final example is a ufunc with multiple arguments. It is a modification
of the code for a logit ufunc for data with a single dtype. We
compute (A*B, logit(A*B)).

We only give the C code as the setup.py file is exactly the same as
the setup.py file in Example Numpy ufunc for one dtype, except that
the line

config.add_extension('npufunc', ['single_type_logit.c'])

is replaced with

config.add_extension('npufunc', ['multi_arg_logit.c'])

The C file is given below. The ufunc generated takes two arguments A
and B. It returns a tuple whose first element is A*B and whose second
element is logit(A*B). Note that it automatically supports broadcasting,
as well as all other properties of a ufunc.

#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"

/*
 * multi_arg_logit.c
 * This is the C code for creating your own
 * Numpy ufunc for a multiple argument, multiple
 * return value ufunc. The places where the
 * ufunc computation is carried out are marked
 * with comments.
 *
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org .
 *
 */

static PyMethodDef LogitMethods[] = {
 {NULL, NULL, 0, NULL}
};

/* The loop definition must precede the PyMODINIT_FUNC. */

static void double_logitprod(char **args, npy_intp *dimensions,
 npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp n = dimensions[0];
 char *in1 = args[0], *in2 = args[1];
 char *out1 = args[2], *out2 = args[3];
 npy_intp in1_step = steps[0], in2_step = steps[1];
 npy_intp out1_step = steps[2], out2_step = steps[3];

 double tmp;

 for (i = 0; i < n; i++) {
 /*BEGIN main ufunc computation*/
 tmp = *(double *)in1;
 tmp *= *(double *)in2;
 *((double *)out1) = tmp;
 *((double *)out2) = log(tmp/(1-tmp));
 /*END main ufunc computation*/

 in1 += in1_step;
 in2 += in2_step;
 out1 += out1_step;
 out2 += out2_step;
 }
}

/*This a pointer to the above function*/
PyUFuncGenericFunction funcs[1] = {&double_logitprod};

/* These are the input and return dtypes of logit.*/

static char types[4] = {NPY_DOUBLE, NPY_DOUBLE,
 NPY_DOUBLE, NPY_DOUBLE};

static void *data[1] = {NULL};

#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
 PyModuleDef_HEAD_INIT,
 "npufunc",
 NULL,
 -1,
 LogitMethods,
 NULL,
 NULL,
 NULL,
 NULL
};

PyMODINIT_FUNC PyInit_npufunc(void)
{
 PyObject *m, *logit, *d;
 m = PyModule_Create(&moduledef);
 if (!m) {
 return NULL;
 }

 import_array();
 import_umath();

 logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 2, 2,
 PyUFunc_None, "logit",
 "logit_docstring", 0);

 d = PyModule_GetDict(m);

 PyDict_SetItemString(d, "logit", logit);
 Py_DECREF(logit);

 return m;
}
#else
PyMODINIT_FUNC initnpufunc(void)
{
 PyObject *m, *logit, *d;

 m = Py_InitModule("npufunc", LogitMethods);
 if (m == NULL) {
 return;
 }

 import_array();
 import_umath();

 logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 2, 2,
 PyUFunc_None, "logit",
 "logit_docstring", 0);

 d = PyModule_GetDict(m);

 PyDict_SetItemString(d, "logit", logit);
 Py_DECREF(logit);
}
#endif

Example Numpy ufunc with structured array dtype arguments

This example shows how to create a ufunc for a structured array dtype.
For the example we show a trivial ufunc for adding two arrays with dtype
‘u8,u8,u8’. The process is a bit different from the other examples since
a call to PyUFunc_FromFuncAndData doesn’t fully register ufuncs for
custom dtypes and structured array dtypes. We need to also call
PyUFunc_RegisterLoopForDescr to finish setting up the ufunc.

We only give the C code as the setup.py file is exactly the same as
the setup.py file in Example Numpy ufunc for one dtype, except that
the line

config.add_extension('npufunc', ['single_type_logit.c'])

is replaced with

config.add_extension('npufunc', ['add_triplet.c'])

The C file is given below.

#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/npy_3kcompat.h"

/*
 * add_triplet.c
 * This is the C code for creating your own
 * Numpy ufunc for a structured array dtype.
 *
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org .
 */

static PyMethodDef StructUfuncTestMethods[] = {
 {NULL, NULL, 0, NULL}
};

/* The loop definition must precede the PyMODINIT_FUNC. */

static void add_uint64_triplet(char **args, npy_intp *dimensions,
 npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp is1=steps[0];
 npy_intp is2=steps[1];
 npy_intp os=steps[2];
 npy_intp n=dimensions[0];
 uint64_t *x, *y, *z;

 char *i1=args[0];
 char *i2=args[1];
 char *op=args[2];

 for (i = 0; i < n; i++) {

 x = (uint64_t*)i1;
 y = (uint64_t*)i2;
 z = (uint64_t*)op;

 z[0] = x[0] + y[0];
 z[1] = x[1] + y[1];
 z[2] = x[2] + y[2];

 i1 += is1;
 i2 += is2;
 op += os;
 }
}

/* This a pointer to the above function */
PyUFuncGenericFunction funcs[1] = {&add_uint64_triplet};

/* These are the input and return dtypes of add_uint64_triplet. */
static char types[3] = {NPY_UINT64, NPY_UINT64, NPY_UINT64};

static void *data[1] = {NULL};

#if defined(NPY_PY3K)
static struct PyModuleDef moduledef = {
 PyModuleDef_HEAD_INIT,
 "struct_ufunc_test",
 NULL,
 -1,
 StructUfuncTestMethods,
 NULL,
 NULL,
 NULL,
 NULL
};
#endif

#if defined(NPY_PY3K)
PyMODINIT_FUNC PyInit_struct_ufunc_test(void)
#else
PyMODINIT_FUNC initstruct_ufunc_test(void)
#endif
{
 PyObject *m, *add_triplet, *d;
 PyObject *dtype_dict;
 PyArray_Descr *dtype;
 PyArray_Descr *dtypes[3];

#if defined(NPY_PY3K)
 m = PyModule_Create(&moduledef);
#else
 m = Py_InitModule("struct_ufunc_test", StructUfuncTestMethods);
#endif

 if (m == NULL) {
#if defined(NPY_PY3K)
 return NULL;
#else
 return;
#endif
 }

 import_array();
 import_umath();

 /* Create a new ufunc object */
 add_triplet = PyUFunc_FromFuncAndData(NULL, NULL, NULL, 0, 2, 1,
 PyUFunc_None, "add_triplet",
 "add_triplet_docstring", 0);

 dtype_dict = Py_BuildValue("[(s, s), (s, s), (s, s)]",
 "f0", "u8", "f1", "u8", "f2", "u8");
 PyArray_DescrConverter(dtype_dict, &dtype);
 Py_DECREF(dtype_dict);

 dtypes[0] = dtype;
 dtypes[1] = dtype;
 dtypes[2] = dtype;

 /* Register ufunc for structured dtype */
 PyUFunc_RegisterLoopForDescr(add_triplet,
 dtype,
 &add_uint64_triplet,
 dtypes,
 NULL);

 d = PyModule_GetDict(m);

 PyDict_SetItemString(d, "add_triplet", add_triplet);
 Py_DECREF(add_triplet);
#if defined(NPY_PY3K)
 return m;
#endif
}

PyUFunc_FromFuncAndData Specification

What follows is the full specification of PyUFunc_FromFuncAndData, which
automatically generates a ufunc from a C function with the correct signature.

	
PyObject *PyUFunc_FromFuncAndData(PyUFuncGenericFunction* func,

	
void** data, char* types, int ntypes, int nin, int nout, int identity,

	
char* name, char* doc, int check_return)

	func

A pointer to an array of 1-d functions to use. This array must be at
least ntypes long. Each entry in the array must be a
PyUFuncGenericFunction function. This function has the following
signature. An example of a valid 1d loop function is also given.

	
void loop1d(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* data)

	

args

An array of pointers to the actual data for the input and output
arrays. The input arguments are given first followed by the output
arguments.

dimensions

A pointer to the size of the dimension over which this function is
looping.

steps

A pointer to the number of bytes to jump to get to the
next element in this dimension for each of the input and
output arguments.

data

Arbitrary data (extra arguments, function names, etc.)
that can be stored with the ufunc and will be passed in
when it is called.

static void
double_add(char *args, npy_intp *dimensions, npy_intp *steps,
 void *extra)
{
 npy_intp i;
 npy_intp is1 = steps[0], is2 = steps[1];
 npy_intp os = steps[2], n = dimensions[0];
 char *i1 = args[0], *i2 = args[1], *op = args[2];
 for (i = 0; i < n; i++) {
 *((double *)op) = *((double *)i1) +
 *((double *)i2);
 i1 += is1;
 i2 += is2;
 op += os;
 }
}

data

An array of data. There should be ntypes entries (or NULL) — one for
every loop function defined for this ufunc. This data will be passed
in to the 1-d loop. One common use of this data variable is to pass in
an actual function to call to compute the result when a generic 1-d
loop (e.g. PyUFunc_d_d) is being used.

types

An array of type-number signatures (type char). This
array should be of size (nin+nout)*ntypes and contain the
data-types for the corresponding 1-d loop. The inputs should
be first followed by the outputs. For example, suppose I have
a ufunc that supports 1 integer and 1 double 1-d loop
(length-2 func and data arrays) that takes 2 inputs and
returns 1 output that is always a complex double, then the
types array would be

static char types[3] = {NPY_INT, NPY_DOUBLE, NPY_CDOUBLE}

The bit-width names can also be used (e.g. NPY_INT32,
NPY_COMPLEX128) if desired.

ntypes

The number of data-types supported. This is equal to the number of 1-d
loops provided.

nin

The number of input arguments.

nout

The number of output arguments.

identity

Either PyUFunc_One, PyUFunc_Zero,
PyUFunc_None. This specifies what should be returned when
an empty array is passed to the reduce method of the ufunc.

name

A NULL -terminated string providing the name of this ufunc
(should be the Python name it will be called).

doc

A documentation string for this ufunc (will be used in generating the
response to {ufunc_name}.__doc__). Do not include the function
signature or the name as this is generated automatically.

check_return

Not presently used, but this integer value does get set in the
structure-member of similar name.

The returned ufunc object is a callable Python object. It should be
placed in a (module) dictionary under the same name as was used in the
name argument to the ufunc-creation routine. The following example is
adapted from the umath module

static PyUFuncGenericFunction atan2_functions[] = {
 PyUFunc_ff_f, PyUFunc_dd_d,
 PyUFunc_gg_g, PyUFunc_OO_O_method};
static void* atan2_data[] = {
 (void *)atan2f,(void *) atan2,
 (void *)atan2l,(void *)"arctan2"};
static char atan2_signatures[] = {
 NPY_FLOAT, NPY_FLOAT, NPY_FLOAT,
 NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE,
 NPY_LONGDOUBLE, NPY_LONGDOUBLE, NPY_LONGDOUBLE
 NPY_OBJECT, NPY_OBJECT, NPY_OBJECT};
...
/* in the module initialization code */
PyObject *f, *dict, *module;
...
dict = PyModule_GetDict(module);
...
f = PyUFunc_FromFuncAndData(atan2_functions,
 atan2_data, atan2_signatures, 4, 2, 1,
 PyUFunc_None, "arctan2",
 "a safe and correct arctan(x1/x2)", 0);
PyDict_SetItemString(dict, "arctan2", f);
Py_DECREF(f);
...

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy User Guide

 	Using Numpy C-API

Beyond the Basics

The voyage of discovery is not in seeking new landscapes but in having

new eyes.

— Marcel Proust

Discovery is seeing what everyone else has seen and thinking what no

one else has thought.

— Albert Szent-Gyorgi

Iterating over elements in the array

Basic Iteration

One common algorithmic requirement is to be able to walk over all
elements in a multidimensional array. The array iterator object makes
this easy to do in a generic way that works for arrays of any
dimension. Naturally, if you know the number of dimensions you will be
using, then you can always write nested for loops to accomplish the
iteration. If, however, you want to write code that works with any
number of dimensions, then you can make use of the array iterator. An
array iterator object is returned when accessing the .flat attribute
of an array.

Basic usage is to call PyArray_IterNew (array) where array
is an ndarray object (or one of its sub-classes). The returned object
is an array-iterator object (the same object returned by the .flat
attribute of the ndarray). This object is usually cast to
PyArrayIterObject* so that its members can be accessed. The only
members that are needed are iter->size which contains the total
size of the array, iter->index, which contains the current 1-d
index into the array, and iter->dataptr which is a pointer to the
data for the current element of the array. Sometimes it is also
useful to access iter->ao which is a pointer to the underlying
ndarray object.

After processing data at the current element of the array, the next
element of the array can be obtained using the macro
PyArray_ITER_NEXT (iter). The iteration always proceeds in a
C-style contiguous fashion (last index varying the fastest). The
PyArray_ITER_GOTO (iter, destination) can be used to
jump to a particular point in the array, where destination is an
array of npy_intp data-type with space to handle at least the number
of dimensions in the underlying array. Occasionally it is useful to
use PyArray_ITER_GOTO1D (iter, index) which will jump
to the 1-d index given by the value of index. The most common
usage, however, is given in the following example.

PyObject *obj; /* assumed to be some ndarray object */
PyArrayIterObject *iter;
...
iter = (PyArrayIterObject *)PyArray_IterNew(obj);
if (iter == NULL) goto fail; /* Assume fail has clean-up code */
while (iter->index < iter->size) {
 /* do something with the data at it->dataptr */
 PyArray_ITER_NEXT(it);
}
...

You can also use PyArrayIter_Check (obj) to ensure you have
an iterator object and PyArray_ITER_RESET (iter) to reset an
iterator object back to the beginning of the array.

It should be emphasized at this point that you may not need the array
iterator if your array is already contiguous (using an array iterator
will work but will be slower than the fastest code you could write).
The major purpose of array iterators is to encapsulate iteration over
N-dimensional arrays with arbitrary strides. They are used in many,
many places in the NumPy source code itself. If you already know your
array is contiguous (Fortran or C), then simply adding the element-
size to a running pointer variable will step you through the array
very efficiently. In other words, code like this will probably be
faster for you in the contiguous case (assuming doubles).

npy_intp size;
double *dptr; /* could make this any variable type */
size = PyArray_SIZE(obj);
dptr = PyArray_DATA(obj);
while(size--) {
 /* do something with the data at dptr */
 dptr++;
}

Iterating over all but one axis

A common algorithm is to loop over all elements of an array and
perform some function with each element by issuing a function call. As
function calls can be time consuming, one way to speed up this kind of
algorithm is to write the function so it takes a vector of data and
then write the iteration so the function call is performed for an
entire dimension of data at a time. This increases the amount of work
done per function call, thereby reducing the function-call over-head
to a small(er) fraction of the total time. Even if the interior of the
loop is performed without a function call it can be advantageous to
perform the inner loop over the dimension with the highest number of
elements to take advantage of speed enhancements available on micro-
processors that use pipelining to enhance fundmental operations.

The PyArray_IterAllButAxis (array, &dim) constructs an
iterator object that is modified so that it will not iterate over the
dimension indicated by dim. The only restriction on this iterator
object, is that the PyArray_Iter_GOTO1D (it, ind) macro
cannot be used (thus flat indexing won’t work either if you pass this
object back to Python — so you shouldn’t do this). Note that the
returned object from this routine is still usually cast to
PyArrayIterObject *. All that’s been done is to modify the strides
and dimensions of the returned iterator to simulate iterating over
array[...,0,...] where 0 is placed on the
[image: \textrm{dim}^{\textrm{th}}] dimension. If dim is negative, then
the dimension with the largest axis is found and used.

Iterating over multiple arrays

Very often, it is desireable to iterate over several arrays at the
same time. The universal functions are an example of this kind of
behavior. If all you want to do is iterate over arrays with the same
shape, then simply creating several iterator objects is the standard
procedure. For example, the following code iterates over two arrays
assumed to be the same shape and size (actually obj1 just has to have
at least as many total elements as does obj2):

/* It is already assumed that obj1 and obj2
 are ndarrays of the same shape and size.
*/
iter1 = (PyArrayIterObject *)PyArray_IterNew(obj1);
if (iter1 == NULL) goto fail;
iter2 = (PyArrayIterObject *)PyArray_IterNew(obj2);
if (iter2 == NULL) goto fail; /* assume iter1 is DECREF'd at fail */
while (iter2->index < iter2->size) {
 /* process with iter1->dataptr and iter2->dataptr */
 PyArray_ITER_NEXT(iter1);
 PyArray_ITER_NEXT(iter2);
}

Broadcasting over multiple arrays

When multiple arrays are involved in an operation, you may want to use the
same broadcasting rules that the math operations (i.e. the ufuncs) use.
This can be done easily using the PyArrayMultiIterObject. This is
the object returned from the Python command numpy.broadcast and it is almost
as easy to use from C. The function
PyArray_MultiIterNew (n, ...) is used (with n input
objects in place of ...). The input objects can be arrays or anything
that can be converted into an array. A pointer to a PyArrayMultiIterObject is
returned. Broadcasting has already been accomplished which adjusts the
iterators so that all that needs to be done to advance to the next element in
each array is for PyArray_ITER_NEXT to be called for each of the inputs. This
incrementing is automatically performed by
PyArray_MultiIter_NEXT (obj) macro (which can handle a
multiterator obj as either a PyArrayMultiObject * or a
PyObject *). The data from input number i is available using
PyArray_MultiIter_DATA (obj, i) and the total (broadcasted)
size as PyArray_MultiIter_SIZE (obj). An example of using this
feature follows.

mobj = PyArray_MultiIterNew(2, obj1, obj2);
size = PyArray_MultiIter_SIZE(obj);
while(size--) {
 ptr1 = PyArray_MultiIter_DATA(mobj, 0);
 ptr2 = PyArray_MultiIter_DATA(mobj, 1);
 /* code using contents of ptr1 and ptr2 */
 PyArray_MultiIter_NEXT(mobj);
}

The function PyArray_RemoveSmallest (multi) can be used to
take a multi-iterator object and adjust all the iterators so that
iteration does not take place over the largest dimension (it makes
that dimension of size 1). The code being looped over that makes use
of the pointers will very-likely also need the strides data for each
of the iterators. This information is stored in
multi->iters[i]->strides.

There are several examples of using the multi-iterator in the NumPy
source code as it makes N-dimensional broadcasting-code very simple to
write. Browse the source for more examples.

User-defined data-types

NumPy comes with 24 builtin data-types. While this covers a large
majority of possible use cases, it is conceivable that a user may have
a need for an additional data-type. There is some support for adding
an additional data-type into the NumPy system. This additional data-
type will behave much like a regular data-type except ufuncs must have
1-d loops registered to handle it separately. Also checking for
whether or not other data-types can be cast “safely” to and from this
new type or not will always return “can cast” unless you also register
which types your new data-type can be cast to and from. Adding
data-types is one of the less well-tested areas for NumPy 1.0, so
there may be bugs remaining in the approach. Only add a new data-type
if you can’t do what you want to do using the OBJECT or VOID
data-types that are already available. As an example of what I
consider a useful application of the ability to add data-types is the
possibility of adding a data-type of arbitrary precision floats to
NumPy.

Adding the new data-type

To begin to make use of the new data-type, you need to first define a
new Python type to hold the scalars of your new data-type. It should
be acceptable to inherit from one of the array scalars if your new
type has a binary compatible layout. This will allow your new data
type to have the methods and attributes of array scalars. New data-
types must have a fixed memory size (if you want to define a data-type
that needs a flexible representation, like a variable-precision
number, then use a pointer to the object as the data-type). The memory
layout of the object structure for the new Python type must be
PyObject_HEAD followed by the fixed-size memory needed for the data-
type. For example, a suitable structure for the new Python type is:

typedef struct {
 PyObject_HEAD;
 some_data_type obval;
 /* the name can be whatever you want */
} PySomeDataTypeObject;

After you have defined a new Python type object, you must then define
a new PyArray_Descr structure whose typeobject member will contain a
pointer to the data-type you’ve just defined. In addition, the
required functions in the ”.f” member must be defined: nonzero,
copyswap, copyswapn, setitem, getitem, and cast. The more functions in
the ”.f” member you define, however, the more useful the new data-type
will be. It is very important to intialize unused functions to NULL.
This can be achieved using PyArray_InitArrFuncs (f).

Once a new PyArray_Descr structure is created and filled with the
needed information and useful functions you call
PyArray_RegisterDataType (new_descr). The return value from this
call is an integer providing you with a unique type_number that
specifies your data-type. This type number should be stored and made
available by your module so that other modules can use it to recognize
your data-type (the other mechanism for finding a user-defined
data-type number is to search based on the name of the type-object
associated with the data-type using PyArray_TypeNumFromName).

Registering a casting function

You may want to allow builtin (and other user-defined) data-types to
be cast automatically to your data-type. In order to make this
possible, you must register a casting function with the data-type you
want to be able to cast from. This requires writing low-level casting
functions for each conversion you want to support and then registering
these functions with the data-type descriptor. A low-level casting
function has the signature.

	
void castfunc(void* from, void* to, npy_intp n, void* fromarr,

	
void* toarr)

	Cast n elements from one type to another. The data to
cast from is in a contiguous, correctly-swapped and aligned chunk
of memory pointed to by from. The buffer to cast to is also
contiguous, correctly-swapped and aligned. The fromarr and toarr
arguments should only be used for flexible-element-sized arrays
(string, unicode, void).

An example castfunc is:

static void
double_to_float(double *from, float* to, npy_intp n,
 void* ig1, void* ig2);
while (n--) {
 (*to++) = (double) *(from++);
}

This could then be registered to convert doubles to floats using the
code:

doub = PyArray_DescrFromType(NPY_DOUBLE);
PyArray_RegisterCastFunc(doub, NPY_FLOAT,
 (PyArray_VectorUnaryFunc *)double_to_float);
Py_DECREF(doub);

Registering coercion rules

By default, all user-defined data-types are not presumed to be safely
castable to any builtin data-types. In addition builtin data-types are
not presumed to be safely castable to user-defined data-types. This
situation limits the ability of user-defined data-types to participate
in the coercion system used by ufuncs and other times when automatic
coercion takes place in NumPy. This can be changed by registering
data-types as safely castable from a particlar data-type object. The
function PyArray_RegisterCanCast (from_descr, totype_number,
scalarkind) should be used to specify that the data-type object
from_descr can be cast to the data-type with type number
totype_number. If you are not trying to alter scalar coercion rules,
then use NPY_NOSCALAR for the scalarkind argument.

If you want to allow your new data-type to also be able to share in
the scalar coercion rules, then you need to specify the scalarkind
function in the data-type object’s ”.f” member to return the kind of
scalar the new data-type should be seen as (the value of the scalar is
available to that function). Then, you can register data-types that
can be cast to separately for each scalar kind that may be returned
from your user-defined data-type. If you don’t register scalar
coercion handling, then all of your user-defined data-types will be
seen as NPY_NOSCALAR.

Registering a ufunc loop

You may also want to register low-level ufunc loops for your data-type
so that an ndarray of your data-type can have math applied to it
seamlessly. Registering a new loop with exactly the same arg_types
signature, silently replaces any previously registered loops for that
data-type.

Before you can register a 1-d loop for a ufunc, the ufunc must be
previously created. Then you call PyUFunc_RegisterLoopForType
(...) with the information needed for the loop. The return value of
this function is 0 if the process was successful and -1 with
an error condition set if it was not successful.

	
int PyUFunc_RegisterLoopForType(PyUFuncObject* ufunc,

	
int usertype, PyUFuncGenericFunction function, int* arg_types, void* data)

	ufunc

The ufunc to attach this loop to.

usertype

The user-defined type this loop should be indexed under. This number
must be a user-defined type or an error occurs.

function

The ufunc inner 1-d loop. This function must have the signature as
explained in Section 3 .

arg_types

(optional) If given, this should contain an array of integers of at
least size ufunc.nargs containing the data-types expected by the loop
function. The data will be copied into a NumPy-managed structure so
the memory for this argument should be deleted after calling this
function. If this is NULL, then it will be assumed that all data-types
are of type usertype.

data

(optional) Specify any optional data needed by the function which will
be passed when the function is called.

Subtyping the ndarray in C

One of the lesser-used features that has been lurking in Python since
2.2 is the ability to sub-class types in C. This facility is one of
the important reasons for basing NumPy off of the Numeric code-base
which was already in C. A sub-type in C allows much more flexibility
with regards to memory management. Sub-typing in C is not difficult
even if you have only a rudimentary understanding of how to create new
types for Python. While it is easiest to sub-type from a single parent
type, sub-typing from multiple parent types is also possible. Multiple
inheritence in C is generally less useful than it is in Python because
a restriction on Python sub-types is that they have a binary
compatible memory layout. Perhaps for this reason, it is somewhat
easier to sub-type from a single parent type.

All C-structures corresponding to Python objects must begin with
PyObject_HEAD [http://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD] (or PyObject_VAR_HEAD [http://docs.python.org/dev/c-api/structures.html#c.PyObject_VAR_HEAD]). In the same
way, any sub-type must have a C-structure that begins with exactly the
same memory layout as the parent type (or all of the parent types in
the case of multiple-inheritance). The reason for this is that Python
may attempt to access a member of the sub-type structure as if it had
the parent structure (i.e. it will cast a given pointer to a
pointer to the parent structure and then dereference one of it’s
members). If the memory layouts are not compatible, then this attempt
will cause unpredictable behavior (eventually leading to a memory
violation and program crash).

One of the elements in PyObject_HEAD [http://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD] is a pointer to a
type-object structure. A new Python type is created by creating a new
type-object structure and populating it with functions and pointers to
describe the desired behavior of the type. Typically, a new
C-structure is also created to contain the instance-specific
information needed for each object of the type as well. For example,
&PyArray_Type is a pointer to the type-object table for the ndarray
while a PyArrayObject * variable is a pointer to a particular instance
of an ndarray (one of the members of the ndarray structure is, in
turn, a pointer to the type- object table &PyArray_Type). Finally
PyType_Ready [http://docs.python.org/dev/c-api/type.html#c.PyType_Ready] (<pointer_to_type_object>) must be called for
every new Python type.

Creating sub-types

To create a sub-type, a similar proceedure must be followed except
only behaviors that are different require new entries in the type-
object structure. All other entires can be NULL and will be filled in
by PyType_Ready [http://docs.python.org/dev/c-api/type.html#c.PyType_Ready] with appropriate functions from the parent
type(s). In particular, to create a sub-type in C follow these steps:

	If needed create a new C-structure to handle each instance of your
type. A typical C-structure would be:

typedef _new_struct {
 PyArrayObject base;
 /* new things here */
} NewArrayObject;

Notice that the full PyArrayObject is used as the first entry in order
to ensure that the binary layout of instances of the new type is
identical to the PyArrayObject.

	Fill in a new Python type-object structure with pointers to new
functions that will over-ride the default behavior while leaving any
function that should remain the same unfilled (or NULL). The tp_name
element should be different.

	Fill in the tp_base member of the new type-object structure with a
pointer to the (main) parent type object. For multiple-inheritance,
also fill in the tp_bases member with a tuple containing all of the
parent objects in the order they should be used to define inheritance.
Remember, all parent-types must have the same C-structure for multiple
inheritance to work properly.

	Call PyType_Ready [http://docs.python.org/dev/c-api/type.html#c.PyType_Ready] (<pointer_to_new_type>). If this function
returns a negative number, a failure occurred and the type is not
initialized. Otherwise, the type is ready to be used. It is
generally important to place a reference to the new type into the
module dictionary so it can be accessed from Python.

More information on creating sub-types in C can be learned by reading
PEP 253 (available at http://www.python.org/dev/peps/pep-0253).

Specific features of ndarray sub-typing

Some special methods and attributes are used by arrays in order to
facilitate the interoperation of sub-types with the base ndarray type.

The __array_finalize__ method

	
ndarray.__array_finalize__

	Several array-creation functions of the ndarray allow
specification of a particular sub-type to be created. This allows
sub-types to be handled seamlessly in many routines. When a
sub-type is created in such a fashion, however, neither the
__new__ method nor the __init__ method gets called. Instead, the
sub-type is allocated and the appropriate instance-structure
members are filled in. Finally, the __array_finalize__
attribute is looked-up in the object dictionary. If it is present
and not None, then it can be either a CObject containing a pointer
to a PyArray_FinalizeFunc or it can be a method taking a
single argument (which could be None).

If the __array_finalize__ attribute is a CObject, then the pointer
must be a pointer to a function with the signature:

(int) (PyArrayObject *, PyObject *)

The first argument is the newly created sub-type. The second argument
(if not NULL) is the “parent” array (if the array was created using
slicing or some other operation where a clearly-distinguishable parent
is present). This routine can do anything it wants to. It should
return a -1 on error and 0 otherwise.

If the __array_finalize__ attribute is not None nor a CObject,
then it must be a Python method that takes the parent array as an
argument (which could be None if there is no parent), and returns
nothing. Errors in this method will be caught and handled.

The __array_priority__ attribute

	
ndarray.__array_priority__

	This attribute allows simple but flexible determination of which sub-
type should be considered “primary” when an operation involving two or
more sub-types arises. In operations where different sub-types are
being used, the sub-type with the largest __array_priority__
attribute will determine the sub-type of the output(s). If two sub-
types have the same __array_priority__ then the sub-type of the
first argument determines the output. The default
__array_priority__ attribute returns a value of 0.0 for the base
ndarray type and 1.0 for a sub-type. This attribute can also be
defined by objects that are not sub-types of the ndarray and can be
used to determine which __array_wrap__ method should be called for
the return output.

The __array_wrap__ method

	
ndarray.__array_wrap__

	Any class or type can define this method which should take an ndarray
argument and return an instance of the type. It can be seen as the
opposite of the __array__ method. This method is used by the
ufuncs (and other NumPy functions) to allow other objects to pass
through. For Python >2.4, it can also be used to write a decorator
that converts a function that works only with ndarrays to one that
works with any type with __array__ and __array_wrap__ methods.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

NumPy Reference

	Release:	1.9

	Date:	November 30, 2014

This reference manual details functions, modules, and objects
included in Numpy, describing what they are and what they do.
For learning how to use NumPy, see also NumPy User Guide.

	Array objects
	The N-dimensional array (ndarray)

	Scalars

	Data type objects (dtype)

	Indexing

	Iterating Over Arrays

	Standard array subclasses

	Masked arrays

	The Array Interface

	Datetimes and Timedeltas

	Universal functions (ufunc)
	Broadcasting

	Output type determination

	Use of internal buffers

	Error handling

	Casting Rules

	Overriding Ufunc behavior

	ufunc

	Available ufuncs

	Routines
	Array creation routines

	Array manipulation routines

	Binary operations

	String operations

	C-Types Foreign Function Interface (numpy.ctypeslib)

	Datetime Support Functions

	Data type routines

	Optionally Scipy-accelerated routines (numpy.dual)

	Mathematical functions with automatic domain (numpy.emath)

	Floating point error handling

	Discrete Fourier Transform (numpy.fft)

	Financial functions

	Functional programming

	Numpy-specific help functions

	Indexing routines

	Input and output

	Linear algebra (numpy.linalg)

	Logic functions

	Masked array operations

	Mathematical functions

	Matrix library (numpy.matlib)

	Miscellaneous routines

	Padding Arrays

	Polynomials

	Random sampling (numpy.random)

	Set routines

	Sorting, searching, and counting

	Statistics

	Test Support (numpy.testing)

	Window functions

	Packaging (numpy.distutils)
	Modules in numpy.distutils

	Building Installable C libraries

	Conversion of .src files

	Numpy C-API
	Python Types and C-Structures

	System configuration

	Data Type API

	Array API

	Array Iterator API

	UFunc API

	Generalized Universal Function API

	Numpy core libraries

	C API Deprecations

	Numpy internals
	Numpy C Code Explanations

	Internal organization of numpy arrays

	Multidimensional Array Indexing Order Issues

	Numpy and SWIG
	Numpy.i: a SWIG Interface File for NumPy

	Testing the numpy.i Typemaps

Acknowledgements

Large parts of this manual originate from Travis E. Oliphant’s book
Guide to Numpy [http://www.tramy.us/] (which generously entered
Public Domain in August 2008). The reference documentation for many of
the functions are written by numerous contributors and developers of
Numpy, both prior to and during the
Numpy Documentation Marathon [http://scipy.org/Developer_Zone/DocMarathon2008].

Please help to improve NumPy’s documentation! Instructions on how to
join the ongoing documentation marathon can be found
on the scipy.org website [http://scipy.org/Developer_Zone/DocMarathon2008]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

Array objects

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same
type. The items can be indexed using for
example N integers.

All ndarrays are homogenous: every item takes up the same size
block of memory, and all blocks are interpreted in exactly the same
way. How each item in the array is to be interpreted is specified by a
separate data-type object, one of which is associated
with every array. In addition to basic types (integers, floats,
etc.), the data type objects can also represent data structures.

An item extracted from an array, e.g., by indexing, is represented
by a Python object whose type is one of the array scalar types built in Numpy. The array scalars allow easy manipulation
of also more complicated arrangements of data.

[image: ../_images/threefundamental.png]
Figure
Conceptual diagram showing the relationship between the three
fundamental objects used to describe the data in an array: 1) the
ndarray itself, 2) the data-type object that describes the layout
of a single fixed-size element of the array, 3) the array-scalar
Python object that is returned when a single element of the array
is accessed.

	The N-dimensional array (ndarray)
	Constructing arrays

	Indexing arrays

	Internal memory layout of an ndarray

	Array attributes

	Array methods

	Arithmetic and comparison operations

	Special methods

	Scalars
	Built-in scalar types

	Attributes

	Indexing

	Methods

	Defining new types

	Data type objects (dtype)
	Specifying and constructing data types

	dtype

	Indexing
	Basic Slicing and Indexing

	Advanced Indexing

	Detailed notes

	Record Access

	Flat Iterator indexing

	Iterating Over Arrays
	Single Array Iteration

	Broadcasting Array Iteration

	Putting the Inner Loop in Cython

	Standard array subclasses
	Special attributes and methods

	Matrix objects

	Memory-mapped file arrays

	Character arrays (numpy.char)

	Record arrays (numpy.rec)

	Masked arrays (numpy.ma)

	Standard container class

	Array Iterators

	Masked arrays
	The numpy.ma module

	Using numpy.ma

	Examples

	Constants of the numpy.ma module

	The MaskedArray class

	MaskedArray methods

	Masked array operations

	The Array Interface
	Python side

	C-struct access

	Type description examples

	Differences with Array interface (Version 2)

	Datetimes and Timedeltas
	Basic Datetimes

	Datetime and Timedelta Arithmetic

	Datetime Units

	Business Day Functionality

	Differences Between 1.6 and 1.7 Datetimes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional
container of items of the same type and size. The number of dimensions
and items in an array is defined by its shape,
which is a tuple [http://docs.python.org/dev/library/stdtypes.html#tuple] of N positive integers that specify the
sizes of each dimension. The type of items in the array is specified by
a separate data-type object (dtype), one of which
is associated with each ndarray.

As with other container objects in Python, the contents of an
ndarray can be accessed and modified by indexing or
slicing the array (using, for example, N integers),
and via the methods and attributes of the ndarray.

Different ndarrays can share the same data, so that
changes made in one ndarray may be visible in another. That
is, an ndarray can be a “view” to another ndarray, and the data it
is referring to is taken care of by the “base” ndarray. ndarrays can
also be views to memory owned by Python strings [http://docs.python.org/dev/library/stdtypes.html#str] or
objects implementing the buffer or array interfaces.

Example

A 2-dimensional array of size 2 x 3, composed of 4-byte integer
elements:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> type(x)
<type 'numpy.ndarray'>
>>> x.shape
(2, 3)
>>> x.dtype
dtype('int32')

The array can be indexed using Python container-like syntax:

>>> x[1,2] # i.e., the element of x in the *second* row, *third*
column, namely, 6.

For example slicing can produce views of
the array:

>>> y = x[:,1]
>>> y
array([2, 5])
>>> y[0] = 9 # this also changes the corresponding element in x
>>> y
array([9, 5])
>>> x
array([[1, 9, 3],
 [4, 5, 6]])

Constructing arrays

New arrays can be constructed using the routines detailed in
Array creation routines, and also by using the low-level
ndarray constructor:

	ndarray
	An array object represents a multidimensional, homogeneous array of fixed-size items.

Indexing arrays

Arrays can be indexed using an extended Python slicing syntax,
array[selection]. Similar syntax is also used for accessing
fields in a record array.

See also

Array Indexing.

Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous
one-dimensional segment of computer memory (owned by the array, or by
some other object), combined with an indexing scheme that maps N
integers into the location of an item in the block. The ranges in
which the indices can vary is specified by the shape of the array. How many bytes each item takes and how
the bytes are interpreted is defined by the data-type object associated with the array.

A segment of memory is inherently 1-dimensional, and there are many
different schemes for arranging the items of an N-dimensional array
in a 1-dimensional block. Numpy is flexible, and ndarray
objects can accommodate any strided indexing scheme. In a strided
scheme, the N-dimensional index [image: (n_0, n_1, ..., n_{N-1})]
corresponds to the offset (in bytes):

[image: n_{\mathrm{offset}} = \sum_{k=0}^{N-1} s_k n_k]

from the beginning of the memory block associated with the
array. Here, [image: s_k] are integers which specify the strides of the array. The column-major order (used,
for example, in the Fortran language and in Matlab) and
row-major order (used in C) schemes are just specific kinds of
strided scheme, and correspond to memory that can be addressed by the strides:

[image: s_k^{\mathrm{column}} = \prod_{j=0}^{k-1} d_j , \quad s_k^{\mathrm{row}} = \prod_{j=k+1}^{N-1} d_j .]

where [image: d_j] = self.itemsize * self.shape[j].

Both the C and Fortran orders are contiguous, i.e.,
single-segment, memory layouts, in which every part of the
memory block can be accessed by some combination of the indices.

While a C-style and Fortran-style contiguous array, which has the corresponding
flags set, can be addressed with the above strides, the actual strides may be
different. This can happen in two cases:

	If self.shape[k] == 1 then for any legal index index[k] == 0.
This means that in the formula for the offset
[image: n_k = 0] and thus [image: s_k n_k = 0] and the value of
[image: s_k] = self.strides[k] is arbitrary.

	If an array has no elements (self.size == 0) there is no legal index
and the strides are never used. Any array with no elements may be
considered C-style and Fortran-style contiguous.

Point 1. means that self``and ``self.squeeze() always have the same
contiguity and aligned flags value. This also means that even a high
dimensional array could be C-style and Fortran-style contiguous at the same
time.

An array is considered aligned if the memory offsets for all elements and the
base offset itself is a multiple of self.itemsize.

Note

Points (1) and (2) are not yet applied by default. Beginning with
Numpy 1.8.0, they are applied consistently only if the environment
variable NPY_RELAXED_STRIDES_CHECKING=1 was defined when NumPy
was built. Eventually this will become the default.

You can check whether this option was enabled when your NumPy was
built by looking at the value of np.ones((10,1),
order='C').flags.f_contiguous. If this is True, then your
NumPy has relaxed strides checking enabled.

Warning

It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Data in new ndarrays is in the row-major
(C) order, unless otherwise specified, but, for example, basic
array slicing often produces views
in a different scheme.

Note

Several algorithms in NumPy work on arbitrarily strided arrays.
However, some algorithms require single-segment arrays. When an
irregularly strided array is passed in to such algorithms, a copy
is automatically made.

Array attributes

Array attributes reflect information that is intrinsic to the array
itself. Generally, accessing an array through its attributes allows
you to get and sometimes set intrinsic properties of the array without
creating a new array. The exposed attributes are the core parts of an
array and only some of them can be reset meaningfully without creating
a new array. Information on each attribute is given below.

Memory layout

The following attributes contain information about the memory layout
of the array:

	ndarray.flags
	Information about the memory layout of the array.

	ndarray.shape
	Tuple of array dimensions.

	ndarray.strides
	Tuple of bytes to step in each dimension when traversing an array.

	ndarray.ndim
	Number of array dimensions.

	ndarray.data
	Python buffer object pointing to the start of the array’s data.

	ndarray.size
	Number of elements in the array.

	ndarray.itemsize
	Length of one array element in bytes.

	ndarray.nbytes
	Total bytes consumed by the elements of the array.

	ndarray.base
	Base object if memory is from some other object.

Data type

See also

Data type objects

The data type object associated with the array can be found in the
dtype attribute:

	ndarray.dtype
	Data-type of the array’s elements.

Other attributes

	ndarray.T
	Same as self.transpose(), except that self is returned if self.ndim < 2.

	ndarray.real
	The real part of the array.

	ndarray.imag
	The imaginary part of the array.

	ndarray.flat
	A 1-D iterator over the array.

	ndarray.ctypes
	An object to simplify the interaction of the array with the ctypes module.

	__array_priority__
	

Array interface

See also

The Array Interface.

	__array_interface__
	Python-side of the array interface

	__array_struct__
	C-side of the array interface

ctypes [http://docs.python.org/dev/library/ctypes.html#module-ctypes] foreign function interface

	ndarray.ctypes
	An object to simplify the interaction of the array with the ctypes module.

Array methods

An ndarray object has many methods which operate on or with
the array in some fashion, typically returning an array result. These
methods are briefly explained below. (Each method’s docstring has a
more complete description.)

For the following methods there are also corresponding functions in
numpy: all, any, argmax,
argmin, argpartition, argsort, choose,
clip, compress, copy, cumprod,
cumsum, diagonal, imag, max,
mean, min, nonzero, partition,
prod, ptp, put, ravel, real,
repeat, reshape, round,
searchsorted, sort, squeeze, std,
sum, swapaxes, take, trace,
transpose, var.

Array conversion

	ndarray.item(*args)
	Copy an element of an array to a standard Python scalar and return it.

	ndarray.tolist()
	Return the array as a (possibly nested) list.

	ndarray.itemset(*args)
	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

	ndarray.setasflat
	

	ndarray.tostring([order])
	Construct Python bytes containing the raw data bytes in the array.

	ndarray.tobytes([order])
	Construct Python bytes containing the raw data bytes in the array.

	ndarray.tofile(fid[,sep,format])
	Write array to a file as text or binary (default).

	ndarray.dump(file)
	Dump a pickle of the array to the specified file.

	ndarray.dumps()
	Returns the pickle of the array as a string.

	ndarray.astype(dtype[,order,casting,...])
	Copy of the array, cast to a specified type.

	ndarray.byteswap(inplace)
	Swap the bytes of the array elements

	ndarray.copy([order])
	Return a copy of the array.

	ndarray.view([dtype,type])
	New view of array with the same data.

	ndarray.getfield(dtype[,offset])
	Returns a field of the given array as a certain type.

	ndarray.setflags([write,align,uic])
	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

	ndarray.fill(value)
	Fill the array with a scalar value.

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be
replaced with n integers which will be interpreted as an n-tuple.

	ndarray.reshape(shape[,order])
	Returns an array containing the same data with a new shape.

	ndarray.resize(new_shape[,refcheck])
	Change shape and size of array in-place.

	ndarray.transpose(*axes)
	Returns a view of the array with axes transposed.

	ndarray.swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	ndarray.flatten([order])
	Return a copy of the array collapsed into one dimension.

	ndarray.ravel([order])
	Return a flattened array.

	ndarray.squeeze([axis])
	Remove single-dimensional entries from the shape of a.

Item selection and manipulation

For array methods that take an axis keyword, it defaults to
None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which
the operation should proceed.

	ndarray.take(indices[,axis,out,mode])
	Return an array formed from the elements of a at the given indices.

	ndarray.put(indices,values[,mode])
	Set a.flat[n] = values[n] for all n in indices.

	ndarray.repeat(repeats[,axis])
	Repeat elements of an array.

	ndarray.choose(choices[,out,mode])
	Use an index array to construct a new array from a set of choices.

	ndarray.sort([axis,kind,order])
	Sort an array, in-place.

	ndarray.argsort([axis,kind,order])
	Returns the indices that would sort this array.

	ndarray.partition(kth[,axis,kind,order])
	Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.

	ndarray.argpartition(kth[,axis,kind,order])
	Returns the indices that would partition this array.

	ndarray.searchsorted(v[,side,sorter])
	Find indices where elements of v should be inserted in a to maintain order.

	ndarray.nonzero()
	Return the indices of the elements that are non-zero.

	ndarray.compress(condition[,axis,out])
	Return selected slices of this array along given axis.

	ndarray.diagonal([offset,axis1,axis2])
	Return specified diagonals.

Calculation

Many of these methods take an argument named axis. In such cases,

	If axis is None (the default), the array is treated as a 1-D
array and the operation is performed over the entire array. This
behavior is also the default if self is a 0-dimensional array or
array scalar. (An array scalar is an instance of the types/classes
float32, float64, etc., whereas a 0-dimensional array is an ndarray
instance containing precisely one array scalar.)

	If axis is an integer, then the operation is done over the given
axis (for each 1-D subarray that can be created along the given axis).

Example of the axis argument

A 3-dimensional array of size 3 x 3 x 3, summed over each of its
three axes

>>> x
array([[[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]],
 [[9, 10, 11],
 [12, 13, 14],
 [15, 16, 17]],
 [[18, 19, 20],
 [21, 22, 23],
 [24, 25, 26]]])
>>> x.sum(axis=0)
array([[27, 30, 33],
 [36, 39, 42],
 [45, 48, 51]])
>>> # for sum, axis is the first keyword, so we may omit it,
>>> # specifying only its value
>>> x.sum(0), x.sum(1), x.sum(2)
(array([[27, 30, 33],
 [36, 39, 42],
 [45, 48, 51]]),
 array([[9, 12, 15],
 [36, 39, 42],
 [63, 66, 69]]),
 array([[3, 12, 21],
 [30, 39, 48],
 [57, 66, 75]]))

The parameter dtype specifies the data type over which a reduction
operation (like summing) should take place. The default reduce data
type is the same as the data type of self. To avoid overflow, it can
be useful to perform the reduction using a larger data type.

For several methods, an optional out argument can also be provided
and the result will be placed into the output array given. The out
argument must be an ndarray and have the same number of
elements. It can have a different data type in which case casting will
be performed.

	ndarray.argmax([axis,out])
	Return indices of the maximum values along the given axis.

	ndarray.min([axis,out])
	Return the minimum along a given axis.

	ndarray.argmin([axis,out])
	Return indices of the minimum values along the given axis of a.

	ndarray.ptp([axis,out])
	Peak to peak (maximum - minimum) value along a given axis.

	ndarray.clip(a_min,a_max[,out])
	Return an array whose values are limited to [a_min, a_max].

	ndarray.conj()
	Complex-conjugate all elements.

	ndarray.round([decimals,out])
	Return a with each element rounded to the given number of decimals.

	ndarray.trace([offset,axis1,axis2,dtype,out])
	Return the sum along diagonals of the array.

	ndarray.sum([axis,dtype,out])
	Return the sum of the array elements over the given axis.

	ndarray.cumsum([axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	ndarray.mean([axis,dtype,out])
	Returns the average of the array elements along given axis.

	ndarray.var([axis,dtype,out,ddof])
	Returns the variance of the array elements, along given axis.

	ndarray.std([axis,dtype,out,ddof])
	Returns the standard deviation of the array elements along given axis.

	ndarray.prod([axis,dtype,out])
	Return the product of the array elements over the given axis

	ndarray.cumprod([axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	ndarray.all([axis,out])
	Returns True if all elements evaluate to True.

	ndarray.any([axis,out])
	Returns True if any of the elements of a evaluate to True.

Arithmetic and comparison operations

Arithmetic and comparison operations on ndarrays
are defined as element-wise operations, and generally yield
ndarray objects as results.

Each of the arithmetic operations (+, -, *, /, //,
%, divmod(), ** or pow(), <<, >>, &,
^, |, ~) and the comparisons (==, <, >,
<=, >=, !=) is equivalent to the corresponding
universal function (or ufunc for short) in Numpy. For
more information, see the section on Universal Functions.

Comparison operators:

	ndarray.__lt__
	x.__lt__(y) <==> x<y

	ndarray.__le__
	x.__le__(y) <==> x<=y

	ndarray.__gt__
	x.__gt__(y) <==> x>y

	ndarray.__ge__
	x.__ge__(y) <==> x>=y

	ndarray.__eq__
	x.__eq__(y) <==> x==y

	ndarray.__ne__
	x.__ne__(y) <==> x!=y

Truth value of an array (bool):

	ndarray.__nonzero__
	x.__nonzero__() <==> x != 0

Note

Truth-value testing of an array invokes
ndarray.__nonzero__, which raises an error if the number of
elements in the the array is larger than 1, because the truth value
of such arrays is ambiguous. Use .any() and
.all() instead to be clear about what is meant
in such cases. (If the number of elements is 0, the array evaluates
to False.)

Unary operations:

	ndarray.__neg__
	x.__neg__() <==> -x

	ndarray.__pos__
	x.__pos__() <==> +x

	ndarray.__abs__()<==>abs(x)
	

	ndarray.__invert__
	x.__invert__() <==> ~x

Arithmetic:

	ndarray.__add__
	x.__add__(y) <==> x+y

	ndarray.__sub__
	x.__sub__(y) <==> x-y

	ndarray.__mul__
	x.__mul__(y) <==> x*y

	ndarray.__div__
	x.__div__(y) <==> x/y

	ndarray.__truediv__
	x.__truediv__(y) <==> x/y

	ndarray.__floordiv__
	x.__floordiv__(y) <==> x//y

	ndarray.__mod__
	x.__mod__(y) <==> x%y

	ndarray.__divmod__(y)<==>divmod(x,y)
	

	ndarray.__pow__(y[,z])<==>pow(x,y[,z])
	

	ndarray.__lshift__
	x.__lshift__(y) <==> x<<y

	ndarray.__rshift__
	x.__rshift__(y) <==> x>>y

	ndarray.__and__
	x.__and__(y) <==> x&y

	ndarray.__or__
	x.__or__(y) <==> x|y

	ndarray.__xor__
	x.__xor__(y) <==> x^y

Note

	Any third argument to pow [http://docs.python.org/dev/library/functions.html#pow] is silently ignored,
as the underlying ufunc takes only two arguments.

	The three division operators are all defined; div is active
by default, truediv is active when
__future__ [http://docs.python.org/dev/library/__future__.html#module-__future__] division is in effect.

	Because ndarray is a built-in type (written in C), the
__r{op}__ special methods are not directly defined.

	The functions called to implement many arithmetic special methods
for arrays can be modified using set_numeric_ops.

Arithmetic, in-place:

	ndarray.__iadd__
	x.__iadd__(y) <==> x+=y

	ndarray.__isub__
	x.__isub__(y) <==> x-=y

	ndarray.__imul__
	x.__imul__(y) <==> x*=y

	ndarray.__idiv__
	x.__idiv__(y) <==> x/=y

	ndarray.__itruediv__
	x.__itruediv__(y) <==> x/y

	ndarray.__ifloordiv__
	x.__ifloordiv__(y) <==> x//y

	ndarray.__imod__
	x.__imod__(y) <==> x%=y

	ndarray.__ipow__
	x.__ipow__(y) <==> x**=y

	ndarray.__ilshift__
	x.__ilshift__(y) <==> x<<=y

	ndarray.__irshift__
	x.__irshift__(y) <==> x>>=y

	ndarray.__iand__
	x.__iand__(y) <==> x&=y

	ndarray.__ior__
	x.__ior__(y) <==> x|=y

	ndarray.__ixor__
	x.__ixor__(y) <==> x^=y

Warning

In place operations will perform the calculation using the
precision decided by the data type of the two operands, but will
silently downcast the result (if necessary) so it can fit back into
the array. Therefore, for mixed precision calculations, A {op}=
B can be different than A = A {op} B. For example, suppose
a = ones((3,3)). Then, a += 3j is different than a = a +
3j: while they both perform the same computation, a += 3
casts the result to fit back in a, whereas a = a + 3j
re-binds the name a to the result.

Special methods

For standard library functions:

	ndarray.__copy__([order])
	Return a copy of the array.

	ndarray.__deepcopy__(()->Deepcopyofarray.)
	Used if copy.deepcopy is called on an array.

	ndarray.__reduce__()
	For pickling.

	ndarray.__setstate__(version,shape,dtype,...)
	For unpickling.

Basic customization:

	ndarray.__new__((S,...)
	

	ndarray.__array__(...)
	Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is different from the current dtype of the array.

	ndarray.__array_wrap__(...)
	

Container customization: (see Indexing)

	ndarray.__len__()<==>len(x)
	

	ndarray.__getitem__
	x.__getitem__(y) <==> x[y]

	ndarray.__setitem__
	x.__setitem__(i, y) <==> x[i]=y

	ndarray.__getslice__
	x.__getslice__(i, j) <==> x[i:j]

	ndarray.__setslice__
	x.__setslice__(i, j, y) <==> x[i:j]=y

	ndarray.__contains__
	x.__contains__(y) <==> y in x

Conversion; the operations complex, int,
long, float, oct [http://docs.python.org/dev/library/functions.html#oct], and
hex [http://docs.python.org/dev/library/functions.html#hex]. They work only on arrays that have one element in them
and return the appropriate scalar.

	ndarray.__int__()<==>int(x)
	

	ndarray.__long__()<==>long(x)
	

	ndarray.__float__()<==>float(x)
	

	ndarray.__oct__()<==>oct(x)
	

	ndarray.__hex__()<==>hex(x)
	

String representations:

	ndarray.__str__()<==>str(x)
	

	ndarray.__repr__()<==>repr(x)
	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray

	
class numpy.ndarray[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type object describes the
format of each element in the array (its byte-order, how many bytes it
occupies in memory, whether it is an integer, a floating point number,
or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer
to the See Also section below). The parameters given here refer to
a low-level method (ndarray(...)) for instantiating an array.

For more information, refer to the numpy module and examine the
the methods and attributes of an array.

	Parameters:	(for the __new__ method; see Notes below)

shape : tuple of ints

Shape of created array.

dtype : data-type, optional

Any object that can be interpreted as a numpy data type.

buffer : object exposing buffer interface, optional

Used to fill the array with data.

offset : int, optional

Offset of array data in buffer.

strides : tuple of ints, optional

Strides of data in memory.

order : {‘C’, ‘F’}, optional

Row-major or column-major order.

See also

	array

	Construct an array.

	zeros

	Create an array, each element of which is zero.

	empty

	Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

	dtype

	Create a data-type.

Notes

There are two modes of creating an array using __new__:

	If buffer is None, then only shape, dtype, and order
are used.

	If buffer is an object exposing the buffer interface, then
all keywords are interpreted.

No __init__ method is needed because the array is fully initialized
after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer
to the See Also section above for easier ways of constructing an
ndarray.

First mode, buffer is None:

>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[-1.13698227e+002, 4.25087011e-303],
 [2.88528414e-306, 3.27025015e-309]]) #random

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes

	T
	Same as self.transpose(), except that self is returned if self.ndim < 2.

	data
	Python buffer object pointing to the start of the array’s data.

	dtype
	Data-type of the array’s elements.

	flags
	Information about the memory layout of the array.

	flat
	A 1-D iterator over the array.

	imag
	The imaginary part of the array.

	real
	The real part of the array.

	size
	Number of elements in the array.

	itemsize
	Length of one array element in bytes.

	nbytes
	Total bytes consumed by the elements of the array.

	ndim
	Number of array dimensions.

	shape
	Tuple of array dimensions.

	strides
	Tuple of bytes to step in each dimension when traversing an array.

	ctypes
	An object to simplify the interaction of the array with the ctypes module.

	base
	Base object if memory is from some other object.

Methods

	all([axis,out])
	Returns True if all elements evaluate to True.

	any([axis,out])
	Returns True if any of the elements of a evaluate to True.

	argmax([axis,out])
	Return indices of the maximum values along the given axis.

	argmin([axis,out])
	Return indices of the minimum values along the given axis of a.

	argpartition(kth[,axis,kind,order])
	Returns the indices that would partition this array.

	argsort([axis,kind,order])
	Returns the indices that would sort this array.

	astype(dtype[,order,casting,subok,copy])
	Copy of the array, cast to a specified type.

	byteswap(inplace)
	Swap the bytes of the array elements

	choose(choices[,out,mode])
	Use an index array to construct a new array from a set of choices.

	clip(a_min,a_max[,out])
	Return an array whose values are limited to [a_min, a_max].

	compress(condition[,axis,out])
	Return selected slices of this array along given axis.

	conj()
	Complex-conjugate all elements.

	conjugate()
	Return the complex conjugate, element-wise.

	copy([order])
	Return a copy of the array.

	cumprod([axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	cumsum([axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	diagonal([offset,axis1,axis2])
	Return specified diagonals.

	dot(b[,out])
	Dot product of two arrays.

	dump(file)
	Dump a pickle of the array to the specified file.

	dumps()
	Returns the pickle of the array as a string.

	fill(value)
	Fill the array with a scalar value.

	flatten([order])
	Return a copy of the array collapsed into one dimension.

	getfield(dtype[,offset])
	Returns a field of the given array as a certain type.

	item(*args)
	Copy an element of an array to a standard Python scalar and return it.

	itemset(*args)
	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

	max([axis,out])
	Return the maximum along a given axis.

	mean([axis,dtype,out])
	Returns the average of the array elements along given axis.

	min([axis,out])
	Return the minimum along a given axis.

	newbyteorder([new_order])
	Return the array with the same data viewed with a different byte order.

	nonzero()
	Return the indices of the elements that are non-zero.

	partition(kth[,axis,kind,order])
	Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.

	prod([axis,dtype,out])
	Return the product of the array elements over the given axis

	ptp([axis,out])
	Peak to peak (maximum - minimum) value along a given axis.

	put(indices,values[,mode])
	Set a.flat[n] = values[n] for all n in indices.

	ravel([order])
	Return a flattened array.

	repeat(repeats[,axis])
	Repeat elements of an array.

	reshape(shape[,order])
	Returns an array containing the same data with a new shape.

	resize(new_shape[,refcheck])
	Change shape and size of array in-place.

	round([decimals,out])
	Return a with each element rounded to the given number of decimals.

	searchsorted(v[,side,sorter])
	Find indices where elements of v should be inserted in a to maintain order.

	setfield(val,dtype[,offset])
	Put a value into a specified place in a field defined by a data-type.

	setflags([write,align,uic])
	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

	sort([axis,kind,order])
	Sort an array, in-place.

	squeeze([axis])
	Remove single-dimensional entries from the shape of a.

	std([axis,dtype,out,ddof])
	Returns the standard deviation of the array elements along given axis.

	sum([axis,dtype,out])
	Return the sum of the array elements over the given axis.

	swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	take(indices[,axis,out,mode])
	Return an array formed from the elements of a at the given indices.

	tobytes([order])
	Construct Python bytes containing the raw data bytes in the array.

	tofile(fid[,sep,format])
	Write array to a file as text or binary (default).

	tolist()
	Return the array as a (possibly nested) list.

	tostring([order])
	Construct Python bytes containing the raw data bytes in the array.

	trace([offset,axis1,axis2,dtype,out])
	Return the sum along diagonals of the array.

	transpose(*axes)
	Returns a view of the array with axes transposed.

	var([axis,dtype,out,ddof])
	Returns the variance of the array elements, along given axis.

	view([dtype,type])
	New view of array with the same data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.T

	
ndarray.T

	Same as self.transpose(), except that self is returned if
self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.data

	
ndarray.data

	Python buffer object pointing to the start of the array’s data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.dtype

	
ndarray.dtype

	Data-type of the array’s elements.

	Parameters:	None

	Returns:	d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.flags

	
ndarray.flags

	Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	UPDATEIFCOPY (U)
	This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.flat

	
ndarray.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.imag

	
ndarray.imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.real

	
ndarray.real

	The real part of the array.

See also

	numpy.real

	equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.size

	
ndarray.size

	Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.itemsize

	
ndarray.itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.nbytes

	
ndarray.nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ndim

	
ndarray.ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.shape

	
ndarray.shape

	Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.strides

	
ndarray.strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ctypes

	
ndarray.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters:	None

	Returns:	c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.base

	
ndarray.base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.all

	
ndarray.all(axis=None, out=None)

	Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

	numpy.all

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.any

	
ndarray.any(axis=None, out=None)

	Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

	numpy.any

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.argmax

	
ndarray.argmax(axis=None, out=None)

	Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

	numpy.argmax

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.argmin

	
ndarray.argmin(axis=None, out=None)

	Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

	numpy.argmin

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.argpartition

	
ndarray.argpartition(kth, axis=-1, kind='introselect', order=None)

	Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

	numpy.argpartition

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.argsort

	
ndarray.argsort(axis=-1, kind='quicksort', order=None)

	Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

	numpy.argsort

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.astype

	
ndarray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	Parameters:	dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	Returns:	arr_t : ndarray

Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input paramter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

	Raises:	ComplexWarning

When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in ‘safe’ casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.byteswap

	
ndarray.byteswap(inplace)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

	Parameters:	inplace : bool, optional

If True, swap bytes in-place, default is False.

	Returns:	out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.choose

	
ndarray.choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

	numpy.choose

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.clip

	
ndarray.clip(a_min, a_max, out=None)

	Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

	numpy.clip

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.compress

	
ndarray.compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

	numpy.compress

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.conj

	
ndarray.conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

 	numpy.ndarray

numpy.ndarray.conjugate

	
ndarray.conjugate()

	Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.copy

	
ndarray.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.cumprod

	
ndarray.cumprod(axis=None, dtype=None, out=None)

	Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

	numpy.cumprod

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.cumsum

	
ndarray.cumsum(axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

	numpy.cumsum

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.diagonal

	
ndarray.diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

	numpy.diagonal

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

 	numpy.ndarray

numpy.ndarray.dot

	
ndarray.dot(b, out=None)

	Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

	numpy.dot

	equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.dump

	
ndarray.dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	Parameters:	file : str

A string naming the dump file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.dumps

	
ndarray.dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

	Parameters:	None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.fill

	
ndarray.fill(value)

	Fill the array with a scalar value.

	Parameters:	value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.flatten

	
ndarray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.getfield

	
ndarray.getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

	Parameters:	dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.item

	
ndarray.item(*args)

	Copy an element of an array to a standard Python scalar and return it.

	Parameters:	*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	Returns:	z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.itemset

	
ndarray.itemset(*args)

	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

	Parameters:	*args : Arguments

If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

 	numpy.ndarray

numpy.ndarray.max

	
ndarray.max(axis=None, out=None)

	Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

	numpy.amax

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.mean

	
ndarray.mean(axis=None, dtype=None, out=None)

	Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

	numpy.mean

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.min

	
ndarray.min(axis=None, out=None)

	Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

	numpy.amin

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

 	numpy.ndarray

numpy.ndarray.newbyteorder

	
ndarray.newbyteorder(new_order='S')

	Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

	Parameters:	new_order : string, optional

Byte order to force; a value from the byte order specifications
above. new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

	Returns:	new_arr : array

New array object with the dtype reflecting given change to the
byte order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.nonzero

	
ndarray.nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

	numpy.nonzero

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.partition

	
ndarray.partition(kth, axis=-1, kind='introselect', order=None)

	Rearranges the elements in the array in such a way that value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

	Parameters:	kth : int or sequence of ints

Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.partition

	Return a parititioned copy of an array.

	argpartition

	Indirect partition.

	sort

	Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.prod

	
ndarray.prod(axis=None, dtype=None, out=None)

	Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

	numpy.prod

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ptp

	
ndarray.ptp(axis=None, out=None)

	Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

	numpy.ptp

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.put

	
ndarray.put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

	numpy.put

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ravel

	
ndarray.ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

	numpy.ravel

	equivalent function

	ndarray.flat

	a flat iterator on the array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.repeat

	
ndarray.repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.reshape

	
ndarray.reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

	numpy.reshape

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.resize

	
ndarray.resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

	Parameters:	new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

	Returns:	None

	Raises:	ValueError

If a does not own its own data or references or views to it exist,
and the data memory must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See also

	resize

	Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.round

	
ndarray.round(decimals=0, out=None)

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

	numpy.around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.searchsorted

	
ndarray.searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

	numpy.searchsorted

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

 	numpy.ndarray

numpy.ndarray.setfield

	
ndarray.setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset
bytes into the field.

	Parameters:	val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

	Returns:	None

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
 [1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
 [1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.setflags

	
ndarray.setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)

	Parameters:	write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.ndarray.sort

	
ndarray.sort(axis=-1, kind='quicksort', order=None)

	Sort an array, in-place.

	Parameters:	axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.sort

	Return a sorted copy of an array.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in sorted array.

	partition

	Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.squeeze

	
ndarray.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.std

	
ndarray.std(axis=None, dtype=None, out=None, ddof=0)

	Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

	numpy.std

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.sum

	
ndarray.sum(axis=None, dtype=None, out=None)

	Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

	numpy.sum

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.swapaxes

	
ndarray.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.take

	
ndarray.take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

	numpy.take

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.tobytes

	
ndarray.tobytes(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

New in version 1.9.0.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.ndarray.tofile

	
ndarray.tofile(fid, sep="", format="%s")

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	Parameters:	fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

format : str

Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.ndarray.tolist

	
ndarray.tolist()

	Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.

	Parameters:	none

	Returns:	y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.tostring

	
ndarray.tostring(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.trace

	
ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.transpose

	
ndarray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.var

	
ndarray.var(axis=None, dtype=None, out=None, ddof=0)

	Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

	numpy.var

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.view

	
ndarray.view(dtype=None, type=None)

	New view of array with the same data.

	Parameters:	dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.flags

	
ndarray.flags

	Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	UPDATEIFCOPY (U)
	This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.shape

	
ndarray.shape

	Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.strides

	
ndarray.strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ndim

	
ndarray.ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.data

	
ndarray.data

	Python buffer object pointing to the start of the array’s data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.size

	
ndarray.size

	Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.itemsize

	
ndarray.itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.nbytes

	
ndarray.nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.base

	
ndarray.base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.dtype

	
ndarray.dtype

	Data-type of the array’s elements.

	Parameters:	None

	Returns:	d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.T

	
ndarray.T

	Same as self.transpose(), except that self is returned if
self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.real

	
ndarray.real

	The real part of the array.

See also

	numpy.real

	equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.imag

	
ndarray.imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.flat

	
ndarray.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ctypes

	
ndarray.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters:	None

	Returns:	c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ctypes

	
ndarray.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters:	None

	Returns:	c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.item

	
ndarray.item(*args)

	Copy an element of an array to a standard Python scalar and return it.

	Parameters:	*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	Returns:	z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.ndarray.tolist

	
ndarray.tolist()

	Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.

	Parameters:	none

	Returns:	y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.itemset

	
ndarray.itemset(*args)

	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

	Parameters:	*args : Arguments

If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.tostring

	
ndarray.tostring(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.tobytes

	
ndarray.tobytes(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

New in version 1.9.0.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.ndarray.tofile

	
ndarray.tofile(fid, sep="", format="%s")

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	Parameters:	fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

format : str

Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.dump

	
ndarray.dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	Parameters:	file : str

A string naming the dump file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.dumps

	
ndarray.dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

	Parameters:	None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.astype

	
ndarray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	Parameters:	dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	Returns:	arr_t : ndarray

Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input paramter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

	Raises:	ComplexWarning

When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in ‘safe’ casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.byteswap

	
ndarray.byteswap(inplace)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

	Parameters:	inplace : bool, optional

If True, swap bytes in-place, default is False.

	Returns:	out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.copy

	
ndarray.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.view

	
ndarray.view(dtype=None, type=None)

	New view of array with the same data.

	Parameters:	dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.getfield

	
ndarray.getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

	Parameters:	dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.setflags

	
ndarray.setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)

	Parameters:	write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.fill

	
ndarray.fill(value)

	Fill the array with a scalar value.

	Parameters:	value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.reshape

	
ndarray.reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

	numpy.reshape

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.resize

	
ndarray.resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

	Parameters:	new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

	Returns:	None

	Raises:	ValueError

If a does not own its own data or references or views to it exist,
and the data memory must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See also

	resize

	Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.transpose

	
ndarray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.swapaxes

	
ndarray.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.flatten

	
ndarray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ravel

	
ndarray.ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

	numpy.ravel

	equivalent function

	ndarray.flat

	a flat iterator on the array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.squeeze

	
ndarray.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.take

	
ndarray.take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

	numpy.take

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.put

	
ndarray.put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

	numpy.put

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.repeat

	
ndarray.repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.choose

	
ndarray.choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

	numpy.choose

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.ndarray.sort

	
ndarray.sort(axis=-1, kind='quicksort', order=None)

	Sort an array, in-place.

	Parameters:	axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.sort

	Return a sorted copy of an array.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in sorted array.

	partition

	Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.argsort

	
ndarray.argsort(axis=-1, kind='quicksort', order=None)

	Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

	numpy.argsort

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.partition

	
ndarray.partition(kth, axis=-1, kind='introselect', order=None)

	Rearranges the elements in the array in such a way that value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

	Parameters:	kth : int or sequence of ints

Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.partition

	Return a parititioned copy of an array.

	argpartition

	Indirect partition.

	sort

	Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.argpartition

	
ndarray.argpartition(kth, axis=-1, kind='introselect', order=None)

	Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

	numpy.argpartition

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.searchsorted

	
ndarray.searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

	numpy.searchsorted

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.nonzero

	
ndarray.nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

	numpy.nonzero

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.compress

	
ndarray.compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

	numpy.compress

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.diagonal

	
ndarray.diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

	numpy.diagonal

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.argmax

	
ndarray.argmax(axis=None, out=None)

	Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

	numpy.argmax

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.min

	
ndarray.min(axis=None, out=None)

	Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

	numpy.amin

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.argmin

	
ndarray.argmin(axis=None, out=None)

	Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

	numpy.argmin

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.ptp

	
ndarray.ptp(axis=None, out=None)

	Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

	numpy.ptp

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.clip

	
ndarray.clip(a_min, a_max, out=None)

	Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

	numpy.clip

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.conj

	
ndarray.conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.round

	
ndarray.round(decimals=0, out=None)

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

	numpy.around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.trace

	
ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.sum

	
ndarray.sum(axis=None, dtype=None, out=None)

	Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

	numpy.sum

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.cumsum

	
ndarray.cumsum(axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

	numpy.cumsum

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.mean

	
ndarray.mean(axis=None, dtype=None, out=None)

	Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

	numpy.mean

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.var

	
ndarray.var(axis=None, dtype=None, out=None, ddof=0)

	Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

	numpy.var

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.std

	
ndarray.std(axis=None, dtype=None, out=None, ddof=0)

	Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

	numpy.std

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.prod

	
ndarray.prod(axis=None, dtype=None, out=None)

	Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

	numpy.prod

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.cumprod

	
ndarray.cumprod(axis=None, dtype=None, out=None)

	Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

	numpy.cumprod

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.all

	
ndarray.all(axis=None, out=None)

	Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

	numpy.all

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.any

	
ndarray.any(axis=None, out=None)

	Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

	numpy.any

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__lt__

	
ndarray.__lt__

	x.__lt__(y) <==> x<y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__le__

	
ndarray.__le__

	x.__le__(y) <==> x<=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__gt__

	
ndarray.__gt__

	x.__gt__(y) <==> x>y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__ge__

	
ndarray.__ge__

	x.__ge__(y) <==> x>=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__eq__

	
ndarray.__eq__

	x.__eq__(y) <==> x==y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__ne__

	
ndarray.__ne__

	x.__ne__(y) <==> x!=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__nonzero__

	
ndarray.__nonzero__

	x.__nonzero__() <==> x != 0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__neg__

	
ndarray.__neg__

	x.__neg__() <==> -x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__pos__

	
ndarray.__pos__

	x.__pos__() <==> +x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__abs__

	
ndarray.__abs__() <==> abs(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__invert__

	
ndarray.__invert__

	x.__invert__() <==> ~x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__add__

	
ndarray.__add__

	x.__add__(y) <==> x+y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__sub__

	
ndarray.__sub__

	x.__sub__(y) <==> x-y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__mul__

	
ndarray.__mul__

	x.__mul__(y) <==> x*y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__div__

	
ndarray.__div__

	x.__div__(y) <==> x/y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__truediv__

	
ndarray.__truediv__

	x.__truediv__(y) <==> x/y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__floordiv__

	
ndarray.__floordiv__

	x.__floordiv__(y) <==> x//y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__mod__

	
ndarray.__mod__

	x.__mod__(y) <==> x%y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__divmod__

	
ndarray.__divmod__(y) <==> divmod(x, y)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__pow__

	
ndarray.__pow__(y[, z]) <==> pow(x, y[, z])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__lshift__

	
ndarray.__lshift__

	x.__lshift__(y) <==> x<<y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__rshift__

	
ndarray.__rshift__

	x.__rshift__(y) <==> x>>y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__and__

	
ndarray.__and__

	x.__and__(y) <==> x&y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__or__

	
ndarray.__or__

	x.__or__(y) <==> x|y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__xor__

	
ndarray.__xor__

	x.__xor__(y) <==> x^y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__iadd__

	
ndarray.__iadd__

	x.__iadd__(y) <==> x+=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__isub__

	
ndarray.__isub__

	x.__isub__(y) <==> x-=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__imul__

	
ndarray.__imul__

	x.__imul__(y) <==> x*=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__idiv__

	
ndarray.__idiv__

	x.__idiv__(y) <==> x/=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__itruediv__

	
ndarray.__itruediv__

	x.__itruediv__(y) <==> x/y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__ifloordiv__

	
ndarray.__ifloordiv__

	x.__ifloordiv__(y) <==> x//y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__imod__

	
ndarray.__imod__

	x.__imod__(y) <==> x%=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__ipow__

	
ndarray.__ipow__

	x.__ipow__(y) <==> x**=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__ilshift__

	
ndarray.__ilshift__

	x.__ilshift__(y) <==> x<<=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__irshift__

	
ndarray.__irshift__

	x.__irshift__(y) <==> x>>=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__iand__

	
ndarray.__iand__

	x.__iand__(y) <==> x&=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__ior__

	
ndarray.__ior__

	x.__ior__(y) <==> x|=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__ixor__

	
ndarray.__ixor__

	x.__ixor__(y) <==> x^=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__copy__

	
ndarray.__copy__([order])

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

If order is ‘C’ (False) then the result is contiguous (default).
If order is ‘Fortran’ (True) then the result has fortran order.
If order is ‘Any’ (None) then the result has fortran order
only if the array already is in fortran order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__deepcopy__

	
ndarray.__deepcopy__() Deep copy of array.

	Used if copy.deepcopy is called on an array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__reduce__

	
ndarray.__reduce__()

	For pickling.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__setstate__

	
ndarray.__setstate__(version, shape, dtype, isfortran, rawdata)

	For unpickling.

	Parameters:	version : int

optional pickle version. If omitted defaults to 0.

shape : tuple

dtype : data-type

isFortran : bool

rawdata : string or list

a binary string with the data (or a list if ‘a’ is an object array)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__new__

	
static ndarray.__new__(S, ...) a new object with type S, a subtype of T

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__array__

	
ndarray.__array__(|dtype) reference if type unchanged, copy otherwise.

	Returns either a new reference to self if dtype is not given or a new array
of provided data type if dtype is different from the current dtype of the
array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__array_wrap__

	
ndarray.__array_wrap__(obj) Object of same type as ndarray object a.

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__len__

	
ndarray.__len__() <==> len(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__getitem__

	
ndarray.__getitem__

	x.__getitem__(y) <==> x[y]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__setitem__

	
ndarray.__setitem__

	x.__setitem__(i, y) <==> x[i]=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__getslice__

	
ndarray.__getslice__

	x.__getslice__(i, j) <==> x[i:j]

Use of negative indices is not supported.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__setslice__

	
ndarray.__setslice__

	x.__setslice__(i, j, y) <==> x[i:j]=y

Use of negative indices is not supported.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__contains__

	
ndarray.__contains__

	x.__contains__(y) <==> y in x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__int__

	
ndarray.__int__() <==> int(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__long__

	
ndarray.__long__() <==> long(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__float__

	
ndarray.__float__() <==> float(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__oct__

	
ndarray.__oct__() <==> oct(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__hex__

	
ndarray.__hex__() <==> hex(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__str__

	
ndarray.__str__() <==> str(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	The N-dimensional array (ndarray)

numpy.ndarray.__repr__

	
ndarray.__repr__() <==> repr(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

Scalars

Python defines only one type of a particular data class (there is only
one integer type, one floating-point type, etc.). This can be
convenient in applications that don’t need to be concerned with all
the ways data can be represented in a computer. For scientific
computing, however, more control is often needed.

In NumPy, there are 24 new fundamental Python types to describe
different types of scalars. These type descriptors are mostly based on
the types available in the C language that CPython is written in, with
several additional types compatible with Python’s types.

Array scalars have the same attributes and methods as ndarrays. [1] This allows one to treat items of an array partly on
the same footing as arrays, smoothing out rough edges that result when
mixing scalar and array operations.

Array scalars live in a hierarchy (see the Figure below) of data
types. They can be detected using the hierarchy: For example,
isinstance(val, np.generic) will return True if val is
an array scalar object. Alternatively, what kind of array scalar is
present can be determined using other members of the data type
hierarchy. Thus, for example isinstance(val, np.complexfloating)
will return True if val is a complex valued type, while
isinstance(val, np.flexible) will return true if val is one
of the flexible itemsize array types (string,
unicode, void).

[image: ../_images/dtype-hierarchy.png]
Figure: Hierarchy of type objects representing the array data
types. Not shown are the two integer types intp and
uintp which just point to the integer type that holds a
pointer for the platform. All the number types can be obtained
using bit-width names as well.

	[1]	However, array scalars are immutable, so none of the array
scalar attributes are settable.

Built-in scalar types

The built-in scalar types are shown below. Along with their (mostly)
C-derived names, the integer, float, and complex data-types are also
available using a bit-width convention so that an array of the right
size can always be ensured (e.g. int8, float64,
complex128). Two aliases (intp and uintp)
pointing to the integer type that is sufficiently large to hold a C pointer
are also provided. The C-like names are associated with character codes,
which are shown in the table. Use of the character codes, however,
is discouraged.

Some of the scalar types are essentially equivalent to fundamental
Python types and therefore inherit from them as well as from the
generic array scalar type:

	Array scalar type
	Related Python type

	int_
	IntType (Python 2 only)

	float_
	FloatType

	complex_
	ComplexType

	str_
	StringType

	unicode_
	UnicodeType

The bool_ data type is very similar to the Python
BooleanType but does not inherit from it because Python’s
BooleanType does not allow itself to be inherited from, and
on the C-level the size of the actual bool data is not the same as a
Python Boolean scalar.

Warning

The bool_ type is not a subclass of the int_ type
(the bool_ is not even a number type). This is different
than Python’s default implementation of bool [http://docs.python.org/dev/library/functions.html#bool] as a
sub-class of int.

Warning

The int_ type does not inherit from the
int [http://docs.python.org/dev/library/functions.html#int] built-in under Python 3, because type int [http://docs.python.org/dev/library/functions.html#int] is no
longer a fixed-width integer type.

Tip

The default data type in Numpy is float_.

In the tables below, platform? means that the type may not be
available on all platforms. Compatibility with different C or Python
types is indicated: two types are compatible if their data is of the
same size and interpreted in the same way.

Booleans:

	Type
	Remarks
	Character code

	bool_
	compatible: Python bool
	'?'

	bool8
	8 bits
	

Integers:

	byte
	compatible: C char
	'b'

	short
	compatible: C short
	'h'

	intc
	compatible: C int
	'i'

	int_
	compatible: Python int
	'l'

	longlong
	compatible: C long long
	'q'

	intp
	large enough to fit a pointer
	'p'

	int8
	8 bits
	

	int16
	16 bits
	

	int32
	32 bits
	

	int64
	64 bits
	

Unsigned integers:

	ubyte
	compatible: C unsigned char
	'B'

	ushort
	compatible: C unsigned short
	'H'

	uintc
	compatible: C unsigned int
	'I'

	uint
	compatible: Python int
	'L'

	ulonglong
	compatible: C long long
	'Q'

	uintp
	large enough to fit a pointer
	'P'

	uint8
	8 bits
	

	uint16
	16 bits
	

	uint32
	32 bits
	

	uint64
	64 bits
	

Floating-point numbers:

	half
	
	'e'

	single
	compatible: C float
	'f'

	double
	compatible: C double
	

	float_
	compatible: Python float
	'd'

	longfloat
	compatible: C long float
	'g'

	float16
	16 bits
	

	float32
	32 bits
	

	float64
	64 bits
	

	float96
	96 bits, platform?
	

	float128
	128 bits, platform?
	

Complex floating-point numbers:

	csingle
	
	'F'

	complex_
	compatible: Python complex
	'D'

	clongfloat
	
	'G'

	complex64
	two 32-bit floats
	

	complex128
	two 64-bit floats
	

	complex192
	two 96-bit floats,
platform?
	

	complex256
	two 128-bit floats,
platform?
	

Any Python object:

	object_
	any Python object
	'O'

Note

The data actually stored in object arrays
(i.e., arrays having dtype object_) are references to
Python objects, not the objects themselves. Hence, object arrays
behave more like usual Python lists [http://docs.python.org/dev/library/stdtypes.html#list], in the sense
that their contents need not be of the same Python type.

The object type is also special because an array containing
object_ items does not return an object_ object
on item access, but instead returns the actual object that
the array item refers to.

The following data types are flexible. They have no predefined
size: the data they describe can be of different length in different
arrays. (In the character codes # is an integer denoting how many
elements the data type consists of.)

	str_
	compatible: Python str
	'S#'

	unicode_
	compatible: Python unicode
	'U#'

	void
	
	'V#'

Warning

Numeric Compatibility: If you used old typecode characters in your
Numeric code (which was never recommended), you will need to change
some of them to the new characters. In particular, the needed
changes are c -> S1, b -> B, 1 -> b, s -> h, w ->
H, and u -> I. These changes make the type character
convention more consistent with other Python modules such as the
struct [http://docs.python.org/dev/library/struct.html#module-struct] module.

Attributes

The array scalar objects have an array priority of NPY_SCALAR_PRIORITY
(-1,000,000.0). They also do not (yet) have a ctypes
attribute. Otherwise, they share the same attributes as arrays:

	generic.flags
	integer value of flags

	generic.shape
	tuple of array dimensions

	generic.strides
	tuple of bytes steps in each dimension

	generic.ndim
	number of array dimensions

	generic.data
	pointer to start of data

	generic.size
	number of elements in the gentype

	generic.itemsize
	length of one element in bytes

	generic.base
	base object

	generic.dtype
	get array data-descriptor

	generic.real
	real part of scalar

	generic.imag
	imaginary part of scalar

	generic.flat
	a 1-d view of scalar

	generic.T
	transpose

	generic.__array_interface__
	Array protocol: Python side

	generic.__array_struct__
	Array protocol: struct

	generic.__array_priority__
	Array priority.

	generic.__array_wrap__
	sc.__array_wrap__(obj) return scalar from array

Indexing

See also

Indexing, Data type objects (dtype)

Array scalars can be indexed like 0-dimensional arrays: if x is an
array scalar,

	x[()] returns a 0-dimensional ndarray

	x['field-name'] returns the array scalar in the field field-name.
(x can have fields, for example, when it corresponds to a record data type.)

Methods

Array scalars have exactly the same methods as arrays. The default
behavior of these methods is to internally convert the scalar to an
equivalent 0-dimensional array and to call the corresponding array
method. In addition, math operations on array scalars are defined so
that the same hardware flags are set and used to interpret the results
as for ufunc, so that the error state used for ufuncs
also carries over to the math on array scalars.

The exceptions to the above rules are given below:

	generic
	Base class for numpy scalar types.

	generic.__array__
	sc.__array__(|type) return 0-dim array

	generic.__array_wrap__
	sc.__array_wrap__(obj) return scalar from array

	generic.squeeze
	Not implemented (virtual attribute)

	generic.byteswap
	Not implemented (virtual attribute)

	generic.__reduce__
	

	generic.__setstate__
	

	generic.setflags
	Not implemented (virtual attribute)

Defining new types

There are two ways to effectively define a new array scalar type
(apart from composing record dtypes from the built-in
scalar types): One way is to simply subclass the ndarray and
overwrite the methods of interest. This will work to a degree, but
internally certain behaviors are fixed by the data type of the array.
To fully customize the data type of an array you need to define a new
data-type, and register it with NumPy. Such new types can only be
defined in C, using the Numpy C-API.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.flags

	
generic.flags

	integer value of flags

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.shape

	
generic.shape

	tuple of array dimensions

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.strides

	
generic.strides

	tuple of bytes steps in each dimension

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.ndim

	
generic.ndim

	number of array dimensions

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.data

	
generic.data

	pointer to start of data

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.size

	
generic.size

	number of elements in the gentype

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.itemsize

	
generic.itemsize

	length of one element in bytes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.base

	
generic.base

	base object

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.dtype

	
generic.dtype

	get array data-descriptor

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.real

	
generic.real

	real part of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.imag

	
generic.imag

	imaginary part of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.flat

	
generic.flat

	a 1-d view of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.T

	
generic.T

	transpose

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.__array_interface__

	
generic.__array_interface__

	Array protocol: Python side

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.__array_struct__

	
generic.__array_struct__

	Array protocol: struct

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.__array_priority__

	
generic.__array_priority__

	Array priority.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.__array_wrap__

	
generic.__array_wrap__()

	sc.__array_wrap__(obj) return scalar from array

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic

	
class numpy.generic[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	Base class for numpy scalar types.

Class from which most (all?) numpy scalar types are derived. For
consistency, exposes the same API as ndarray, despite many
consequent attributes being either “get-only,” or completely irrelevant.
This is the class from which it is strongly suggested users should derive
custom scalar types.

Attributes

	T
	transpose

	base
	base object

	data
	pointer to start of data

	dtype
	get array data-descriptor

	flags
	integer value of flags

	flat
	a 1-d view of scalar

	imag
	imaginary part of scalar

	itemsize
	length of one element in bytes

	nbytes
	length of item in bytes

	ndim
	number of array dimensions

	real
	real part of scalar

	shape
	tuple of array dimensions

	size
	number of elements in the gentype

	strides
	tuple of bytes steps in each dimension

Methods

	all
	Not implemented (virtual attribute)

	any
	Not implemented (virtual attribute)

	argmax
	Not implemented (virtual attribute)

	argmin
	Not implemented (virtual attribute)

	argsort
	Not implemented (virtual attribute)

	astype
	Not implemented (virtual attribute)

	byteswap
	Not implemented (virtual attribute)

	choose
	Not implemented (virtual attribute)

	clip
	Not implemented (virtual attribute)

	compress
	Not implemented (virtual attribute)

	conj
	

	conjugate
	Not implemented (virtual attribute)

	copy
	Not implemented (virtual attribute)

	cumprod
	Not implemented (virtual attribute)

	cumsum
	Not implemented (virtual attribute)

	diagonal
	Not implemented (virtual attribute)

	dump
	Not implemented (virtual attribute)

	dumps
	Not implemented (virtual attribute)

	fill
	Not implemented (virtual attribute)

	flatten
	Not implemented (virtual attribute)

	getfield
	Not implemented (virtual attribute)

	item
	Not implemented (virtual attribute)

	itemset
	Not implemented (virtual attribute)

	max
	Not implemented (virtual attribute)

	mean
	Not implemented (virtual attribute)

	min
	Not implemented (virtual attribute)

	newbyteorder([new_order])
	Return a new dtype with a different byte order.

	nonzero
	Not implemented (virtual attribute)

	prod
	Not implemented (virtual attribute)

	ptp
	Not implemented (virtual attribute)

	put
	Not implemented (virtual attribute)

	ravel
	Not implemented (virtual attribute)

	repeat
	Not implemented (virtual attribute)

	reshape
	Not implemented (virtual attribute)

	resize
	Not implemented (virtual attribute)

	round
	Not implemented (virtual attribute)

	searchsorted
	Not implemented (virtual attribute)

	setfield
	Not implemented (virtual attribute)

	setflags
	Not implemented (virtual attribute)

	sort
	Not implemented (virtual attribute)

	squeeze
	Not implemented (virtual attribute)

	std
	Not implemented (virtual attribute)

	sum
	Not implemented (virtual attribute)

	swapaxes
	Not implemented (virtual attribute)

	take
	Not implemented (virtual attribute)

	tobytes
	

	tofile
	Not implemented (virtual attribute)

	tolist
	Not implemented (virtual attribute)

	tostring
	Not implemented (virtual attribute)

	trace
	Not implemented (virtual attribute)

	transpose
	Not implemented (virtual attribute)

	var
	Not implemented (virtual attribute)

	view
	Not implemented (virtual attribute)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.T

	
generic.T

	transpose

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.base

	
generic.base

	base object

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.data

	
generic.data

	pointer to start of data

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.dtype

	
generic.dtype

	get array data-descriptor

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.flags

	
generic.flags

	integer value of flags

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.flat

	
generic.flat

	a 1-d view of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.imag

	
generic.imag

	imaginary part of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.itemsize

	
generic.itemsize

	length of one element in bytes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.nbytes

	
generic.nbytes

	length of item in bytes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.ndim

	
generic.ndim

	number of array dimensions

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.real

	
generic.real

	real part of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.shape

	
generic.shape

	tuple of array dimensions

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.size

	
generic.size

	number of elements in the gentype

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.strides

	
generic.strides

	tuple of bytes steps in each dimension

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.all

	
generic.all()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.any

	
generic.any()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.argmax

	
generic.argmax()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.argmin

	
generic.argmin()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.argsort

	
generic.argsort()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.astype

	
generic.astype()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.byteswap

	
generic.byteswap()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.choose

	
generic.choose()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.clip

	
generic.clip()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.compress

	
generic.compress()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.conj

	
generic.conj()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.conjugate

	
generic.conjugate()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.copy

	
generic.copy()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.cumprod

	
generic.cumprod()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.cumsum

	
generic.cumsum()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.diagonal

	
generic.diagonal()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.dump

	
generic.dump()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.dumps

	
generic.dumps()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.fill

	
generic.fill()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.flatten

	
generic.flatten()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.getfield

	
generic.getfield()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.item

	
generic.item()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.itemset

	
generic.itemset()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.max

	
generic.max()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.mean

	
generic.mean()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.min

	
generic.min()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.newbyteorder

	
generic.newbyteorder(new_order='S')

	Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:

	{‘<’, ‘L’} - little endian

	{‘>’, ‘B’} - big endian

	{‘=’, ‘N’} - native order

	‘S’ - swap dtype from current to opposite endian

	{‘|’, ‘I’} - ignore (no change to byte order)

	Parameters:	new_order : str, optional

Byte order to force; a value from the byte order specifications
above. The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

	Returns:	new_dtype : dtype

New dtype object with the given change to the byte order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.nonzero

	
generic.nonzero()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.prod

	
generic.prod()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.ptp

	
generic.ptp()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.put

	
generic.put()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.ravel

	
generic.ravel()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.repeat

	
generic.repeat()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.reshape

	
generic.reshape()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.resize

	
generic.resize()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.round

	
generic.round()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.searchsorted

	
generic.searchsorted()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.setfield

	
generic.setfield()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.setflags

	
generic.setflags()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.sort

	
generic.sort()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.squeeze

	
generic.squeeze()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.std

	
generic.std()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.sum

	
generic.sum()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.swapaxes

	
generic.swapaxes()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.take

	
generic.take()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.tobytes

	
generic.tobytes()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.tofile

	
generic.tofile()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.tolist

	
generic.tolist()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.tostring

	
generic.tostring()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.trace

	
generic.trace()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.transpose

	
generic.transpose()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.var

	
generic.var()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

 	numpy.generic

numpy.generic.view

	
generic.view()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.__array__

	
generic.__array__()

	sc.__array__(|type) return 0-dim array

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.__array_wrap__

	
generic.__array_wrap__()

	sc.__array_wrap__(obj) return scalar from array

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.squeeze

	
generic.squeeze()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.byteswap

	
generic.byteswap()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.__reduce__

	
generic.__reduce__()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.__setstate__

	
generic.__setstate__()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Scalars

numpy.generic.setflags

	
generic.setflags()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

Data type objects (dtype)

A data type object (an instance of numpy.dtype class)
describes how the bytes in the fixed-size block of memory
corresponding to an array item should be interpreted. It describes the
following aspects of the data:

	Type of the data (integer, float, Python object, etc.)

	Size of the data (how many bytes is in e.g. the integer)

	Byte order of the data (little-endian or big-endian)

	If the data type is a record, an aggregate of other
data types, (e.g., describing an array item consisting of
an integer and a float),
	what are the names of the “fields” of the record,
by which they can be accessed,

	what is the data-type of each field, and

	which part of the memory block each field takes.

	If the data type is a sub-array, what is its shape and data type.

To describe the type of scalar data, there are several built-in
scalar types in Numpy for various precision
of integers, floating-point numbers, etc. An item extracted from an
array, e.g., by indexing, will be a Python object whose type is the
scalar type associated with the data type of the array.

Note that the scalar types are not dtype objects, even though
they can be used in place of one whenever a data type specification is
needed in Numpy.

Struct data types are formed by creating a data type whose
fields contain other data types. Each field has a name by
which it can be accessed. The parent data
type should be of sufficient size to contain all its fields; the
parent is nearly always based on the void type which allows
an arbitrary item size. Struct data types may also contain nested struct
sub-array data types in their fields.

Finally, a data type can describe items that are themselves arrays of
items of another data type. These sub-arrays must, however, be of a
fixed size.

If an array is created using a data-type describing a sub-array,
the dimensions of the sub-array are appended to the shape
of the array when the array is created. Sub-arrays in a field of a
record behave differently, see Record Access.

Sub-arrays always have a C-contiguous memory layout.

Example

A simple data type containing a 32-bit big-endian integer:
(see Specifying and constructing data types for details on construction)

>>> dt = np.dtype('>i4')
>>> dt.byteorder
'>'
>>> dt.itemsize
4
>>> dt.name
'int32'
>>> dt.type is np.int32
True

The corresponding array scalar type is int32.

Example

A record data type containing a 16-character string (in field ‘name’)
and a sub-array of two 64-bit floating-point number (in field ‘grades’):

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt['name']
dtype('|S16')
>>> dt['grades']
dtype(('float64',(2,)))

Items of an array of this data type are wrapped in an array
scalar type that also has two fields:

>>> x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
>>> x[1]
('John', [6.0, 7.0])
>>> x[1]['grades']
array([6., 7.])
>>> type(x[1])
<type 'numpy.void'>
>>> type(x[1]['grades'])
<type 'numpy.ndarray'>

Specifying and constructing data types

Whenever a data-type is required in a NumPy function or method, either
a dtype object or something that can be converted to one can
be supplied. Such conversions are done by the dtype
constructor:

	dtype
	Create a data type object.

What can be converted to a data-type object is described below:

dtype object

Used as-is.

None

The default data type: float_.

Array-scalar types

The 24 built-in array scalar type objects all convert to an associated data-type object.
This is true for their sub-classes as well.

Note that not all data-type information can be supplied with a
type-object: for example, flexible data-types have
a default itemsize of 0, and require an explicitly given size
to be useful.

Example

>>> dt = np.dtype(np.int32) # 32-bit integer
>>> dt = np.dtype(np.complex128) # 128-bit complex floating-point number

Generic types

The generic hierarchical type objects convert to corresponding
type objects according to the associations:

	number, inexact, floating
	float [http://docs.python.org/dev/library/functions.html#float]

	complexfloating
	cfloat

	integer, signedinteger
	int_

	unsignedinteger
	uint

	character
	string

	generic, flexible
	void

Built-in Python types

Several python types are equivalent to a corresponding
array scalar when used to generate a dtype object:

	int [http://docs.python.org/dev/library/functions.html#int]
	int_

	bool [http://docs.python.org/dev/library/functions.html#bool]
	bool_

	float [http://docs.python.org/dev/library/functions.html#float]
	float_

	complex [http://docs.python.org/dev/library/functions.html#complex]
	cfloat

	str [http://docs.python.org/dev/library/stdtypes.html#str]
	string

	unicode
	unicode_

	buffer
	void

	(all others)
	object_

Example

>>> dt = np.dtype(float) # Python-compatible floating-point number
>>> dt = np.dtype(int) # Python-compatible integer
>>> dt = np.dtype(object) # Python object

Types with .dtype

Any type object with a dtype attribute: The attribute will be
accessed and used directly. The attribute must return something
that is convertible into a dtype object.

Several kinds of strings can be converted. Recognized strings can be
prepended with '>' (big-endian), '<'
(little-endian), or '=' (hardware-native, the default), to
specify the byte order.

One-character strings

Each built-in data-type has a character code
(the updated Numeric typecodes), that uniquely identifies it.

Example

>>> dt = np.dtype('b') # byte, native byte order
>>> dt = np.dtype('>H') # big-endian unsigned short
>>> dt = np.dtype('<f') # little-endian single-precision float
>>> dt = np.dtype('d') # double-precision floating-point number

Array-protocol type strings (see The Array Interface)

The first character specifies the kind of data and the remaining
characters specify the number of bytes per item. The item size may
be ignored for some kinds (i.e., boolean, object), rounded to the
next supported size (float, complex), or interpreted as the number
of characters (Unicode). The supported kinds are

	'b'
	boolean

	'i'
	(signed) integer

	'u'
	unsigned integer

	'f'
	floating-point

	'c'
	complex-floating point

	'O'
	(Python) objects

	'S', 'a'
	(byte-)string

	'U'
	Unicode

	'V'
	raw data (void)

Example

>>> dt = np.dtype('i4') # 32-bit signed integer
>>> dt = np.dtype('f8') # 64-bit floating-point number
>>> dt = np.dtype('c16') # 128-bit complex floating-point number
>>> dt = np.dtype('a25') # 25-character string

String with comma-separated fields

Numarray introduced a short-hand notation for specifying the format
of a record as a comma-separated string of basic formats.

A basic format in this context is an optional shape specifier
followed by an array-protocol type string. Parenthesis are required
on the shape if it has more than one dimension. NumPy allows a modification
on the format in that any string that can uniquely identify the
type can be used to specify the data-type in a field.
The generated data-type fields are named 'f0', 'f1', ...,
'f<N-1>' where N (>1) is the number of comma-separated basic
formats in the string. If the optional shape specifier is provided,
then the data-type for the corresponding field describes a sub-array.

Example

	field named f0 containing a 32-bit integer

	field named f1 containing a 2 x 3 sub-array
of 64-bit floating-point numbers

	field named f2 containing a 32-bit floating-point number

>>> dt = np.dtype("i4, (2,3)f8, f4")

	field named f0 containing a 3-character string

	field named f1 containing a sub-array of shape (3,)
containing 64-bit unsigned integers

	field named f2 containing a 3 x 4 sub-array
containing 10-character strings

>>> dt = np.dtype("a3, 3u8, (3,4)a10")

Type strings

Any string in numpy.sctypeDict.keys():

Example

>>> dt = np.dtype('uint32') # 32-bit unsigned integer
>>> dt = np.dtype('Float64') # 64-bit floating-point number

(flexible_dtype, itemsize)

The first argument must be an object that is converted to a
zero-sized flexible data-type object, the second argument is
an integer providing the desired itemsize.

Example

>>> dt = np.dtype((void, 10)) # 10-byte wide data block
>>> dt = np.dtype((str, 35)) # 35-character string
>>> dt = np.dtype(('U', 10)) # 10-character unicode string

(fixed_dtype, shape)

The first argument is any object that can be converted into a
fixed-size data-type object. The second argument is the desired
shape of this type. If the shape parameter is 1, then the
data-type object is equivalent to fixed dtype. If shape is a
tuple, then the new dtype defines a sub-array of the given shape.

Example

>>> dt = np.dtype((np.int32, (2,2))) # 2 x 2 integer sub-array
>>> dt = np.dtype(('S10', 1)) # 10-character string
>>> dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2 x 3 record sub-array

[(field_name, field_dtype, field_shape), ...]

obj should be a list of fields where each field is described by a
tuple of length 2 or 3. (Equivalent to the descr item in the
__array_interface__ attribute.)

The first element, field_name, is the field name (if this is
'' then a standard field name, 'f#', is assigned). The
field name may also be a 2-tuple of strings where the first string
is either a “title” (which may be any string or unicode string) or
meta-data for the field which can be any object, and the second
string is the “name” which must be a valid Python identifier.

The second element, field_dtype, can be anything that can be
interpreted as a data-type.

The optional third element field_shape contains the shape if this
field represents an array of the data-type in the second
element. Note that a 3-tuple with a third argument equal to 1 is
equivalent to a 2-tuple.

This style does not accept align in the dtype
constructor as it is assumed that all of the memory is accounted
for by the array interface description.

Example

Data-type with fields big (big-endian 32-bit integer) and
little (little-endian 32-bit integer):

>>> dt = np.dtype([('big', '>i4'), ('little', '<i4')])

Data-type with fields R, G, B, A, each being an
unsigned 8-bit integer:

>>> dt = np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')])

{'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize': ...}

This style has two required and three optional keys. The names
and formats keys are required. Their respective values are
equal-length lists with the field names and the field formats.
The field names must be strings and the field formats can be any
object accepted by dtype constructor.

When the optional keys offsets and titles are provided,
their values must each be lists of the same length as the names
and formats lists. The offsets value is a list of byte offsets
(integers) for each field, while the titles value is a list of
titles for each field (None can be used if no title is
desired for that field). The titles can be any string
or unicode object and will add another entry to the
fields dictionary keyed by the title and referencing the same
field tuple which will contain the title as an additional tuple
member.

The itemsize key allows the total size of the dtype to be
set, and must be an integer large enough so all the fields
are within the dtype. If the dtype being constructed is aligned,
the itemsize must also be divisible by the struct alignment.

Example

Data type with fields r, g, b, a, each being
a 8-bit unsigned integer:

>>> dt = np.dtype({'names': ['r','g','b','a'],
... 'formats': [uint8, uint8, uint8, uint8]})

Data type with fields r and b (with the given titles),
both being 8-bit unsigned integers, the first at byte position
0 from the start of the field and the second at position 2:

>>> dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'],
... 'offsets': [0, 2],
... 'titles': ['Red pixel', 'Blue pixel']})

{'field1': ..., 'field2': ..., ...}

This usage is discouraged, because it is ambiguous with the
other dict-based construction method. If you have a field
called ‘names’ and a field called ‘formats’ there will be
a conflict.

This style allows passing in the fields
attribute of a data-type object.

obj should contain string or unicode keys that refer to
(data-type, offset) or (data-type, offset, title) tuples.

Example

Data type containing field col1 (10-character string at
byte position 0), col2 (32-bit float at byte position 10),
and col3 (integers at byte position 14):

>>> dt = np.dtype({'col1': ('S10', 0), 'col2': (float32, 10),
 'col3': (int, 14)})

(base_dtype, new_dtype)

This usage is discouraged. In NumPy 1.7 and later, it is possible
to specify struct dtypes with overlapping fields, functioning like
the ‘union’ type in C. The union mechanism is preferred.

Both arguments must be convertible to data-type objects in this
case. The base_dtype is the data-type object that the new
data-type builds on. This is how you could assign named fields to
any built-in data-type object.

Example

32-bit integer, whose first two bytes are interpreted as an integer
via field real, and the following two bytes via field imag.

>>> dt = np.dtype((np.int32,{'real':(np.int16, 0),'imag':(np.int16, 2)})

32-bit integer, which is interpreted as consisting of a sub-array
of shape (4,) containing 8-bit integers:

>>> dt = np.dtype((np.int32, (np.int8, 4)))

32-bit integer, containing fields r, g, b, a that
interpret the 4 bytes in the integer as four unsigned integers:

>>> dt = np.dtype(('i4', [('r','u1'),('g','u1'),('b','u1'),('a','u1')]))

dtype

Numpy data type descriptions are instances of the dtype class.

Attributes

The type of the data is described by the following dtype attributes:

	dtype.type
	The type object used to instantiate a scalar of this data-type.

	dtype.kind
	A character code (one of ‘biufcOSUV’) identifying the general kind of data.

	dtype.char
	A unique character code for each of the 21 different built-in types.

	dtype.num
	A unique number for each of the 21 different built-in types.

	dtype.str
	The array-protocol typestring of this data-type object.

Size of the data is in turn described by:

	dtype.name
	A bit-width name for this data-type.

	dtype.itemsize
	The element size of this data-type object.

Endianness of this data:

	dtype.byteorder
	A character indicating the byte-order of this data-type object.

Information about sub-data-types in a record:

	dtype.fields
	Dictionary of named fields defined for this data type, or None.

	dtype.names
	Ordered list of field names, or None if there are no fields.

For data types that describe sub-arrays:

	dtype.subdtype
	Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

	dtype.shape
	Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

Attributes providing additional information:

	dtype.hasobject
	Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

	dtype.flags
	Bit-flags describing how this data type is to be interpreted.

	dtype.isbuiltin
	Integer indicating how this dtype relates to the built-in dtypes.

	dtype.isnative
	Boolean indicating whether the byte order of this dtype is native to the platform.

	dtype.descr
	Array-interface compliant full description of the data-type.

	dtype.alignment
	The required alignment (bytes) of this data-type according to the compiler.

Methods

Data types have the following method for changing the byte order:

	dtype.newbyteorder([new_order])
	Return a new dtype with a different byte order.

The following methods implement the pickle protocol:

	dtype.__reduce__
	

	dtype.__setstate__
	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.dtype

	
class numpy.dtype[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	Create a data type object.

A numpy array is homogeneous, and contains elements described by a
dtype object. A dtype object can be constructed from different
combinations of fundamental numeric types.

	Parameters:	obj

Object to be converted to a data type object.

align : bool, optional

Add padding to the fields to match what a C compiler would output
for a similar C-struct. Can be True only if obj is a dictionary
or a comma-separated string. If a struct dtype is being created,
this also sets a sticky alignment flag isalignedstruct.

copy : bool, optional

Make a new copy of the data-type object. If False, the result
may just be a reference to a built-in data-type object.

See also

result_type

Examples

Using array-scalar type:

>>> np.dtype(np.int16)
dtype('int16')

Record, one field name ‘f1’, containing int16:

>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])

Record, one field named ‘f1’, in itself containing a record with one field:

>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])

Record, two fields: the first field contains an unsigned int, the
second an int32:

>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])

Using array-protocol type strings:

>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples. int is a fixed type, 3 the field’s shape. void
is a flexible type, here of size 10:

>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])

Subdivide int16 into 2 int8‘s, called x and y. 0 and 1 are
the offsets in bytes:

>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])

Offsets in bytes, here 0 and 25:

>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])

Attributes

	base
	

	descr
	Array-interface compliant full description of the data-type.

	fields
	Dictionary of named fields defined for this data type, or None.

	hasobject
	Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

	isalignedstruct
	Boolean indicating whether the dtype is a struct which maintains field alignment.

	isbuiltin
	Integer indicating how this dtype relates to the built-in dtypes.

	isnative
	Boolean indicating whether the byte order of this dtype is native to the platform.

	metadata
	

	name
	A bit-width name for this data-type.

	names
	Ordered list of field names, or None if there are no fields.

	shape
	Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

	str
	The array-protocol typestring of this data-type object.

	subdtype
	Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

Methods

	newbyteorder([new_order])
	Return a new dtype with a different byte order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.base

	
dtype.base

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.descr

	
dtype.descr

	Array-interface compliant full description of the data-type.

The format is that required by the ‘descr’ key in the
__array_interface__ attribute.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.fields

	
dtype.fields

	Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields.
Each entry in the dictionary is a tuple fully describing the field:

(dtype, offset[, title])

If present, the optional title can be any object (if it is a string
or unicode then it will also be a key in the fields dictionary,
otherwise it’s meta-data). Notice also that the first two elements
of the tuple can be passed directly as arguments to the ndarray.getfield
and ndarray.setfield methods.

See also

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print dt.fields
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.hasobject

	
dtype.hasobject

	Boolean indicating whether this dtype contains any reference-counted
objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing
the Python object is the memory address of that object (a pointer).
Special handling may be required, and this attribute is useful for
distinguishing data types that may contain arbitrary Python objects
and data-types that won’t.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.isalignedstruct

	
dtype.isalignedstruct

	Boolean indicating whether the dtype is a struct which maintains
field alignment. This flag is sticky, so when combining multiple
structs together, it is preserved and produces new dtypes which
are also aligned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.isbuiltin

	
dtype.isbuiltin

	Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

	0
	if this is a structured array type, with fields

	1
	if this is a dtype compiled into numpy (such as ints, floats etc)

	2
	if the dtype is for a user-defined numpy type
A user-defined type uses the numpy C-API machinery to extend
numpy to handle a new array type. See
User-defined data-types in the Numpy manual.

Examples

>>> dt = np.dtype('i2')
>>> dt.isbuiltin
1
>>> dt = np.dtype('f8')
>>> dt.isbuiltin
1
>>> dt = np.dtype([('field1', 'f8')])
>>> dt.isbuiltin
0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.isnative

	
dtype.isnative

	Boolean indicating whether the byte order of this dtype is native
to the platform.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.metadata

	
dtype.metadata

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.name

	
dtype.name

	A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.names

	
dtype.names

	Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be
used, for example, to walk through all of the named fields in offset order.

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
('name', 'grades')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.shape

	
dtype.shape

	Shape tuple of the sub-array if this data type describes a sub-array,
and () otherwise.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.str

	
dtype.str

	The array-protocol typestring of this data-type object.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.subdtype

	
dtype.subdtype

	Tuple (item_dtype, shape) if this dtype describes a sub-array, and
None otherwise.

The shape is the fixed shape of the sub-array described by this
data type, and item_dtype the data type of the array.

If a field whose dtype object has this attribute is retrieved,
then the extra dimensions implied by shape are tacked on to
the end of the retrieved array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.newbyteorder

	
dtype.newbyteorder(new_order='S')

	Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

	Parameters:	new_order : string, optional

Byte order to force; a value from the byte order
specifications below. The default value (‘S’) results in
swapping the current byte order.
new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of
new_order for these alternatives. For example, any of ‘>’
or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

	Returns:	new_dtype : dtype

New dtype object with the given change to the byte order.

Notes

Changes are also made in all fields and sub-arrays of the data type.

Examples

>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> native_dt = np.dtype(native_code+'i2')
>>> swapped_dt = np.dtype(swapped_code+'i2')
>>> native_dt.newbyteorder('S') == swapped_dt
True
>>> native_dt.newbyteorder() == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder('S')
True
>>> native_dt == swapped_dt.newbyteorder('=')
True
>>> native_dt == swapped_dt.newbyteorder('N')
True
>>> native_dt == native_dt.newbyteorder('|')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('<')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('L')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('>')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('B')
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.type

	
dtype.type

	The type object used to instantiate a scalar of this data-type.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.kind

	
dtype.kind

	A character code (one of ‘biufcOSUV’) identifying the general kind of data.

	b
	boolean

	i
	signed integer

	u
	unsigned integer

	f
	floating-point

	c
	complex floating-point

	O
	object

	S
	(byte-)string

	U
	Unicode

	V
	void

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.char

	
dtype.char

	A unique character code for each of the 21 different built-in types.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.num

	
dtype.num

	A unique number for each of the 21 different built-in types.

These are roughly ordered from least-to-most precision.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.str

	
dtype.str

	The array-protocol typestring of this data-type object.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.name

	
dtype.name

	A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.itemsize

	
dtype.itemsize

	The element size of this data-type object.

For 18 of the 21 types this number is fixed by the data-type.
For the flexible data-types, this number can be anything.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.byteorder

	
dtype.byteorder

	A character indicating the byte-order of this data-type object.

One of:

	‘=’
	native

	‘<’
	little-endian

	‘>’
	big-endian

	‘|’
	not applicable

All built-in data-type objects have byteorder either ‘=’ or ‘|’.

Examples

>>> dt = np.dtype('i2')
>>> dt.byteorder
'='
>>> # endian is not relevant for 8 bit numbers
>>> np.dtype('i1').byteorder
'|'
>>> # or ASCII strings
>>> np.dtype('S2').byteorder
'|'
>>> # Even if specific code is given, and it is native
>>> # '=' is the byteorder
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> dt = np.dtype(native_code + 'i2')
>>> dt.byteorder
'='
>>> # Swapped code shows up as itself
>>> dt = np.dtype(swapped_code + 'i2')
>>> dt.byteorder == swapped_code
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.fields

	
dtype.fields

	Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields.
Each entry in the dictionary is a tuple fully describing the field:

(dtype, offset[, title])

If present, the optional title can be any object (if it is a string
or unicode then it will also be a key in the fields dictionary,
otherwise it’s meta-data). Notice also that the first two elements
of the tuple can be passed directly as arguments to the ndarray.getfield
and ndarray.setfield methods.

See also

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print dt.fields
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.names

	
dtype.names

	Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be
used, for example, to walk through all of the named fields in offset order.

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
('name', 'grades')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.subdtype

	
dtype.subdtype

	Tuple (item_dtype, shape) if this dtype describes a sub-array, and
None otherwise.

The shape is the fixed shape of the sub-array described by this
data type, and item_dtype the data type of the array.

If a field whose dtype object has this attribute is retrieved,
then the extra dimensions implied by shape are tacked on to
the end of the retrieved array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.shape

	
dtype.shape

	Shape tuple of the sub-array if this data type describes a sub-array,
and () otherwise.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.hasobject

	
dtype.hasobject

	Boolean indicating whether this dtype contains any reference-counted
objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing
the Python object is the memory address of that object (a pointer).
Special handling may be required, and this attribute is useful for
distinguishing data types that may contain arbitrary Python objects
and data-types that won’t.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.flags

	
dtype.flags

	Bit-flags describing how this data type is to be interpreted.

Bit-masks are in numpy.core.multiarray as the constants
ITEM_HASOBJECT, LIST_PICKLE, ITEM_IS_POINTER, NEEDS_INIT,
NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation
of these flags is in C-API documentation; they are largely useful
for user-defined data-types.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.isbuiltin

	
dtype.isbuiltin

	Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

	0
	if this is a structured array type, with fields

	1
	if this is a dtype compiled into numpy (such as ints, floats etc)

	2
	if the dtype is for a user-defined numpy type
A user-defined type uses the numpy C-API machinery to extend
numpy to handle a new array type. See
User-defined data-types in the Numpy manual.

Examples

>>> dt = np.dtype('i2')
>>> dt.isbuiltin
1
>>> dt = np.dtype('f8')
>>> dt.isbuiltin
1
>>> dt = np.dtype([('field1', 'f8')])
>>> dt.isbuiltin
0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.isnative

	
dtype.isnative

	Boolean indicating whether the byte order of this dtype is native
to the platform.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.descr

	
dtype.descr

	Array-interface compliant full description of the data-type.

The format is that required by the ‘descr’ key in the
__array_interface__ attribute.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.alignment

	
dtype.alignment

	The required alignment (bytes) of this data-type according to the compiler.

More information is available in the C-API section of the manual.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.newbyteorder

	
dtype.newbyteorder(new_order='S')

	Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

	Parameters:	new_order : string, optional

Byte order to force; a value from the byte order
specifications below. The default value (‘S’) results in
swapping the current byte order.
new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of
new_order for these alternatives. For example, any of ‘>’
or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

	Returns:	new_dtype : dtype

New dtype object with the given change to the byte order.

Notes

Changes are also made in all fields and sub-arrays of the data type.

Examples

>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> native_dt = np.dtype(native_code+'i2')
>>> swapped_dt = np.dtype(swapped_code+'i2')
>>> native_dt.newbyteorder('S') == swapped_dt
True
>>> native_dt.newbyteorder() == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder('S')
True
>>> native_dt == swapped_dt.newbyteorder('=')
True
>>> native_dt == swapped_dt.newbyteorder('N')
True
>>> native_dt == native_dt.newbyteorder('|')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('<')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('L')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('>')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('B')
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.__reduce__

	
dtype.__reduce__()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Data type objects (dtype)

numpy.dtype.__setstate__

	
dtype.__setstate__()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

Indexing

ndarrays can be indexed using the standard Python
x[obj] syntax, where x is the array and obj the selection.
There are three kinds of indexing available: record access, basic
slicing, advanced indexing. Which one occurs depends on obj.

Note

In Python, x[(exp1, exp2, ..., expN)] is equivalent to
x[exp1, exp2, ..., expN]; the latter is just syntactic sugar
for the former.

Basic Slicing and Indexing

Basic slicing extends Python’s basic concept of slicing to N
dimensions. Basic slicing occurs when obj is a slice [http://docs.python.org/dev/library/functions.html#slice] object
(constructed by start:stop:step notation inside of brackets), an
integer, or a tuple of slice objects and integers. Ellipsis
and newaxis objects can be interspersed with these as
well. In order to remain backward compatible with a common usage in
Numeric, basic slicing is also initiated if the selection object is
any non-ndarray sequence (such as a list [http://docs.python.org/dev/library/stdtypes.html#list]) containing slice [http://docs.python.org/dev/library/functions.html#slice]
objects, the Ellipsis object, or the newaxis object,
but not for integer arrays or other embedded sequences.

The simplest case of indexing with N integers returns an array
scalar representing the corresponding item. As in
Python, all indices are zero-based: for the i-th index [image: n_i],
the valid range is [image: 0 \le n_i < d_i] where [image: d_i] is the
i-th element of the shape of the array. Negative indices are
interpreted as counting from the end of the array (i.e., if
[image: n_i < 0], it means [image: n_i + d_i]).

All arrays generated by basic slicing are always views
of the original array.

The standard rules of sequence slicing apply to basic slicing on a
per-dimension basis (including using a step index). Some useful
concepts to remember include:

	The basic slice syntax is i:j:k where i is the starting index,
j is the stopping index, and k is the step ([image: k\neq0]).
This selects the m elements (in the corresponding dimension) with
index values i, i + k, ..., i + (m - 1) k where
[image: m = q + (r\neq0)] and q and r are the quotient and remainder
obtained by dividing j - i by k: j - i = q k + r, so that
i + (m - 1) k < j.

Example

>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x[1:7:2]
array([1, 3, 5])

	Negative i and j are interpreted as n + i and n + j where
n is the number of elements in the corresponding dimension.
Negative k makes stepping go towards smaller indices.

Example

>>> x[-2:10]
array([8, 9])
>>> x[-3:3:-1]
array([7, 6, 5, 4])

	Assume n is the number of elements in the dimension being
sliced. Then, if i is not given it defaults to 0 for k > 0 and
n - 1 for k < 0 . If j is not given it defaults to n for k > 0
and -1 for k < 0 . If k is not given it defaults to 1. Note that
:: is the same as : and means select all indices along this
axis.

Example

>>> x[5:]
array([5, 6, 7, 8, 9])

	If the number of objects in the selection tuple is less than
N , then : is assumed for any subsequent dimensions.

Example

>>> x = np.array([[[1],[2],[3]], [[4],[5],[6]]])
>>> x.shape
(2, 3, 1)
>>> x[1:2]
array([[[4],
 [5],
 [6]]])

	Ellipsis expand to the number of : objects needed to
make a selection tuple of the same length as x.ndim. There may
only be a single ellipsis present.

Example

>>> x[...,0]
array([[1, 2, 3],
 [4, 5, 6]])

	Each newaxis object in the selection tuple serves to expand
the dimensions of the resulting selection by one unit-length
dimension. The added dimension is the position of the newaxis
object in the selection tuple.

Example

>>> x[:,np.newaxis,:,:].shape
(2, 1, 3, 1)

	An integer, i, returns the same values as i:i+1
except the dimensionality of the returned object is reduced by
1. In particular, a selection tuple with the p-th
element an integer (and all other entries :) returns the
corresponding sub-array with dimension N - 1. If N = 1
then the returned object is an array scalar. These objects are
explained in Scalars.

	If the selection tuple has all entries : except the
p-th entry which is a slice object i:j:k,
then the returned array has dimension N formed by
concatenating the sub-arrays returned by integer indexing of
elements i, i+k, ..., i + (m - 1) k < j,

	Basic slicing with more than one non-: entry in the slicing
tuple, acts like repeated application of slicing using a single
non-: entry, where the non-: entries are successively taken
(with all other non-: entries replaced by :). Thus,
x[ind1,...,ind2,:] acts like x[ind1][...,ind2,:] under basic
slicing.

Warning

The above is not true for advanced indexing.

	You may use slicing to set values in the array, but (unlike lists) you
can never grow the array. The size of the value to be set in
x[obj] = value must be (broadcastable) to the same shape as
x[obj].

Note

Remember that a slicing tuple can always be constructed as obj
and used in the x[obj] notation. Slice objects can be used in
the construction in place of the [start:stop:step]
notation. For example, x[1:10:5,::-1] can also be implemented
as obj = (slice(1,10,5), slice(None,None,-1)); x[obj] . This
can be useful for constructing generic code that works on arrays
of arbitrary dimension.

	
numpy.newaxis

	The newaxis object can be used in all slicing operations to
create an axis of length one. :const: newaxis is an alias for
‘None’, and ‘None’ can be used in place of this with the same result.

Advanced Indexing

Advanced indexing is triggered when the selection object, obj, is a
non-tuple sequence object, an ndarray (of data type integer or bool),
or a tuple with at least one sequence object or ndarray (of data type
integer or bool). There are two types of advanced indexing: integer
and Boolean.

Advanced indexing always returns a copy of the data (contrast with
basic slicing that returns a view).

Warning

The definition of advanced indexing means that x[(1,2,3),] is
fundamentally different than x[(1,2,3)]. The latter is
equivalent to x[1,2,3] which will trigger basic selection while
the former will trigger advanced indexing. Be sure to understand
why this is occurs.

Also recognize that x[[1,2,3]] will trigger advanced indexing,
whereas x[[1,2,slice(None)]] will trigger basic slicing.

Integer array indexing

Integer array indexing allows selection of arbitrary items in the array
based on their N-dimensional index. Each integer array represents a number
of indexes into that dimension.

Purely integer array indexing

When the index consists of as many integer arrays as the array being indexed
has dimensions, the indexing is straight forward, but different from slicing.

Advanced indexes always are broadcast and
iterated as one:

result[i_1, ..., i_M] == x[ind_1[i_1, ..., i_M], ind_2[i_1, ..., i_M],
 ..., ind_N[i_1, ..., i_M]]

Note that the result shape is identical to the (broadcast) indexing array
shapes ind_1, ..., ind_N.

Example

From each row, a specific element should be selected. The row index is just
[0, 1, 2] and the column index specifies the element to choose for the
corresponding row, here [0, 1, 0]. Using both together the task
can be solved using advanced indexing:

>>> x = np.array([[1, 2], [3, 4], [5, 6]])
>>> x[[0, 1, 2], [0, 1, 0]]
array([1, 4, 5])

To achieve a behaviour similar to the basic slicing above, broadcasting can be
used. The function ix_ can help with this broadcasting. This is best
understood with an example.

Example

From a 4x3 array the corner elements should be selected using advanced
indexing. Thus all elements for which the column is one of [0, 2] and
the row is one of [0, 3] need to be selected. To use advanced indexing
one needs to select all elements explicitly. Using the method explained
previously one could write:

>>> x = array([[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8],
... [9, 10, 11]])
>>> rows = np.array([[0, 0],
... [3, 3]], dtype=np.intp)
>>> columns = np.array([[0, 2],
... [0, 2]], dtype=np.intp)
>>> x[rows, columns]
array([[0, 2],
 [9, 11]])

However, since the indexing arrays above just repeat themselves,
broadcasting can be used (compare operations such as
rows[:, np.newaxis] + columns) to simplify this:

>>> rows = np.array([0, 3], dtype=np.intp)
>>> columns = np.array([0, 2], dtype=np.intp)
>>> rows[:, np.newaxis]
array([[0],
 [3]])
>>> x[rows[:, np.newaxis], columns]
array([[0, 2],
 [9, 11]])

This broadcasting can also be achieved using the function ix_:

>>> x[np.ix_(rows, columns)]
array([[0, 2],
 [9, 11]])

Note that without the np.ix_ call, only the diagonal elements would
be selected, as was used in the previous example. This difference is the
most important thing to remember about indexing with multiple advanced
indexes.

Combining advanced and basic indexing

When there is at least one slice (:), ellipsis (...) or np.newaxis
in the index (or the array has more dimensions than there are advanced indexes),
then the behaviour can be more complicated. It is like concatenating the
indexing result for each advanced index element

In the simplest case, there is only a single advanced index. A single
advanced index can for example replace a slice and the result array will be
the same, however, it is a copy and may have a different memory layout.
A slice is preferable when it is possible.

Example

>>> x[1:2, 1:3]
array([[4, 5]])
>>> x[1:2, [1, 2]]
array([[4, 5]])

The easiest way to understand the situation may be to think in
terms of the result shape. There are two parts to the indexing operation,
the subspace defined by the basic indexing (excluding integers) and the
subspace from the advanced indexing part. Two cases of index combination
need to be distinguished:

	The advanced indexes are separated by a slice, ellipsis or newaxis.
For example x[arr1, :, arr2].

	The advanced indexes are all next to each other.
For example x[..., arr1, arr2, :] but not x[arr1, :, 1]
since 1 is an advanced index in this regard.

In the first case, the dimensions resulting from the advanced indexing
operation come first in the result array, and the subspace dimensions after
that.
In the second case, the dimensions from the advanced indexing operations
are inserted into the result array at the same spot as they were in the
initial array (the latter logic is what makes simple advanced indexing
behave just like slicing).

Example

Suppose x.shape is (10,20,30) and ind is a (2,3,4)-shaped
indexing intp array, then result = x[...,ind,:] has
shape (10,2,3,4,30) because the (20,)-shaped subspace has been
replaced with a (2,3,4)-shaped broadcasted indexing subspace. If
we let i, j, k loop over the (2,3,4)-shaped subspace then
result[...,i,j,k,:] = x[...,ind[i,j,k],:]. This example
produces the same result as x.take(ind, axis=-2).

Example

Let x.shape be (10,20,30,40,50) and suppose ind_1
and ind_2 can be broadcast to the shape (2,3,4). Then
x[:,ind_1,ind_2] has shape (10,2,3,4,40,50) because the
(20,30)-shaped subspace from X has been replaced with the
(2,3,4) subspace from the indices. However,
x[:,ind_1,:,ind_2] has shape (2,3,4,10,30,50) because there
is no unambiguous place to drop in the indexing subspace, thus
it is tacked-on to the beginning. It is always possible to use
.transpose() to move the subspace
anywhere desired. Note that this example cannot be replicated
using take.

Boolean array indexing

This advanced indexing occurs when obj is an array object of Boolean
type, such as may be returned from comparison operators. A single
boolean index array is practically identical to x[obj.nonzero()] where,
as described above, obj.nonzero() returns a
tuple (of length obj.ndim) of integer index
arrays showing the True elements of obj. However, it is
faster when obj.shape == x.shape.

If obj.ndim == x.ndim, x[obj] returns a 1-dimensional array
filled with the elements of x corresponding to the True
values of obj.
The search order will be C-style (last index varies the fastest). If
obj has True values at entries that are outside of the
bounds of x, then an index error will be raised. If obj is smaller
than x it is identical to filling it with False.

Example

A common use case for this is filtering for desired element values.
For example one may wish to select all entries from an array which
are not NaN:

>>> x = np.array([[1., 2.], [np.nan, 3.], [np.nan, np.nan]])
>>> x[~np.isnan(x)]
array([1., 2., 3.])

Or wish to add a constant to all negative elements:

>>> x = np.array([1., -1., -2., 3])
>>> x[x < 0] += 20
>>> x
array([1., 19., 18., 3.])

In general if an index includes a Boolean array, the result will be
identical to inserting obj.nonzero() into the same position
and using the integer array indexing mechanism described above.
x[ind_1, boolean_array, ind_2] is equivalent to
x[(ind_1,) + boolean_array.nonzero() + (ind_2,)].

If there is only one Boolean array and no integer indexing array present,
this is straight forward. Care must only be taken to make sure that the
boolean index has exactly as many dimensions as it is supposed to work
with.

Example

From an array, select all rows which sum up to less or equal two:

>>> x = np.array([[0, 1], [1, 1], [2, 2]])
>>> rowsum = x.sum(-1)
>>> x[rowsum <= 2, :]
array([[0, 1],
 [1, 1]])

But if rowsum would have two dimensions as well:

>>> rowsum = x.sum(-1, keepdims=True)
>>> rowsum.shape
(3, 1)
>>> x[rowsum <= 2, :] # fails
IndexError: too many indices
>>> x[rowsum <= 2]
array([0, 1])

The last one giving only the first elements because of the extra dimension.
Compare rowsum.nonzero() to understand this example.

Combining multiple Boolean indexing arrays or a Boolean with an integer
indexing array can best be understood with the
obj.nonzero() analogy. The function ix_
also supports boolean arrays and will work without any surprises.

Example

Use boolean indexing to select all rows adding up to an even
number. At the same time columns 0 and 2 should be selected with an
advanced integer index. Using the ix_ function this can be done
with:

>>> x = array([[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8],
... [9, 10, 11]])
>>> rows = (x.sum(-1) % 2) == 0
>>> rows
array([False, True, False, True], dtype=bool)
>>> columns = [0, 2]
>>> x[np.ix_(rows, columns)]
array([[3, 5],
 [9, 11]])

Without the np.ix_ call or only the diagonal elements would be
selected.

Or without np.ix_ (compare the integer array examples):

>>> rows = rows.nonzero()[0]
>>> x[rows[:, np.newaxis], columns]
array([[3, 5],
 [9, 11]])

Detailed notes

These are some detailed notes, which are not of importance for day to day
indexing (in no particular order):

	The native NumPy indexing type is intp and may differ from the
default integer array type. intp is the smallest data type
sufficient to safely index any array; for advanced indexing it may be
faster than other types.

	For advanced assignments, there is in general no guarantee for the
iteration order. This means that if an element is set more than once,
it is not possible to predict the final result.

	An empty (tuple) index is a full scalar index into a zero dimensional array.
x[()] returns a scalar if x is zero dimensional and a view
otherwise. On the other hand x[...] always returns a view.

	If a zero dimensional array is present in the index and it is a full
integer index the result will be a scalar and not a zero dimensional array.
(Advanced indexing is not triggered.)

	When an ellipsis (...) is present but has no size (i.e. replaces zero
:) the result will still always be an array. A view if no advanced index
is present, otherwise a copy.

	the nonzero equivalence for Boolean arrays does not hold for zero
dimensional boolean arrays.

	When the result of an advanced indexing operation has no elements but an
individual index is out of bounds, whether or not an IndexError is
raised is undefined (e.g. x[[], [123]] with 123 being out of bounds).

	When a casting error occurs during assignment (for example updating a
numerical array using a sequence of strings), the array being assigned
to may end up in an unpredictable partially updated state.
However, if any other error (such as an out of bounds index) occurs, the
array will remain unchanged.

	The memory layout of an advanced indexing result is optimized for each
indexing operation and no particular memory order can be assumed.

	When using a subclass (especially one which manipulates its shape), the
default ndarray.__setitem__ behaviour will call __getitem__ for
basic indexing but not for advanced indexing. For such a subclass it may
be preferable to call ndarray.__setitem__ with a base class ndarray
view on the data. This must be done if the subclasses __getitem__ does
not return views.

Record Access

See also

Data type objects (dtype), Scalars

If the ndarray object is a record array, i.e. its data type
is a record data type, the fields of the array
can be accessed by indexing the array with strings, dictionary-like.

Indexing x['field-name'] returns a new view to the array,
which is of the same shape as x (except when the field is a
sub-array) but of data type x.dtype['field-name'] and contains
only the part of the data in the specified field. Also record array
scalars can be “indexed” this way.

Indexing into a record array can also be done with a list of field names,
e.g. x[['field-name1','field-name2']]. Currently this returns a new
array containing a copy of the values in the fields specified in the list.
As of NumPy 1.7, returning a copy is being deprecated in favor of returning
a view. A copy will continue to be returned for now, but a FutureWarning
will be issued when writing to the copy. If you depend on the current
behavior, then we suggest copying the returned array explicitly, i.e. use
x[[‘field-name1’,’field-name2’]].copy(). This will work with both past and
future versions of NumPy.

If the accessed field is a sub-array, the dimensions of the sub-array
are appended to the shape of the result.

Example

>>> x = np.zeros((2,2), dtype=[('a', np.int32), ('b', np.float64, (3,3))])
>>> x['a'].shape
(2, 2)
>>> x['a'].dtype
dtype('int32')
>>> x['b'].shape
(2, 2, 3, 3)
>>> x['b'].dtype
dtype('float64')

Flat Iterator indexing

x.flat returns an iterator that will iterate
over the entire array (in C-contiguous style with the last index
varying the fastest). This iterator object can also be indexed using
basic slicing or advanced indexing as long as the selection object is
not a tuple. This should be clear from the fact that x.flat is a 1-dimensional view. It can be used for integer
indexing with 1-dimensional C-style-flat indices. The shape of any
returned array is therefore the shape of the integer indexing object.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

Iterating Over Arrays

The iterator object nditer, introduced in NumPy 1.6, provides
many flexible ways to visit all the elements of one or more arrays in
a systematic fashion. This page introduces some basic ways to use the
object for computations on arrays in Python, then concludes with how one
can accelerate the inner loop in Cython. Since the Python exposure of
nditer is a relatively straightforward mapping of the C array
iterator API, these ideas will also provide help working with array
iteration from C or C++.

Single Array Iteration

The most basic task that can be done with the nditer is to
visit every element of an array. Each element is provided one by one
using the standard Python iterator interface.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a):
... print x,
...
0 1 2 3 4 5

An important thing to be aware of for this iteration is that the order
is chosen to match the memory layout of the array instead of using a
standard C or Fortran ordering. This is done for access efficiency,
reflecting the idea that by default one simply wants to visit each element
without concern for a particular ordering. We can see this by iterating
over the transpose of our previous array, compared to taking a copy
of that transpose in C order.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a.T):
... print x,
...
0 1 2 3 4 5

>>> for x in np.nditer(a.T.copy(order='C')):
... print x,
...
0 3 1 4 2 5

The elements of both a and a.T get traversed in the same order,
namely the order they are stored in memory, whereas the elements of
a.T.copy(order=’C’) get visited in a different order because they
have been put into a different memory layout.

Controlling Iteration Order

There are times when it is important to visit the elements of an array
in a specific order, irrespective of the layout of the elements in memory.
The nditer object provides an order parameter to control this
aspect of iteration. The default, having the behavior described above,
is order=’K’ to keep the existing order. This can be overridden with
order=’C’ for C order and order=’F’ for Fortran order.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, order='F'):
... print x,
...
0 3 1 4 2 5
>>> for x in np.nditer(a.T, order='C'):
... print x,
...
0 3 1 4 2 5

Modifying Array Values

By default, the nditer treats the input array as a read-only
object. To modify the array elements, you must specify either read-write
or write-only mode. This is controlled with per-operand flags.

Regular assignment in Python simply changes a reference in the local or
global variable dictionary instead of modifying an existing variable in
place. This means that simply assigning to x will not place the value
into the element of the array, but rather switch x from being an array
element reference to being a reference to the value you assigned. To
actually modify the element of the array, x should be indexed with
the ellipsis.

Example

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],
 [3, 4, 5]])
>>> for x in np.nditer(a, op_flags=['readwrite']):
... x[...] = 2 * x
...
>>> a
array([[0, 2, 4],
 [6, 8, 10]])

Using an External Loop

In all the examples so far, the elements of a are provided by the
iterator one at a time, because all the looping logic is internal to the
iterator. While this is simple and convenient, it is not very efficient. A
better approach is to move the one-dimensional innermost loop into your
code, external to the iterator. This way, NumPy’s vectorized operations
can be used on larger chunks of the elements being visited.

The nditer will try to provide chunks that are
as large as possible to the inner loop. By forcing ‘C’ and ‘F’ order,
we get different external loop sizes. This mode is enabled by specifying
an iterator flag.

Observe that with the default of keeping native memory order, the
iterator is able to provide a single one-dimensional chunk, whereas
when forcing Fortran order, it has to provide three chunks of two
elements each.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop']):
... print x,
...
[0 1 2 3 4 5]

>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print x,
...
[0 3] [1 4] [2 5]

Tracking an Index or Multi-Index

During iteration, you may want to use the index of the current
element in a computation. For example, you may want to visit the
elements of an array in memory order, but use a C-order, Fortran-order,
or multidimensional index to look up values in a different array.

The Python iterator protocol doesn’t have a natural way to query these
additional values from the iterator, so we introduce an alternate syntax
for iterating with an nditer. This syntax explicitly works
with the iterator object itself, so its properties are readily accessible
during iteration. With this looping construct, the current value is
accessible by indexing into the iterator, and the index being tracked
is the property index or multi_index depending on what was requested.

The Python interactive interpreter unfortunately prints out the
values of expressions inside the while loop during each iteration of the
loop. We have modified the output in the examples using this looping
construct in order to be more readable.

Example

>>> a = np.arange(6).reshape(2,3)
>>> it = np.nditer(a, flags=['f_index'])
>>> while not it.finished:
... print "%d <%d>" % (it[0], it.index),
... it.iternext()
...
0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

>>> it = np.nditer(a, flags=['multi_index'])
>>> while not it.finished:
... print "%d <%s>" % (it[0], it.multi_index),
... it.iternext()
...
0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> it = np.nditer(a, flags=['multi_index'], op_flags=['writeonly'])
>>> while not it.finished:
... it[0] = it.multi_index[1] - it.multi_index[0]
... it.iternext()
...
>>> a
array([[0, 1, 2],
 [-1, 0, 1]])

Tracking an index or multi-index is incompatible with using an external
loop, because it requires a different index value per element. If
you try to combine these flags, the nditer object will
raise an exception

Example

>>> a = np.zeros((2,3))
>>> it = np.nditer(a, flags=['c_index', 'external_loop'])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: Iterator flag EXTERNAL_LOOP cannot be used if an index or multi-index is being tracked

Buffering the Array Elements

When forcing an iteration order, we observed that the external loop
option may provide the elements in smaller chunks because the elements
can’t be visited in the appropriate order with a constant stride.
When writing C code, this is generally fine, however in pure Python code
this can cause a significant reduction in performance.

By enabling buffering mode, the chunks provided by the iterator to
the inner loop can be made larger, significantly reducing the overhead
of the Python interpreter. In the example forcing Fortran iteration order,
the inner loop gets to see all the elements in one go when buffering
is enabled.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print x,
...
[0 3] [1 4] [2 5]

>>> for x in np.nditer(a, flags=['external_loop','buffered'], order='F'):
... print x,
...
[0 3 1 4 2 5]

Iterating as a Specific Data Type

There are times when it is necessary to treat an array as a different
data type than it is stored as. For instance, one may want to do all
computations on 64-bit floats, even if the arrays being manipulated
are 32-bit floats. Except when writing low-level C code, it’s generally
better to let the iterator handle the copying or buffering instead
of casting the data type yourself in the inner loop.

There are two mechanisms which allow this to be done, temporary copies
and buffering mode. With temporary copies, a copy of the entire array is
made with the new data type, then iteration is done in the copy. Write
access is permitted through a mode which updates the original array after
all the iteration is complete. The major drawback of temporary copies is
that the temporary copy may consume a large amount of memory, particularly
if the iteration data type has a larger itemsize than the original one.

Buffering mode mitigates the memory usage issue and is more cache-friendly
than making temporary copies. Except for special cases, where the whole
array is needed at once outside the iterator, buffering is recommended
over temporary copying. Within NumPy, buffering is used by the ufuncs and
other functions to support flexible inputs with minimal memory overhead.

In our examples, we will treat the input array with a complex data type,
so that we can take square roots of negative numbers. Without enabling
copies or buffering mode, the iterator will raise an exception if the
data type doesn’t match precisely.

Example

>>> a = np.arange(6).reshape(2,3) - 3
>>> for x in np.nditer(a, op_dtypes=['complex128']):
... print np.sqrt(x),
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Iterator operand required copying or buffering, but neither copying nor buffering was enabled

In copying mode, ‘copy’ is specified as a per-operand flag. This is
done to provide control in a per-operand fashion. Buffering mode is
specified as an iterator flag.

Example

>>> a = np.arange(6).reshape(2,3) - 3
>>> for x in np.nditer(a, op_flags=['readonly','copy'],
... op_dtypes=['complex128']):
... print np.sqrt(x),
...
1.73205080757j 1.41421356237j 1j 0j (1+0j) (1.41421356237+0j)

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['complex128']):
... print np.sqrt(x),
...
1.73205080757j 1.41421356237j 1j 0j (1+0j) (1.41421356237+0j)

The iterator uses NumPy’s casting rules to determine whether a specific
conversion is permitted. By default, it enforces ‘safe’ casting. This means,
for example, that it will raise an exception if you try to treat a
64-bit float array as a 32-bit float array. In many cases, the rule
‘same_kind’ is the most reasonable rule to use, since it will allow
conversion from 64 to 32-bit float, but not from float to int or from
complex to float.

Example

>>> a = np.arange(6.)
>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32']):
... print x,
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype('float32') according to the rule 'safe'

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32'],
... casting='same_kind'):
... print x,
...
0.0 1.0 2.0 3.0 4.0 5.0

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['int32'], casting='same_kind'):
... print x,
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype('int32') according to the rule 'same_kind'

One thing to watch out for is conversions back to the original data
type when using a read-write or write-only operand. A common case is
to implement the inner loop in terms of 64-bit floats, and use ‘same_kind’
casting to allow the other floating-point types to be processed as well.
While in read-only mode, an integer array could be provided, read-write
mode will raise an exception because conversion back to the array
would violate the casting rule.

Example

>>> a = np.arange(6)
>>> for x in np.nditer(a, flags=['buffered'], op_flags=['readwrite'],
... op_dtypes=['float64'], casting='same_kind'):
... x[...] = x / 2.0
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
TypeError: Iterator requested dtype could not be cast from dtype('float64') to dtype('int64'), the operand 0 dtype, according to the rule 'same_kind'

Broadcasting Array Iteration

NumPy has a set of rules for dealing with arrays that have differing
shapes which are applied whenever functions take multiple operands
which combine element-wise. This is called
broadcasting. The nditer
object can apply these rules for you when you need to write such a function.

As an example, we print out the result of broadcasting a one and
a two dimensional array together.

Example

>>> a = np.arange(3)
>>> b = np.arange(6).reshape(2,3)
>>> for x, y in np.nditer([a,b]):
... print "%d:%d" % (x,y),
...
0:0 1:1 2:2 0:3 1:4 2:5

When a broadcasting error occurs, the iterator raises an exception
which includes the input shapes to help diagnose the problem.

Example

>>> a = np.arange(2)
>>> b = np.arange(6).reshape(2,3)
>>> for x, y in np.nditer([a,b]):
... print "%d:%d" % (x,y),
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2) (2,3)

Iterator-Allocated Output Arrays

A common case in NumPy functions is to have outputs allocated based
on the broadcasting of the input, and additionally have an optional
parameter called ‘out’ where the result will be placed when it is
provided. The nditer object provides a convenient idiom that
makes it very easy to support this mechanism.

We’ll show how this works by creating a function square which squares
its input. Let’s start with a minimal function definition excluding ‘out’
parameter support.

Example

>>> def square(a):
... it = np.nditer([a, None])
... for x, y in it:
... y[...] = x*x
... return it.operands[1]
...
>>> square([1,2,3])
array([1, 4, 9])

By default, the nditer uses the flags ‘allocate’ and ‘writeonly’
for operands that are passed in as None. This means we were able to provide
just the two operands to the iterator, and it handled the rest.

When adding the ‘out’ parameter, we have to explicitly provide those flags,
because if someone passes in an array as ‘out’, the iterator will default
to ‘readonly’, and our inner loop would fail. The reason ‘readonly’ is
the default for input arrays is to prevent confusion about unintentionally
triggering a reduction operation. If the default were ‘readwrite’, any
broadcasting operation would also trigger a reduction, a topic
which is covered later in this document.

While we’re at it, let’s also introduce the ‘no_broadcast’ flag, which
will prevent the output from being broadcast. This is important, because
we only want one input value for each output. Aggregating more than one
input value is a reduction operation which requires special handling.
It would already raise an error because reductions must be explicitly
enabled in an iterator flag, but the error message that results from
disabling broadcasting is much more understandable for end-users.
To see how to generalize the square function to a reduction, look
at the sum of squares function in the section about Cython.

For completeness, we’ll also add the ‘external_loop’ and ‘buffered’
flags, as these are what you will typically want for performance
reasons.

Example

>>> def square(a, out=None):
... it = np.nditer([a, out],
... flags = ['external_loop', 'buffered'],
... op_flags = [['readonly'],
... ['writeonly', 'allocate', 'no_broadcast']])
... for x, y in it:
... y[...] = x*x
... return it.operands[1]
...

>>> square([1,2,3])
array([1, 4, 9])

>>> b = np.zeros((3,))
>>> square([1,2,3], out=b)
array([1., 4., 9.])
>>> b
array([1., 4., 9.])

>>> square(np.arange(6).reshape(2,3), out=b)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in square
ValueError: non-broadcastable output operand with shape (3) doesn't match the broadcast shape (2,3)

Outer Product Iteration

Any binary operation can be extended to an array operation in an outer
product fashion like in outer, and the nditer object
provides a way to accomplish this by explicitly mapping the axes of
the operands. It is also possible to do this with newaxis
indexing, but we will show you how to directly use the nditer op_axes
parameter to accomplish this with no intermediate views.

We’ll do a simple outer product, placing the dimensions of the first
operand before the dimensions of the second operand. The op_axes
parameter needs one list of axes for each operand, and provides a mapping
from the iterator’s axes to the axes of the operand.

Suppose the first operand is one dimensional and the second operand is
two dimensional. The iterator will have three dimensions, so op_axes
will have two 3-element lists. The first list picks out the one
axis of the first operand, and is -1 for the rest of the iterator axes,
with a final result of [0, -1, -1]. The second list picks out the two
axes of the second operand, but shouldn’t overlap with the axes picked
out in the first operand. Its list is [-1, 0, 1]. The output operand
maps onto the iterator axes in the standard manner, so we can provide
None instead of constructing another list.

The operation in the inner loop is a straightforward multiplication.
Everything to do with the outer product is handled by the iterator setup.

Example

>>> a = np.arange(3)
>>> b = np.arange(8).reshape(2,4)
>>> it = np.nditer([a, b, None], flags=['external_loop'],
... op_axes=[[0, -1, -1], [-1, 0, 1], None])
>>> for x, y, z in it:
... z[...] = x*y
...
>>> it.operands[2]
array([[[0, 0, 0, 0],
 [0, 0, 0, 0]],
 [[0, 1, 2, 3],
 [4, 5, 6, 7]],
 [[0, 2, 4, 6],
 [8, 10, 12, 14]]])

Reduction Iteration

Whenever a writeable operand has fewer elements than the full iteration space,
that operand is undergoing a reduction. The nditer object requires
that any reduction operand be flagged as read-write, and only allows
reductions when ‘reduce_ok’ is provided as an iterator flag.

For a simple example, consider taking the sum of all elements in an array.

Example

>>> a = np.arange(24).reshape(2,3,4)
>>> b = np.array(0)
>>> for x, y in np.nditer([a, b], flags=['reduce_ok', 'external_loop'],
... op_flags=[['readonly'], ['readwrite']]):
... y[...] += x
...
>>> b
array(276)
>>> np.sum(a)
276

Things are a little bit more tricky when combining reduction and allocated
operands. Before iteration is started, any reduction operand must be
initialized to its starting values. Here’s how we can do this, taking
sums along the last axis of a.

Example

>>> a = np.arange(24).reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok', 'external_loop'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, [0,1,-1]])
>>> it.operands[1][...] = 0
>>> for x, y in it:
... y[...] += x
...
>>> it.operands[1]
array([[6, 22, 38],
 [54, 70, 86]])
>>> np.sum(a, axis=2)
array([[6, 22, 38],
 [54, 70, 86]])

To do buffered reduction requires yet another adjustment during the
setup. Normally the iterator construction involves copying the first
buffer of data from the readable arrays into the buffer. Any reduction
operand is readable, so it may be read into a buffer. Unfortunately,
initialization of the operand after this buffering operation is complete
will not be reflected in the buffer that the iteration starts with, and
garbage results will be produced.

The iterator flag “delay_bufalloc” is there to allow
iterator-allocated reduction operands to exist together with buffering.
When this flag is set, the iterator will leave its buffers uninitialized
until it receives a reset, after which it will be ready for regular
iteration. Here’s how the previous example looks if we also enable
buffering.

Example

>>> a = np.arange(24).reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok', 'external_loop',
... 'buffered', 'delay_bufalloc'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, [0,1,-1]])
>>> it.operands[1][...] = 0
>>> it.reset()
>>> for x, y in it:
... y[...] += x
...
>>> it.operands[1]
array([[6, 22, 38],
 [54, 70, 86]])

Putting the Inner Loop in Cython

Those who want really good performance out of their low level operations
should strongly consider directly using the iteration API provided
in C, but for those who are not comfortable with C or C++, Cython
is a good middle ground with reasonable performance tradeoffs. For
the nditer object, this means letting the iterator take care
of broadcasting, dtype conversion, and buffering, while giving the inner
loop to Cython.

For our example, we’ll create a sum of squares function. To start,
let’s implement this function in straightforward Python. We want to
support an ‘axis’ parameter similar to the numpy sum function,
so we will need to construct a list for the op_axes parameter.
Here’s how this looks.

Example

>>> def axis_to_axeslist(axis, ndim):
... if axis is None:
... return [-1] * ndim
... else:
... if type(axis) is not tuple:
... axis = (axis,)
... axeslist = [1] * ndim
... for i in axis:
... axeslist[i] = -1
... ax = 0
... for i in range(ndim):
... if axeslist[i] != -1:
... axeslist[i] = ax
... ax += 1
... return axeslist
...
>>> def sum_squares_py(arr, axis=None, out=None):
... axeslist = axis_to_axeslist(axis, arr.ndim)
... it = np.nditer([arr, out], flags=['reduce_ok', 'external_loop',
... 'buffered', 'delay_bufalloc'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, axeslist],
... op_dtypes=['float64', 'float64'])
... it.operands[1][...] = 0
... it.reset()
... for x, y in it:
... y[...] += x*x
... return it.operands[1]
...
>>> a = np.arange(6).reshape(2,3)
>>> sum_squares_py(a)
array(55.0)
>>> sum_squares_py(a, axis=-1)
array([5., 50.])

To Cython-ize this function, we replace the inner loop (y[...] += x*x) with
Cython code that’s specialized for the float64 dtype. With the
‘external_loop’ flag enabled, the arrays provided to the inner loop will
always be one-dimensional, so very little checking needs to be done.

Here’s the listing of sum_squares.pyx:

import numpy as np
cimport numpy as np
cimport cython

def axis_to_axeslist(axis, ndim):
 if axis is None:
 return [-1] * ndim
 else:
 if type(axis) is not tuple:
 axis = (axis,)
 axeslist = [1] * ndim
 for i in axis:
 axeslist[i] = -1
 ax = 0
 for i in range(ndim):
 if axeslist[i] != -1:
 axeslist[i] = ax
 ax += 1
 return axeslist

@cython.boundscheck(False)
def sum_squares_cy(arr, axis=None, out=None):
 cdef np.ndarray[double] x
 cdef np.ndarray[double] y
 cdef int size
 cdef double value

 axeslist = axis_to_axeslist(axis, arr.ndim)
 it = np.nditer([arr, out], flags=['reduce_ok', 'external_loop',
 'buffered', 'delay_bufalloc'],
 op_flags=[['readonly'], ['readwrite', 'allocate']],
 op_axes=[None, axeslist],
 op_dtypes=['float64', 'float64'])
 it.operands[1][...] = 0
 it.reset()
 for xarr, yarr in it:
 x = xarr
 y = yarr
 size = x.shape[0]
 for i in range(size):
 value = x[i]
 y[i] = y[i] + value * value
 return it.operands[1]

On this machine, building the .pyx file into a module looked like the
following, but you may have to find some Cython tutorials to tell you
the specifics for your system configuration.:

$ cython sum_squares.pyx
$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -I/usr/include/python2.7 -fno-strict-aliasing -o sum_squares.so sum_squares.c

Running this from the Python interpreter produces the same answers
as our native Python/NumPy code did.

Example

>>> from sum_squares import sum_squares_cy
>>> a = np.arange(6).reshape(2,3)
>>> sum_squares_cy(a)
array(55.0)
>>> sum_squares_cy(a, axis=-1)
array([5., 50.])

Doing a little timing in IPython shows that the reduced overhead and
memory allocation of the Cython inner loop is providing a very nice
speedup over both the straightforward Python code and an expression
using NumPy’s built-in sum function.:

>>> a = np.random.rand(1000,1000)

>>> timeit sum_squares_py(a, axis=-1)
10 loops, best of 3: 37.1 ms per loop

>>> timeit np.sum(a*a, axis=-1)
10 loops, best of 3: 20.9 ms per loop

>>> timeit sum_squares_cy(a, axis=-1)
100 loops, best of 3: 11.8 ms per loop

>>> np.all(sum_squares_cy(a, axis=-1) == np.sum(a*a, axis=-1))
True

>>> np.all(sum_squares_py(a, axis=-1) == np.sum(a*a, axis=-1))
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

Standard array subclasses

The ndarray in NumPy is a “new-style” Python
built-in-type. Therefore, it can be inherited from (in Python or in C)
if desired. Therefore, it can form a foundation for many useful
classes. Often whether to sub-class the array object or to simply use
the core array component as an internal part of a new class is a
difficult decision, and can be simply a matter of choice. NumPy has
several tools for simplifying how your new object interacts with other
array objects, and so the choice may not be significant in the
end. One way to simplify the question is by asking yourself if the
object you are interested in can be replaced as a single array or does
it really require two or more arrays at its core.

Note that asarray always returns the base-class ndarray. If
you are confident that your use of the array object can handle any
subclass of an ndarray, then asanyarray can be used to allow
subclasses to propagate more cleanly through your subroutine. In
principal a subclass could redefine any aspect of the array and
therefore, under strict guidelines, asanyarray would rarely be
useful. However, most subclasses of the arrayobject will not
redefine certain aspects of the array object such as the buffer
interface, or the attributes of the array. One important example,
however, of why your subroutine may not be able to handle an arbitrary
subclass of an array is that matrices redefine the “*” operator to be
matrix-multiplication, rather than element-by-element multiplication.

Special attributes and methods

See also

Subclassing ndarray

Numpy provides several hooks that classes can customize:

	
class.__numpy_ufunc__(self, ufunc, method, i, inputs, **kwargs)

	
New in version 1.10.

Any class (ndarray subclass or not) can define this method to
override behavior of Numpy’s ufuncs. This works quite similarly to
Python’s __mul__ and other binary operation routines.

	ufunc is the ufunc object that was called.

	method is a string indicating which Ufunc method was called
(one of "__call__", "reduce", "reduceat",
"accumulate", "outer", "inner").

	i is the index of self in inputs.

	inputs is a tuple of the input arguments to the ufunc

	kwargs is a dictionary containing the optional input arguments
of the ufunc. The out argument is always contained in
kwargs, if given. See the discussion in Universal functions (ufunc) for
details.

The method should return either the result of the operation, or
NotImplemented [http://docs.python.org/dev/library/constants.html#NotImplemented] if the operation requested is not
implemented.

If one of the arguments has a __numpy_ufunc__ method, it is
executed instead of the ufunc. If more than one of the input
arguments implements __numpy_ufunc__, they are tried in the
order: subclasses before superclasses, otherwise left to right. The
first routine returning something else than NotImplemented [http://docs.python.org/dev/library/constants.html#NotImplemented]
determines the result. If all of the __numpy_ufunc__
operations return NotImplemented [http://docs.python.org/dev/library/constants.html#NotImplemented], a TypeError [http://docs.python.org/dev/library/exceptions.html#TypeError] is
raised.

If an ndarray subclass defines the __numpy_ufunc__
method, this disables the __array_wrap__,
__array_prepare__, __array_priority__ mechanism
described below.

Note

In addition to ufuncs, __numpy_ufunc__ also
overrides the behavior of numpy.dot even though it is
not an Ufunc.

Note

If you also define right-hand binary operator override
methods (such as __rmul__) or comparison operations (such as
__gt__) in your class, they take precedence over the
__numpy_ufunc__ mechanism when resolving results of
binary operations (such as ndarray_obj * your_obj).

The technical special case is: ndarray.__mul__ returns
NotImplemented if the other object is not a subclass of
ndarray, and defines both __numpy_ufunc__ and
__rmul__. Similar exception applies for the other operations
than multiplication.

In such a case, when computing a binary operation such as
ndarray_obj * your_obj, your __numpy_ufunc__ method
will not be called. Instead, the execution passes on to your
right-hand __rmul__ operation, as per standard Python
operator override rules.

Similar special case applies to in-place operations: If you
define __rmul__, then ndarray_obj *= your_obj will not
call your __numpy_ufunc__ implementation. Instead, the
default Python behavior ndarray_obj = ndarray_obj * your_obj
occurs.

Note that the above discussion applies only to Python’s builtin
binary operation mechanism. np.multiply(ndarray_obj,
your_obj) always calls only your __numpy_ufunc__, as
expected.

	
class.__array_finalize__(self)

	This method is called whenever the system internally allocates a
new array from obj, where obj is a subclass (subtype) of the
ndarray. It can be used to change attributes of self
after construction (so as to ensure a 2-d matrix for example), or
to update meta-information from the “parent.” Subclasses inherit
a default implementation of this method that does nothing.

	
class.__array_prepare__(array, context=None)

	At the beginning of every ufunc, this
method is called on the input object with the highest array
priority, or the output object if one was specified. The output
array is passed in and whatever is returned is passed to the ufunc.
Subclasses inherit a default implementation of this method which
simply returns the output array unmodified. Subclasses may opt to
use this method to transform the output array into an instance of
the subclass and update metadata before returning the array to the
ufunc for computation.

	
class.__array_wrap__(array, context=None)

	At the end of every ufunc, this method
is called on the input object with the highest array priority, or
the output object if one was specified. The ufunc-computed array
is passed in and whatever is returned is passed to the user.
Subclasses inherit a default implementation of this method, which
transforms the array into a new instance of the object’s class.
Subclasses may opt to use this method to transform the output array
into an instance of the subclass and update metadata before
returning the array to the user.

	
class.__array_priority__

	The value of this attribute is used to determine what type of
object to return in situations where there is more than one
possibility for the Python type of the returned object. Subclasses
inherit a default value of 1.0 for this attribute.

	
class.__array__([dtype])

	If a class (ndarray subclass or not) having the __array__
method is used as the output object of an ufunc, results will be written to the object
returned by __array__. Similar conversion is done on
input arrays.

Matrix objects

matrix objects inherit from the ndarray and therefore, they
have the same attributes and methods of ndarrays. There are six
important differences of matrix objects, however, that may lead to
unexpected results when you use matrices but expect them to act like
arrays:

	Matrix objects can be created using a string notation to allow
Matlab-style syntax where spaces separate columns and semicolons
(‘;’) separate rows.

	Matrix objects are always two-dimensional. This has far-reaching
implications, in that m.ravel() is still two-dimensional (with a 1
in the first dimension) and item selection returns two-dimensional
objects so that sequence behavior is fundamentally different than
arrays.

	Matrix objects over-ride multiplication to be
matrix-multiplication. Make sure you understand this for
functions that you may want to receive matrices. Especially in
light of the fact that asanyarray(m) returns a matrix when m is
a matrix.

	Matrix objects over-ride power to be matrix raised to a power. The
same warning about using power inside a function that uses
asanyarray(...) to get an array object holds for this fact.

	The default __array_priority__ of matrix objects is 10.0, and
therefore mixed operations with ndarrays always produce matrices.

	Matrices have special attributes which make calculations easier.
These are

	matrix.T
	Returns the transpose of the matrix.

	matrix.H
	Returns the (complex) conjugate transpose of self.

	matrix.I
	Returns the (multiplicative) inverse of invertible self.

	matrix.A
	Return self as an ndarray object.

Warning

Matrix objects over-ride multiplication, ‘*’, and power, ‘**’, to
be matrix-multiplication and matrix power, respectively. If your
subroutine can accept sub-classes and you do not convert to base-
class arrays, then you must use the ufuncs multiply and power to
be sure that you are performing the correct operation for all
inputs.

The matrix class is a Python subclass of the ndarray and can be used
as a reference for how to construct your own subclass of the ndarray.
Matrices can be created from other matrices, strings, and anything
else that can be converted to an ndarray . The name “mat “is an
alias for “matrix “in NumPy.

	matrix
	Returns a matrix from an array-like object, or from a string of data.

	asmatrix(data[,dtype])
	Interpret the input as a matrix.

	bmat(obj[,ldict,gdict])
	Build a matrix object from a string, nested sequence, or array.

Example 1: Matrix creation from a string

>>> a=mat('1 2 3; 4 5 3')
>>> print (a*a.T).I
[[0.2924 -0.1345]
 [-0.1345 0.0819]]

Example 2: Matrix creation from nested sequence

>>> mat([[1,5,10],[1.0,3,4j]])
matrix([[1.+0.j, 5.+0.j, 10.+0.j],
 [1.+0.j, 3.+0.j, 0.+4.j]])

Example 3: Matrix creation from an array

>>> mat(random.rand(3,3)).T
matrix([[0.7699, 0.7922, 0.3294],
 [0.2792, 0.0101, 0.9219],
 [0.3398, 0.7571, 0.8197]])

Memory-mapped file arrays

Memory-mapped files are useful for reading and/or modifying small
segments of a large file with regular layout, without reading the
entire file into memory. A simple subclass of the ndarray uses a
memory-mapped file for the data buffer of the array. For small files,
the over-head of reading the entire file into memory is typically not
significant, however for large files using memory mapping can save
considerable resources.

Memory-mapped-file arrays have one additional method (besides those
they inherit from the ndarray): .flush() which
must be called manually by the user to ensure that any changes to the
array actually get written to disk.

	memmap
	Create a memory-map to an array stored in a binary file on disk.

	memmap.flush()
	Write any changes in the array to the file on disk.

Example:

>>> a = memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
>>> a[10] = 10.0
>>> a[30] = 30.0
>>> del a
>>> b = fromfile('newfile.dat', dtype=float)
>>> print b[10], b[30]
10.0 30.0
>>> a = memmap('newfile.dat', dtype=float)
>>> print a[10], a[30]
10.0 30.0

Character arrays (numpy.char)

See also

Creating character arrays (numpy.char)

Note

The chararray class exists for backwards compatibility with
Numarray, it is not recommended for new development. Starting from numpy
1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions
in the numpy.char module for fast vectorized string operations.

These are enhanced arrays of either string_ type or
unicode_ type. These arrays inherit from the
ndarray, but specially-define the operations +, *,
and % on a (broadcasting) element-by-element basis. These
operations are not available on the standard ndarray of
character type. In addition, the chararray has all of the
standard string [http://docs.python.org/dev/library/stdtypes.html#str] (and unicode) methods,
executing them on an element-by-element basis. Perhaps the easiest
way to create a chararray is to use self.view(chararray) where self is an ndarray of str or unicode
data-type. However, a chararray can also be created using the
numpy.chararray constructor, or via the
numpy.char.array function:

	chararray
	Provides a convenient view on arrays of string and unicode values.

	core.defchararray.array(obj[,itemsize,...])
	Create a chararray.

Another difference with the standard ndarray of str data-type is
that the chararray inherits the feature introduced by Numarray that
white-space at the end of any element in the array will be ignored
on item retrieval and comparison operations.

Record arrays (numpy.rec)

See also

Creating record arrays (numpy.rec), Data type routines,
Data type objects (dtype).

Numpy provides the recarray class which allows accessing the
fields of a record/structured array as attributes, and a corresponding
scalar data type object record.

	recarray
	Construct an ndarray that allows field access using attributes.

	record
	A data-type scalar that allows field access as attribute lookup.

Masked arrays (numpy.ma)

See also

Masked arrays

Standard container class

For backward compatibility and as a standard “container “class, the
UserArray from Numeric has been brought over to NumPy and named
numpy.lib.user_array.container The container class is a
Python class whose self.array attribute is an ndarray. Multiple
inheritance is probably easier with numpy.lib.user_array.container
than with the ndarray itself and so it is included by default. It is
not documented here beyond mentioning its existence because you are
encouraged to use the ndarray class directly if you can.

	numpy.lib.user_array.container(data[,...])
	Methods

Array Iterators

Iterators are a powerful concept for array processing. Essentially,
iterators implement a generalized for-loop. If myiter is an iterator
object, then the Python code:

for val in myiter:
 ...
 some code involving val
 ...

calls val = myiter.next() repeatedly until StopIteration [http://docs.python.org/dev/library/exceptions.html#StopIteration] is
raised by the iterator. There are several ways to iterate over an
array that may be useful: default iteration, flat iteration, and
[image: N]-dimensional enumeration.

Default iteration

The default iterator of an ndarray object is the default Python
iterator of a sequence type. Thus, when the array object itself is
used as an iterator. The default behavior is equivalent to:

for i in range(arr.shape[0]):
 val = arr[i]

This default iterator selects a sub-array of dimension [image: N-1]
from the array. This can be a useful construct for defining recursive
algorithms. To loop over the entire array requires [image: N] for-loops.

>>> a = arange(24).reshape(3,2,4)+10
>>> for val in a:
... print 'item:', val
item: [[10 11 12 13]
 [14 15 16 17]]
item: [[18 19 20 21]
 [22 23 24 25]]
item: [[26 27 28 29]
 [30 31 32 33]]

Flat iteration

	ndarray.flat
	A 1-D iterator over the array.

As mentioned previously, the flat attribute of ndarray objects returns
an iterator that will cycle over the entire array in C-style
contiguous order.

>>> for i, val in enumerate(a.flat):
... if i%5 == 0: print i, val
0 10
5 15
10 20
15 25
20 30

Here, I’ve used the built-in enumerate iterator to return the iterator
index as well as the value.

N-dimensional enumeration

	ndenumerate(arr)
	Multidimensional index iterator.

Sometimes it may be useful to get the N-dimensional index while
iterating. The ndenumerate iterator can achieve this.

>>> for i, val in ndenumerate(a):
... if sum(i)%5 == 0: print i, val
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
(2, 1, 2) 32

Iterator for broadcasting

	broadcast
	Produce an object that mimics broadcasting.

The general concept of broadcasting is also available from Python
using the broadcast iterator. This object takes [image: N]
objects as inputs and returns an iterator that returns tuples
providing each of the input sequence elements in the broadcasted
result.

>>> for val in broadcast([[1,0],[2,3]],[0,1]):
... print val
(1, 0)
(0, 1)
(2, 0)
(3, 1)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.T

	
matrix.T

	Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use .H.

	Parameters:	None

	Returns:	ret : matrix object

The (non-conjugated) transpose of the matrix.

See also

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],
 [3, 4]])
>>> m.getT()
matrix([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.H

	
matrix.H

	Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose(self) if self is real-valued.

	Parameters:	None

	Returns:	ret : matrix object

complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],
 [4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
 [8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])
>>> z.getH()
matrix([[0. +0.j, 4. +4.j, 8. +8.j],
 [1. +1.j, 5. +5.j, 9. +9.j],
 [2. +2.j, 6. +6.j, 10.+10.j],
 [3. +3.j, 7. +7.j, 11.+11.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.I

	
matrix.I

	Returns the (multiplicative) inverse of invertible self.

	Parameters:	None

	Returns:	ret : matrix object

If self is non-singular, ret is such that ret * self ==
self * ret == np.matrix(np.eye(self[0,:].size) all return
True.

	Raises:	numpy.linalg.LinAlgError: Singular matrix

If self is singular.

See also

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],
 [3, 4]])
>>> m.getI()
matrix([[-2. , 1.],
 [1.5, -0.5]])
>>> m.getI() * m
matrix([[1., 0.],
 [0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.A

	
matrix.A

	Return self as an ndarray object.

Equivalent to np.asarray(self).

	Parameters:	None

	Returns:	ret : ndarray

self as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.getA()
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

numpy.matrix

	
class numpy.matrix[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L206]

	Returns a matrix from an array-like object, or from a string of data.
A matrix is a specialized 2-D array that retains its 2-D nature
through operations. It has certain special operators, such as *
(matrix multiplication) and ** (matrix power).

	Parameters:	data : array_like or string

If data is a string, it is interpreted as a matrix with commas
or spaces separating columns, and semicolons separating rows.

dtype : data-type

Data-type of the output matrix.

copy : bool

If data is already an ndarray, then this flag determines
whether the data is copied (the default), or whether a view is
constructed.

See also

array

Examples

>>> a = np.matrix('1 2; 3 4')
>>> print a
[[1 2]
 [3 4]]

>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],
 [3, 4]])

Attributes

	A
	Return self as an ndarray object.

	A1
	Return self as a flattened ndarray.

	H
	Returns the (complex) conjugate transpose of self.

	I
	Returns the (multiplicative) inverse of invertible self.

	T
	Returns the transpose of the matrix.

	base
	Base object if memory is from some other object.

	ctypes
	An object to simplify the interaction of the array with the ctypes module.

	data
	Python buffer object pointing to the start of the array’s data.

	dtype
	Data-type of the array’s elements.

	flags
	Information about the memory layout of the array.

	flat
	A 1-D iterator over the array.

	imag
	The imaginary part of the array.

	itemsize
	Length of one array element in bytes.

	nbytes
	Total bytes consumed by the elements of the array.

	ndim
	Number of array dimensions.

	real
	The real part of the array.

	shape
	Tuple of array dimensions.

	size
	Number of elements in the array.

	strides
	Tuple of bytes to step in each dimension when traversing an array.

Methods

	all([axis,out])
	Test whether all matrix elements along a given axis evaluate to True.

	any([axis,out])
	Test whether any array element along a given axis evaluates to True.

	argmax([axis,out])
	Indices of the maximum values along an axis.

	argmin([axis,out])
	Return the indices of the minimum values along an axis.

	argpartition(kth[,axis,kind,order])
	Returns the indices that would partition this array.

	argsort([axis,kind,order])
	Returns the indices that would sort this array.

	astype(dtype[,order,casting,subok,copy])
	Copy of the array, cast to a specified type.

	byteswap(inplace)
	Swap the bytes of the array elements

	choose(choices[,out,mode])
	Use an index array to construct a new array from a set of choices.

	clip(a_min,a_max[,out])
	Return an array whose values are limited to [a_min, a_max].

	compress(condition[,axis,out])
	Return selected slices of this array along given axis.

	conj()
	Complex-conjugate all elements.

	conjugate()
	Return the complex conjugate, element-wise.

	copy([order])
	Return a copy of the array.

	cumprod([axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	cumsum([axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	diagonal([offset,axis1,axis2])
	Return specified diagonals.

	dot(b[,out])
	Dot product of two arrays.

	dump(file)
	Dump a pickle of the array to the specified file.

	dumps()
	Returns the pickle of the array as a string.

	fill(value)
	Fill the array with a scalar value.

	flatten([order])
	Return a copy of the array collapsed into one dimension.

	getA()
	Return self as an ndarray object.

	getA1()
	Return self as a flattened ndarray.

	getH()
	Returns the (complex) conjugate transpose of self.

	getI()
	Returns the (multiplicative) inverse of invertible self.

	getT()
	Returns the transpose of the matrix.

	getfield(dtype[,offset])
	Returns a field of the given array as a certain type.

	item(*args)
	Copy an element of an array to a standard Python scalar and return it.

	itemset(*args)
	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

	max([axis,out])
	Return the maximum value along an axis.

	mean([axis,dtype,out])
	Returns the average of the matrix elements along the given axis.

	min([axis,out])
	Return the minimum value along an axis.

	newbyteorder([new_order])
	Return the array with the same data viewed with a different byte order.

	nonzero()
	Return the indices of the elements that are non-zero.

	partition(kth[,axis,kind,order])
	Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.

	prod([axis,dtype,out])
	Return the product of the array elements over the given axis.

	ptp([axis,out])
	Peak-to-peak (maximum - minimum) value along the given axis.

	put(indices,values[,mode])
	Set a.flat[n] = values[n] for all n in indices.

	ravel([order])
	Return a flattened array.

	repeat(repeats[,axis])
	Repeat elements of an array.

	reshape(shape[,order])
	Returns an array containing the same data with a new shape.

	resize(new_shape[,refcheck])
	Change shape and size of array in-place.

	round([decimals,out])
	Return a with each element rounded to the given number of decimals.

	searchsorted(v[,side,sorter])
	Find indices where elements of v should be inserted in a to maintain order.

	setfield(val,dtype[,offset])
	Put a value into a specified place in a field defined by a data-type.

	setflags([write,align,uic])
	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

	sort([axis,kind,order])
	Sort an array, in-place.

	squeeze([axis])
	Remove single-dimensional entries from the shape of a.

	std([axis,dtype,out,ddof])
	Return the standard deviation of the array elements along the given axis.

	sum([axis,dtype,out])
	Returns the sum of the matrix elements, along the given axis.

	swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	take(indices[,axis,out,mode])
	Return an array formed from the elements of a at the given indices.

	tobytes([order])
	Construct Python bytes containing the raw data bytes in the array.

	tofile(fid[,sep,format])
	Write array to a file as text or binary (default).

	tolist()
	Return the matrix as a (possibly nested) list.

	tostring([order])
	Construct Python bytes containing the raw data bytes in the array.

	trace([offset,axis1,axis2,dtype,out])
	Return the sum along diagonals of the array.

	transpose(*axes)
	Returns a view of the array with axes transposed.

	var([axis,dtype,out,ddof])
	Returns the variance of the matrix elements, along the given axis.

	view([dtype,type])
	New view of array with the same data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.A

	
matrix.A

	Return self as an ndarray object.

Equivalent to np.asarray(self).

	Parameters:	None

	Returns:	ret : ndarray

self as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.getA()
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.A1

	
matrix.A1

	Return self as a flattened ndarray.

Equivalent to np.asarray(x).ravel()

	Parameters:	None

	Returns:	ret : ndarray

self, 1-D, as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.getA1()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.H

	
matrix.H

	Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose(self) if self is real-valued.

	Parameters:	None

	Returns:	ret : matrix object

complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],
 [4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
 [8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])
>>> z.getH()
matrix([[0. +0.j, 4. +4.j, 8. +8.j],
 [1. +1.j, 5. +5.j, 9. +9.j],
 [2. +2.j, 6. +6.j, 10.+10.j],
 [3. +3.j, 7. +7.j, 11.+11.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.I

	
matrix.I

	Returns the (multiplicative) inverse of invertible self.

	Parameters:	None

	Returns:	ret : matrix object

If self is non-singular, ret is such that ret * self ==
self * ret == np.matrix(np.eye(self[0,:].size) all return
True.

	Raises:	numpy.linalg.LinAlgError: Singular matrix

If self is singular.

See also

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],
 [3, 4]])
>>> m.getI()
matrix([[-2. , 1.],
 [1.5, -0.5]])
>>> m.getI() * m
matrix([[1., 0.],
 [0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.T

	
matrix.T

	Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use .H.

	Parameters:	None

	Returns:	ret : matrix object

The (non-conjugated) transpose of the matrix.

See also

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],
 [3, 4]])
>>> m.getT()
matrix([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.base

	
matrix.base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.ctypes

	
matrix.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters:	None

	Returns:	c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.data

	
matrix.data

	Python buffer object pointing to the start of the array’s data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.dtype

	
matrix.dtype

	Data-type of the array’s elements.

	Parameters:	None

	Returns:	d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.flags

	
matrix.flags

	Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	UPDATEIFCOPY (U)
	This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.flat

	
matrix.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.imag

	
matrix.imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.itemsize

	
matrix.itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.nbytes

	
matrix.nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.ndim

	
matrix.ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.real

	
matrix.real

	The real part of the array.

See also

	numpy.real

	equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.shape

	
matrix.shape

	Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.size

	
matrix.size

	Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.strides

	
matrix.strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.all

	
matrix.all(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L615]

	Test whether all matrix elements along a given axis evaluate to True.

	Parameters:	See `numpy.all` for complete descriptions

See also

numpy.all

Notes

This is the same as ndarray.all, but it returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> y = x[0]; y
matrix([[0, 1, 2, 3]])
>>> (x == y)
matrix([[True, True, True, True],
 [False, False, False, False],
 [False, False, False, False]], dtype=bool)
>>> (x == y).all()
False
>>> (x == y).all(0)
matrix([[False, False, False, False]], dtype=bool)
>>> (x == y).all(1)
matrix([[True],
 [False],
 [False]], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.any

	
matrix.any(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L592]

	Test whether any array element along a given axis evaluates to True.

Refer to numpy.any for full documentation.

	Parameters:	axis : int, optional

Axis along which logical OR is performed

out : ndarray, optional

Output to existing array instead of creating new one, must have
same shape as expected output

	Returns:	any : bool, ndarray

Returns a single bool if axis is None; otherwise,
returns ndarray

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.argmax

	
matrix.argmax(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L690]

	Indices of the maximum values along an axis.

	Parameters:	See `numpy.argmax` for complete descriptions

See also

numpy.argmax

Notes

This is the same as ndarray.argmax, but returns a matrix object
where ndarray.argmax would return an ndarray.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.argmax()
11
>>> x.argmax(0)
matrix([[2, 2, 2, 2]])
>>> x.argmax(1)
matrix([[3],
 [3],
 [3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.argmin

	
matrix.argmin(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L760]

	Return the indices of the minimum values along an axis.

	Parameters:	See `numpy.argmin` for complete descriptions.

See also

numpy.argmin

Notes

This is the same as ndarray.argmin, but returns a matrix object
where ndarray.argmin would return an ndarray.

Examples

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, -1, -2, -3],
 [-4, -5, -6, -7],
 [-8, -9, -10, -11]])
>>> x.argmin()
11
>>> x.argmin(0)
matrix([[2, 2, 2, 2]])
>>> x.argmin(1)
matrix([[3],
 [3],
 [3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.argpartition

	
matrix.argpartition(kth, axis=-1, kind='introselect', order=None)

	Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

	numpy.argpartition

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.argsort

	
matrix.argsort(axis=-1, kind='quicksort', order=None)

	Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

	numpy.argsort

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.astype

	
matrix.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	Parameters:	dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	Returns:	arr_t : ndarray

Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input paramter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

	Raises:	ComplexWarning

When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in ‘safe’ casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.byteswap

	
matrix.byteswap(inplace)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

	Parameters:	inplace : bool, optional

If True, swap bytes in-place, default is False.

	Returns:	out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.choose

	
matrix.choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

	numpy.choose

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.clip

	
matrix.clip(a_min, a_max, out=None)

	Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

	numpy.clip

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.compress

	
matrix.compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

	numpy.compress

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.conj

	
matrix.conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.conjugate

	
matrix.conjugate()

	Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.copy

	
matrix.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.cumprod

	
matrix.cumprod(axis=None, dtype=None, out=None)

	Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

	numpy.cumprod

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.cumsum

	
matrix.cumsum(axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

	numpy.cumsum

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.diagonal

	
matrix.diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

	numpy.diagonal

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.dot

	
matrix.dot(b, out=None)

	Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

	numpy.dot

	equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.dump

	
matrix.dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	Parameters:	file : str

A string naming the dump file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.dumps

	
matrix.dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

	Parameters:	None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.fill

	
matrix.fill(value)

	Fill the array with a scalar value.

	Parameters:	value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.flatten

	
matrix.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.getA

	
matrix.getA()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L872]

	Return self as an ndarray object.

Equivalent to np.asarray(self).

	Parameters:	None

	Returns:	ret : ndarray

self as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.getA()
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.getA1

	
matrix.getA1()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L901]

	Return self as a flattened ndarray.

Equivalent to np.asarray(x).ravel()

	Parameters:	None

	Returns:	ret : ndarray

self, 1-D, as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.getA1()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.getH

	
matrix.getH()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L960]

	Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose(self) if self is real-valued.

	Parameters:	None

	Returns:	ret : matrix object

complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],
 [4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
 [8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])
>>> z.getH()
matrix([[0. +0.j, 4. +4.j, 8. +8.j],
 [1. +1.j, 5. +5.j, 9. +9.j],
 [2. +2.j, 6. +6.j, 10.+10.j],
 [3. +3.j, 7. +7.j, 11.+11.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.getI

	
matrix.getI()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L828]

	Returns the (multiplicative) inverse of invertible self.

	Parameters:	None

	Returns:	ret : matrix object

If self is non-singular, ret is such that ret * self ==
self * ret == np.matrix(np.eye(self[0,:].size) all return
True.

	Raises:	numpy.linalg.LinAlgError: Singular matrix

If self is singular.

See also

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],
 [3, 4]])
>>> m.getI()
matrix([[-2. , 1.],
 [1.5, -0.5]])
>>> m.getI() * m
matrix([[1., 0.],
 [0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.getT

	
matrix.getT()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L928]

	Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use .H.

	Parameters:	None

	Returns:	ret : matrix object

The (non-conjugated) transpose of the matrix.

See also

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],
 [3, 4]])
>>> m.getT()
matrix([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.getfield

	
matrix.getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

	Parameters:	dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.item

	
matrix.item(*args)

	Copy an element of an array to a standard Python scalar and return it.

	Parameters:	*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	Returns:	z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.itemset

	
matrix.itemset(*args)

	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

	Parameters:	*args : Arguments

If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.max

	
matrix.max(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L655]

	Return the maximum value along an axis.

	Parameters:	See `amax` for complete descriptions

See also

amax, ndarray.max

Notes

This is the same as ndarray.max, but returns a matrix object
where ndarray.max would return an ndarray.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.max()
11
>>> x.max(0)
matrix([[8, 9, 10, 11]])
>>> x.max(1)
matrix([[3],
 [7],
 [11]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.mean

	
matrix.mean(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L457]

	Returns the average of the matrix elements along the given axis.

Refer to numpy.mean for full documentation.

See also

numpy.mean

Notes

Same as ndarray.mean except that, where that returns an ndarray,
this returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.mean()
5.5
>>> x.mean(0)
matrix([[4., 5., 6., 7.]])
>>> x.mean(1)
matrix([[1.5],
 [5.5],
 [9.5]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.min

	
matrix.min(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L725]

	Return the minimum value along an axis.

	Parameters:	See `amin` for complete descriptions.

See also

amin, ndarray.min

Notes

This is the same as ndarray.min, but returns a matrix object
where ndarray.min would return an ndarray.

Examples

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, -1, -2, -3],
 [-4, -5, -6, -7],
 [-8, -9, -10, -11]])
>>> x.min()
-11
>>> x.min(0)
matrix([[-8, -9, -10, -11]])
>>> x.min(1)
matrix([[-3],
 [-7],
 [-11]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.newbyteorder

	
matrix.newbyteorder(new_order='S')

	Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

	Parameters:	new_order : string, optional

Byte order to force; a value from the byte order specifications
above. new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

	Returns:	new_arr : array

New array object with the dtype reflecting given change to the
byte order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.nonzero

	
matrix.nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

	numpy.nonzero

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.partition

	
matrix.partition(kth, axis=-1, kind='introselect', order=None)

	Rearranges the elements in the array in such a way that value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

	Parameters:	kth : int or sequence of ints

Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.partition

	Return a parititioned copy of an array.

	argpartition

	Indirect partition.

	sort

	Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.prod

	
matrix.prod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L559]

	Return the product of the array elements over the given axis.

Refer to prod for full documentation.

See also

prod, ndarray.prod

Notes

Same as ndarray.prod, except, where that returns an ndarray, this
returns a matrix object instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.prod()
0
>>> x.prod(0)
matrix([[0, 45, 120, 231]])
>>> x.prod(1)
matrix([[0],
 [840],
 [7920]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.ptp

	
matrix.ptp(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L795]

	Peak-to-peak (maximum - minimum) value along the given axis.

Refer to numpy.ptp for full documentation.

See also

numpy.ptp

Notes

Same as ndarray.ptp, except, where that would return an ndarray object,
this returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.ptp()
11
>>> x.ptp(0)
matrix([[8, 8, 8, 8]])
>>> x.ptp(1)
matrix([[3],
 [3],
 [3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.put

	
matrix.put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

	numpy.put

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.ravel

	
matrix.ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

	numpy.ravel

	equivalent function

	ndarray.flat

	a flat iterator on the array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.repeat

	
matrix.repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.reshape

	
matrix.reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

	numpy.reshape

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.resize

	
matrix.resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

	Parameters:	new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

	Returns:	None

	Raises:	ValueError

If a does not own its own data or references or views to it exist,
and the data memory must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See also

	resize

	Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.round

	
matrix.round(decimals=0, out=None)

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

	numpy.around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.searchsorted

	
matrix.searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

	numpy.searchsorted

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.setfield

	
matrix.setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset
bytes into the field.

	Parameters:	val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

	Returns:	None

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
 [1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
 [1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.setflags

	
matrix.setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)

	Parameters:	write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.sort

	
matrix.sort(axis=-1, kind='quicksort', order=None)

	Sort an array, in-place.

	Parameters:	axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.sort

	Return a sorted copy of an array.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in sorted array.

	partition

	Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.squeeze

	
matrix.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.std

	
matrix.std(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L491]

	Return the standard deviation of the array elements along the given axis.

Refer to numpy.std for full documentation.

See also

numpy.std

Notes

This is the same as ndarray.std, except that where an ndarray would
be returned, a matrix object is returned instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.std()
3.4520525295346629
>>> x.std(0)
matrix([[3.26598632, 3.26598632, 3.26598632, 3.26598632]])
>>> x.std(1)
matrix([[1.11803399],
 [1.11803399],
 [1.11803399]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.sum

	
matrix.sum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L423]

	Returns the sum of the matrix elements, along the given axis.

Refer to numpy.sum for full documentation.

See also

numpy.sum

Notes

This is the same as ndarray.sum, except that where an ndarray would
be returned, a matrix object is returned instead.

Examples

>>> x = np.matrix([[1, 2], [4, 3]])
>>> x.sum()
10
>>> x.sum(axis=1)
matrix([[3],
 [7]])
>>> x.sum(axis=1, dtype='float')
matrix([[3.],
 [7.]])
>>> out = np.zeros((1, 2), dtype='float')
>>> x.sum(axis=1, dtype='float', out=out)
matrix([[3.],
 [7.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.swapaxes

	
matrix.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.take

	
matrix.take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

	numpy.take

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.tobytes

	
matrix.tobytes(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

New in version 1.9.0.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.tofile

	
matrix.tofile(fid, sep="", format="%s")

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	Parameters:	fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

format : str

Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.tolist

	
matrix.tolist()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L400]

	Return the matrix as a (possibly nested) list.

See ndarray.tolist for full documentation.

See also

ndarray.tolist

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.tostring

	
matrix.tostring(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.trace

	
matrix.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.transpose

	
matrix.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.var

	
matrix.var(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L525]

	Returns the variance of the matrix elements, along the given axis.

Refer to numpy.var for full documentation.

See also

numpy.var

Notes

This is the same as ndarray.var, except that where an ndarray would
be returned, a matrix object is returned instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x.var()
11.916666666666666
>>> x.var(0)
matrix([[10.66666667, 10.66666667, 10.66666667, 10.66666667]])
>>> x.var(1)
matrix([[1.25],
 [1.25],
 [1.25]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.matrix

numpy.matrix.view

	
matrix.view(dtype=None, type=None)

	New view of array with the same data.

	Parameters:	dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asmatrix

	
numpy.asmatrix(data, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L66]

	Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already
a matrix or an ndarray. Equivalent to matrix(data, copy=False).

	Parameters:	data : array_like

Input data.

	Returns:	mat : matrix

data interpreted as a matrix.

Examples

>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.bmat

	
numpy.bmat(obj, ldict=None, gdict=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L1025]

	Build a matrix object from a string, nested sequence, or array.

	Parameters:	obj : str or array_like

Input data. Names of variables in the current scope may be
referenced, even if obj is a string.

	Returns:	out : matrix

Returns a matrix object, which is a specialized 2-D array.

See also

matrix

Examples

>>> A = np.mat('1 1; 1 1')
>>> B = np.mat('2 2; 2 2')
>>> C = np.mat('3 4; 5 6')
>>> D = np.mat('7 8; 9 0')

All the following expressions construct the same block matrix:

>>> np.bmat([[A, B], [C, D]])
matrix([[1, 1, 2, 2],
 [1, 1, 2, 2],
 [3, 4, 7, 8],
 [5, 6, 9, 0]])
>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
matrix([[1, 1, 2, 2],
 [1, 1, 2, 2],
 [3, 4, 7, 8],
 [5, 6, 9, 0]])
>>> np.bmat('A,B; C,D')
matrix([[1, 1, 2, 2],
 [1, 1, 2, 2],
 [3, 4, 7, 8],
 [5, 6, 9, 0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.memmap

	
class numpy.memmap[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\memmap.py#L23]

	Create a memory-map to an array stored in a binary file on disk.

Memory-mapped files are used for accessing small segments of large files
on disk, without reading the entire file into memory. Numpy’s
memmap’s are array-like objects. This differs from Python’s mmap
module, which uses file-like objects.

This subclass of ndarray has some unpleasant interactions with
some operations, because it doesn’t quite fit properly as a subclass.
An alternative to using this subclass is to create the mmap
object yourself, then create an ndarray with ndarray.__new__ directly,
passing the object created in its ‘buffer=’ parameter.

This class may at some point be turned into a factory function
which returns a view into an mmap buffer.

Delete the memmap instance to close.

	Parameters:	filename : str or file-like object

The file name or file object to be used as the array data buffer.

dtype : data-type, optional

The data-type used to interpret the file contents.
Default is uint8.

mode : {‘r+’, ‘r’, ‘w+’, ‘c’}, optional

The file is opened in this mode:

	‘r’
	Open existing file for reading only.

	‘r+’
	Open existing file for reading and writing.

	‘w+’
	Create or overwrite existing file for reading and writing.

	‘c’
	Copy-on-write: assignments affect data in memory, but
changes are not saved to disk. The file on disk is
read-only.

Default is ‘r+’.

offset : int, optional

In the file, array data starts at this offset. Since offset is
measured in bytes, it should normally be a multiple of the byte-size
of dtype. When mode != 'r', even positive offsets beyond end of
file are valid; The file will be extended to accommodate the
additional data. By default, memmap will start at the beginning of
the file, even if filename is a file pointer fp and
fp.tell() != 0.

shape : tuple, optional

The desired shape of the array. If mode == 'r' and the number
of remaining bytes after offset is not a multiple of the byte-size
of dtype, you must specify shape. By default, the returned array
will be 1-D with the number of elements determined by file size
and data-type.

order : {‘C’, ‘F’}, optional

Specify the order of the ndarray memory layout: C (row-major) or
Fortran (column-major). This only has an effect if the shape is
greater than 1-D. The default order is ‘C’.

Notes

The memmap object can be used anywhere an ndarray is accepted.
Given a memmap fp, isinstance(fp, numpy.ndarray) returns
True.

Memory-mapped arrays use the Python memory-map object which
(prior to Python 2.5) does not allow files to be larger than a
certain size depending on the platform. This size is always < 2GB
even on 64-bit systems.

Examples

>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))

This example uses a temporary file so that doctest doesn’t write
files to your directory. You would use a ‘normal’ filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
memmap([[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.]], dtype=float32)

Write data to memmap array:

>>> fp[:] = data[:]
>>> fp
memmap([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)

>>> fp.filename == path.abspath(filename)
True

Deletion flushes memory changes to disk before removing the object:

>>> del fp

Load the memmap and verify data was stored:

>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> newfp
memmap([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)

Read-only memmap:

>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only
written into the memory copy of the array, and not written to disk:

>>> fpc
memmap([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)
>>> fpc[0,:] = 0
>>> fpc
memmap([[0., 0., 0., 0.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
>>> fpo
memmap([4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)

Attributes

	filename
	(str) Path to the mapped file.

	offset
	(int) Offset position in the file.

	mode
	(str) File mode.

Methods

	flush()
	Write any changes in the array to the file on disk.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

 	numpy.memmap

numpy.memmap.flush

	
memmap.flush()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\memmap.py#L292]

	Write any changes in the array to the file on disk.

For further information, see memmap.

	Parameters:	None

See also

memmap

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

 	numpy.memmap

numpy.memmap.flush

	
memmap.flush()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\memmap.py#L292]

	Write any changes in the array to the file on disk.

For further information, see memmap.

	Parameters:	None

See also

memmap

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

numpy.chararray

	
class numpy.chararray[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1668]

	Provides a convenient view on arrays of string and unicode values.

Note

The chararray class exists for backwards compatibility with
Numarray, it is not recommended for new development. Starting from numpy
1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions
in the numpy.char module for fast vectorized string operations.

Versus a regular Numpy array of type str [http://docs.python.org/dev/library/stdtypes.html#str] or unicode, this
class adds the following functionality:

	values automatically have whitespace removed from the end
when indexed

	comparison operators automatically remove whitespace from the
end when comparing values

	vectorized string operations are provided as methods
(e.g. endswith) and infix operators (e.g. "+", "*", "%")

chararrays should be created using numpy.char.array or
numpy.char.asarray, rather than this constructor directly.

This constructor creates the array, using buffer (with offset
and strides) if it is not None. If buffer is None, then
constructs a new array with strides in “C order”, unless both
len(shape) >= 2 and order='Fortran', in which case strides
is in “Fortran order”.

	Parameters:	shape : tuple

Shape of the array.

itemsize : int, optional

Length of each array element, in number of characters. Default is 1.

unicode : bool, optional

Are the array elements of type unicode (True) or string (False).
Default is False.

buffer : int, optional

Memory address of the start of the array data. Default is None,
in which case a new array is created.

offset : int, optional

Fixed stride displacement from the beginning of an axis?
Default is 0. Needs to be >=0.

strides : array_like of ints, optional

Strides for the array (see ndarray.strides for full description).
Default is None.

order : {‘C’, ‘F’}, optional

The order in which the array data is stored in memory: ‘C’ ->
“row major” order (the default), ‘F’ -> “column major”
(Fortran) order.

Examples

>>> charar = np.chararray((3, 3))
>>> charar[:] = 'a'
>>> charar
chararray([['a', 'a', 'a'],
 ['a', 'a', 'a'],
 ['a', 'a', 'a']],
 dtype='|S1')

>>> charar = np.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray([['abc', 'abc', 'abc'],
 ['abc', 'abc', 'abc'],
 ['abc', 'abc', 'abc']],
 dtype='|S5')

Attributes

	T
	Same as self.transpose(), except that self is returned if self.ndim < 2.

	base
	Base object if memory is from some other object.

	ctypes
	An object to simplify the interaction of the array with the ctypes module.

	data
	Python buffer object pointing to the start of the array’s data.

	dtype
	Data-type of the array’s elements.

	flags
	Information about the memory layout of the array.

	flat
	A 1-D iterator over the array.

	imag
	The imaginary part of the array.

	itemsize
	Length of one array element in bytes.

	nbytes
	Total bytes consumed by the elements of the array.

	ndim
	Number of array dimensions.

	real
	The real part of the array.

	shape
	Tuple of array dimensions.

	size
	Number of elements in the array.

	strides
	Tuple of bytes to step in each dimension when traversing an array.

Methods

	astype(dtype[,order,casting,subok,copy])
	Copy of the array, cast to a specified type.

	copy([order])
	Return a copy of the array.

	count(sub[,start,end])
	Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

	decode([encoding,errors])
	Calls str.decode element-wise.

	dump(file)
	Dump a pickle of the array to the specified file.

	dumps()
	Returns the pickle of the array as a string.

	encode([encoding,errors])
	Calls str.encode [http://docs.python.org/dev/library/stdtypes.html#str.encode] element-wise.

	endswith(suffix[,start,end])
	Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

	expandtabs([tabsize])
	Return a copy of each string element where all tab characters are replaced by one or more spaces.

	fill(value)
	Fill the array with a scalar value.

	find(sub[,start,end])
	For each element, return the lowest index in the string where substring sub is found.

	flatten([order])
	Return a copy of the array collapsed into one dimension.

	getfield(dtype[,offset])
	Returns a field of the given array as a certain type.

	index(sub[,start,end])
	Like find, but raises ValueError when the substring is not found.

	isalnum()
	Returns true for each element if all characters in the string are alphanumeric and there is at least one character, false otherwise.

	isalpha()
	Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise.

	isdecimal()
	For each element in self, return True if there are only decimal characters in the element.

	isdigit()
	Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise.

	islower()
	Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise.

	isnumeric()
	For each element in self, return True if there are only numeric characters in the element.

	isspace()
	Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise.

	istitle()
	Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise.

	isupper()
	Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise.

	item(*args)
	Copy an element of an array to a standard Python scalar and return it.

	join(seq)
	Return a string which is the concatenation of the strings in the sequence seq.

	ljust(width[,fillchar])
	Return an array with the elements of self left-justified in a string of length width.

	lower()
	Return an array with the elements of self converted to lowercase.

	lstrip([chars])
	For each element in self, return a copy with the leading characters removed.

	nonzero()
	Return the indices of the elements that are non-zero.

	put(indices,values[,mode])
	Set a.flat[n] = values[n] for all n in indices.

	ravel([order])
	Return a flattened array.

	repeat(repeats[,axis])
	Repeat elements of an array.

	replace(old,new[,count])
	For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

	reshape(shape[,order])
	Returns an array containing the same data with a new shape.

	resize(new_shape[,refcheck])
	Change shape and size of array in-place.

	rfind(sub[,start,end])
	For each element in self, return the highest index in the string where substring sub is found, such that sub is contained within [start, end].

	rindex(sub[,start,end])
	Like rfind, but raises ValueError when the substring sub is not found.

	rjust(width[,fillchar])
	Return an array with the elements of self right-justified in a string of length width.

	rsplit([sep,maxsplit])
	For each element in self, return a list of the words in the string, using sep as the delimiter string.

	rstrip([chars])
	For each element in self, return a copy with the trailing characters removed.

	searchsorted(v[,side,sorter])
	Find indices where elements of v should be inserted in a to maintain order.

	setfield(val,dtype[,offset])
	Put a value into a specified place in a field defined by a data-type.

	setflags([write,align,uic])
	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

	sort([axis,kind,order])
	Sort an array, in-place.

	split([sep,maxsplit])
	For each element in self, return a list of the words in the string, using sep as the delimiter string.

	splitlines([keepends])
	For each element in self, return a list of the lines in the element, breaking at line boundaries.

	squeeze([axis])
	Remove single-dimensional entries from the shape of a.

	startswith(prefix[,start,end])
	Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

	strip([chars])
	For each element in self, return a copy with the leading and trailing characters removed.

	swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	swapcase()
	For each element in self, return a copy of the string with uppercase characters converted to lowercase and vice versa.

	take(indices[,axis,out,mode])
	Return an array formed from the elements of a at the given indices.

	title()
	For each element in self, return a titlecased version of the string: words start with uppercase characters, all remaining cased characters are lowercase.

	tofile(fid[,sep,format])
	Write array to a file as text or binary (default).

	tolist()
	Return the array as a (possibly nested) list.

	tostring([order])
	Construct Python bytes containing the raw data bytes in the array.

	translate(table[,deletechars])
	For each element in self, return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table.

	transpose(*axes)
	Returns a view of the array with axes transposed.

	upper()
	Return an array with the elements of self converted to uppercase.

	view([dtype,type])
	New view of array with the same data.

	zfill(width)
	Return the numeric string left-filled with zeros in a string of length width.

	argsort
	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.T

	
chararray.T

	Same as self.transpose(), except that self is returned if
self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.base

	
chararray.base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.ctypes

	
chararray.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters:	None

	Returns:	c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.data

	
chararray.data

	Python buffer object pointing to the start of the array’s data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.dtype

	
chararray.dtype

	Data-type of the array’s elements.

	Parameters:	None

	Returns:	d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.flags

	
chararray.flags

	Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	UPDATEIFCOPY (U)
	This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.flat

	
chararray.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.imag

	
chararray.imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.itemsize

	
chararray.itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.nbytes

	
chararray.nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.ndim

	
chararray.ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.real

	
chararray.real

	The real part of the array.

See also

	numpy.real

	equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.shape

	
chararray.shape

	Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.size

	
chararray.size

	Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.strides

	
chararray.strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.astype

	
chararray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	Parameters:	dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	Returns:	arr_t : ndarray

Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input paramter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

	Raises:	ComplexWarning

When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in ‘safe’ casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.copy

	
chararray.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.count

	
chararray.count(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2028]

	Returns an array with the number of non-overlapping occurrences of
substring sub in the range [start, end].

See also

char.count

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.decode

	
chararray.decode(encoding=None, errors=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2041]

	Calls str.decode element-wise.

See also

char.decode

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.dump

	
chararray.dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	Parameters:	file : str

A string naming the dump file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.dumps

	
chararray.dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

	Parameters:	None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.encode

	
chararray.encode(encoding=None, errors=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2052]

	Calls str.encode [http://docs.python.org/dev/library/stdtypes.html#str.encode] element-wise.

See also

char.encode

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.endswith

	
chararray.endswith(suffix, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2063]

	Returns a boolean array which is True where the string element
in self ends with suffix, otherwise False.

See also

char.endswith

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.expandtabs

	
chararray.expandtabs(tabsize=8)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2075]

	Return a copy of each string element where all tab characters are
replaced by one or more spaces.

See also

char.expandtabs

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.fill

	
chararray.fill(value)

	Fill the array with a scalar value.

	Parameters:	value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.find

	
chararray.find(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2087]

	For each element, return the lowest index in the string where
substring sub is found.

See also

char.find

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.flatten

	
chararray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.getfield

	
chararray.getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

	Parameters:	dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.index

	
chararray.index(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2099]

	Like find, but raises ValueError when the substring is not found.

See also

char.index

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.isalnum

	
chararray.isalnum()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2110]

	Returns true for each element if all characters in the string
are alphanumeric and there is at least one character, false
otherwise.

See also

char.isalnum

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.isalpha

	
chararray.isalpha()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2123]

	Returns true for each element if all characters in the string
are alphabetic and there is at least one character, false
otherwise.

See also

char.isalpha

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.isdecimal

	
chararray.isdecimal()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2463]

	For each element in self, return True if there are only
decimal characters in the element.

See also

char.isdecimal

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.isdigit

	
chararray.isdigit()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2136]

	Returns true for each element if all characters in the string are
digits and there is at least one character, false otherwise.

See also

char.isdigit

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.islower

	
chararray.islower()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2148]

	Returns true for each element if all cased characters in the
string are lowercase and there is at least one cased character,
false otherwise.

See also

char.islower

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.isnumeric

	
chararray.isnumeric()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2451]

	For each element in self, return True if there are only
numeric characters in the element.

See also

char.isnumeric

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.isspace

	
chararray.isspace()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2161]

	Returns true for each element if there are only whitespace
characters in the string and there is at least one character,
false otherwise.

See also

char.isspace

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.istitle

	
chararray.istitle()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2174]

	Returns true for each element if the element is a titlecased
string and there is at least one character, false otherwise.

See also

char.istitle

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.isupper

	
chararray.isupper()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2186]

	Returns true for each element if all cased characters in the
string are uppercase and there is at least one character, false
otherwise.

See also

char.isupper

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.item

	
chararray.item(*args)

	Copy an element of an array to a standard Python scalar and return it.

	Parameters:	*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	Returns:	z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.join

	
chararray.join(seq)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2199]

	Return a string which is the concatenation of the strings in the
sequence seq.

See also

char.join

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.ljust

	
chararray.ljust(width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2211]

	Return an array with the elements of self left-justified in a
string of length width.

See also

char.ljust

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.lower

	
chararray.lower()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2223]

	Return an array with the elements of self converted to
lowercase.

See also

char.lower

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.lstrip

	
chararray.lstrip(chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2235]

	For each element in self, return a copy with the leading characters
removed.

See also

char.lstrip

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.nonzero

	
chararray.nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

	numpy.nonzero

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.put

	
chararray.put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

	numpy.put

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.ravel

	
chararray.ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

	numpy.ravel

	equivalent function

	ndarray.flat

	a flat iterator on the array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.repeat

	
chararray.repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.replace

	
chararray.replace(old, new, count=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2257]

	For each element in self, return a copy of the string with all
occurrences of substring old replaced by new.

See also

char.replace

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.reshape

	
chararray.reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

	numpy.reshape

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.resize

	
chararray.resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

	Parameters:	new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

	Returns:	None

	Raises:	ValueError

If a does not own its own data or references or views to it exist,
and the data memory must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See also

	resize

	Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.rfind

	
chararray.rfind(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2269]

	For each element in self, return the highest index in the string
where substring sub is found, such that sub is contained
within [start, end].

See also

char.rfind

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.rindex

	
chararray.rindex(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2282]

	Like rfind, but raises ValueError when the substring sub is
not found.

See also

char.rindex

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.rjust

	
chararray.rjust(width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2294]

	Return an array with the elements of self
right-justified in a string of length width.

See also

char.rjust

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.rsplit

	
chararray.rsplit(sep=None, maxsplit=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2316]

	For each element in self, return a list of the words in
the string, using sep as the delimiter string.

See also

char.rsplit

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.rstrip

	
chararray.rstrip(chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2328]

	For each element in self, return a copy with the trailing
characters removed.

See also

char.rstrip

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.searchsorted

	
chararray.searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

	numpy.searchsorted

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.setfield

	
chararray.setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset
bytes into the field.

	Parameters:	val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

	Returns:	None

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
 [1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
 [1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.setflags

	
chararray.setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)

	Parameters:	write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.sort

	
chararray.sort(axis=-1, kind='quicksort', order=None)

	Sort an array, in-place.

	Parameters:	axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.sort

	Return a sorted copy of an array.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in sorted array.

	partition

	Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.split

	
chararray.split(sep=None, maxsplit=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2340]

	For each element in self, return a list of the words in the
string, using sep as the delimiter string.

See also

char.split

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.splitlines

	
chararray.splitlines(keepends=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2352]

	For each element in self, return a list of the lines in the
element, breaking at line boundaries.

See also

char.splitlines

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.squeeze

	
chararray.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.startswith

	
chararray.startswith(prefix, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2364]

	Returns a boolean array which is True where the string element
in self starts with prefix, otherwise False.

See also

char.startswith

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.strip

	
chararray.strip(chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2376]

	For each element in self, return a copy with the leading and
trailing characters removed.

See also

char.strip

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.swapaxes

	
chararray.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.swapcase

	
chararray.swapcase()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2388]

	For each element in self, return a copy of the string with
uppercase characters converted to lowercase and vice versa.

See also

char.swapcase

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.take

	
chararray.take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

	numpy.take

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.title

	
chararray.title()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2400]

	For each element in self, return a titlecased version of the
string: words start with uppercase characters, all remaining cased
characters are lowercase.

See also

char.title

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.tofile

	
chararray.tofile(fid, sep="", format="%s")

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	Parameters:	fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

format : str

Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.tolist

	
chararray.tolist()

	Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.

	Parameters:	none

	Returns:	y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.tostring

	
chararray.tostring(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.translate

	
chararray.translate(table, deletechars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2413]

	For each element in self, return a copy of the string where
all characters occurring in the optional argument
deletechars are removed, and the remaining characters have
been mapped through the given translation table.

See also

char.translate

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.transpose

	
chararray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.upper

	
chararray.upper()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2427]

	Return an array with the elements of self converted to
uppercase.

See also

char.upper

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.view

	
chararray.view(dtype=None, type=None)

	New view of array with the same data.

	Parameters:	dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.chararray

numpy.chararray.zfill

	
chararray.zfill(width)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2439]

	Return the numeric string left-filled with zeros in a string of
length width.

See also

char.zfill

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.core.defchararray.array

	
numpy.core.defchararray.array(obj, itemsize=None, copy=True, unicode=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2476]

	Create a chararray.

Note

This class is provided for numarray backward-compatibility.
New code (not concerned with numarray compatibility) should use
arrays of type string_ or unicode_ and use the free functions
in numpy.char for fast
vectorized string operations instead.

Versus a regular Numpy array of type str or unicode, this
class adds the following functionality:

	values automatically have whitespace removed from the end
when indexed

	comparison operators automatically remove whitespace from the
end when comparing values

	vectorized string operations are provided as methods
(e.g. str.endswith) and infix operators (e.g. +, *, %)

	Parameters:	obj : array of str or unicode-like

itemsize : int, optional

itemsize is the number of characters per scalar in the
resulting array. If itemsize is None, and obj is an
object array or a Python list, the itemsize will be
automatically determined. If itemsize is provided and obj
is of type str or unicode, then the obj string will be
chunked into itemsize pieces.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy
will only be made if __array__ returns a copy, if obj is a
nested sequence, or if a copy is needed to satisfy any of the other
requirements (itemsize, unicode, order, etc.).

unicode : bool, optional

When true, the resulting chararray can contain Unicode
characters, when false only 8-bit characters. If unicode is
None and obj is one of the following:

	a chararray,

	an ndarray of type str or unicode

	a Python str or unicode object,

then the unicode setting of the output array will be
automatically determined.

order : {‘C’, ‘F’, ‘A’}, optional

Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the
fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the
fastest). If order is ‘A’, then the returned array may
be in any order (either C-, Fortran-contiguous, or even
discontiguous).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

numpy.recarray

	
class numpy.recarray[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L285]

	Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analogous
to columns in a spread sheet. An example is [(x, int), (y, float)],
where each entry in the array is a pair of (int, float). Normally,
these attributes are accessed using dictionary lookups such as arr['x']
and arr['y']. Record arrays allow the fields to be accessed as members
of the array, using arr.x and arr.y.

	Parameters:	shape : tuple

Shape of output array.

dtype : data-type, optional

The desired data-type. By default, the data-type is determined
from formats, names, titles, aligned and byteorder.

formats : list of data-types, optional

A list containing the data-types for the different columns, e.g.
['i4', 'f8', 'i4']. formats does not support the new
convention of using types directly, i.e. (int, float, int).
Note that formats must be a list, not a tuple.
Given that formats is somewhat limited, we recommend specifying
dtype instead.

names : tuple of str, optional

The name of each column, e.g. ('x', 'y', 'z').

buf : buffer, optional

By default, a new array is created of the given shape and data-type.
If buf is specified and is an object exposing the buffer interface,
the array will use the memory from the existing buffer. In this case,
the offset and strides keywords are available.

	Returns:	rec : recarray

Empty array of the given shape and type.

	Other Parameters:

		titles : tuple of str, optional

Aliases for column names. For example, if names were
('x', 'y', 'z') and titles is
('x_coordinate', 'y_coordinate', 'z_coordinate'), then
arr['x'] is equivalent to both arr.x and arr.x_coordinate.

byteorder : {‘<’, ‘>’, ‘=’}, optional

Byte-order for all fields.

aligned : bool, optional

Align the fields in memory as the C-compiler would.

strides : tuple of ints, optional

Buffer (buf) is interpreted according to these strides (strides
define how many bytes each array element, row, column, etc.
occupy in memory).

offset : int, optional

Start reading buffer (buf) from this offset onwards.

order : {‘C’, ‘F’}, optional

Row-major or column-major order.

See also

	rec.fromrecords

	Construct a record array from data.

	record

	fundamental data-type for recarray.

	format_parser

	determine a data-type from formats, names, titles.

Notes

This constructor can be compared to empty: it creates a new record
array but does not fill it with data. To create a record array from data,
use one of the following methods:

	Create a standard ndarray and convert it to a record array,
using arr.view(np.recarray)

	Use the buf keyword.

	Use np.rec.fromrecords.

Examples

Create an array with two fields, x and y:

>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
>>> x
array([(1.0, 2), (3.0, 4)],
 dtype=[('x', '<f8'), ('y', '<i4')])

>>> x['x']
array([1., 3.])

View the array as a record array:

>>> x = x.view(np.recarray)

>>> x.x
array([1., 3.])

>>> x.y
array([2, 4])

Create a new, empty record array:

>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)])
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),
 (3471280, 1.2134086255804012e-316, 0)],
 dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])

Attributes

	T
	Same as self.transpose(), except that self is returned if self.ndim < 2.

	base
	Base object if memory is from some other object.

	ctypes
	An object to simplify the interaction of the array with the ctypes module.

	data
	Python buffer object pointing to the start of the array’s data.

	dtype
	Data-type of the array’s elements.

	flags
	Information about the memory layout of the array.

	flat
	A 1-D iterator over the array.

	imag
	The imaginary part of the array.

	itemsize
	Length of one array element in bytes.

	nbytes
	Total bytes consumed by the elements of the array.

	ndim
	Number of array dimensions.

	real
	The real part of the array.

	shape
	Tuple of array dimensions.

	size
	Number of elements in the array.

	strides
	Tuple of bytes to step in each dimension when traversing an array.

Methods

	all([axis,out])
	Returns True if all elements evaluate to True.

	any([axis,out])
	Returns True if any of the elements of a evaluate to True.

	argmax([axis,out])
	Return indices of the maximum values along the given axis.

	argmin([axis,out])
	Return indices of the minimum values along the given axis of a.

	argpartition(kth[,axis,kind,order])
	Returns the indices that would partition this array.

	argsort([axis,kind,order])
	Returns the indices that would sort this array.

	astype(dtype[,order,casting,subok,copy])
	Copy of the array, cast to a specified type.

	byteswap(inplace)
	Swap the bytes of the array elements

	choose(choices[,out,mode])
	Use an index array to construct a new array from a set of choices.

	clip(a_min,a_max[,out])
	Return an array whose values are limited to [a_min, a_max].

	compress(condition[,axis,out])
	Return selected slices of this array along given axis.

	conj()
	Complex-conjugate all elements.

	conjugate()
	Return the complex conjugate, element-wise.

	copy([order])
	Return a copy of the array.

	cumprod([axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	cumsum([axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	diagonal([offset,axis1,axis2])
	Return specified diagonals.

	dot(b[,out])
	Dot product of two arrays.

	dump(file)
	Dump a pickle of the array to the specified file.

	dumps()
	Returns the pickle of the array as a string.

	field(attr[,val])
	

	fill(value)
	Fill the array with a scalar value.

	flatten([order])
	Return a copy of the array collapsed into one dimension.

	getfield(dtype[,offset])
	Returns a field of the given array as a certain type.

	item(*args)
	Copy an element of an array to a standard Python scalar and return it.

	itemset(*args)
	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

	max([axis,out])
	Return the maximum along a given axis.

	mean([axis,dtype,out])
	Returns the average of the array elements along given axis.

	min([axis,out])
	Return the minimum along a given axis.

	newbyteorder([new_order])
	Return the array with the same data viewed with a different byte order.

	nonzero()
	Return the indices of the elements that are non-zero.

	partition(kth[,axis,kind,order])
	Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.

	prod([axis,dtype,out])
	Return the product of the array elements over the given axis

	ptp([axis,out])
	Peak to peak (maximum - minimum) value along a given axis.

	put(indices,values[,mode])
	Set a.flat[n] = values[n] for all n in indices.

	ravel([order])
	Return a flattened array.

	repeat(repeats[,axis])
	Repeat elements of an array.

	reshape(shape[,order])
	Returns an array containing the same data with a new shape.

	resize(new_shape[,refcheck])
	Change shape and size of array in-place.

	round([decimals,out])
	Return a with each element rounded to the given number of decimals.

	searchsorted(v[,side,sorter])
	Find indices where elements of v should be inserted in a to maintain order.

	setfield(val,dtype[,offset])
	Put a value into a specified place in a field defined by a data-type.

	setflags([write,align,uic])
	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

	sort([axis,kind,order])
	Sort an array, in-place.

	squeeze([axis])
	Remove single-dimensional entries from the shape of a.

	std([axis,dtype,out,ddof])
	Returns the standard deviation of the array elements along given axis.

	sum([axis,dtype,out])
	Return the sum of the array elements over the given axis.

	swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	take(indices[,axis,out,mode])
	Return an array formed from the elements of a at the given indices.

	tobytes([order])
	Construct Python bytes containing the raw data bytes in the array.

	tofile(fid[,sep,format])
	Write array to a file as text or binary (default).

	tolist()
	Return the array as a (possibly nested) list.

	tostring([order])
	Construct Python bytes containing the raw data bytes in the array.

	trace([offset,axis1,axis2,dtype,out])
	Return the sum along diagonals of the array.

	transpose(*axes)
	Returns a view of the array with axes transposed.

	var([axis,dtype,out,ddof])
	Returns the variance of the array elements, along given axis.

	view([dtype,type])
	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.T

	
recarray.T

	Same as self.transpose(), except that self is returned if
self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.base

	
recarray.base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.ctypes

	
recarray.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters:	None

	Returns:	c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.data

	
recarray.data

	Python buffer object pointing to the start of the array’s data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.dtype

	
recarray.dtype

	Data-type of the array’s elements.

	Parameters:	None

	Returns:	d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.flags

	
recarray.flags

	Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	UPDATEIFCOPY (U)
	This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.flat

	
recarray.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.imag

	
recarray.imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.itemsize

	
recarray.itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.nbytes

	
recarray.nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.ndim

	
recarray.ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.real

	
recarray.real

	The real part of the array.

See also

	numpy.real

	equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.shape

	
recarray.shape

	Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.size

	
recarray.size

	Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.strides

	
recarray.strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.all

	
recarray.all(axis=None, out=None)

	Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

	numpy.all

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.any

	
recarray.any(axis=None, out=None)

	Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

	numpy.any

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.argmax

	
recarray.argmax(axis=None, out=None)

	Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

	numpy.argmax

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.argmin

	
recarray.argmin(axis=None, out=None)

	Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

	numpy.argmin

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.argpartition

	
recarray.argpartition(kth, axis=-1, kind='introselect', order=None)

	Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

	numpy.argpartition

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.argsort

	
recarray.argsort(axis=-1, kind='quicksort', order=None)

	Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

	numpy.argsort

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.astype

	
recarray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	Parameters:	dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	Returns:	arr_t : ndarray

Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input paramter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

	Raises:	ComplexWarning

When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in ‘safe’ casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.byteswap

	
recarray.byteswap(inplace)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

	Parameters:	inplace : bool, optional

If True, swap bytes in-place, default is False.

	Returns:	out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.choose

	
recarray.choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

	numpy.choose

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.clip

	
recarray.clip(a_min, a_max, out=None)

	Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

	numpy.clip

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.compress

	
recarray.compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

	numpy.compress

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.conj

	
recarray.conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.conjugate

	
recarray.conjugate()

	Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.copy

	
recarray.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.cumprod

	
recarray.cumprod(axis=None, dtype=None, out=None)

	Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

	numpy.cumprod

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.cumsum

	
recarray.cumsum(axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

	numpy.cumsum

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.diagonal

	
recarray.diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

	numpy.diagonal

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.dot

	
recarray.dot(b, out=None)

	Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

	numpy.dot

	equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.dump

	
recarray.dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	Parameters:	file : str

A string naming the dump file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.dumps

	
recarray.dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

	Parameters:	None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.field

	
recarray.field(attr, val=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L467]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.fill

	
recarray.fill(value)

	Fill the array with a scalar value.

	Parameters:	value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.flatten

	
recarray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.getfield

	
recarray.getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

	Parameters:	dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.item

	
recarray.item(*args)

	Copy an element of an array to a standard Python scalar and return it.

	Parameters:	*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	Returns:	z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.itemset

	
recarray.itemset(*args)

	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

	Parameters:	*args : Arguments

If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.max

	
recarray.max(axis=None, out=None)

	Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

	numpy.amax

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.mean

	
recarray.mean(axis=None, dtype=None, out=None)

	Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

	numpy.mean

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.min

	
recarray.min(axis=None, out=None)

	Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

	numpy.amin

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.newbyteorder

	
recarray.newbyteorder(new_order='S')

	Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

	Parameters:	new_order : string, optional

Byte order to force; a value from the byte order specifications
above. new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

	Returns:	new_arr : array

New array object with the dtype reflecting given change to the
byte order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.nonzero

	
recarray.nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

	numpy.nonzero

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.partition

	
recarray.partition(kth, axis=-1, kind='introselect', order=None)

	Rearranges the elements in the array in such a way that value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

	Parameters:	kth : int or sequence of ints

Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.partition

	Return a parititioned copy of an array.

	argpartition

	Indirect partition.

	sort

	Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.prod

	
recarray.prod(axis=None, dtype=None, out=None)

	Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

	numpy.prod

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.ptp

	
recarray.ptp(axis=None, out=None)

	Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

	numpy.ptp

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.put

	
recarray.put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

	numpy.put

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.ravel

	
recarray.ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

	numpy.ravel

	equivalent function

	ndarray.flat

	a flat iterator on the array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.repeat

	
recarray.repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.reshape

	
recarray.reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

	numpy.reshape

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.resize

	
recarray.resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

	Parameters:	new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

	Returns:	None

	Raises:	ValueError

If a does not own its own data or references or views to it exist,
and the data memory must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See also

	resize

	Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.round

	
recarray.round(decimals=0, out=None)

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

	numpy.around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.searchsorted

	
recarray.searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

	numpy.searchsorted

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.setfield

	
recarray.setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset
bytes into the field.

	Parameters:	val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

	Returns:	None

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
 [1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
 [1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.setflags

	
recarray.setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)

	Parameters:	write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.sort

	
recarray.sort(axis=-1, kind='quicksort', order=None)

	Sort an array, in-place.

	Parameters:	axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.sort

	Return a sorted copy of an array.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in sorted array.

	partition

	Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.squeeze

	
recarray.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.std

	
recarray.std(axis=None, dtype=None, out=None, ddof=0)

	Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

	numpy.std

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.sum

	
recarray.sum(axis=None, dtype=None, out=None)

	Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

	numpy.sum

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.swapaxes

	
recarray.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.take

	
recarray.take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

	numpy.take

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.tobytes

	
recarray.tobytes(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

New in version 1.9.0.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.tofile

	
recarray.tofile(fid, sep="", format="%s")

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	Parameters:	fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

format : str

Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.tolist

	
recarray.tolist()

	Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.

	Parameters:	none

	Returns:	y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.tostring

	
recarray.tostring(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.trace

	
recarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.transpose

	
recarray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.var

	
recarray.var(axis=None, dtype=None, out=None, ddof=0)

	Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

	numpy.var

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.recarray

numpy.recarray.view

	
recarray.view(dtype=None, type=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L486]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

numpy.record

	
class numpy.record[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L215]

	A data-type scalar that allows field access as attribute lookup.

Attributes

	T
	transpose

	base
	base object

	data
	pointer to start of data

	dtype
	dtype object

	flags
	integer value of flags

	flat
	a 1-d view of scalar

	imag
	imaginary part of scalar

	itemsize
	length of one element in bytes

	nbytes
	length of item in bytes

	ndim
	number of array dimensions

	real
	real part of scalar

	shape
	tuple of array dimensions

	size
	number of elements in the gentype

	strides
	tuple of bytes steps in each dimension

Methods

	all
	Not implemented (virtual attribute)

	any
	Not implemented (virtual attribute)

	argmax
	Not implemented (virtual attribute)

	argmin
	Not implemented (virtual attribute)

	argsort
	Not implemented (virtual attribute)

	astype
	Not implemented (virtual attribute)

	byteswap
	Not implemented (virtual attribute)

	choose
	Not implemented (virtual attribute)

	clip
	Not implemented (virtual attribute)

	compress
	Not implemented (virtual attribute)

	conj
	

	conjugate
	Not implemented (virtual attribute)

	copy
	Not implemented (virtual attribute)

	cumprod
	Not implemented (virtual attribute)

	cumsum
	Not implemented (virtual attribute)

	diagonal
	Not implemented (virtual attribute)

	dump
	Not implemented (virtual attribute)

	dumps
	Not implemented (virtual attribute)

	fill
	Not implemented (virtual attribute)

	flatten
	Not implemented (virtual attribute)

	getfield
	

	item
	Not implemented (virtual attribute)

	itemset
	Not implemented (virtual attribute)

	max
	Not implemented (virtual attribute)

	mean
	Not implemented (virtual attribute)

	min
	Not implemented (virtual attribute)

	newbyteorder([new_order])
	Return a new dtype with a different byte order.

	nonzero
	Not implemented (virtual attribute)

	pprint()
	Pretty-print all fields.

	prod
	Not implemented (virtual attribute)

	ptp
	Not implemented (virtual attribute)

	put
	Not implemented (virtual attribute)

	ravel
	Not implemented (virtual attribute)

	repeat
	Not implemented (virtual attribute)

	reshape
	Not implemented (virtual attribute)

	resize
	Not implemented (virtual attribute)

	round
	Not implemented (virtual attribute)

	searchsorted
	Not implemented (virtual attribute)

	setfield
	

	setflags
	Not implemented (virtual attribute)

	sort
	Not implemented (virtual attribute)

	squeeze
	Not implemented (virtual attribute)

	std
	Not implemented (virtual attribute)

	sum
	Not implemented (virtual attribute)

	swapaxes
	Not implemented (virtual attribute)

	take
	Not implemented (virtual attribute)

	tobytes
	

	tofile
	Not implemented (virtual attribute)

	tolist
	Not implemented (virtual attribute)

	tostring
	Not implemented (virtual attribute)

	trace
	Not implemented (virtual attribute)

	transpose
	Not implemented (virtual attribute)

	var
	Not implemented (virtual attribute)

	view
	Not implemented (virtual attribute)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.T

	
record.T

	transpose

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.base

	
record.base

	base object

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.data

	
record.data

	pointer to start of data

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.dtype

	
record.dtype

	dtype object

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.flags

	
record.flags

	integer value of flags

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.flat

	
record.flat

	a 1-d view of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.imag

	
record.imag

	imaginary part of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.itemsize

	
record.itemsize

	length of one element in bytes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.nbytes

	
record.nbytes

	length of item in bytes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.ndim

	
record.ndim

	number of array dimensions

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.real

	
record.real

	real part of scalar

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.shape

	
record.shape

	tuple of array dimensions

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.size

	
record.size

	number of elements in the gentype

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.strides

	
record.strides

	tuple of bytes steps in each dimension

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.all

	
record.all()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.any

	
record.any()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.argmax

	
record.argmax()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.argmin

	
record.argmin()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.argsort

	
record.argsort()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.astype

	
record.astype()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.byteswap

	
record.byteswap()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.choose

	
record.choose()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.clip

	
record.clip()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.compress

	
record.compress()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.conj

	
record.conj()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.conjugate

	
record.conjugate()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.copy

	
record.copy()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.cumprod

	
record.cumprod()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.cumsum

	
record.cumsum()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.diagonal

	
record.diagonal()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.dump

	
record.dump()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.dumps

	
record.dumps()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.fill

	
record.fill()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.flatten

	
record.flatten()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.getfield

	
record.getfield()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.item

	
record.item()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.itemset

	
record.itemset()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.max

	
record.max()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.mean

	
record.mean()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.min

	
record.min()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.newbyteorder

	
record.newbyteorder(new_order='S')

	Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:

	{‘<’, ‘L’} - little endian

	{‘>’, ‘B’} - big endian

	{‘=’, ‘N’} - native order

	‘S’ - swap dtype from current to opposite endian

	{‘|’, ‘I’} - ignore (no change to byte order)

	Parameters:	new_order : str, optional

Byte order to force; a value from the byte order specifications
above. The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

	Returns:	new_dtype : dtype

New dtype object with the given change to the byte order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.nonzero

	
record.nonzero()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.pprint

	
record.pprint()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L266]

	Pretty-print all fields.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.prod

	
record.prod()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.ptp

	
record.ptp()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.put

	
record.put()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.ravel

	
record.ravel()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.repeat

	
record.repeat()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.reshape

	
record.reshape()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.resize

	
record.resize()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.round

	
record.round()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.searchsorted

	
record.searchsorted()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.setfield

	
record.setfield()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.setflags

	
record.setflags()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.sort

	
record.sort()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.squeeze

	
record.squeeze()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.std

	
record.std()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.sum

	
record.sum()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.swapaxes

	
record.swapaxes()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.take

	
record.take()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.tobytes

	
record.tobytes()

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.tofile

	
record.tofile()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.tolist

	
record.tolist()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.tostring

	
record.tostring()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.trace

	
record.trace()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.transpose

	
record.transpose()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.var

	
record.var()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.record

numpy.record.view

	
record.view()

	Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

numpy.lib.user_array.container

	
class numpy.lib.user_array.container(data, dtype=None, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\user_array.py#L18]

	Methods

	astype(typecode)
	

	byteswap()
	

	copy()
	

	tostring()
	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.lib.user_array.container

numpy.lib.user_array.container.astype

	
container.astype(typecode)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\user_array.py#L230]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.lib.user_array.container

numpy.lib.user_array.container.byteswap

	
container.byteswap()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\user_array.py#L227]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.lib.user_array.container

numpy.lib.user_array.container.copy

	
container.copy()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\user_array.py#L221]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Standard array subclasses

 	numpy.lib.user_array.container

numpy.lib.user_array.container.tostring

	
container.tostring()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\user_array.py#L224]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.flat

	
ndarray.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.ndenumerate

	
class numpy.ndenumerate(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L475]

	Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values.

	Parameters:	a : ndarray

Input array.

See also

ndindex, flatiter

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> for index, x in np.ndenumerate(a):
... print index, x
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4

Methods

	next()
	Standard iterator method, returns the index tuple and array value.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.ndenumerate

numpy.ndenumerate.next

	
ndenumerate.next()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L505]

	Standard iterator method, returns the index tuple and array value.

	Returns:	coords : tuple of ints

The indices of the current iteration.

val : scalar

The array element of the current iteration.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.broadcast

	
class numpy.broadcast[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	Produce an object that mimics broadcasting.

	Parameters:	in1, in2, ... : array_like

Input parameters.

	Returns:	b : broadcast object

Broadcast the input parameters against one another, and
return an object that encapsulates the result.
Amongst others, it has shape and nd properties, and
may be used as an iterator.

Examples

Manually adding two vectors, using broadcasting:

>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)

>>> out = np.empty(b.shape)
>>> out.flat = [u+v for (u,v) in b]
>>> out
array([[5., 6., 7.],
 [6., 7., 8.],
 [7., 8., 9.]])

Compare against built-in broadcasting:

>>> x + y
array([[5, 6, 7],
 [6, 7, 8],
 [7, 8, 9]])

Attributes

	index
	current index in broadcasted result

	iters
	tuple of iterators along self‘s “components.”

	shape
	Shape of broadcasted result.

	size
	Total size of broadcasted result.

Methods

	next
	x.next() -> the next value, or raise StopIteration

	reset()
	Reset the broadcasted result’s iterator(s).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.index

	
broadcast.index

	current index in broadcasted result

Examples

>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (1, 5), (1, 6))
>>> b.index
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.iters

	
broadcast.iters

	tuple of iterators along self‘s “components.”

Returns a tuple of numpy.flatiter objects, one for each “component”
of self.

See also

numpy.flatiter

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> row, col = b.iters
>>> row.next(), col.next()
(1, 4)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.shape

	
broadcast.shape

	Shape of broadcasted result.

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.shape
(3, 3)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.size

	
broadcast.size

	Total size of broadcasted result.

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.size
9

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.next

	
broadcast.next

	x.next() -> the next value, or raise StopIteration

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.reset

	
broadcast.reset()

	Reset the broadcasted result’s iterator(s).

	Parameters:	None

	Returns:	None

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]]
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (2, 4), (3, 4))
>>> b.index
3
>>> b.reset()
>>> b.index
0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

Masked arrays

Masked arrays are arrays that may have missing or invalid entries.
The numpy.ma module provides a nearly work-alike replacement for numpy
that supports data arrays with masks.

	The numpy.ma module
	Rationale

	What is a masked array?

	The numpy.ma module

	Using numpy.ma
	Constructing masked arrays

	Accessing the data

	Accessing the mask

	Accessing only the valid entries

	Modifying the mask

	Indexing and slicing

	Operations on masked arrays

	Examples
	Data with a given value representing missing data

	Filling in the missing data

	Numerical operations

	Ignoring extreme values

	Constants of the numpy.ma module

	The MaskedArray class
	Attributes and properties of masked arrays

	MaskedArray methods
	Conversion

	Shape manipulation

	Item selection and manipulation

	Pickling and copy

	Calculations

	Arithmetic and comparison operations

	Representation

	Special methods

	Specific methods

	Masked array operations
	Constants

	Creation

	Inspecting the array

	Manipulating a MaskedArray

	Operations on masks

	Conversion operations

	Masked arrays arithmetics

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

The numpy.ma module

Rationale

Masked arrays are arrays that may have missing or invalid entries.
The numpy.ma module provides a nearly work-alike replacement for numpy
that supports data arrays with masks.

What is a masked array?

In many circumstances, datasets can be incomplete or tainted by the presence
of invalid data. For example, a sensor may have failed to record a data, or
recorded an invalid value. The numpy.ma module provides a convenient
way to address this issue, by introducing masked arrays.

A masked array is the combination of a standard numpy.ndarray and a
mask. A mask is either nomask, indicating that no value of the
associated array is invalid, or an array of booleans that determines for each
element of the associated array whether the value is valid or not. When an
element of the mask is False, the corresponding element of the associated
array is valid and is said to be unmasked. When an element of the mask is
True, the corresponding element of the associated array is said to be
masked (invalid).

The package ensures that masked entries are not used in computations.

As an illustration, let’s consider the following dataset:

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([1, 2, 3, -1, 5])

We wish to mark the fourth entry as invalid. The easiest is to create a masked
array:

>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])

We can now compute the mean of the dataset, without taking the invalid data
into account:

>>> mx.mean()
2.75

The numpy.ma module

The main feature of the numpy.ma module is the MaskedArray
class, which is a subclass of numpy.ndarray. The class, its
attributes and methods are described in more details in the
MaskedArray class section.

The numpy.ma module can be used as an addition to numpy:

>>> import numpy as np
>>> import numpy.ma as ma

To create an array with the second element invalid, we would do:

>>> y = ma.array([1, 2, 3], mask = [0, 1, 0])

To create a masked array where all values close to 1.e20 are invalid, we would
do:

>>> z = masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see
section Constructing masked arrays.

Using numpy.ma

Constructing masked arrays

There are several ways to construct a masked array.

	A first possibility is to directly invoke the MaskedArray class.

	A second possibility is to use the two masked array constructors,
array and masked_array.

	array(data[,dtype,copy,order,mask,...])
	An array class with possibly masked values.

	masked_array
	alias of MaskedArray

	A third option is to take the view of an existing array. In that case, the
mask of the view is set to nomask if the array has no named fields,
or an array of boolean with the same structure as the array otherwise.

>>> x = np.array([1, 2, 3])
>>> x.view(ma.MaskedArray)
masked_array(data = [1 2 3],
 mask = False,
 fill_value = 999999)
>>> x = np.array([(1, 1.), (2, 2.)], dtype=[('a',int), ('b', float)])
>>> x.view(ma.MaskedArray)
masked_array(data = [(1, 1.0) (2, 2.0)],
 mask = [(False, False) (False, False)],
 fill_value = (999999, 1e+20),
 dtype = [('a', '<i4'), ('b', '<f8')])

	Yet another possibility is to use any of the following functions:

	asarray(a[,dtype,order])
	Convert the input to a masked array of the given data-type.

	asanyarray(a[,dtype])
	Convert the input to a masked array, conserving subclasses.

	fix_invalid(a[,mask,copy,fill_value])
	Return input with invalid data masked and replaced by a fill value.

	masked_equal(x,value[,copy])
	Mask an array where equal to a given value.

	masked_greater(x,value[,copy])
	Mask an array where greater than a given value.

	masked_greater_equal(x,value[,copy])
	Mask an array where greater than or equal to a given value.

	masked_inside(x,v1,v2[,copy])
	Mask an array inside a given interval.

	masked_invalid(a[,copy])
	Mask an array where invalid values occur (NaNs or infs).

	masked_less(x,value[,copy])
	Mask an array where less than a given value.

	masked_less_equal(x,value[,copy])
	Mask an array where less than or equal to a given value.

	masked_not_equal(x,value[,copy])
	Mask an array where not equal to a given value.

	masked_object(x,value[,copy,shrink])
	Mask the array x where the data are exactly equal to value.

	masked_outside(x,v1,v2[,copy])
	Mask an array outside a given interval.

	masked_values(x,value[,rtol,atol,copy,...])
	Mask using floating point equality.

	masked_where(condition,a[,copy])
	Mask an array where a condition is met.

Accessing the data

The underlying data of a masked array can be accessed in several ways:

	through the data attribute. The output is a view of the
array as a numpy.ndarray or one of its subclasses, depending on the
type of the underlying data at the masked array creation.

	through the __array__ method. The output is then a
numpy.ndarray.

	by directly taking a view of the masked array as a numpy.ndarray
or one of its subclass (which is actually what using the
data attribute does).

	by using the getdata function.

None of these methods is completely satisfactory if some entries have been
marked as invalid. As a general rule, where a representation of the array is
required without any masked entries, it is recommended to fill the array with
the filled method.

Accessing the mask

The mask of a masked array is accessible through its mask
attribute. We must keep in mind that a True entry in the mask indicates an
invalid data.

Another possibility is to use the getmask and getmaskarray
functions. getmask(x) outputs the mask of x if x is a masked
array, and the special value nomask otherwise. getmaskarray(x)
outputs the mask of x if x is a masked array. If x has no invalid
entry or is not a masked array, the function outputs a boolean array of
False with as many elements as x.

Accessing only the valid entries

To retrieve only the valid entries, we can use the inverse of the mask as an
index. The inverse of the mask can be calculated with the
numpy.logical_not function or simply with the ~ operator:

>>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
>>> x[~x.mask]
masked_array(data = [1 4],
 mask = [False False],
 fill_value = 999999)

Another way to retrieve the valid data is to use the compressed
method, which returns a one-dimensional ndarray (or one of its
subclasses, depending on the value of the baseclass
attribute):

>>> x.compressed()
array([1, 4])

Note that the output of compressed is always 1D.

Modifying the mask

Masking an entry

The recommended way to mark one or several specific entries of a masked array
as invalid is to assign the special value masked to them:

>>> x = ma.array([1, 2, 3])
>>> x[0] = ma.masked
>>> x
masked_array(data = [-- 2 3],
 mask = [True False False],
 fill_value = 999999)
>>> y = ma.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
>>> y
masked_array(data =
 [[1 -- 3]
 [4 5 --]
 [-- 8 9]],
 mask =
 [[False True False]
 [False False True]
 [True False False]],
 fill_value = 999999)
>>> z = ma.array([1, 2, 3, 4])
>>> z[:-2] = ma.masked
>>> z
masked_array(data = [-- -- 3 4],
 mask = [True True False False],
 fill_value = 999999)

A second possibility is to modify the mask directly,
but this usage is discouraged.

Note

When creating a new masked array with a simple, non-structured datatype,
the mask is initially set to the special value nomask, that
corresponds roughly to the boolean False. Trying to set an element of
nomask will fail with a TypeError [http://docs.python.org/dev/library/exceptions.html#TypeError] exception, as a boolean
does not support item assignment.

All the entries of an array can be masked at once by assigning True to the
mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x.mask = True
>>> x
masked_array(data = [-- -- --],
 mask = [True True True],
 fill_value = 999999)

Finally, specific entries can be masked and/or unmasked by assigning to the
mask a sequence of booleans:

>>> x = ma.array([1, 2, 3])
>>> x.mask = [0, 1, 0]
>>> x
masked_array(data = [1 -- 3],
 mask = [False True False],
 fill_value = 999999)

Unmasking an entry

To unmask one or several specific entries, we can just assign one or several
new valid values to them:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> x[-1] = 5
>>> x
masked_array(data = [1 2 5],
 mask = [False False False],
 fill_value = 999999)

Note

Unmasking an entry by direct assignment will silently fail if the masked
array has a hard mask, as shown by the hardmask attribute. This
feature was introduced to prevent overwriting the mask. To force the
unmasking of an entry where the array has a hard mask, the mask must first
to be softened using the soften_mask method before the allocation.
It can be re-hardened with harden_mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1], hard_mask=True)
>>> x
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> x[-1] = 5
>>> x
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> x.soften_mask()
>>> x[-1] = 5
>>> x
masked_array(data = [1 2 5],
 mask = [False False False],
 fill_value = 999999)
>>> x.harden_mask()

To unmask all masked entries of a masked array (provided the mask isn’t a hard
mask), the simplest solution is to assign the constant nomask to the
mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> x.mask = ma.nomask
>>> x
masked_array(data = [1 2 3],
 mask = [False False False],
 fill_value = 999999)

Indexing and slicing

As a MaskedArray is a subclass of numpy.ndarray, it inherits
its mechanisms for indexing and slicing.

When accessing a single entry of a masked array with no named fields, the
output is either a scalar (if the corresponding entry of the mask is
False) or the special value masked (if the corresponding entry of
the mask is True):

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x[0]
1
>>> x[-1]
masked_array(data = --,
 mask = True,
 fill_value = 1e+20)
>>> x[-1] is ma.masked
True

If the masked array has named fields, accessing a single entry returns a
numpy.void object if none of the fields are masked, or a 0d masked
array with the same dtype as the initial array if at least one of the fields
is masked.

>>> y = ma.masked_array([(1,2), (3, 4)],
... mask=[(0, 0), (0, 1)],
... dtype=[('a', int), ('b', int)])
>>> y[0]
(1, 2)
>>> y[-1]
masked_array(data = (3, --),
 mask = (False, True),
 fill_value = (999999, 999999),
 dtype = [('a', '<i4'), ('b', '<i4')])

When accessing a slice, the output is a masked array whose
data attribute is a view of the original data, and whose
mask is either nomask (if there was no invalid entries in the original
array) or a copy of the corresponding slice of the original mask. The copy is
required to avoid propagation of any modification of the mask to the original.

>>> x = ma.array([1, 2, 3, 4, 5], mask=[0, 1, 0, 0, 1])
>>> mx = x[:3]
>>> mx
masked_array(data = [1 -- 3],
 mask = [False True False],
 fill_value = 999999)
>>> mx[1] = -1
>>> mx
masked_array(data = [1 -1 3],
 mask = [False True False],
 fill_value = 999999)
>>> x.mask
array([False, True, False, False, True], dtype=bool)
>>> x.data
array([1, -1, 3, 4, 5])

Accessing a field of a masked array with structured datatype returns a
MaskedArray.

Operations on masked arrays

Arithmetic and comparison operations are supported by masked arrays.
As much as possible, invalid entries of a masked array are not processed,
meaning that the corresponding data entries should be the same
before and after the operation.

Warning

We need to stress that this behavior may not be systematic, that masked
data may be affected by the operation in some cases and therefore users
should not rely on this data remaining unchanged.

The numpy.ma module comes with a specific implementation of most
ufuncs. Unary and binary functions that have a validity domain (such as
log or divide) return the masked
constant whenever the input is masked or falls outside the validity domain:

>>> ma.log([-1, 0, 1, 2])
masked_array(data = [-- -- 0.0 0.69314718056],
 mask = [True True False False],
 fill_value = 1e+20)

Masked arrays also support standard numpy ufuncs. The output is then a masked
array. The result of a unary ufunc is masked wherever the input is masked. The
result of a binary ufunc is masked wherever any of the input is masked. If the
ufunc also returns the optional context output (a 3-element tuple containing
the name of the ufunc, its arguments and its domain), the context is processed
and entries of the output masked array are masked wherever the corresponding
input fall outside the validity domain:

>>> x = ma.array([-1, 1, 0, 2, 3], mask=[0, 0, 0, 0, 1])
>>> np.log(x)
masked_array(data = [-- -- 0.0 0.69314718056 --],
 mask = [True True False False True],
 fill_value = 1e+20)

Examples

Data with a given value representing missing data

Let’s consider a list of elements, x, where values of -9999. represent
missing data. We wish to compute the average value of the data and the vector
of anomalies (deviations from the average):

>>> import numpy.ma as ma
>>> x = [0.,1.,-9999.,3.,4.]
>>> mx = ma.masked_values (x, -9999.)
>>> print mx.mean()
2.0
>>> print mx - mx.mean()
[-2.0 -1.0 -- 1.0 2.0]
>>> print mx.anom()
[-2.0 -1.0 -- 1.0 2.0]

Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values
replaced by the average value.

>>> print mx.filled(mx.mean())
[0. 1. 2. 3. 4.]

Numerical operations

Numerical operations can be easily performed without worrying about missing
values, dividing by zero, square roots of negative numbers, etc.:

>>> import numpy as np, numpy.ma as ma
>>> x = ma.array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
>>> y = ma.array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
>>> print np.sqrt(x/y)
[1.0 -- -- 1.0 -- --]

Four values of the output are invalid: the first one comes from taking the
square root of a negative number, the second from the division by zero, and
the last two where the inputs were masked.

Ignoring extreme values

Let’s consider an array d of random floats between 0 and 1. We wish to
compute the average of the values of d while ignoring any data outside
the range [0.1, 0.9]:

>>> print ma.masked_outside(d, 0.1, 0.9).mean()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.array

	
numpy.ma.array(data, dtype=None, copy=False, order=False, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5863]

	An array class with possibly masked values.

Masked values of True exclude the corresponding element from any
computation.

Construction:

x = MaskedArray(data, mask=nomask, dtype=None,
 copy=False, subok=True, ndmin=0, fill_value=None,
 keep_mask=True, hard_mask=None, shrink=True)

	Parameters:	data : array_like

Input data.

mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same
shape as data. True indicates a masked (i.e. invalid) data.

dtype : dtype, optional

Data type of the output.
If dtype is None, the type of the data argument (data.dtype)
is used. If dtype is not None and different from data.dtype,
a copy is performed.

copy : bool, optional

Whether to copy the input data (True), or to use a reference instead.
Default is False.

subok : bool, optional

Whether to return a subclass of MaskedArray if possible (True) or a
plain MaskedArray. Default is True.

ndmin : int, optional

Minimum number of dimensions. Default is 0.

fill_value : scalar, optional

Value used to fill in the masked values when necessary.
If None, a default based on the data-type is used.

keep_mask : bool, optional

Whether to combine mask with the mask of the input data, if any
(True), or to use only mask for the output (False). Default is True.

hard_mask : bool, optional

Whether to use a hard mask or not. With a hard mask, masked values
cannot be unmasked. Default is False.

shrink : bool, optional

Whether to force compression of an empty mask. Default is True.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_array

	
numpy.ma.masked_array[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2581]

	alias of MaskedArray

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.asarray

	
numpy.ma.asarray(a, dtype=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7031]

	Convert the input to a masked array of the given data-type.

No copy is performed if the input is already an ndarray. If a is
a subclass of MaskedArray, a base class MaskedArray is returned.

	Parameters:	a : array_like

Input data, in any form that can be converted to a masked array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists, ndarrays and masked arrays.

dtype : dtype, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Default is ‘C’.

	Returns:	out : MaskedArray

Masked array interpretation of a.

See also

	asanyarray

	Similar to asarray, but conserves subclasses.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],
 [5., 6., 7., 8., 9.]])
>>> np.ma.asarray(x)
masked_array(data =
 [[0. 1. 2. 3. 4.]
 [5. 6. 7. 8. 9.]],
 mask =
 False,
 fill_value = 1e+20)
>>> type(np.ma.asarray(x))
<class 'numpy.ma.core.MaskedArray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.asanyarray

	
numpy.ma.asanyarray(a, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7078]

	Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray, its class is conserved.
No copy is performed if the input is already an ndarray.

	Parameters:	a : array_like

Input data, in any form that can be converted to an array.

dtype : dtype, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Default is ‘C’.

	Returns:	out : MaskedArray

MaskedArray interpretation of a.

See also

	asarray

	Similar to asanyarray, but does not conserve subclass.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],
 [5., 6., 7., 8., 9.]])
>>> np.ma.asanyarray(x)
masked_array(data =
 [[0. 1. 2. 3. 4.]
 [5. 6. 7. 8. 9.]],
 mask =
 False,
 fill_value = 1e+20)
>>> type(np.ma.asanyarray(x))
<class 'numpy.ma.core.MaskedArray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.fix_invalid

	
numpy.ma.fix_invalid(a, mask=False, copy=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L669]

	Return input with invalid data masked and replaced by a fill value.

Invalid data means values of nan, inf, etc.

	Parameters:	a : array_like

Input array, a (subclass of) ndarray.

copy : bool, optional

Whether to use a copy of a (True) or to fix a in place (False).
Default is True.

fill_value : scalar, optional

Value used for fixing invalid data. Default is None, in which case
the a.fill_value is used.

	Returns:	b : MaskedArray

The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x
masked_array(data = [-- -1.0 nan inf],
 mask = [True False False False],
 fill_value = 1e+20)
>>> np.ma.fix_invalid(x)
masked_array(data = [-- -1.0 -- --],
 mask = [True False True True],
 fill_value = 1e+20)

>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
array([1.00000000e+00, -1.00000000e+00, 1.00000000e+20,
 1.00000000e+20])
>>> x.data
array([1., -1., NaN, Inf])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_equal

	
numpy.ma.masked_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1947]

	Mask an array where equal to a given value.

This function is a shortcut to masked_where, with
condition = (x == value). For floating point arrays,
consider using masked_values(x, value).

See also

	masked_where

	Mask where a condition is met.

	masked_values

	Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2)
masked_array(data = [0 1 -- 3],
 mask = [False False True False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_greater

	
numpy.ma.masked_greater(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1817]

	Mask an array where greater than a given value.

This function is a shortcut to masked_where, with
condition = (x > value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
masked_array(data = [0 1 2 --],
 mask = [False False False True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_greater_equal

	
numpy.ma.masked_greater_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1843]

	Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with
condition = (x >= value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
masked_array(data = [0 1 -- --],
 mask = [False False True True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_inside

	
numpy.ma.masked_inside(x, v1, v2, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1982]

	Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside
the interval [v1,v2] (v1 <= x <= v2). The boundaries v1 and v2
can be given in either order.

See also

	masked_where

	Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
 mask = [False False True True False False],
 fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
 mask = [False False True True False False],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_invalid

	
numpy.ma.masked_invalid(a, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2204]

	Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with
condition = ~(np.isfinite(a)). Any pre-existing mask is conserved.
Only applies to arrays with a dtype where NaNs or infs make sense
(i.e. floating point types), but accepts any array_like object.

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5, dtype=np.float)
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array([0., 1., NaN, Inf, 4.])
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 -- -- 4.0],
 mask = [False False True True False],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_less

	
numpy.ma.masked_less(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1869]

	Mask an array where less than a given value.

This function is a shortcut to masked_where, with
condition = (x < value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
masked_array(data = [-- -- 2 3],
 mask = [True True False False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_less_equal

	
numpy.ma.masked_less_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1895]

	Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with
condition = (x <= value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_not_equal

	
numpy.ma.masked_not_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1921]

	Mask an array where not equal to a given value.

This function is a shortcut to masked_where, with
condition = (x != value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
masked_array(data = [-- -- 2 --],
 mask = [True True False True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_object

	
numpy.ma.masked_object(x, value, copy=True, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2062]

	Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable
for object arrays: for floating point, use masked_values instead.

	Parameters:	x : array_like

Array to mask

value : object

Comparison value

copy : {True, False}, optional

Whether to return a copy of x.

shrink : {True, False}, optional

Whether to collapse a mask full of False to nomask

	Returns:	result : MaskedArray

The result of masking x where equal to value.

See also

	masked_where

	Mask where a condition is met.

	masked_equal

	Mask where equal to a given value (integers).

	masked_values

	Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
>>> print eat
[-- ham]
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
>>> print eat
[cheese ham pineapple]

Note that mask is set to nomask if possible.

>>> eat
masked_array(data = [cheese ham pineapple],
 mask = False,
 fill_value=?)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_outside

	
numpy.ma.masked_outside(x, v1, v2, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2022]

	Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside
the interval [v1,v2] (x < v1)|(x > v2).
The boundaries v1 and v2 can be given in either order.

See also

	masked_where

	Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],
 mask = [True True False False True True],
 fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],
 mask = [True True False False True True],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_values

	
numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2123]

	Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately
equal to value, i.e. where the following condition is True

(abs(x - value) <= atol+rtol*abs(value))

The fill_value is set to value and the mask is set to nomask if
possible. For integers, consider using masked_equal.

	Parameters:	x : array_like

Array to mask.

value : float

Masking value.

rtol : float, optional

Tolerance parameter.

atol : float, optional

Tolerance parameter (1e-8).

copy : bool, optional

Whether to return a copy of x.

shrink : bool, optional

Whether to collapse a mask full of False to nomask.

	Returns:	result : MaskedArray

The result of masking x where approximately equal to value.

See also

	masked_where

	Mask where a condition is met.

	masked_equal

	Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
masked_array(data = [1.0 -- 2.0 -- 3.0],
 mask = [False True False True False],
 fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values(x, 1.5)
masked_array(data = [1. 1.1 2. 1.1 3.],
 mask = False,
 fill_value=1.5)

For integers, the fill value will be different in general to the
result of masked_equal.

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
masked_array(data = [0 1 -- 3 4],
 mask = [False False True False False],
 fill_value=2)
>>> ma.masked_equal(x, 2)
masked_array(data = [0 1 -- 3 4],
 mask = [False False True False False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_where

	
numpy.ma.masked_where(condition, a, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1701]

	Mask an array where a condition is met.

Return a as an array masked where condition is True.
Any masked values of a or condition are also masked in the output.

	Parameters:	condition : array_like

Masking condition. When condition tests floating point values for
equality, consider using masked_values instead.

a : array_like

Array to mask.

copy : bool

If True (default) make a copy of a in the result. If False modify
a in place and return a view.

	Returns:	result : MaskedArray

The result of masking a where condition is True.

See also

	masked_values

	Mask using floating point equality.

	masked_equal

	Mask where equal to a given value.

	masked_not_equal

	Mask where not equal to a given value.

	masked_less_equal

	Mask where less than or equal to a given value.

	masked_greater_equal

	Mask where greater than or equal to a given value.

	masked_less

	Mask where less than a given value.

	masked_greater

	Mask where greater than a given value.

	masked_inside

	Mask inside a given interval.

	masked_outside

	Mask outside a given interval.

	masked_invalid

	Mask invalid values (NaNs or infs).

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)

Mask array b conditional on a.

>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
masked_array(data = [a b -- d],
 mask = [False False True False],
 fill_value=N/A)

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a)
>>> c
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],
 mask = [False True True False],
 fill_value=999999)
>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],
 mask = [False True True False],
 fill_value=999999)
>>> a
array([99, 1, 2, 3])

When condition or a contain masked values.

>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data = [0 1 -- 3],
 mask = [False False True False],
 fill_value=999999)
>>> b = np.arange(4)
>>> b = ma.masked_where(b == 0, b)
>>> b
masked_array(data = [-- 1 2 3],
 mask = [True False False False],
 fill_value=999999)
>>> ma.masked_where(a == 3, b)
masked_array(data = [-- 1 -- --],
 mask = [True False True True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

Constants of the numpy.ma module

In addition to the MaskedArray class, the numpy.ma module
defines several constants.

	
numpy.ma.masked

	The masked constant is a special case of MaskedArray,
with a float datatype and a null shape. It is used to test whether a
specific entry of a masked array is masked, or to mask one or several
entries of a masked array:

>>> x = ma.array([1, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked
True
>>> x[-1] = ma.masked
>>> x
masked_array(data = [1 -- --],
 mask = [False True True],
 fill_value = 999999)

	
numpy.ma.nomask

	Value indicating that a masked array has no invalid entry.
nomask is used internally to speed up computations when the mask
is not needed.

	
numpy.ma.masked_print_options

	String used in lieu of missing data when a masked array is printed.
By default, this string is '--'.

The MaskedArray class

	
class numpy.ma.MaskedArray[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2581]

	
A subclass of ndarray designed to manipulate numerical arrays with missing data.

An instance of MaskedArray can be thought as the combination of several elements:

	The data, as a regular numpy.ndarray of any shape or datatype (the data).

	A boolean mask with the same shape as the data, where a True value indicates that the corresponding element of the data is invalid.
The special value nomask is also acceptable for arrays without named fields, and indicates that no data is invalid.

	A fill_value, a value that may be used to replace the invalid entries in order to return a standard numpy.ndarray.

Attributes and properties of masked arrays

See also

Array Attributes

	
MaskedArray.data

	Returns the underlying data, as a view of the masked array.
If the underlying data is a subclass of numpy.ndarray, it is
returned as such.

>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.data
matrix([[1, 2],
 [3, 4]])

The type of the data can be accessed through the baseclass
attribute.

	
MaskedArray.mask

	Returns the underlying mask, as an array with the same shape and structure
as the data, but where all fields are atomically booleans.
A value of True indicates an invalid entry.

	
MaskedArray.recordmask

	Returns the mask of the array if it has no named fields. For structured
arrays, returns a ndarray of booleans where entries are True if all
the fields are masked, False otherwise:

>>> x = ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
... dtype=[('a', int), ('b', int)])
>>> x.recordmask
array([False, False, True, False, False], dtype=bool)

	
MaskedArray.fill_value

	Returns the value used to fill the invalid entries of a masked array.
The value is either a scalar (if the masked array has no named fields),
or a 0-D ndarray with the same dtype as the masked array if it has
named fields.

The default filling value depends on the datatype of the array:

	datatype
	default

	bool
	True

	int
	999999

	float
	1.e20

	complex
	1.e20+0j

	object
	‘?’

	string
	‘N/A’

	
MaskedArray.baseclass

	Returns the class of the underlying data.

>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 0], [1, 0]])
>>> x.baseclass
<class 'numpy.matrixlib.defmatrix.matrix'>

	
MaskedArray.sharedmask

	Returns whether the mask of the array is shared between several masked arrays.
If this is the case, any modification to the mask of one array will be
propagated to the others.

	
MaskedArray.hardmask

	Returns whether the mask is hard (True) or soft (False).
When the mask is hard, masked entries cannot be unmasked.

As MaskedArray is a subclass of ndarray, a masked array also inherits all the attributes and properties of a ndarray instance.

	MaskedArray.base
	Base object if memory is from some other object.

	MaskedArray.ctypes
	An object to simplify the interaction of the array with the ctypes module.

	MaskedArray.dtype
	Data-type of the array’s elements.

	MaskedArray.flags
	Information about the memory layout of the array.

	MaskedArray.itemsize
	Length of one array element in bytes.

	MaskedArray.nbytes
	Total bytes consumed by the elements of the array.

	MaskedArray.ndim
	Number of array dimensions.

	MaskedArray.shape
	Tuple of array dimensions.

	MaskedArray.size
	Number of elements in the array.

	MaskedArray.strides
	Tuple of bytes to step in each dimension when traversing an array.

	MaskedArray.imag
	Imaginary part.

	MaskedArray.real
	Real part

	MaskedArray.flat
	Flat version of the array.

	MaskedArray.__array_priority__
	

MaskedArray methods

See also

Array methods

Conversion

	MaskedArray.__float__()
	Convert to float.

	MaskedArray.__hex__()<==>hex(x)
	

	MaskedArray.__int__()
	Convert to int.

	MaskedArray.__long__()<==>long(x)
	

	MaskedArray.__oct__()<==>oct(x)
	

	MaskedArray.view([dtype,type])
	New view of array with the same data.

	MaskedArray.astype(newtype)
	Returns a copy of the MaskedArray cast to given newtype.

	MaskedArray.byteswap(inplace)
	Swap the bytes of the array elements

	MaskedArray.compressed()
	Return all the non-masked data as a 1-D array.

	MaskedArray.filled([fill_value])
	Return a copy of self, with masked values filled with a given value.

	MaskedArray.tofile(fid[,sep,format])
	Save a masked array to a file in binary format.

	MaskedArray.toflex()
	Transforms a masked array into a flexible-type array.

	MaskedArray.tolist([fill_value])
	Return the data portion of the masked array as a hierarchical Python list.

	MaskedArray.torecords()
	Transforms a masked array into a flexible-type array.

	MaskedArray.tostring([fill_value,order])
	This function is a compatibility alias for tobytes.

	MaskedArray.tobytes([fill_value,order])
	Return the array data as a string containing the raw bytes in the array.

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be
replaced with n integers which will be interpreted as an n-tuple.

	MaskedArray.flatten([order])
	Return a copy of the array collapsed into one dimension.

	MaskedArray.ravel()
	Returns a 1D version of self, as a view.

	MaskedArray.reshape(*s,**kwargs)
	Give a new shape to the array without changing its data.

	MaskedArray.resize(newshape[,refcheck,order])
	

	MaskedArray.squeeze([axis])
	Remove single-dimensional entries from the shape of a.

	MaskedArray.swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	MaskedArray.transpose(*axes)
	Returns a view of the array with axes transposed.

	MaskedArray.T
	

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None.
If axis is None, then the array is treated as a 1-D array.
Any other value for axis represents the dimension along which
the operation should proceed.

	MaskedArray.argmax([axis,fill_value,out])
	Returns array of indices of the maximum values along the given axis.

	MaskedArray.argmin([axis,fill_value,out])
	Return array of indices to the minimum values along the given axis.

	MaskedArray.argsort([axis,kind,order,...])
	Return an ndarray of indices that sort the array along the specified axis.

	MaskedArray.choose(choices[,out,mode])
	Use an index array to construct a new array from a set of choices.

	MaskedArray.compress(condition[,axis,out])
	Return a where condition is True.

	MaskedArray.diagonal([offset,axis1,axis2])
	Return specified diagonals.

	MaskedArray.fill(value)
	Fill the array with a scalar value.

	MaskedArray.item(*args)
	Copy an element of an array to a standard Python scalar and return it.

	MaskedArray.nonzero()
	Return the indices of unmasked elements that are not zero.

	MaskedArray.put(indices,values[,mode])
	Set storage-indexed locations to corresponding values.

	MaskedArray.repeat(repeats[,axis])
	Repeat elements of an array.

	MaskedArray.searchsorted(v[,side,sorter])
	Find indices where elements of v should be inserted in a to maintain order.

	MaskedArray.sort([axis,kind,order,...])
	Sort the array, in-place

	MaskedArray.take(indices[,axis,out,mode])
	

Pickling and copy

	MaskedArray.copy([order])
	Return a copy of the array.

	MaskedArray.dump(file)
	Dump a pickle of the array to the specified file.

	MaskedArray.dumps()
	Returns the pickle of the array as a string.

Calculations

	MaskedArray.all([axis,out])
	Check if all of the elements of a are true.

	MaskedArray.anom([axis,dtype])
	Compute the anomalies (deviations from the arithmetic mean) along the given axis.

	MaskedArray.any([axis,out])
	Check if any of the elements of a are true.

	MaskedArray.clip(a_min,a_max[,out])
	Return an array whose values are limited to [a_min, a_max].

	MaskedArray.conj()
	Complex-conjugate all elements.

	MaskedArray.conjugate()
	Return the complex conjugate, element-wise.

	MaskedArray.cumprod([axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	MaskedArray.cumsum([axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	MaskedArray.max([axis,out,fill_value])
	Return the maximum along a given axis.

	MaskedArray.mean([axis,dtype,out])
	Returns the average of the array elements.

	MaskedArray.min([axis,out,fill_value])
	Return the minimum along a given axis.

	MaskedArray.prod([axis,dtype,out])
	Return the product of the array elements over the given axis.

	MaskedArray.product([axis,dtype,out])
	Return the product of the array elements over the given axis.

	MaskedArray.ptp([axis,out,fill_value])
	Return (maximum - minimum) along the the given dimension (i.e.

	MaskedArray.round([decimals,out])
	Return a with each element rounded to the given number of decimals.

	MaskedArray.std([axis,dtype,out,ddof])
	Compute the standard deviation along the specified axis.

	MaskedArray.sum([axis,dtype,out])
	Return the sum of the array elements over the given axis.

	MaskedArray.trace([offset,axis1,axis2,...])
	Return the sum along diagonals of the array.

	MaskedArray.var([axis,dtype,out,ddof])
	Compute the variance along the specified axis.

Arithmetic and comparison operations

Comparison operators:

	MaskedArray.__lt__
	x.__lt__(y) <==> x<y

	MaskedArray.__le__
	x.__le__(y) <==> x<=y

	MaskedArray.__gt__
	x.__gt__(y) <==> x>y

	MaskedArray.__ge__
	x.__ge__(y) <==> x>=y

	MaskedArray.__eq__(other)
	Check whether other equals self elementwise

	MaskedArray.__ne__(other)
	Check whether other doesn’t equal self elementwise

Truth value of an array (bool):

	MaskedArray.__nonzero__
	x.__nonzero__() <==> x != 0

Arithmetic:

	MaskedArray.__abs__()<==>abs(x)
	

	MaskedArray.__add__(other)
	Add other to self, and return a new masked array.

	MaskedArray.__radd__(other)
	Add other to self, and return a new masked array.

	MaskedArray.__sub__(other)
	Subtract other to self, and return a new masked array.

	MaskedArray.__rsub__(other)
	Subtract other to self, and return a new masked array.

	MaskedArray.__mul__(other)
	Multiply other by self, and return a new masked array.

	MaskedArray.__rmul__(other)
	Multiply other by self, and return a new masked array.

	MaskedArray.__div__(other)
	Divide other into self, and return a new masked array.

	MaskedArray.__rdiv__
	x.__rdiv__(y) <==> y/x

	MaskedArray.__truediv__(other)
	Divide other into self, and return a new masked array.

	MaskedArray.__rtruediv__(other)
	Divide other into self, and return a new masked array.

	MaskedArray.__floordiv__(other)
	Divide other into self, and return a new masked array.

	MaskedArray.__rfloordiv__(other)
	Divide other into self, and return a new masked array.

	MaskedArray.__mod__
	x.__mod__(y) <==> x%y

	MaskedArray.__rmod__
	x.__rmod__(y) <==> y%x

	MaskedArray.__divmod__(y)<==>divmod(x,y)
	

	MaskedArray.__rdivmod__(y)<==>divmod(y,x)
	

	MaskedArray.__pow__(other)
	Raise self to the power other, masking the potential NaNs/Infs

	MaskedArray.__rpow__(other)
	Raise self to the power other, masking the potential NaNs/Infs

	MaskedArray.__lshift__
	x.__lshift__(y) <==> x<<y

	MaskedArray.__rlshift__
	x.__rlshift__(y) <==> y<<x

	MaskedArray.__rshift__
	x.__rshift__(y) <==> x>>y

	MaskedArray.__rrshift__
	x.__rrshift__(y) <==> y>>x

	MaskedArray.__and__
	x.__and__(y) <==> x&y

	MaskedArray.__rand__
	x.__rand__(y) <==> y&x

	MaskedArray.__or__
	x.__or__(y) <==> x|y

	MaskedArray.__ror__
	x.__ror__(y) <==> y|x

	MaskedArray.__xor__
	x.__xor__(y) <==> x^y

	MaskedArray.__rxor__
	x.__rxor__(y) <==> y^x

Arithmetic, in-place:

	MaskedArray.__iadd__(other)
	Add other to self in-place.

	MaskedArray.__isub__(other)
	Subtract other from self in-place.

	MaskedArray.__imul__(other)
	Multiply self by other in-place.

	MaskedArray.__idiv__(other)
	Divide self by other in-place.

	MaskedArray.__itruediv__(other)
	True divide self by other in-place.

	MaskedArray.__ifloordiv__(other)
	Floor divide self by other in-place.

	MaskedArray.__imod__
	x.__imod__(y) <==> x%=y

	MaskedArray.__ipow__(other)
	Raise self to the power other, in place.

	MaskedArray.__ilshift__
	x.__ilshift__(y) <==> x<<=y

	MaskedArray.__irshift__
	x.__irshift__(y) <==> x>>=y

	MaskedArray.__iand__
	x.__iand__(y) <==> x&=y

	MaskedArray.__ior__
	x.__ior__(y) <==> x|=y

	MaskedArray.__ixor__
	x.__ixor__(y) <==> x^=y

Representation

	MaskedArray.__repr__()
	Literal string representation.

	MaskedArray.__str__()
	String representation.

	MaskedArray.ids()
	Return the addresses of the data and mask areas.

	MaskedArray.iscontiguous()
	Return a boolean indicating whether the data is contiguous.

Special methods

For standard library functions:

	MaskedArray.__copy__([order])
	Return a copy of the array.

	MaskedArray.__deepcopy__([memo])
	

	MaskedArray.__getstate__()
	Return the internal state of the masked array, for pickling purposes.

	MaskedArray.__reduce__()
	Return a 3-tuple for pickling a MaskedArray.

	MaskedArray.__setstate__(state)
	Restore the internal state of the masked array, for pickling purposes.

Basic customization:

	MaskedArray.__new__([data,mask,dtype,...])
	Create a new masked array from scratch.

	MaskedArray.__array__(...)
	Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is different from the current dtype of the array.

	MaskedArray.__array_wrap__(obj[,context])
	Special hook for ufuncs.

Container customization: (see Indexing)

	MaskedArray.__len__()<==>len(x)
	

	MaskedArray.__getitem__(indx)
	x.__getitem__(y) <==> x[y]

	MaskedArray.__setitem__(indx,value)
	x.__setitem__(i, y) <==> x[i]=y

	MaskedArray.__delitem__
	x.__delitem__(y) <==> del x[y]

	MaskedArray.__getslice__(i,j)
	x.__getslice__(i, j) <==> x[i:j]

	MaskedArray.__setslice__(i,j,value)
	x.__setslice__(i, j, value) <==> x[i:j]=value

	MaskedArray.__contains__
	x.__contains__(y) <==> y in x

Specific methods

Handling the mask

The following methods can be used to access information about the mask or to
manipulate the mask.

	MaskedArray.__setmask__(mask[,copy])
	Set the mask.

	MaskedArray.harden_mask()
	Force the mask to hard.

	MaskedArray.soften_mask()
	Force the mask to soft.

	MaskedArray.unshare_mask()
	Copy the mask and set the sharedmask flag to False.

	MaskedArray.shrink_mask()
	Reduce a mask to nomask when possible.

Handling the fill_value

	MaskedArray.get_fill_value()
	Return the filling value of the masked array.

	MaskedArray.set_fill_value([value])
	Set the filling value of the masked array.

Counting the missing elements

	MaskedArray.count([axis])
	Count the non-masked elements of the array along the given axis.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.base

	
MaskedArray.base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.ctypes

	
MaskedArray.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters:	None

	Returns:	c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.dtype

	
MaskedArray.dtype

	Data-type of the array’s elements.

	Parameters:	None

	Returns:	d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.flags

	
MaskedArray.flags

	Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	UPDATEIFCOPY (U)
	This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.itemsize

	
MaskedArray.itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.nbytes

	
MaskedArray.nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.ndim

	
MaskedArray.ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.shape

	
MaskedArray.shape

	Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.size

	
MaskedArray.size

	Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.strides

	
MaskedArray.strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.imag

	
MaskedArray.imag

	Imaginary part.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.real

	
MaskedArray.real

	Real part

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.flat

	
MaskedArray.flat

	Flat version of the array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__array_priority__

	
MaskedArray.__array_priority__ = 15

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__float__

	
MaskedArray.__float__()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3889]

	Convert to float.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__hex__

	
MaskedArray.__hex__() <==> hex(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__int__

	
MaskedArray.__int__()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3899]

	Convert to int.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__long__

	
MaskedArray.__long__() <==> long(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__oct__

	
MaskedArray.__oct__() <==> oct(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.view

	
MaskedArray.view(dtype=None, type=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2900]

	New view of array with the same data.

	Parameters:	dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.astype

	
MaskedArray.astype(newtype)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2988]

	Returns a copy of the MaskedArray cast to given newtype.

	Returns:	output : MaskedArray

A copy of self cast to input newtype.
The returned record shape matches self.shape.

Examples

>>> x = np.ma.array([[1,2,3.1],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1.0 -- 3.1]
 [-- 5.0 --]
 [7.0 -- 9.0]]
>>> print x.astype(int32)
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.byteswap

	
MaskedArray.byteswap(inplace)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

	Parameters:	inplace : bool, optional

If True, swap bytes in-place, default is False.

	Returns:	out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.compressed

	
MaskedArray.compressed()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3519]

	Return all the non-masked data as a 1-D array.

	Returns:	data : ndarray

A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
<type 'numpy.ndarray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.filled

	
MaskedArray.filled(fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3447]

	Return a copy of self, with masked values filled with a given value.

	Parameters:	fill_value : scalar, optional

The value to use for invalid entries (None by default).
If None, the fill_value attribute of the array is used instead.

	Returns:	filled_array : ndarray

A copy of self with invalid entries replaced by fill_value
(be it the function argument or the attribute of self.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> type(x.filled())
<type 'numpy.ndarray'>

Subclassing is preserved. This means that if the data part of the masked
array is a matrix, filled returns a matrix:

>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.filled()
matrix([[1, 999999],
 [999999, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tofile

	
MaskedArray.tofile(fid, sep='', format='%s')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5493]

	Save a masked array to a file in binary format.

Warning

This function is not implemented yet.

	Raises:	NotImplementedError

When tofile is called.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.toflex

	
MaskedArray.toflex()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5508]

	Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

	the _data field stores the _data part of the array.

	the _mask field stores the _mask part of the array.

	Parameters:	None

	Returns:	record : ndarray

A new flexible-type ndarray with two fields: the first element
containing a value, the second element containing the corresponding
mask boolean. The returned record shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is
that meta information (fill_value, ...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.toflex()
[[(1, False) (2, True) (3, False)]
 [(4, True) (5, False) (6, True)]
 [(7, False) (8, True) (9, False)]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tolist

	
MaskedArray.tolist(fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5369]

	Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type.
Masked values are converted to fill_value. If fill_value is None,
the corresponding entries in the output list will be None.

	Parameters:	fill_value : scalar, optional

The value to use for invalid entries. Default is None.

	Returns:	result : list

The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
>>> x.tolist()
[[1, None, 3], [None, 5, None], [7, None, 9]]
>>> x.tolist(-999)
[[1, -999, 3], [-999, 5, -999], [7, -999, 9]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.torecords

	
MaskedArray.torecords()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5508]

	Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

	the _data field stores the _data part of the array.

	the _mask field stores the _mask part of the array.

	Parameters:	None

	Returns:	record : ndarray

A new flexible-type ndarray with two fields: the first element
containing a value, the second element containing the corresponding
mask boolean. The returned record shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is
that meta information (fill_value, ...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.toflex()
[[(1, False) (2, True) (3, False)]
 [(4, True) (5, False) (6, True)]
 [(7, False) (8, True) (9, False)]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.tostring

	
MaskedArray.tostring(fill_value=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5445]

	This function is a compatibility alias for tobytes. Despite its name it
returns bytes not strings.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tobytes

	
MaskedArray.tobytes(fill_value=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5453]

	Return the array data as a string containing the raw bytes in the array.

The array is filled with a fill value before the string conversion.

New in version 1.9.0.

	Parameters:	fill_value : scalar, optional

Value used to fill in the masked values. Deafult is None, in which
case MaskedArray.fill_value is used.

order : {‘C’,’F’,’A’}, optional

Order of the data item in the copy. Default is ‘C’.

	‘C’ – C order (row major).

	‘F’ – Fortran order (column major).

	‘A’ – Any, current order of array.

	None – Same as ‘A’.

See also

ndarray.tobytes, tolist, tofile

Notes

As for ndarray.tobytes, information about the shape, dtype, etc.,
but also about fill_value, will be lost.

Examples

>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
'\x01\x00\x00\x00?B\x0f\x00?B\x0f\x00\x04\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.flatten

	
MaskedArray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.ravel

	
MaskedArray.ravel()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4044]

	Returns a 1D version of self, as a view.

	Returns:	MaskedArray

Output view is of shape (self.size,) (or
(np.ma.product(self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.ravel()
[1 -- 3 -- 5 -- 7 -- 9]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.reshape

	
MaskedArray.reshape(*s, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4075]

	Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape.
The result is a view on the original array; if this is not possible, a
ValueError is raised.

	Parameters:	shape : int or tuple of ints

The new shape should be compatible with the original shape. If an
integer is supplied, then the result will be a 1-D array of that
length.

order : {‘C’, ‘F’}, optional

Determines whether the array data should be viewed as in C
(row-major) or FORTRAN (column-major) order.

	Returns:	reshaped_array : array

A new view on the array.

See also

	reshape

	Equivalent function in the masked array module.

	numpy.ndarray.reshape

	Equivalent method on ndarray object.

	numpy.reshape

	Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made,
to modify the shape in place, use a.shape = s

Examples

>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> print x
[[-- 2]
 [3 --]]
>>> x = x.reshape((4,1))
>>> print x
[[--]
 [2]
 [3]
 [--]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.resize

	
MaskedArray.resize(newshape, refcheck=True, order=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4131]

	
Warning

This method does nothing, except raise a ValueError exception. A
masked array does not own its data and therefore cannot safely be
resized in place. Use the numpy.ma.resize function instead.

This method is difficult to implement safely and may be deprecated in
future releases of NumPy.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.squeeze

	
MaskedArray.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.swapaxes

	
MaskedArray.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.transpose

	
MaskedArray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.T

	
MaskedArray.T

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argmax

	
MaskedArray.argmax(axis=None, fill_value=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5005]

	Returns array of indices of the maximum values along the given axis.
Masked values are treated as if they had the value fill_value.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	index_array : {integer_array}

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argmin

	
MaskedArray.argmin(axis=None, fill_value=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4963]

	Return array of indices to the minimum values along the given axis.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	{ndarray, scalar}

If multi-dimension input, returns a new ndarray of indices to the
minimum values along the given axis. Otherwise, returns a scalar
of index to the minimum values along the given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print x
[[-- --]
 [2 3]]
>>> print x.argmin(axis=0, fill_value=-1)
[0 0]
>>> print x.argmin(axis=0, fill_value=9)
[1 1]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argsort

	
MaskedArray.argsort(axis=None, kind='quicksort', order=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4909]

	Return an ndarray of indices that sort the array along the
specified axis. Masked values are filled beforehand to
fill_value.

	Parameters:	axis : int, optional

Axis along which to sort. The default is -1 (last axis).
If None, the flattened array is used.

fill_value : var, optional

Value used to fill the array before sorting.
The default is the fill_value attribute of the input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

	Returns:	index_array : ndarray, int

Array of indices that sort a along the specified axis.
In other words, a[index_array] yields a sorted a.

See also

	sort

	Describes sorting algorithms used.

	lexsort

	Indirect stable sort with multiple keys.

	ndarray.sort

	Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.argsort()
array([1, 0, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.choose

	
MaskedArray.choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

	numpy.choose

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.compress

	
MaskedArray.compress(condition, axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3547]

	Return a where condition is True.

If condition is a MaskedArray, missing values are considered
as False.

	Parameters:	condition : var

Boolean 1-d array selecting which entries to return. If len(condition)
is less than the size of a along the axis, then output is truncated
to length of condition array.

axis : {None, int}, optional

Axis along which the operation must be performed.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	result : MaskedArray

A MaskedArray object.

Notes

Please note the difference with compressed !
The output of compress has a mask, the output of
compressed does not.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> x.compress([1, 0, 1])
masked_array(data = [1 3],
 mask = [False False],
 fill_value=999999)

>>> x.compress([1, 0, 1], axis=1)
masked_array(data =
 [[1 3]
 [-- --]
 [7 9]],
 mask =
 [[False False]
 [True True]
 [False False]],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.diagonal

	
MaskedArray.diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

	numpy.diagonal

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.fill

	
MaskedArray.fill(value)

	Fill the array with a scalar value.

	Parameters:	value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.item

	
MaskedArray.item(*args)

	Copy an element of an array to a standard Python scalar and return it.

	Parameters:	*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	Returns:	z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.nonzero

	
MaskedArray.nonzero()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4363]

	Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the
indices of the non-zero elements in that dimension. The corresponding
non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use
instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero
element.

	Parameters:	None

	Returns:	tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also

	numpy.nonzero

	Function operating on ndarrays.

	flatnonzero

	Return indices that are non-zero in the flattened version of the input array.

	ndarray.nonzero

	Equivalent ndarray method.

	count_nonzero

	Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
 [[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]],
 mask =
 False,
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
 [[1.0 0.0 0.0]
 [0.0 -- 0.0]
 [0.0 0.0 1.0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],
 [2, 2]])

A common use for nonzero is to find the indices of an array, where
a condition is True. Given an array a, the condition a > 3 is a
boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
yields the indices of the a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
 [[False False False]
 [True True True]
 [True True True]],
 mask =
 False,
 fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.put

	
MaskedArray.put(indices, values, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4158]

	Set storage-indexed locations to corresponding values.

Sets self._data.flat[n] = values[n] for each n in indices.
If values is shorter than indices then it will repeat.
If values has some masked values, the initial mask is updated
in consequence, else the corresponding values are unmasked.

	Parameters:	indices : 1-D array_like

Target indices, interpreted as integers.

values : array_like

Values to place in self._data copy at target indices.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave.
‘raise’ : raise an error.
‘wrap’ : wrap around.
‘clip’ : clip to the range.

Notes

values can be a scalar or length 1 array.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> x.put([0,4,8],[10,20,30])
>>> print x
[[10 -- 3]
 [-- 20 --]
 [7 -- 30]]

>>> x.put(4,999)
>>> print x
[[10 -- 3]
 [-- 999 --]
 [7 -- 30]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.repeat

	
MaskedArray.repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.searchsorted

	
MaskedArray.searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

	numpy.searchsorted

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.sort

	
MaskedArray.sort(axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5043]

	Sort the array, in-place

	Parameters:	a : array_like

Array to be sorted.

axis : int, optional

Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices
(at the end of the array) (True) or lower indices (at the beginning).
When the array contains unmasked values of the largest (or smallest if
False) representable value of the datatype the ordering of these values
and the masked values is undefined. To enforce the masked values are
at the end (beginning) in this case one must sort the mask.

fill_value : {var}, optional

Value used internally for the masked values.
If fill_value is not None, it supersedes endwith.

	Returns:	sorted_array : ndarray

Array of the same type and shape as a.

See also

	ndarray.sort

	Method to sort an array in-place.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print a
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print a
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print a
[1 -- -- 3 5]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.take

	
MaskedArray.take(indices, axis=None, out=None, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5334]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.copy

	
MaskedArray.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.dump

	
MaskedArray.dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	Parameters:	file : str

A string naming the dump file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.dumps

	
MaskedArray.dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

	Parameters:	None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.all

	
MaskedArray.all(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4280]

	Check if all of the elements of a are true.

Performs a logical_and over the given axis and returns the result.
Masked values are considered as True during computation.
For convenience, the output array is masked where ALL the values along the
current axis are masked: if the output would have been a scalar and that
all the values are masked, then the output is masked.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	all

	equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.anom

	
MaskedArray.anom(axis=None, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4794]

	Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Returns an array of anomalies, with the same shape as the input and
where the arithmetic mean is computed along the given axis.

	Parameters:	axis : int, optional

Axis over which the anomalies are taken.
The default is to use the mean of the flattened array as reference.

dtype : dtype, optional

	Type to use in computing the variance. For arrays of integer type

	the default is float32; for arrays of float types it is the same as
the array type.

See also

	mean

	Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.any

	
MaskedArray.any(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4327]

	Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result.
Masked values are considered as False during computation.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array and return a scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	any

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.clip

	
MaskedArray.clip(a_min, a_max, out=None)

	Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

	numpy.clip

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.conj

	
MaskedArray.conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.conjugate

	
MaskedArray.conjugate()

	Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.cumprod

	
MaskedArray.cumprod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4677]

	Return the cumulative product of the elements along the given axis.
The cumulative product is taken over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the product is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the
default platform integer, then the default platform integer precision
is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumprod : ndarray

A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.cumsum

	
MaskedArray.cumsum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4548]

	Return the cumulative sum of the elements along the given axis.
The cumulative sum is calculated over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 0 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to
compute over the flattened array. axis may be negative, in which case
it counts from the last to the first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumsum : ndarray.

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print marr.cumsum()
[0 1 3 -- -- -- 9 16 24 33]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.max

	
MaskedArray.max(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5241]

	Return the maximum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of maximum_fill_value().

	Returns:	amax : array_like

New array holding the result.
If out was specified, out is returned.

See also

	maximum_fill_value

	Returns the maximum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.mean

	
MaskedArray.mean(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4727]

	Returns the average of the array elements.

Masked entries are ignored.
The average is taken over the flattened array by default, otherwise over
the specified axis. Refer to numpy.mean for the full documentation.

	Parameters:	a : array_like

Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute
the mean of the flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default
is float64; for floating point, inputs it is the same as the input
dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

See also

	numpy.ma.mean

	Equivalent function.

	numpy.mean

	Equivalent function on non-masked arrays.

	numpy.ma.average

	Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.mean()
1.5

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.min

	
MaskedArray.min(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5142]

	Return the minimum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of
the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of minimum_fill_value.

	Returns:	amin : array_like

New array holding the result.
If out was specified, out is returned.

See also

	minimum_fill_value

	Returns the minimum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.prod

	
MaskedArray.prod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4605]

	Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.

	Parameters:	axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the
product is over all the array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.

See also

	prod

	equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised
on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.product

	
MaskedArray.product(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4605]

	Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.

	Parameters:	axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the
product is over all the array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.

See also

	prod

	equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised
on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.ptp

	
MaskedArray.ptp(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5301]

	Return (maximum - minimum) along the the given dimension
(i.e. peak-to-peak value).

	Parameters:	axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the
flattened array is used.

out : {None, array_like}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

	Returns:	ptp : ndarray.

A new array holding the result, unless out was
specified, in which case a reference to out is returned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.round

	
MaskedArray.round(decimals=0, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4886]

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

	numpy.around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.std

	
MaskedArray.std(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4874]

	Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.

	Parameters:	a : array_like

Calculate the standard deviation of these values.

axis : int, optional

Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it is
the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements.
By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation,
otherwise return a reference to the output array.

See also

var, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is specified,
the divisor N - ddof is used instead. In standard statistical
practice, ddof=1 provides an unbiased estimator of the variance
of the infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables. The
standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dtype keyword can
alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.sum

	
MaskedArray.sum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4480]

	Return the sum of the array elements over the given axis.
Masked elements are set to 0 internally.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified
axis removed. If self is a 0-d array, or if axis is None, a scalar
is returned. If an output array is specified, a reference to
out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.sum()
25
>>> print x.sum(axis=1)
[4 5 16]
>>> print x.sum(axis=0)
[8 5 12]
>>> print type(x.sum(axis=0, dtype=np.int64)[0])
<type 'numpy.int64'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.trace

	
MaskedArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4465]

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.var

	
MaskedArray.var(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4831]

	Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.

	Parameters:	a : array_like

Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance;
otherwise, a reference to the output array is returned.

See also

std, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.var(a)
0.20405951142311096

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932997387
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.20250000000000001

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__lt__

	
MaskedArray.__lt__

	x.__lt__(y) <==> x<y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__le__

	
MaskedArray.__le__

	x.__le__(y) <==> x<=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__gt__

	
MaskedArray.__gt__

	x.__gt__(y) <==> x>y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__ge__

	
MaskedArray.__ge__

	x.__ge__(y) <==> x>=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__eq__

	
MaskedArray.__eq__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3672]

	Check whether other equals self elementwise

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__ne__

	
MaskedArray.__ne__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3705]

	Check whether other doesn’t equal self elementwise

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__nonzero__

	
MaskedArray.__nonzero__

	x.__nonzero__() <==> x != 0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__abs__

	
MaskedArray.__abs__() <==> abs(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__add__

	
MaskedArray.__add__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3738]

	Add other to self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__radd__

	
MaskedArray.__radd__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3742]

	Add other to self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__sub__

	
MaskedArray.__sub__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3746]

	Subtract other to self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rsub__

	
MaskedArray.__rsub__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3750]

	Subtract other to self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__mul__

	
MaskedArray.__mul__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3754]

	Multiply other by self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rmul__

	
MaskedArray.__rmul__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3758]

	Multiply other by self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__div__

	
MaskedArray.__div__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3762]

	Divide other into self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rdiv__

	
MaskedArray.__rdiv__

	x.__rdiv__(y) <==> y/x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__truediv__

	
MaskedArray.__truediv__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3766]

	Divide other into self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rtruediv__

	
MaskedArray.__rtruediv__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3770]

	Divide other into self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__floordiv__

	
MaskedArray.__floordiv__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3774]

	Divide other into self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rfloordiv__

	
MaskedArray.__rfloordiv__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3778]

	Divide other into self, and return a new masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__mod__

	
MaskedArray.__mod__

	x.__mod__(y) <==> x%y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rmod__

	
MaskedArray.__rmod__

	x.__rmod__(y) <==> y%x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__divmod__

	
MaskedArray.__divmod__(y) <==> divmod(x, y)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rdivmod__

	
MaskedArray.__rdivmod__(y) <==> divmod(y, x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__pow__

	
MaskedArray.__pow__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3782]

	Raise self to the power other, masking the potential NaNs/Infs

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rpow__

	
MaskedArray.__rpow__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3786]

	Raise self to the power other, masking the potential NaNs/Infs

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__lshift__

	
MaskedArray.__lshift__

	x.__lshift__(y) <==> x<<y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rlshift__

	
MaskedArray.__rlshift__

	x.__rlshift__(y) <==> y<<x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rshift__

	
MaskedArray.__rshift__

	x.__rshift__(y) <==> x>>y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rrshift__

	
MaskedArray.__rrshift__

	x.__rrshift__(y) <==> y>>x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__and__

	
MaskedArray.__and__

	x.__and__(y) <==> x&y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rand__

	
MaskedArray.__rand__

	x.__rand__(y) <==> y&x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__or__

	
MaskedArray.__or__

	x.__or__(y) <==> x|y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__ror__

	
MaskedArray.__ror__

	x.__ror__(y) <==> y|x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__xor__

	
MaskedArray.__xor__

	x.__xor__(y) <==> x^y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__rxor__

	
MaskedArray.__rxor__

	x.__rxor__(y) <==> y^x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__iadd__

	
MaskedArray.__iadd__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3790]

	Add other to self in-place.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__isub__

	
MaskedArray.__isub__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3803]

	Subtract other from self in-place.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__imul__

	
MaskedArray.__imul__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3815]

	Multiply self by other in-place.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__idiv__

	
MaskedArray.__idiv__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3827]

	Divide self by other in-place.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__itruediv__

	
MaskedArray.__itruediv__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3857]

	True divide self by other in-place.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__ifloordiv__

	
MaskedArray.__ifloordiv__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3842]

	Floor divide self by other in-place.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__imod__

	
MaskedArray.__imod__

	x.__imod__(y) <==> x%=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__ipow__

	
MaskedArray.__ipow__(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3872]

	Raise self to the power other, in place.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__ilshift__

	
MaskedArray.__ilshift__

	x.__ilshift__(y) <==> x<<=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__irshift__

	
MaskedArray.__irshift__

	x.__irshift__(y) <==> x>>=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__iand__

	
MaskedArray.__iand__

	x.__iand__(y) <==> x&=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__ior__

	
MaskedArray.__ior__

	x.__ior__(y) <==> x|=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__ixor__

	
MaskedArray.__ixor__

	x.__ixor__(y) <==> x^=y

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__repr__

	
MaskedArray.__repr__()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3651]

	Literal string representation.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__str__

	
MaskedArray.__str__()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3614]

	String representation.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.ids

	
MaskedArray.ids()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4226]

	Return the addresses of the data and mask areas.

	Parameters:	None

Examples

>>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
>>> x.ids()
(166670640, 166659832)

If the array has no mask, the address of nomask is returned. This address
is typically not close to the data in memory:

>>> x = np.ma.array([1, 2, 3])
>>> x.ids()
(166691080, 3083169284L)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.iscontiguous

	
MaskedArray.iscontiguous()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4252]

	Return a boolean indicating whether the data is contiguous.

	Parameters:	None

Examples

>>> x = np.ma.array([1, 2, 3])
>>> x.iscontiguous()
True

iscontiguous returns one of the flags of the masked array:

>>> x.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : True
 OWNDATA : False
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__copy__

	
MaskedArray.__copy__([order])

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

If order is ‘C’ (False) then the result is contiguous (default).
If order is ‘Fortran’ (True) then the result has fortran order.
If order is ‘Any’ (None) then the result has fortran order
only if the array already is in fortran order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__deepcopy__

	
MaskedArray.__deepcopy__(memo=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5606]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__getstate__

	
MaskedArray.__getstate__()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5563]

	Return the internal state of the masked array, for pickling
purposes.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__reduce__

	
MaskedArray.__reduce__()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5598]

	Return a 3-tuple for pickling a MaskedArray.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__setstate__

	
MaskedArray.__setstate__(state)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5581]

	Restore the internal state of the masked array, for
pickling purposes. state is typically the output of the
__getstate__ output, and is a 5-tuple:

	class name

	a tuple giving the shape of the data

	a typecode for the data

	a binary string for the data

	a binary string for the mask.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__new__

	
static MaskedArray.__new__(data=None, mask=False, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, **options)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2633]

	Create a new masked array from scratch.

Notes

A masked array can also be created by taking a .view(MaskedArray).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__array__

	
MaskedArray.__array__(|dtype) reference if type unchanged, copy otherwise.

	Returns either a new reference to self if dtype is not given or a new array
of provided data type if dtype is different from the current dtype of the
array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__array_wrap__

	
MaskedArray.__array_wrap__(obj, context=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2851]

	Special hook for ufuncs.
Wraps the numpy array and sets the mask according to context.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__len__

	
MaskedArray.__len__() <==> len(x)

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__getitem__

	
MaskedArray.__getitem__(indx)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3028]

	x.__getitem__(y) <==> x[y]

Return the item described by i, as a masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__setitem__

	
MaskedArray.__setitem__(indx, value)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3073]

	x.__setitem__(i, y) <==> x[i]=y

Set item described by index. If value is masked, masks those
locations.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__delitem__

	
MaskedArray.__delitem__

	x.__delitem__(y) <==> del x[y]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__getslice__

	
MaskedArray.__getslice__(i, j)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3149]

	x.__getslice__(i, j) <==> x[i:j]

Return the slice described by (i, j). The use of negative
indices is not supported.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__setslice__

	
MaskedArray.__setslice__(i, j, value)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3158]

	x.__setslice__(i, j, value) <==> x[i:j]=value

Set the slice (i,j) of a to value. If value is masked, mask
those locations.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__contains__

	
MaskedArray.__contains__

	x.__contains__(y) <==> y in x

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

 	Masked arrays

 	Constants of the numpy.ma module

numpy.ma.MaskedArray.__setmask__

	
MaskedArray.__setmask__(mask, copy=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3168]

	Set the mask.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.harden_mask

	
MaskedArray.harden_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3266]

	Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. harden_mask sets hardmask to True.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.soften_mask

	
MaskedArray.soften_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3281]

	Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. soften_mask sets hardmask to False.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.unshare_mask

	
MaskedArray.unshare_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3300]

	Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from
the sharedmask property. unshare_mask ensures the mask is not shared.
A copy of the mask is only made if it was shared.

See also

sharedmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.shrink_mask

	
MaskedArray.shrink_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3321]

	Reduce a mask to nomask when possible.

	Parameters:	None

	Returns:	None

Examples

>>> x = np.ma.array([[1,2], [3, 4]], mask=[0]*4)
>>> x.mask
array([[False, False],
 [False, False]], dtype=bool)
>>> x.shrink_mask()
>>> x.mask
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.get_fill_value

	
MaskedArray.get_fill_value()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3376]

	Return the filling value of the masked array.

	Returns:	fill_value : scalar

The filling value.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
... np.ma.array([0, 1], dtype=dt).get_fill_value()
...
999999
999999
1e+20
(1e+20+0j)

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.get_fill_value()
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.set_fill_value

	
MaskedArray.set_fill_value(value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3404]

	Set the filling value of the masked array.

	Parameters:	value : scalar, optional

The new filling value. Default is None, in which case a default
based on the data type is used.

See also

	ma.set_fill_value

	Equivalent function.

Examples

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
-inf
>>> x.set_fill_value(np.pi)
>>> x.fill_value
3.1415926535897931

Reset to default:

>>> x.set_fill_value()
>>> x.fill_value
1e+20

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.count

	
MaskedArray.count(axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3979]

	Count the non-masked elements of the array along the given axis.

	Parameters:	axis : int, optional

Axis along which to count the non-masked elements. If axis is
None, all non-masked elements are counted.

	Returns:	result : int or ndarray

If axis is None, an integer count is returned. When axis is
not None, an array with shape determined by the lengths of the
remaining axes, is returned.

See also

	count_masked

	Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- -- --]],
 mask =
 [[False False False]
 [True True True]],
 fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is
returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Masked array operations

Constants

	ma.MaskType
	alias of bool_

Creation

From existing data

	ma.masked_array
	alias of MaskedArray

	ma.array(data[,dtype,copy,order,mask,...])
	An array class with possibly masked values.

	ma.copy
	copy

	ma.frombuffer(buffer[,dtype,count,offset])
	Interpret a buffer as a 1-dimensional array.

	ma.fromfunction(function,shape,**kwargs)
	Construct an array by executing a function over each coordinate.

	ma.MaskedArray.copy([order])
	Return a copy of the array.

Ones and zeros

	ma.empty(shape[,dtype,order])
	Return a new array of given shape and type, without initializing entries.

	ma.empty_like(a[,dtype,order,subok])
	Return a new array with the same shape and type as a given array.

	ma.masked_all(shape[,dtype])
	Empty masked array with all elements masked.

	ma.masked_all_like(arr)
	Empty masked array with the properties of an existing array.

	ma.ones(shape[,dtype,order])
	Return a new array of given shape and type, filled with ones.

	ma.zeros(shape[,dtype,order])
	Return a new array of given shape and type, filled with zeros.

Inspecting the array

	ma.all(self[,axis,out])
	Check if all of the elements of a are true.

	ma.any(self[,axis,out])
	Check if any of the elements of a are true.

	ma.count(a[,axis])
	Count the non-masked elements of the array along the given axis.

	ma.count_masked(arr[,axis])
	Count the number of masked elements along the given axis.

	ma.getmask(a)
	Return the mask of a masked array, or nomask.

	ma.getmaskarray(arr)
	Return the mask of a masked array, or full boolean array of False.

	ma.getdata(a[,subok])
	Return the data of a masked array as an ndarray.

	ma.nonzero(self)
	Return the indices of unmasked elements that are not zero.

	ma.shape(obj)
	Return the shape of an array.

	ma.size(obj[,axis])
	Return the number of elements along a given axis.

	ma.is_masked(x)
	Determine whether input has masked values.

	ma.is_mask(m)
	Return True if m is a valid, standard mask.

	ma.MaskedArray.data
	Return the current data, as a view of the original underlying data.

	ma.MaskedArray.mask
	Mask

	ma.MaskedArray.recordmask
	Return the mask of the records.

	ma.MaskedArray.all([axis,out])
	Check if all of the elements of a are true.

	ma.MaskedArray.any([axis,out])
	Check if any of the elements of a are true.

	ma.MaskedArray.count([axis])
	Count the non-masked elements of the array along the given axis.

	ma.MaskedArray.nonzero()
	Return the indices of unmasked elements that are not zero.

	ma.shape(obj)
	Return the shape of an array.

	ma.size(obj[,axis])
	Return the number of elements along a given axis.

Manipulating a MaskedArray

Changing the shape

	ma.ravel(self)
	Returns a 1D version of self, as a view.

	ma.reshape(a,new_shape[,order])
	Returns an array containing the same data with a new shape.

	ma.resize(x,new_shape)
	Return a new masked array with the specified size and shape.

	ma.MaskedArray.flatten([order])
	Return a copy of the array collapsed into one dimension.

	ma.MaskedArray.ravel()
	Returns a 1D version of self, as a view.

	ma.MaskedArray.reshape(*s,**kwargs)
	Give a new shape to the array without changing its data.

	ma.MaskedArray.resize(newshape[,refcheck,...])
	

Modifying axes

	ma.swapaxes
	swapaxes

	ma.transpose(a[,axes])
	Permute the dimensions of an array.

	ma.MaskedArray.swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	ma.MaskedArray.transpose(*axes)
	Returns a view of the array with axes transposed.

Changing the number of dimensions

	ma.atleast_1d(*arys)
	Convert inputs to arrays with at least one dimension.

	ma.atleast_2d(*arys)
	View inputs as arrays with at least two dimensions.

	ma.atleast_3d(*arys)
	View inputs as arrays with at least three dimensions.

	ma.expand_dims(x,axis)
	Expand the shape of an array.

	ma.squeeze(a[,axis])
	Remove single-dimensional entries from the shape of an array.

	ma.MaskedArray.squeeze([axis])
	Remove single-dimensional entries from the shape of a.

	ma.column_stack(tup)
	Stack 1-D arrays as columns into a 2-D array.

	ma.concatenate(arrays[,axis])
	Concatenate a sequence of arrays along the given axis.

	ma.dstack(tup)
	Stack arrays in sequence depth wise (along third axis).

	ma.hstack(tup)
	Stack arrays in sequence horizontally (column wise).

	ma.hsplit(ary,indices_or_sections)
	Split an array into multiple sub-arrays horizontally (column-wise).

	ma.mr_
	Translate slice objects to concatenation along the first axis.

	ma.row_stack(tup)
	Stack arrays in sequence vertically (row wise).

	ma.vstack(tup)
	Stack arrays in sequence vertically (row wise).

Joining arrays

	ma.column_stack(tup)
	Stack 1-D arrays as columns into a 2-D array.

	ma.concatenate(arrays[,axis])
	Concatenate a sequence of arrays along the given axis.

	ma.append(a,b[,axis])
	Append values to the end of an array.

	ma.dstack(tup)
	Stack arrays in sequence depth wise (along third axis).

	ma.hstack(tup)
	Stack arrays in sequence horizontally (column wise).

	ma.vstack(tup)
	Stack arrays in sequence vertically (row wise).

Operations on masks

Creating a mask

	ma.make_mask(m[,copy,shrink,dtype])
	Create a boolean mask from an array.

	ma.make_mask_none(newshape[,dtype])
	Return a boolean mask of the given shape, filled with False.

	ma.mask_or(m1,m2[,copy,shrink])
	Combine two masks with the logical_or operator.

	ma.make_mask_descr(ndtype)
	Construct a dtype description list from a given dtype.

Accessing a mask

	ma.getmask(a)
	Return the mask of a masked array, or nomask.

	ma.getmaskarray(arr)
	Return the mask of a masked array, or full boolean array of False.

	ma.masked_array.mask
	Mask

Finding masked data

	ma.flatnotmasked_contiguous(a)
	Find contiguous unmasked data in a masked array along the given axis.

	ma.flatnotmasked_edges(a)
	Find the indices of the first and last unmasked values.

	ma.notmasked_contiguous(a[,axis])
	Find contiguous unmasked data in a masked array along the given axis.

	ma.notmasked_edges(a[,axis])
	Find the indices of the first and last unmasked values along an axis.

Modifying a mask

	ma.mask_cols(a[,axis])
	Mask columns of a 2D array that contain masked values.

	ma.mask_or(m1,m2[,copy,shrink])
	Combine two masks with the logical_or operator.

	ma.mask_rowcols(a[,axis])
	Mask rows and/or columns of a 2D array that contain masked values.

	ma.mask_rows(a[,axis])
	Mask rows of a 2D array that contain masked values.

	ma.harden_mask(self)
	Force the mask to hard.

	ma.soften_mask(self)
	Force the mask to soft.

	ma.MaskedArray.harden_mask()
	Force the mask to hard.

	ma.MaskedArray.soften_mask()
	Force the mask to soft.

	ma.MaskedArray.shrink_mask()
	Reduce a mask to nomask when possible.

	ma.MaskedArray.unshare_mask()
	Copy the mask and set the sharedmask flag to False.

Conversion operations

> to a masked array

	ma.asarray(a[,dtype,order])
	Convert the input to a masked array of the given data-type.

	ma.asanyarray(a[,dtype])
	Convert the input to a masked array, conserving subclasses.

	ma.fix_invalid(a[,mask,copy,fill_value])
	Return input with invalid data masked and replaced by a fill value.

	ma.masked_equal(x,value[,copy])
	Mask an array where equal to a given value.

	ma.masked_greater(x,value[,copy])
	Mask an array where greater than a given value.

	ma.masked_greater_equal(x,value[,copy])
	Mask an array where greater than or equal to a given value.

	ma.masked_inside(x,v1,v2[,copy])
	Mask an array inside a given interval.

	ma.masked_invalid(a[,copy])
	Mask an array where invalid values occur (NaNs or infs).

	ma.masked_less(x,value[,copy])
	Mask an array where less than a given value.

	ma.masked_less_equal(x,value[,copy])
	Mask an array where less than or equal to a given value.

	ma.masked_not_equal(x,value[,copy])
	Mask an array where not equal to a given value.

	ma.masked_object(x,value[,copy,shrink])
	Mask the array x where the data are exactly equal to value.

	ma.masked_outside(x,v1,v2[,copy])
	Mask an array outside a given interval.

	ma.masked_values(x,value[,rtol,atol,...])
	Mask using floating point equality.

	ma.masked_where(condition,a[,copy])
	Mask an array where a condition is met.

> to a ndarray

	ma.compress_cols(a)
	Suppress whole columns of a 2-D array that contain masked values.

	ma.compress_rowcols(x[,axis])
	Suppress the rows and/or columns of a 2-D array that contain masked values.

	ma.compress_rows(a)
	Suppress whole rows of a 2-D array that contain masked values.

	ma.compressed(x)
	Return all the non-masked data as a 1-D array.

	ma.filled(a[,fill_value])
	Return input as an array with masked data replaced by a fill value.

	ma.MaskedArray.compressed()
	Return all the non-masked data as a 1-D array.

	ma.MaskedArray.filled([fill_value])
	Return a copy of self, with masked values filled with a given value.

> to another object

	ma.MaskedArray.tofile(fid[,sep,format])
	Save a masked array to a file in binary format.

	ma.MaskedArray.tolist([fill_value])
	Return the data portion of the masked array as a hierarchical Python list.

	ma.MaskedArray.torecords()
	Transforms a masked array into a flexible-type array.

	ma.MaskedArray.tobytes([fill_value,order])
	Return the array data as a string containing the raw bytes in the array.

Pickling and unpickling

	ma.dump(a,F)
	Pickle a masked array to a file.

	ma.dumps(a)
	Return a string corresponding to the pickling of a masked array.

	ma.load(F)
	Wrapper around cPickle.load which accepts either a file-like object or a filename.

	ma.loads(strg)
	Load a pickle from the current string.

Filling a masked array

	ma.common_fill_value(a,b)
	Return the common filling value of two masked arrays, if any.

	ma.default_fill_value(obj)
	Return the default fill value for the argument object.

	ma.maximum_fill_value(obj)
	Return the minimum value that can be represented by the dtype of an object.

	ma.maximum_fill_value(obj)
	Return the minimum value that can be represented by the dtype of an object.

	ma.set_fill_value(a,fill_value)
	Set the filling value of a, if a is a masked array.

	ma.MaskedArray.get_fill_value()
	Return the filling value of the masked array.

	ma.MaskedArray.set_fill_value([value])
	Set the filling value of the masked array.

	ma.MaskedArray.fill_value
	Filling value.

Masked arrays arithmetics

Arithmetics

	ma.anom(self[,axis,dtype])
	Compute the anomalies (deviations from the arithmetic mean) along the given axis.

	ma.anomalies(self[,axis,dtype])
	Compute the anomalies (deviations from the arithmetic mean) along the given axis.

	ma.average(a[,axis,weights,returned])
	Return the weighted average of array over the given axis.

	ma.conjugate(x[,out])
	Return the complex conjugate, element-wise.

	ma.corrcoef(x[,y,rowvar,bias,...])
	Return correlation coefficients of the input array.

	ma.cov(x[,y,rowvar,bias,allow_masked,ddof])
	Estimate the covariance matrix.

	ma.cumsum(self[,axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	ma.cumprod(self[,axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	ma.mean(self[,axis,dtype,out])
	Returns the average of the array elements.

	ma.median(a[,axis,out,overwrite_input])
	Compute the median along the specified axis.

	ma.power(a,b[,third])
	Returns element-wise base array raised to power from second array.

	ma.prod(self[,axis,dtype,out])
	Return the product of the array elements over the given axis.

	ma.std(self[,axis,dtype,out,ddof])
	Compute the standard deviation along the specified axis.

	ma.sum(self[,axis,dtype,out])
	Return the sum of the array elements over the given axis.

	ma.var(self[,axis,dtype,out,ddof])
	Compute the variance along the specified axis.

	ma.MaskedArray.anom([axis,dtype])
	Compute the anomalies (deviations from the arithmetic mean) along the given axis.

	ma.MaskedArray.cumprod([axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	ma.MaskedArray.cumsum([axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	ma.MaskedArray.mean([axis,dtype,out])
	Returns the average of the array elements.

	ma.MaskedArray.prod([axis,dtype,out])
	Return the product of the array elements over the given axis.

	ma.MaskedArray.std([axis,dtype,out,ddof])
	Compute the standard deviation along the specified axis.

	ma.MaskedArray.sum([axis,dtype,out])
	Return the sum of the array elements over the given axis.

	ma.MaskedArray.var([axis,dtype,out,ddof])
	Compute the variance along the specified axis.

Minimum/maximum

	ma.argmax(a[,axis,fill_value])
	Returns array of indices of the maximum values along the given axis.

	ma.argmin(a[,axis,fill_value])
	Return array of indices to the minimum values along the given axis.

	ma.max(obj[,axis,out,fill_value])
	Return the maximum along a given axis.

	ma.min(obj[,axis,out,fill_value])
	Return the minimum along a given axis.

	ma.ptp(obj[,axis,out,fill_value])
	Return (maximum - minimum) along the the given dimension (i.e.

	ma.MaskedArray.argmax([axis,fill_value,out])
	Returns array of indices of the maximum values along the given axis.

	ma.MaskedArray.argmin([axis,fill_value,out])
	Return array of indices to the minimum values along the given axis.

	ma.MaskedArray.max([axis,out,fill_value])
	Return the maximum along a given axis.

	ma.MaskedArray.min([axis,out,fill_value])
	Return the minimum along a given axis.

	ma.MaskedArray.ptp([axis,out,fill_value])
	Return (maximum - minimum) along the the given dimension (i.e.

Sorting

	ma.argsort(a[,axis,kind,order,fill_value])
	Return an ndarray of indices that sort the array along the specified axis.

	ma.sort(a[,axis,kind,order,endwith,...])
	Sort the array, in-place

	ma.MaskedArray.argsort([axis,kind,order,...])
	Return an ndarray of indices that sort the array along the specified axis.

	ma.MaskedArray.sort([axis,kind,order,...])
	Sort the array, in-place

Algebra

	ma.diag(v[,k])
	Extract a diagonal or construct a diagonal array.

	ma.dot(a,b[,strict])
	Return the dot product of two arrays.

	ma.identity(n[,dtype])
	Return the identity array.

	ma.inner(a,b)
	Inner product of two arrays.

	ma.innerproduct(a,b)
	Inner product of two arrays.

	ma.outer(a,b)
	Compute the outer product of two vectors.

	ma.outerproduct(a,b)
	Compute the outer product of two vectors.

	ma.trace(self[,offset,axis1,axis2,...])
	Return the sum along diagonals of the array.

	ma.transpose(a[,axes])
	Permute the dimensions of an array.

	ma.MaskedArray.trace([offset,axis1,axis2,...])
	Return the sum along diagonals of the array.

	ma.MaskedArray.transpose(*axes)
	Returns a view of the array with axes transposed.

Polynomial fit

	ma.vander(x[,n])
	Generate a Vandermonde matrix.

	ma.polyfit(x,y,deg[,rcond,full,w,cov])
	Least squares polynomial fit.

Clipping and rounding

	ma.around
	Round an array to the given number of decimals.

	ma.clip(a,a_min,a_max[,out])
	Clip (limit) the values in an array.

	ma.round(a[,decimals,out])
	Return a copy of a, rounded to ‘decimals’ places.

	ma.MaskedArray.clip(a_min,a_max[,out])
	Return an array whose values are limited to [a_min, a_max].

	ma.MaskedArray.round([decimals,out])
	Return a with each element rounded to the given number of decimals.

Miscellanea

	ma.allequal(a,b[,fill_value])
	Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

	ma.allclose(a,b[,masked_equal,rtol,atol])
	Returns True if two arrays are element-wise equal within a tolerance.

	ma.apply_along_axis(func1d,axis,arr,...)
	Apply a function to 1-D slices along the given axis.

	ma.arange([start,]stop[,step,][,dtype])
	Return evenly spaced values within a given interval.

	ma.choose(indices,choices[,out,mode])
	Use an index array to construct a new array from a set of choices.

	ma.ediff1d(arr[,to_end,to_begin])
	Compute the differences between consecutive elements of an array.

	ma.indices(dimensions[,dtype])
	Return an array representing the indices of a grid.

	ma.where(condition[,x,y])
	Return a masked array with elements from x or y, depending on condition.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskType

	
numpy.ma.MaskType[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	alias of bool_

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_array

	
numpy.ma.masked_array[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2581]

	alias of MaskedArray

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.array

	
numpy.ma.array(data, dtype=None, copy=False, order=False, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5863]

	An array class with possibly masked values.

Masked values of True exclude the corresponding element from any
computation.

Construction:

x = MaskedArray(data, mask=nomask, dtype=None,
 copy=False, subok=True, ndmin=0, fill_value=None,
 keep_mask=True, hard_mask=None, shrink=True)

	Parameters:	data : array_like

Input data.

mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same
shape as data. True indicates a masked (i.e. invalid) data.

dtype : dtype, optional

Data type of the output.
If dtype is None, the type of the data argument (data.dtype)
is used. If dtype is not None and different from data.dtype,
a copy is performed.

copy : bool, optional

Whether to copy the input data (True), or to use a reference instead.
Default is False.

subok : bool, optional

Whether to return a subclass of MaskedArray if possible (True) or a
plain MaskedArray. Default is True.

ndmin : int, optional

Minimum number of dimensions. Default is 0.

fill_value : scalar, optional

Value used to fill in the masked values when necessary.
If None, a default based on the data-type is used.

keep_mask : bool, optional

Whether to combine mask with the mask of the input data, if any
(True), or to use only mask for the output (False). Default is True.

hard_mask : bool, optional

Whether to use a hard mask or not. With a hard mask, masked values
cannot be unmasked. Default is False.

shrink : bool, optional

Whether to force compression of an empty mask. Default is True.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.copy

	
numpy.ma.copy = <numpy.ma.core._frommethod instance at 0x0000000004699708>

	copy
a.copy(order=’C’)

Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.frombuffer

	
numpy.ma.frombuffer(buffer, dtype=float, count=-1, offset=0) = <numpy.ma.core._convert2ma instance at 0x00000000046BB148>

	Interpret a buffer as a 1-dimensional array.

	Parameters:	buffer : buffer_like

An object that exposes the buffer interface.

dtype : data-type, optional

Data-type of the returned array; default: float.

count : int, optional

Number of items to read. -1 means all data in the buffer.

offset : int, optional

Start reading the buffer from this offset; default: 0.

Notes

If the buffer has data that is not in machine byte-order, this should
be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be
interpreted correctly.

Examples

>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],
 dtype='|S1')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.fromfunction

	
numpy.ma.fromfunction(function, shape, **kwargs) = <numpy.ma.core._convert2ma instance at 0x00000000046BB188>

	Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at
coordinate (x, y, z).

	Parameters:	function : callable

The function is called with N parameters, where N is the rank of
shape. Each parameter represents the coordinates of the array
varying along a specific axis. For example, if shape
were (2, 2), then the parameters in turn be (0, 0), (0, 1),
(1, 0), (1, 1).

shape : (N,) tuple of ints

Shape of the output array, which also determines the shape of
the coordinate arrays passed to function.

dtype : data-type, optional

Data-type of the coordinate arrays passed to function.
By default, dtype is float.

	Returns:	fromfunction : any

The result of the call to function is passed back directly.
Therefore the shape of fromfunction is completely determined by
function. If function returns a scalar value, the shape of
fromfunction would match the shape parameter.

See also

indices, meshgrid

Notes

Keywords other than dtype are passed to function.

Examples

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[True, False, False],
 [False, True, False],
 [False, False, True]], dtype=bool)

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.copy

	
MaskedArray.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.empty

	
numpy.ma.empty(shape, dtype=float, order='C') = <numpy.ma.core._convert2ma instance at 0x00000000046BB088>

	Return a new array of given shape and type, without initializing entries.

	Parameters:	shape : int or tuple of int

Shape of the empty array

dtype : data-type, optional

Desired output data-type.

order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in C (row-major) or
Fortran (column-major) order in memory.

	Returns:	out : ndarray

Array of uninitialized (arbitrary) data with the given
shape, dtype, and order.

See also

empty_like, zeros, ones

Notes

empty, unlike zeros, does not set the array values to zero,
and may therefore be marginally faster. On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.

Examples

>>> np.empty([2, 2])
array([[-9.74499359e+001, 6.69583040e-309],
 [2.13182611e-314, 3.06959433e-309]]) #random

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
 [496041986, 19249760]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.empty_like

	
numpy.ma.empty_like(a, dtype=None, order='K', subok=True) = <numpy.ma.core._convert2ma instance at 0x00000000046BB108>

	Return a new array with the same shape and type as a given array.

	Parameters:	a : array_like

The shape and data-type of a define these same attributes of the
returned array.

dtype : data-type, optional

New in version 1.6.0.

Overrides the data type of the result.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

New in version 1.6.0.

Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class
type of ‘a’, otherwise it will be a base-class array. Defaults
to True.

	Returns:	out : ndarray

Array of uninitialized (arbitrary) data with the same
shape and type as a.

See also

	ones_like

	Return an array of ones with shape and type of input.

	zeros_like

	Return an array of zeros with shape and type of input.

	empty

	Return a new uninitialized array.

	ones

	Return a new array setting values to one.

	zeros

	Return a new array setting values to zero.

Notes

This function does not initialize the returned array; to do that use
zeros_like or ones_like instead. It may be marginally faster than
the functions that do set the array values.

Examples

>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], #random
 [0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
 [4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_all

	
numpy.ma.masked_all(shape, dtype=<type 'float'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L115]

	Empty masked array with all elements masked.

Return an empty masked array of the given shape and dtype, where all the
data are masked.

	Parameters:	shape : tuple

Shape of the required MaskedArray.

dtype : dtype, optional

Data type of the output.

	Returns:	a : MaskedArray

A masked array with all data masked.

See also

	masked_all_like

	Empty masked array modelled on an existing array.

Examples

>>> import numpy.ma as ma
>>> ma.masked_all((3, 3))
masked_array(data =
 [[-- -- --]
 [-- -- --]
 [-- -- --]],
 mask =
 [[True True True]
 [True True True]
 [True True True]],
 fill_value=1e+20)

The dtype parameter defines the underlying data type.

>>> a = ma.masked_all((3, 3))
>>> a.dtype
dtype('float64')
>>> a = ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype
dtype('int32')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_all_like

	
numpy.ma.masked_all_like(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L166]

	Empty masked array with the properties of an existing array.

Return an empty masked array of the same shape and dtype as
the array arr, where all the data are masked.

	Parameters:	arr : ndarray

An array describing the shape and dtype of the required MaskedArray.

	Returns:	a : MaskedArray

A masked array with all data masked.

	Raises:	AttributeError

If arr doesn’t have a shape attribute (i.e. not an ndarray)

See also

	masked_all

	Empty masked array with all elements masked.

Examples

>>> import numpy.ma as ma
>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr
array([[0., 0., 0.],
 [0., 0., 0.]], dtype=float32)
>>> ma.masked_all_like(arr)
masked_array(data =
 [[-- -- --]
 [-- -- --]],
 mask =
 [[True True True]
 [True True True]],
 fill_value=1e+20)

The dtype of the masked array matches the dtype of arr.

>>> arr.dtype
dtype('float32')
>>> ma.masked_all_like(arr).dtype
dtype('float32')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.ones

	
numpy.ma.ones(shape, dtype=None, order='C') = <numpy.ma.core._convert2ma instance at 0x00000000046BB248>

	Return a new array of given shape and type, filled with ones.

	Parameters:	shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

	Returns:	out : ndarray

Array of ones with the given shape, dtype, and order.

See also

zeros, ones_like

Examples

>>> np.ones(5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[1.],
 [1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],
 [1., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.zeros

	
numpy.ma.zeros(shape, dtype=float, order='C') = <numpy.ma.core._convert2ma instance at 0x00000000046BB308>

	Return a new array of given shape and type, filled with zeros.

	Parameters:	shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

	Returns:	out : ndarray

Array of zeros with the given shape, dtype, and order.

See also

	zeros_like

	Return an array of zeros with shape and type of input.

	ones_like

	Return an array of ones with shape and type of input.

	empty_like

	Return an empty array with shape and type of input.

	ones

	Return a new array setting values to one.

	empty

	Return a new uninitialized array.

Examples

>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=numpy.int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[0.],
 [0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[0., 0.],
 [0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],
 dtype=[('x', '<i4'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.all

	
numpy.ma.all(self, axis=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699348>

	Check if all of the elements of a are true.

Performs a logical_and over the given axis and returns the result.
Masked values are considered as True during computation.
For convenience, the output array is masked where ALL the values along the
current axis are masked: if the output would have been a scalar and that
all the values are masked, then the output is masked.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	all

	equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.any

	
numpy.ma.any(self, axis=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699508>

	Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result.
Masked values are considered as False during computation.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array and return a scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	any

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.count

	
numpy.ma.count(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6332]

	Count the non-masked elements of the array along the given axis.

	Parameters:	axis : int, optional

Axis along which to count the non-masked elements. If axis is
None, all non-masked elements are counted.

	Returns:	result : int or ndarray

If axis is None, an integer count is returned. When axis is
not None, an array with shape determined by the lengths of the
remaining axes, is returned.

See also

	count_masked

	Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- -- --]],
 mask =
 [[False False False]
 [True True True]],
 fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is
returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.count_masked

	
numpy.ma.count_masked(arr, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L61]

	Count the number of masked elements along the given axis.

	Parameters:	arr : array_like

An array with (possibly) masked elements.

axis : int, optional

Axis along which to count. If None (default), a flattened
version of the array is used.

	Returns:	count : int, ndarray

The total number of masked elements (axis=None) or the number
of masked elements along each slice of the given axis.

See also

	MaskedArray.count

	Count non-masked elements.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(9).reshape((3,3))
>>> a = ma.array(a)
>>> a[1, 0] = ma.masked
>>> a[1, 2] = ma.masked
>>> a[2, 1] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- 4 --]
 [6 -- 8]],
 mask =
 [[False False False]
 [True False True]
 [False True False]],
 fill_value=999999)
>>> ma.count_masked(a)
3

When the axis keyword is used an array is returned.

>>> ma.count_masked(a, axis=0)
array([1, 1, 1])
>>> ma.count_masked(a, axis=1)
array([0, 2, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getmask

	
numpy.ma.getmask(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1244]

	Return the mask of a masked array, or nomask.

Return the mask of a as an ndarray if a is a MaskedArray and the
mask is not nomask, else return nomask. To guarantee a full array
of booleans of the same shape as a, use getmaskarray.

	Parameters:	a : array_like

Input MaskedArray for which the mask is required.

See also

	getdata

	Return the data of a masked array as an ndarray.

	getmaskarray

	Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getmask(a)
array([[False, True],
 [False, False]], dtype=bool)

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array([[False, True],
 [False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
 [[1 2]
 [3 4]],
 mask =
 False,
 fill_value=999999)
>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
True
>>> b.mask == ma.nomask
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getmaskarray

	
numpy.ma.getmaskarray(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1305]

	Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and
the mask is not nomask, else return a full boolean array of False of
the same shape as arr.

	Parameters:	arr : array_like

Input MaskedArray for which the mask is required.

See also

	getmask

	Return the mask of a masked array, or nomask.

	getdata

	Return the data of a masked array as an ndarray.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getmaskarray(a)
array([[False, True],
 [False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
 [[1 2]
 [3 4]],
 mask =
 False,
 fill_value=999999)
>>> >ma.getmaskarray(b)
array([[False, False],
 [False, False]], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getdata

	
numpy.ma.getdata(a, subok=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L616]

	Return the data of a masked array as an ndarray.

Return the data of a (if any) as an ndarray if a is a MaskedArray,
else return a as a ndarray or subclass (depending on subok) if not.

	Parameters:	a : array_like

Input MaskedArray, alternatively a ndarray or a subclass thereof.

subok : bool

Whether to force the output to be a pure ndarray (False) or to
return a subclass of ndarray if appropriate (True, default).

See also

	getmask

	Return the mask of a masked array, or nomask.

	getmaskarray

	Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getdata(a)
array([[1, 2],
 [3, 4]])

Equivalently use the MaskedArray data attribute.

>>> a.data
array([[1, 2],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.nonzero

	
numpy.ma.nonzero(self) = <numpy.ma.core._frommethod instance at 0x0000000004699908>

	Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the
indices of the non-zero elements in that dimension. The corresponding
non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use
instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero
element.

	Parameters:	None

	Returns:	tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also

	numpy.nonzero

	Function operating on ndarrays.

	flatnonzero

	Return indices that are non-zero in the flattened version of the input array.

	ndarray.nonzero

	Equivalent ndarray method.

	count_nonzero

	Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
 [[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]],
 mask =
 False,
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
 [[1.0 0.0 0.0]
 [0.0 -- 0.0]
 [0.0 0.0 1.0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],
 [2, 2]])

A common use for nonzero is to find the indices of an array, where
a condition is True. Given an array a, the condition a > 3 is a
boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
yields the indices of the a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
 [[False False False]
 [True True True]
 [True True True]],
 mask =
 False,
 fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.shape

	
numpy.ma.shape(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6631]

	Return the shape of an array.

	Parameters:	a : array_like

Input array.

	Returns:	shape : tuple of ints

The elements of the shape tuple give the lengths of the
corresponding array dimensions.

See also

alen

	ndarray.shape

	Equivalent array method.

Examples

>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(2,)
>>> a.shape
(2,)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.size

	
numpy.ma.size(obj, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6636]

	Return the number of elements along a given axis.

	Parameters:	a : array_like

Input data.

axis : int, optional

Axis along which the elements are counted. By default, give
the total number of elements.

	Returns:	element_count : int

Number of elements along the specified axis.

See also

	shape

	dimensions of array

	ndarray.shape

	dimensions of array

	ndarray.size

	number of elements in array

Examples

>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.is_masked

	
numpy.ma.is_masked(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5881]

	Determine whether input has masked values.

Accepts any object as input, but always returns False unless the
input is a MaskedArray containing masked values.

	Parameters:	x : array_like

Array to check for masked values.

	Returns:	result : bool

True if x is a MaskedArray with masked values, False otherwise.

Examples

>>> import numpy.ma as ma
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> x
masked_array(data = [-- 1 -- 2 3],
 mask = [True False True False False],
 fill_value=999999)
>>> ma.is_masked(x)
True
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
>>> x
masked_array(data = [0 1 0 2 3],
 mask = False,
 fill_value=999999)
>>> ma.is_masked(x)
False

Always returns False if x isn’t a MaskedArray.

>>> x = [False, True, False]
>>> ma.is_masked(x)
False
>>> x = 'a string'
>>> ma.is_masked(x)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.is_mask

	
numpy.ma.is_mask(m)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1359]

	Return True if m is a valid, standard mask.

This function does not check the contents of the input, only that the
type is MaskType. In particular, this function returns False if the
mask has a flexible dtype.

	Parameters:	m : array_like

Array to test.

	Returns:	result : bool

True if m.dtype.type is MaskType, False otherwise.

See also

	isMaskedArray

	Test whether input is an instance of MaskedArray.

Examples

>>> import numpy.ma as ma
>>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> m
masked_array(data = [-- 1 -- 2 3],
 mask = [True False True False False],
 fill_value=999999)
>>> ma.is_mask(m)
False
>>> ma.is_mask(m.mask)
True

Input must be an ndarray (or have similar attributes)
for it to be considered a valid mask.

>>> m = [False, True, False]
>>> ma.is_mask(m)
False
>>> m = np.array([False, True, False])
>>> m
array([False, True, False], dtype=bool)
>>> ma.is_mask(m)
True

Arrays with complex dtypes don’t return True.

>>> dtype = np.dtype({'names':['monty', 'pithon'],
 'formats':[np.bool, np.bool]})
>>> dtype
dtype([('monty', '|b1'), ('pithon', '|b1')])
>>> m = np.array([(True, False), (False, True), (True, False)],
 dtype=dtype)
>>> m
array([(True, False), (False, True), (True, False)],
 dtype=[('monty', '|b1'), ('pithon', '|b1')])
>>> ma.is_mask(m)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.data

	
MaskedArray.data

	Return the current data, as a view of the original
underlying data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.mask

	
MaskedArray.mask

	Mask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.recordmask

	
MaskedArray.recordmask

	Return the mask of the records.
A record is masked when all the fields are masked.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.all

	
MaskedArray.all(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4280]

	Check if all of the elements of a are true.

Performs a logical_and over the given axis and returns the result.
Masked values are considered as True during computation.
For convenience, the output array is masked where ALL the values along the
current axis are masked: if the output would have been a scalar and that
all the values are masked, then the output is masked.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	all

	equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.any

	
MaskedArray.any(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4327]

	Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result.
Masked values are considered as False during computation.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array and return a scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	any

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.count

	
MaskedArray.count(axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3979]

	Count the non-masked elements of the array along the given axis.

	Parameters:	axis : int, optional

Axis along which to count the non-masked elements. If axis is
None, all non-masked elements are counted.

	Returns:	result : int or ndarray

If axis is None, an integer count is returned. When axis is
not None, an array with shape determined by the lengths of the
remaining axes, is returned.

See also

	count_masked

	Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- -- --]],
 mask =
 [[False False False]
 [True True True]],
 fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is
returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.nonzero

	
MaskedArray.nonzero()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4363]

	Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the
indices of the non-zero elements in that dimension. The corresponding
non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use
instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero
element.

	Parameters:	None

	Returns:	tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also

	numpy.nonzero

	Function operating on ndarrays.

	flatnonzero

	Return indices that are non-zero in the flattened version of the input array.

	ndarray.nonzero

	Equivalent ndarray method.

	count_nonzero

	Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
 [[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]],
 mask =
 False,
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
 [[1.0 0.0 0.0]
 [0.0 -- 0.0]
 [0.0 0.0 1.0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],
 [2, 2]])

A common use for nonzero is to find the indices of an array, where
a condition is True. Given an array a, the condition a > 3 is a
boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
yields the indices of the a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
 [[False False False]
 [True True True]
 [True True True]],
 mask =
 False,
 fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.shape

	
numpy.ma.shape(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6631]

	Return the shape of an array.

	Parameters:	a : array_like

Input array.

	Returns:	shape : tuple of ints

The elements of the shape tuple give the lengths of the
corresponding array dimensions.

See also

alen

	ndarray.shape

	Equivalent array method.

Examples

>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(2,)
>>> a.shape
(2,)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.size

	
numpy.ma.size(obj, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6636]

	Return the number of elements along a given axis.

	Parameters:	a : array_like

Input data.

axis : int, optional

Axis along which the elements are counted. By default, give
the total number of elements.

	Returns:	element_count : int

Number of elements along the specified axis.

See also

	shape

	dimensions of array

	ndarray.shape

	dimensions of array

	ndarray.size

	number of elements in array

Examples

>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.ravel

	
numpy.ma.ravel(self) = <numpy.ma.core._frommethod instance at 0x0000000004699A88>

	Returns a 1D version of self, as a view.

	Returns:	MaskedArray

Output view is of shape (self.size,) (or
(np.ma.product(self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.ravel()
[1 -- 3 -- 5 -- 7 -- 9]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.reshape

	
numpy.ma.reshape(a, new_shape, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6543]

	Returns an array containing the same data with a new shape.

Refer to MaskedArray.reshape for full documentation.

See also

	MaskedArray.reshape

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.resize

	
numpy.ma.resize(x, new_shape)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6561]

	Return a new masked array with the specified size and shape.

This is the masked equivalent of the numpy.resize function. The new
array is filled with repeated copies of x (in the order that the
data are stored in memory). If x is masked, the new array will be
masked, and the new mask will be a repetition of the old one.

See also

	numpy.resize

	Equivalent function in the top level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.array([[1, 2] ,[3, 4]])
>>> a[0, 1] = ma.masked
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value = 999999)
>>> np.resize(a, (3, 3))
array([[1, 2, 3],
 [4, 1, 2],
 [3, 4, 1]])
>>> ma.resize(a, (3, 3))
masked_array(data =
 [[1 -- 3]
 [4 1 --]
 [3 4 1]],
 mask =
 [[False True False]
 [False False True]
 [False False False]],
 fill_value = 999999)

A MaskedArray is always returned, regardless of the input type.

>>> a = np.array([[1, 2] ,[3, 4]])
>>> ma.resize(a, (3, 3))
masked_array(data =
 [[1 2 3]
 [4 1 2]
 [3 4 1]],
 mask =
 False,
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.flatten

	
MaskedArray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.ravel

	
MaskedArray.ravel()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4044]

	Returns a 1D version of self, as a view.

	Returns:	MaskedArray

Output view is of shape (self.size,) (or
(np.ma.product(self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.ravel()
[1 -- 3 -- 5 -- 7 -- 9]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.reshape

	
MaskedArray.reshape(*s, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4075]

	Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape.
The result is a view on the original array; if this is not possible, a
ValueError is raised.

	Parameters:	shape : int or tuple of ints

The new shape should be compatible with the original shape. If an
integer is supplied, then the result will be a 1-D array of that
length.

order : {‘C’, ‘F’}, optional

Determines whether the array data should be viewed as in C
(row-major) or FORTRAN (column-major) order.

	Returns:	reshaped_array : array

A new view on the array.

See also

	reshape

	Equivalent function in the masked array module.

	numpy.ndarray.reshape

	Equivalent method on ndarray object.

	numpy.reshape

	Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made,
to modify the shape in place, use a.shape = s

Examples

>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> print x
[[-- 2]
 [3 --]]
>>> x = x.reshape((4,1))
>>> print x
[[--]
 [2]
 [3]
 [--]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.resize

	
MaskedArray.resize(newshape, refcheck=True, order=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4131]

	
Warning

This method does nothing, except raise a ValueError exception. A
masked array does not own its data and therefore cannot safely be
resized in place. Use the numpy.ma.resize function instead.

This method is difficult to implement safely and may be deprecated in
future releases of NumPy.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.swapaxes

	
numpy.ma.swapaxes = <numpy.ma.core._frommethod instance at 0x0000000004699D48>

	swapaxes
a.swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.transpose

	
numpy.ma.transpose(a, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6504]

	Permute the dimensions of an array.

This function is exactly equivalent to numpy.transpose.

See also

	numpy.transpose

	Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
>>>> x
masked_array(data =
 [[0 1]
 [2 --]],
 mask =
 [[False False]
 [False True]],
 fill_value = 999999)
>>> ma.transpose(x)
masked_array(data =
 [[0 2]
 [1 --]],
 mask =
 [[False False]
 [False True]],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.swapaxes

	
MaskedArray.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.transpose

	
MaskedArray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.atleast_1d

	
numpy.ma.atleast_1d(*arys) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBA48>

	
Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst
higher-dimensional inputs are preserved.

	Parameters:	arys1, arys2, ... : array_like

One or more input arrays.

	Returns:	ret : ndarray

An array, or sequence of arrays, each with a.ndim >= 1.
Copies are made only if necessary.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_1d(1.0)
array([1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.]])
>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.atleast_2d

	
numpy.ma.atleast_2d(*arys) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBB48>

	
View inputs as arrays with at least two dimensions.

	Parameters:	arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted
to arrays. Arrays that already have two or more dimensions are
preserved.

	Returns:	res, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 2.
Copies are avoided where possible, and views with two or more
dimensions are returned.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_2d(3.0)
array([[3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.atleast_3d

	
numpy.ma.atleast_3d(*arys) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBBC8>

	
View inputs as arrays with at least three dimensions.

	Parameters:	arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to
arrays. Arrays that already have three or more dimensions are
preserved.

	Returns:	res1, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are
returned. For example, a 1-D array of shape (N,) becomes a view
of shape (1, N, 1), and a 2-D array of shape (M, N) becomes a
view of shape (M, N, 1).

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_3d(3.0)
array([[[3.]]])

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print arr, arr.shape
...
[[[1]
 [2]]] (1, 2, 1)
[[[1]
 [2]]] (1, 2, 1)
[[[1 2]]] (1, 1, 2)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.expand_dims

	
numpy.ma.expand_dims(x, axis)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6357]

	Expand the shape of an array.

Expands the shape of the array by including a new axis before the one
specified by the axis parameter. This function behaves the same as
numpy.expand_dims but preserves masked elements.

See also

	numpy.expand_dims

	Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 4])
>>> x[1] = ma.masked
>>> x
masked_array(data = [1 -- 4],
 mask = [False True False],
 fill_value = 999999)
>>> np.expand_dims(x, axis=0)
array([[1, 2, 4]])
>>> ma.expand_dims(x, axis=0)
masked_array(data =
 [[1 -- 4]],
 mask =
 [[False True False]],
 fill_value = 999999)

The same result can be achieved using slicing syntax with np.newaxis.

>>> x[np.newaxis, :]
masked_array(data =
 [[1 -- 4]],
 mask =
 [[False True False]],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.squeeze

	
numpy.ma.squeeze(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1075]

	Remove single-dimensional entries from the shape of an array.

	Parameters:	a : array_like

Input data.

axis : None or int or tuple of ints, optional

New in version 1.7.0.

Selects a subset of the single-dimensional entries in the
shape. If an axis is selected with shape entry greater than
one, an error is raised.

	Returns:	squeezed : ndarray

The input array, but with all or a subset of the
dimensions of length 1 removed. This is always a itself
or a view into a.

Examples

>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=(2,)).shape
(1, 3)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.squeeze

	
MaskedArray.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.column_stack

	
numpy.ma.column_stack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBD48>

	
Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns
first.

	Parameters:	tup : sequence of 1-D or 2-D arrays.

Arrays to stack. All of them must have the same first dimension.

	Returns:	stacked : 2-D array

The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.concatenate

	
numpy.ma.concatenate(arrays, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6270]

	Concatenate a sequence of arrays along the given axis.

	Parameters:	arrays : sequence of array_like

The arrays must have the same shape, except in the dimension
corresponding to axis (the first, by default).

axis : int, optional

The axis along which the arrays will be joined. Default is 0.

	Returns:	result : MaskedArray

The concatenated array with any masked entries preserved.

See also

	numpy.concatenate

	Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(3)
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
 mask = [False True False],
 fill_value = 999999)
>>> b
masked_array(data = [2 3 4],
 mask = False,
 fill_value = 999999)
>>> ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
 mask = [False True False False False False],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dstack

	
numpy.ma.dstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBDC8>

	
Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis
to make a single array. Rebuilds arrays divided by dsplit.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing.

	Parameters:	tup : sequence of arrays

Arrays to stack. All of them must have the same shape along all
but the third axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack along first axis.

	hstack

	Stack along second axis.

	concatenate

	Join arrays.

	dsplit

	Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
 [2, 3],
 [3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
 [[2, 3]],
 [[3, 4]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.hstack

	
numpy.ma.hstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBCC8>

	
Stack arrays in sequence horizontally (column wise).

Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by hsplit.

	Parameters:	tup : sequence of ndarrays

All arrays must have the same shape along all but the second axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack arrays in sequence vertically (row wise).

	dstack

	Stack arrays in sequence depth wise (along third axis).

	concatenate

	Join a sequence of arrays together.

	hsplit

	Split array along second axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.hsplit

	
numpy.ma.hsplit(ary, indices_or_sections) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBE48>

	
Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent
to split with axis=1, the array is always split along the second
axis regardless of the array dimension.

See also

	split

	Split an array into multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])
>>> np.hsplit(x, 2)
[array([[0., 1.],
 [4., 5.],
 [8., 9.],
 [12., 13.]]),
 array([[2., 3.],
 [6., 7.],
 [10., 11.],
 [14., 15.]])]
>>> np.hsplit(x, np.array([3, 6]))
[array([[0., 1., 2.],
 [4., 5., 6.],
 [8., 9., 10.],
 [12., 13., 14.]]),
 array([[3.],
 [7.],
 [11.],
 [15.]]),
 array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],
 [2., 3.]],
 [[4., 5.],
 [6., 7.]]])
>>> np.hsplit(x, 2)
[array([[[0., 1.]],
 [[4., 5.]]]),
 array([[[2., 3.]],
 [[6., 7.]]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mr

	
numpy.ma.mr_ = <numpy.ma.extras.mr_class object at 0x00000000046C10B8>

	Translate slice objects to concatenation along the first axis.

This is the masked array version of lib.index_tricks.RClass.

See also

lib.index_tricks.RClass

Examples

>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.row_stack

	
numpy.ma.row_stack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBC48>

	
Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by vsplit.

	Parameters:	tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	hstack

	Stack arrays in sequence horizontally (column wise).

	dstack

	Stack arrays in sequence depth wise (along third dimension).

	concatenate

	Join a sequence of arrays together.

	vsplit

	Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
 [2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
 [2],
 [3],
 [2],
 [3],
 [4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.vstack

	
numpy.ma.vstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBC48>

	
Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by vsplit.

	Parameters:	tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	hstack

	Stack arrays in sequence horizontally (column wise).

	dstack

	Stack arrays in sequence depth wise (along third dimension).

	concatenate

	Join a sequence of arrays together.

	vsplit

	Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
 [2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
 [2],
 [3],
 [2],
 [3],
 [4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.column_stack

	
numpy.ma.column_stack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBD48>

	
Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns
first.

	Parameters:	tup : sequence of 1-D or 2-D arrays.

Arrays to stack. All of them must have the same first dimension.

	Returns:	stacked : 2-D array

The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.concatenate

	
numpy.ma.concatenate(arrays, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6270]

	Concatenate a sequence of arrays along the given axis.

	Parameters:	arrays : sequence of array_like

The arrays must have the same shape, except in the dimension
corresponding to axis (the first, by default).

axis : int, optional

The axis along which the arrays will be joined. Default is 0.

	Returns:	result : MaskedArray

The concatenated array with any masked entries preserved.

See also

	numpy.concatenate

	Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(3)
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
 mask = [False True False],
 fill_value = 999999)
>>> b
masked_array(data = [2 3 4],
 mask = False,
 fill_value = 999999)
>>> ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
 mask = [False True False False False False],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.append

	
numpy.ma.append(a, b, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7332]

	Append values to the end of an array.

New in version 1.9.0.

	Parameters:	arr : array_like

Values are appended to a copy of this array.

values : array_like

These values are appended to a copy of arr. It must be of the
correct shape (the same shape as arr, excluding axis). If axis
is not specified, values can be any shape and will be flattened
before use.

axis : int, optional

The axis along which values are appended. If axis is not given,
both arr and values are flattened before use.

	Returns:	append : MaskedArray

A copy of arr with values appended to axis. Note that append
does not occur in-place: a new array is allocated and filled. If
axis is None, the result is a flattened array.

See also

	numpy.append

	Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_values([1, 2, 3], 2)
>>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
>>> print(ma.append(a, b))
[1 -- 3 4 5 6 -- 8 9]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dstack

	
numpy.ma.dstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBDC8>

	
Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis
to make a single array. Rebuilds arrays divided by dsplit.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing.

	Parameters:	tup : sequence of arrays

Arrays to stack. All of them must have the same shape along all
but the third axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack along first axis.

	hstack

	Stack along second axis.

	concatenate

	Join arrays.

	dsplit

	Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
 [2, 3],
 [3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
 [[2, 3]],
 [[3, 4]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.hstack

	
numpy.ma.hstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBCC8>

	
Stack arrays in sequence horizontally (column wise).

Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by hsplit.

	Parameters:	tup : sequence of ndarrays

All arrays must have the same shape along all but the second axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack arrays in sequence vertically (row wise).

	dstack

	Stack arrays in sequence depth wise (along third axis).

	concatenate

	Join a sequence of arrays together.

	hsplit

	Split array along second axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.vstack

	
numpy.ma.vstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBC48>

	
Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by vsplit.

	Parameters:	tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	hstack

	Stack arrays in sequence horizontally (column wise).

	dstack

	Stack arrays in sequence depth wise (along third dimension).

	concatenate

	Join a sequence of arrays together.

	vsplit

	Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
 [2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
 [2],
 [3],
 [2],
 [3],
 [4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.make_mask

	
numpy.ma.make_mask(m, copy=False, shrink=True, dtype=<type 'numpy.bool_'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1426]

	Create a boolean mask from an array.

Return m as a boolean mask, creating a copy if necessary or requested.
The function can accept any sequence that is convertible to integers,
or nomask. Does not require that contents must be 0s and 1s, values
of 0 are interepreted as False, everything else as True.

	Parameters:	m : array_like

Potential mask.

copy : bool, optional

Whether to return a copy of m (True) or m itself (False).

shrink : bool, optional

Whether to shrink m to nomask if all its values are False.

dtype : dtype, optional

Data-type of the output mask. By default, the output mask has
a dtype of MaskType (bool). If the dtype is flexible, each field
has a boolean dtype.

	Returns:	result : ndarray

A boolean mask derived from m.

Examples

>>> import numpy.ma as ma
>>> m = [True, False, True, True]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)
>>> m = [1, 0, 1, 1]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)
>>> m = [1, 0, 2, -3]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)

Effect of the shrink parameter.

>>> m = np.zeros(4)
>>> m
array([0., 0., 0., 0.])
>>> ma.make_mask(m)
False
>>> ma.make_mask(m, shrink=False)
array([False, False, False, False], dtype=bool)

Using a flexible dtype.

>>> m = [1, 0, 1, 1]
>>> n = [0, 1, 0, 0]
>>> arr = []
>>> for man, mouse in zip(m, n):
... arr.append((man, mouse))
>>> arr
[(1, 0), (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype({'names':['man', 'mouse'],
 'formats':[np.int, np.int]})
>>> arr = np.array(arr, dtype=dtype)
>>> arr
array([(1, 0), (0, 1), (1, 0), (1, 0)],
 dtype=[('man', '<i4'), ('mouse', '<i4')])
>>> ma.make_mask(arr, dtype=dtype)
array([(True, False), (False, True), (True, False), (True, False)],
 dtype=[('man', '|b1'), ('mouse', '|b1')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.make_mask_none

	
numpy.ma.make_mask_none(newshape, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1520]

	Return a boolean mask of the given shape, filled with False.

This function returns a boolean ndarray with all entries False, that can
be used in common mask manipulations. If a complex dtype is specified, the
type of each field is converted to a boolean type.

	Parameters:	newshape : tuple

A tuple indicating the shape of the mask.

dtype : {None, dtype}, optional

If None, use a MaskType instance. Otherwise, use a new datatype with
the same fields as dtype, converted to boolean types.

	Returns:	result : ndarray

An ndarray of appropriate shape and dtype, filled with False.

See also

	make_mask

	Create a boolean mask from an array.

	make_mask_descr

	Construct a dtype description list from a given dtype.

Examples

>>> import numpy.ma as ma
>>> ma.make_mask_none((3,))
array([False, False, False], dtype=bool)

Defining a more complex dtype.

>>> dtype = np.dtype({'names':['foo', 'bar'],
 'formats':[np.float32, np.int]})
>>> dtype
dtype([('foo', '<f4'), ('bar', '<i4')])
>>> ma.make_mask_none((3,), dtype=dtype)
array([(False, False), (False, False), (False, False)],
 dtype=[('foo', '|b1'), ('bar', '|b1')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_or

	
numpy.ma.mask_or(m1, m2, copy=False, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1569]

	Combine two masks with the logical_or operator.

The result may be a view on m1 or m2 if the other is nomask
(i.e. False).

	Parameters:	m1, m2 : array_like

Input masks.

copy : bool, optional

If copy is False and one of the inputs is nomask, return a view
of the other input mask. Defaults to False.

shrink : bool, optional

Whether to shrink the output to nomask if all its values are
False. Defaults to True.

	Returns:	mask : output mask

The result masks values that are masked in either m1 or m2.

	Raises:	ValueError

If m1 and m2 have different flexible dtypes.

Examples

>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
array([True, True, True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.make_mask_descr

	
numpy.ma.make_mask_descr(ndtype)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1209]

	Construct a dtype description list from a given dtype.

Returns a new dtype object, with the type of all fields in ndtype to a
boolean type. Field names are not altered.

	Parameters:	ndtype : dtype

The dtype to convert.

	Returns:	result : dtype

A dtype that looks like ndtype, the type of all fields is boolean.

Examples

>>> import numpy.ma as ma
>>> dtype = np.dtype({'names':['foo', 'bar'],
 'formats':[np.float32, np.int]})
>>> dtype
dtype([('foo', '<f4'), ('bar', '<i4')])
>>> ma.make_mask_descr(dtype)
dtype([('foo', '|b1'), ('bar', '|b1')])
>>> ma.make_mask_descr(np.float32)
<type 'numpy.bool_'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getmask

	
numpy.ma.getmask(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1244]

	Return the mask of a masked array, or nomask.

Return the mask of a as an ndarray if a is a MaskedArray and the
mask is not nomask, else return nomask. To guarantee a full array
of booleans of the same shape as a, use getmaskarray.

	Parameters:	a : array_like

Input MaskedArray for which the mask is required.

See also

	getdata

	Return the data of a masked array as an ndarray.

	getmaskarray

	Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getmask(a)
array([[False, True],
 [False, False]], dtype=bool)

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array([[False, True],
 [False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
 [[1 2]
 [3 4]],
 mask =
 False,
 fill_value=999999)
>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
True
>>> b.mask == ma.nomask
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getmaskarray

	
numpy.ma.getmaskarray(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1305]

	Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and
the mask is not nomask, else return a full boolean array of False of
the same shape as arr.

	Parameters:	arr : array_like

Input MaskedArray for which the mask is required.

See also

	getmask

	Return the mask of a masked array, or nomask.

	getdata

	Return the data of a masked array as an ndarray.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getmaskarray(a)
array([[False, True],
 [False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
 [[1 2]
 [3 4]],
 mask =
 False,
 fill_value=999999)
>>> >ma.getmaskarray(b)
array([[False, False],
 [False, False]], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_array.mask

	
masked_array.mask

	Mask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.flatnotmasked_contiguous

	
numpy.ma.flatnotmasked_contiguous(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1661]

	Find contiguous unmasked data in a masked array along the given axis.

	Parameters:	a : narray

The input array.

	Returns:	slice_list : list

A sorted sequence of slices (start index, end index).

See also

flatnotmasked_edges, notmasked_contiguous, notmasked_edges, clump_masked, clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.ma.arange(10)
>>> np.ma.extras.flatnotmasked_contiguous(a)
slice(0, 10, None)

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> np.ma.extras.flatnotmasked_contiguous(a)
[slice(3, 5, None), slice(6, 9, None)]
>>> a[:] = np.ma.masked
>>> print np.ma.extras.flatnotmasked_edges(a)
None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.flatnotmasked_edges

	
numpy.ma.flatnotmasked_edges(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1555]

	Find the indices of the first and last unmasked values.

Expects a 1-D MaskedArray, returns None if all values are masked.

	Parameters:	arr : array_like

Input 1-D MaskedArray

	Returns:	edges : ndarray or None

The indices of first and last non-masked value in the array.
Returns None if all values are masked.

See also

flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges, clump_masked, clump_unmasked

Notes

Only accepts 1-D arrays.

Examples

>>> a = np.ma.arange(10)
>>> flatnotmasked_edges(a)
[0,-1]

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> flatnotmasked_edges(a)
array([3, 8])

>>> a[:] = np.ma.masked
>>> print flatnotmasked_edges(ma)
None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.notmasked_contiguous

	
numpy.ma.notmasked_contiguous(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1714]

	Find contiguous unmasked data in a masked array along the given axis.

	Parameters:	a : array_like

The input array.

axis : int, optional

Axis along which to perform the operation.
If None (default), applies to a flattened version of the array.

	Returns:	endpoints : list

A list of slices (start and end indexes) of unmasked indexes
in the array.

See also

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges, clump_masked, clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.arange(9).reshape((3, 3))
>>> mask = np.zeros_like(a)
>>> mask[1:, 1:] = 1

>>> ma = np.ma.array(a, mask=mask)
>>> np.array(ma[~ma.mask])
array([0, 1, 2, 3, 6])

>>> np.ma.extras.notmasked_contiguous(ma)
[slice(0, 4, None), slice(6, 7, None)]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.notmasked_edges

	
numpy.ma.notmasked_edges(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1610]

	Find the indices of the first and last unmasked values along an axis.

If all values are masked, return None. Otherwise, return a list
of two tuples, corresponding to the indices of the first and last
unmasked values respectively.

	Parameters:	a : array_like

The input array.

axis : int, optional

Axis along which to perform the operation.
If None (default), applies to a flattened version of the array.

	Returns:	edges : ndarray or list

An array of start and end indexes if there are any masked data in
the array. If there are no masked data in the array, edges is a
list of the first and last index.

See also

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous, clump_masked, clump_unmasked

Examples

>>> a = np.arange(9).reshape((3, 3))
>>> m = np.zeros_like(a)
>>> m[1:, 1:] = 1

>>> am = np.ma.array(a, mask=m)
>>> np.array(am[~am.mask])
array([0, 1, 2, 3, 6])

>>> np.ma.extras.notmasked_edges(ma)
array([0, 6])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_cols

	
numpy.ma.mask_cols(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L950]

	Mask columns of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 1.

See also

	mask_rowcols

	Mask rows and/or columns of a 2D array.

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
 [0, 1, 0],
 [0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
 [[0 0 0]
 [0 -- 0]
 [0 0 0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=999999)
>>> ma.mask_cols(a)
masked_array(data =
 [[0 -- 0]
 [0 -- 0]
 [0 -- 0]],
 mask =
 [[False True False]
 [False True False]
 [False True False]],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_or

	
numpy.ma.mask_or(m1, m2, copy=False, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1569]

	Combine two masks with the logical_or operator.

The result may be a view on m1 or m2 if the other is nomask
(i.e. False).

	Parameters:	m1, m2 : array_like

Input masks.

copy : bool, optional

If copy is False and one of the inputs is nomask, return a view
of the other input mask. Defaults to False.

shrink : bool, optional

Whether to shrink the output to nomask if all its values are
False. Defaults to True.

	Returns:	mask : output mask

The result masks values that are masked in either m1 or m2.

	Raises:	ValueError

If m1 and m2 have different flexible dtypes.

Examples

>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
array([True, True, True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_rowcols

	
numpy.ma.mask_rowcols(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L815]

	Mask rows and/or columns of a 2D array that contain masked values.

Mask whole rows and/or columns of a 2D array that contain
masked values. The masking behavior is selected using the
axis parameter.

	If axis is None, rows and columns are masked.

	If axis is 0, only rows are masked.

	If axis is 1 or -1, only columns are masked.

	Parameters:	a : array_like, MaskedArray

The array to mask. If not a MaskedArray instance (or if no array
elements are masked). The result is a MaskedArray with mask set
to nomask (False). Must be a 2D array.

axis : int, optional

Axis along which to perform the operation. If None, applies to a
flattened version of the array.

	Returns:	a : MaskedArray

A modified version of the input array, masked depending on the value
of the axis parameter.

	Raises:	NotImplementedError

If input array a is not 2D.

See also

	mask_rows

	Mask rows of a 2D array that contain masked values.

	mask_cols

	Mask cols of a 2D array that contain masked values.

	masked_where

	Mask where a condition is met.

Notes

The input array’s mask is modified by this function.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
 [0, 1, 0],
 [0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
 [[0 0 0]
 [0 -- 0]
 [0 0 0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=999999)
>>> ma.mask_rowcols(a)
masked_array(data =
 [[0 -- 0]
 [-- -- --]
 [0 -- 0]],
 mask =
 [[False True False]
 [True True True]
 [False True False]],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_rows

	
numpy.ma.mask_rows(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L905]

	Mask rows of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 0.

See also

	mask_rowcols

	Mask rows and/or columns of a 2D array.

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
 [0, 1, 0],
 [0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
 [[0 0 0]
 [0 -- 0]
 [0 0 0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=999999)
>>> ma.mask_rows(a)
masked_array(data =
 [[0 0 0]
 [-- -- --]
 [0 0 0]],
 mask =
 [[False False False]
 [True True True]
 [False False False]],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.harden_mask

	
numpy.ma.harden_mask(self) = <numpy.ma.core._frommethod instance at 0x00000000046997C8>

	Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. harden_mask sets hardmask to True.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.soften_mask

	
numpy.ma.soften_mask(self) = <numpy.ma.core._frommethod instance at 0x0000000004699B88>

	Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. soften_mask sets hardmask to False.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.harden_mask

	
MaskedArray.harden_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3266]

	Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. harden_mask sets hardmask to True.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.soften_mask

	
MaskedArray.soften_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3281]

	Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. soften_mask sets hardmask to False.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.shrink_mask

	
MaskedArray.shrink_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3321]

	Reduce a mask to nomask when possible.

	Parameters:	None

	Returns:	None

Examples

>>> x = np.ma.array([[1,2], [3, 4]], mask=[0]*4)
>>> x.mask
array([[False, False],
 [False, False]], dtype=bool)
>>> x.shrink_mask()
>>> x.mask
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.unshare_mask

	
MaskedArray.unshare_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3300]

	Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from
the sharedmask property. unshare_mask ensures the mask is not shared.
A copy of the mask is only made if it was shared.

See also

sharedmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.asarray

	
numpy.ma.asarray(a, dtype=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7031]

	Convert the input to a masked array of the given data-type.

No copy is performed if the input is already an ndarray. If a is
a subclass of MaskedArray, a base class MaskedArray is returned.

	Parameters:	a : array_like

Input data, in any form that can be converted to a masked array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists, ndarrays and masked arrays.

dtype : dtype, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Default is ‘C’.

	Returns:	out : MaskedArray

Masked array interpretation of a.

See also

	asanyarray

	Similar to asarray, but conserves subclasses.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],
 [5., 6., 7., 8., 9.]])
>>> np.ma.asarray(x)
masked_array(data =
 [[0. 1. 2. 3. 4.]
 [5. 6. 7. 8. 9.]],
 mask =
 False,
 fill_value = 1e+20)
>>> type(np.ma.asarray(x))
<class 'numpy.ma.core.MaskedArray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.asanyarray

	
numpy.ma.asanyarray(a, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7078]

	Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray, its class is conserved.
No copy is performed if the input is already an ndarray.

	Parameters:	a : array_like

Input data, in any form that can be converted to an array.

dtype : dtype, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Default is ‘C’.

	Returns:	out : MaskedArray

MaskedArray interpretation of a.

See also

	asarray

	Similar to asanyarray, but does not conserve subclass.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],
 [5., 6., 7., 8., 9.]])
>>> np.ma.asanyarray(x)
masked_array(data =
 [[0. 1. 2. 3. 4.]
 [5. 6. 7. 8. 9.]],
 mask =
 False,
 fill_value = 1e+20)
>>> type(np.ma.asanyarray(x))
<class 'numpy.ma.core.MaskedArray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.fix_invalid

	
numpy.ma.fix_invalid(a, mask=False, copy=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L669]

	Return input with invalid data masked and replaced by a fill value.

Invalid data means values of nan, inf, etc.

	Parameters:	a : array_like

Input array, a (subclass of) ndarray.

copy : bool, optional

Whether to use a copy of a (True) or to fix a in place (False).
Default is True.

fill_value : scalar, optional

Value used for fixing invalid data. Default is None, in which case
the a.fill_value is used.

	Returns:	b : MaskedArray

The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x
masked_array(data = [-- -1.0 nan inf],
 mask = [True False False False],
 fill_value = 1e+20)
>>> np.ma.fix_invalid(x)
masked_array(data = [-- -1.0 -- --],
 mask = [True False True True],
 fill_value = 1e+20)

>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
array([1.00000000e+00, -1.00000000e+00, 1.00000000e+20,
 1.00000000e+20])
>>> x.data
array([1., -1., NaN, Inf])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_equal

	
numpy.ma.masked_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1947]

	Mask an array where equal to a given value.

This function is a shortcut to masked_where, with
condition = (x == value). For floating point arrays,
consider using masked_values(x, value).

See also

	masked_where

	Mask where a condition is met.

	masked_values

	Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2)
masked_array(data = [0 1 -- 3],
 mask = [False False True False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_greater

	
numpy.ma.masked_greater(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1817]

	Mask an array where greater than a given value.

This function is a shortcut to masked_where, with
condition = (x > value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
masked_array(data = [0 1 2 --],
 mask = [False False False True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_greater_equal

	
numpy.ma.masked_greater_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1843]

	Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with
condition = (x >= value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
masked_array(data = [0 1 -- --],
 mask = [False False True True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_inside

	
numpy.ma.masked_inside(x, v1, v2, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1982]

	Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside
the interval [v1,v2] (v1 <= x <= v2). The boundaries v1 and v2
can be given in either order.

See also

	masked_where

	Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
 mask = [False False True True False False],
 fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
 mask = [False False True True False False],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_invalid

	
numpy.ma.masked_invalid(a, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2204]

	Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with
condition = ~(np.isfinite(a)). Any pre-existing mask is conserved.
Only applies to arrays with a dtype where NaNs or infs make sense
(i.e. floating point types), but accepts any array_like object.

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5, dtype=np.float)
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array([0., 1., NaN, Inf, 4.])
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 -- -- 4.0],
 mask = [False False True True False],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_less

	
numpy.ma.masked_less(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1869]

	Mask an array where less than a given value.

This function is a shortcut to masked_where, with
condition = (x < value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
masked_array(data = [-- -- 2 3],
 mask = [True True False False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_less_equal

	
numpy.ma.masked_less_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1895]

	Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with
condition = (x <= value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_not_equal

	
numpy.ma.masked_not_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1921]

	Mask an array where not equal to a given value.

This function is a shortcut to masked_where, with
condition = (x != value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
masked_array(data = [-- -- 2 --],
 mask = [True True False True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_object

	
numpy.ma.masked_object(x, value, copy=True, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2062]

	Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable
for object arrays: for floating point, use masked_values instead.

	Parameters:	x : array_like

Array to mask

value : object

Comparison value

copy : {True, False}, optional

Whether to return a copy of x.

shrink : {True, False}, optional

Whether to collapse a mask full of False to nomask

	Returns:	result : MaskedArray

The result of masking x where equal to value.

See also

	masked_where

	Mask where a condition is met.

	masked_equal

	Mask where equal to a given value (integers).

	masked_values

	Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
>>> print eat
[-- ham]
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
>>> print eat
[cheese ham pineapple]

Note that mask is set to nomask if possible.

>>> eat
masked_array(data = [cheese ham pineapple],
 mask = False,
 fill_value=?)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_outside

	
numpy.ma.masked_outside(x, v1, v2, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2022]

	Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside
the interval [v1,v2] (x < v1)|(x > v2).
The boundaries v1 and v2 can be given in either order.

See also

	masked_where

	Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],
 mask = [True True False False True True],
 fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],
 mask = [True True False False True True],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_values

	
numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2123]

	Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately
equal to value, i.e. where the following condition is True

(abs(x - value) <= atol+rtol*abs(value))

The fill_value is set to value and the mask is set to nomask if
possible. For integers, consider using masked_equal.

	Parameters:	x : array_like

Array to mask.

value : float

Masking value.

rtol : float, optional

Tolerance parameter.

atol : float, optional

Tolerance parameter (1e-8).

copy : bool, optional

Whether to return a copy of x.

shrink : bool, optional

Whether to collapse a mask full of False to nomask.

	Returns:	result : MaskedArray

The result of masking x where approximately equal to value.

See also

	masked_where

	Mask where a condition is met.

	masked_equal

	Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
masked_array(data = [1.0 -- 2.0 -- 3.0],
 mask = [False True False True False],
 fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values(x, 1.5)
masked_array(data = [1. 1.1 2. 1.1 3.],
 mask = False,
 fill_value=1.5)

For integers, the fill value will be different in general to the
result of masked_equal.

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
masked_array(data = [0 1 -- 3 4],
 mask = [False False True False False],
 fill_value=2)
>>> ma.masked_equal(x, 2)
masked_array(data = [0 1 -- 3 4],
 mask = [False False True False False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_where

	
numpy.ma.masked_where(condition, a, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1701]

	Mask an array where a condition is met.

Return a as an array masked where condition is True.
Any masked values of a or condition are also masked in the output.

	Parameters:	condition : array_like

Masking condition. When condition tests floating point values for
equality, consider using masked_values instead.

a : array_like

Array to mask.

copy : bool

If True (default) make a copy of a in the result. If False modify
a in place and return a view.

	Returns:	result : MaskedArray

The result of masking a where condition is True.

See also

	masked_values

	Mask using floating point equality.

	masked_equal

	Mask where equal to a given value.

	masked_not_equal

	Mask where not equal to a given value.

	masked_less_equal

	Mask where less than or equal to a given value.

	masked_greater_equal

	Mask where greater than or equal to a given value.

	masked_less

	Mask where less than a given value.

	masked_greater

	Mask where greater than a given value.

	masked_inside

	Mask inside a given interval.

	masked_outside

	Mask outside a given interval.

	masked_invalid

	Mask invalid values (NaNs or infs).

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)

Mask array b conditional on a.

>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
masked_array(data = [a b -- d],
 mask = [False False True False],
 fill_value=N/A)

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a)
>>> c
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],
 mask = [False True True False],
 fill_value=999999)
>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],
 mask = [False True True False],
 fill_value=999999)
>>> a
array([99, 1, 2, 3])

When condition or a contain masked values.

>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data = [0 1 -- 3],
 mask = [False False True False],
 fill_value=999999)
>>> b = np.arange(4)
>>> b = ma.masked_where(b == 0, b)
>>> b
masked_array(data = [-- 1 2 3],
 mask = [True False False False],
 fill_value=999999)
>>> ma.masked_where(a == 3, b)
masked_array(data = [-- 1 -- --],
 mask = [True False True True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.compress_cols

	
numpy.ma.compress_cols(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L801]

	Suppress whole columns of a 2-D array that contain masked values.

This is equivalent to np.ma.extras.compress_rowcols(a, 1), see
extras.compress_rowcols for details.

See also

extras.compress_rowcols

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.compress_rowcols

	
numpy.ma.compress_rowcols(x, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L719]

	Suppress the rows and/or columns of a 2-D array that contain
masked values.

The suppression behavior is selected with the axis parameter.

	If axis is None, both rows and columns are suppressed.

	If axis is 0, only rows are suppressed.

	If axis is 1 or -1, only columns are suppressed.

	Parameters:	axis : int, optional

Axis along which to perform the operation. Default is None.

	Returns:	compressed_array : ndarray

The compressed array.

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x
masked_array(data =
 [[-- 1 2]
 [-- 4 5]
 [6 7 8]],
 mask =
 [[True False False]
 [True False False]
 [False False False]],
 fill_value = 999999)

>>> np.ma.extras.compress_rowcols(x)
array([[7, 8]])
>>> np.ma.extras.compress_rowcols(x, 0)
array([[6, 7, 8]])
>>> np.ma.extras.compress_rowcols(x, 1)
array([[1, 2],
 [4, 5],
 [7, 8]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.compress_rows

	
numpy.ma.compress_rows(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L787]

	Suppress whole rows of a 2-D array that contain masked values.

This is equivalent to np.ma.extras.compress_rowcols(a, 0), see
extras.compress_rowcols for details.

See also

extras.compress_rowcols

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.compressed

	
numpy.ma.compressed(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6252]

	Return all the non-masked data as a 1-D array.

This function is equivalent to calling the “compressed” method of a
MaskedArray, see MaskedArray.compressed for details.

See also

	MaskedArray.compressed

	Equivalent method.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.filled

	
numpy.ma.filled(a, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L544]

	Return input as an array with masked data replaced by a fill value.

If a is not a MaskedArray, a itself is returned.
If a is a MaskedArray and fill_value is None, fill_value is set to
a.fill_value.

	Parameters:	a : MaskedArray or array_like

An input object.

fill_value : scalar, optional

Filling value. Default is None.

	Returns:	a : ndarray

The filled array.

See also

compressed

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x.filled()
array([[999999, 1, 2],
 [999999, 4, 5],
 [6, 7, 8]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.compressed

	
MaskedArray.compressed()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3519]

	Return all the non-masked data as a 1-D array.

	Returns:	data : ndarray

A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
<type 'numpy.ndarray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.filled

	
MaskedArray.filled(fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3447]

	Return a copy of self, with masked values filled with a given value.

	Parameters:	fill_value : scalar, optional

The value to use for invalid entries (None by default).
If None, the fill_value attribute of the array is used instead.

	Returns:	filled_array : ndarray

A copy of self with invalid entries replaced by fill_value
(be it the function argument or the attribute of self.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> type(x.filled())
<type 'numpy.ndarray'>

Subclassing is preserved. This means that if the data part of the masked
array is a matrix, filled returns a matrix:

>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.filled()
matrix([[1, 999999],
 [999999, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tofile

	
MaskedArray.tofile(fid, sep='', format='%s')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5493]

	Save a masked array to a file in binary format.

Warning

This function is not implemented yet.

	Raises:	NotImplementedError

When tofile is called.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tolist

	
MaskedArray.tolist(fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5369]

	Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type.
Masked values are converted to fill_value. If fill_value is None,
the corresponding entries in the output list will be None.

	Parameters:	fill_value : scalar, optional

The value to use for invalid entries. Default is None.

	Returns:	result : list

The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
>>> x.tolist()
[[1, None, 3], [None, 5, None], [7, None, 9]]
>>> x.tolist(-999)
[[1, -999, 3], [-999, 5, -999], [7, -999, 9]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.torecords

	
MaskedArray.torecords()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5508]

	Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

	the _data field stores the _data part of the array.

	the _mask field stores the _mask part of the array.

	Parameters:	None

	Returns:	record : ndarray

A new flexible-type ndarray with two fields: the first element
containing a value, the second element containing the corresponding
mask boolean. The returned record shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is
that meta information (fill_value, ...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.toflex()
[[(1, False) (2, True) (3, False)]
 [(4, True) (5, False) (6, True)]
 [(7, False) (8, True) (9, False)]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tobytes

	
MaskedArray.tobytes(fill_value=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5453]

	Return the array data as a string containing the raw bytes in the array.

The array is filled with a fill value before the string conversion.

New in version 1.9.0.

	Parameters:	fill_value : scalar, optional

Value used to fill in the masked values. Deafult is None, in which
case MaskedArray.fill_value is used.

order : {‘C’,’F’,’A’}, optional

Order of the data item in the copy. Default is ‘C’.

	‘C’ – C order (row major).

	‘F’ – Fortran order (column major).

	‘A’ – Any, current order of array.

	None – Same as ‘A’.

See also

ndarray.tobytes, tolist, tofile

Notes

As for ndarray.tobytes, information about the shape, dtype, etc.,
but also about fill_value, will be lost.

Examples

>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
'\x01\x00\x00\x00?B\x0f\x00?B\x0f\x00\x04\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dump

	
numpy.ma.dump(a, F)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7127]

	Pickle a masked array to a file.

This is a wrapper around cPickle.dump.

	Parameters:	a : MaskedArray

The array to be pickled.

F : str or file-like object

The file to pickle a to. If a string, the full path to the file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dumps

	
numpy.ma.dumps(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7145]

	Return a string corresponding to the pickling of a masked array.

This is a wrapper around cPickle.dumps.

	Parameters:	a : MaskedArray

The array for which the string representation of the pickle is
returned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.load

	
numpy.ma.load(F)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7160]

	Wrapper around cPickle.load which accepts either a file-like object
or a filename.

	Parameters:	F : str or file

The file or file name to load.

See also

	dump

	Pickle an array

Notes

This is different from numpy.load, which does not use cPickle but loads
the NumPy binary .npy format.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.loads

	
numpy.ma.loads(strg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7184]

	Load a pickle from the current string.

The result of cPickle.loads(strg) is returned.

	Parameters:	strg : str

The string to load.

See also

	dumps

	Return a string corresponding to the pickling of a masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.common_fill_value

	
numpy.ma.common_fill_value(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L511]

	Return the common filling value of two masked arrays, if any.

If a.fill_value == b.fill_value, return the fill value,
otherwise return None.

	Parameters:	a, b : MaskedArray

The masked arrays for which to compare fill values.

	Returns:	fill_value : scalar or None

The common fill value, or None.

Examples

>>> x = np.ma.array([0, 1.], fill_value=3)
>>> y = np.ma.array([0, 1.], fill_value=3)
>>> np.ma.common_fill_value(x, y)
3.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.default_fill_value

	
numpy.ma.default_fill_value(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L161]

	Return the default fill value for the argument object.

The default filling value depends on the datatype of the input
array or the type of the input scalar:

	datatype
	default

	bool
	True

	int
	999999

	float
	1.e20

	complex
	1.e20+0j

	object
	‘?’

	string
	‘N/A’

	Parameters:	obj : ndarray, dtype or scalar

The array data-type or scalar for which the default fill value
is returned.

	Returns:	fill_value : scalar

The default fill value.

Examples

>>> np.ma.default_fill_value(1)
999999
>>> np.ma.default_fill_value(np.array([1.1, 2., np.pi]))
1e+20
>>> np.ma.default_fill_value(np.dtype(complex))
(1e+20+0j)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.maximum_fill_value

	
numpy.ma.maximum_fill_value(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L299]

	Return the minimum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for
taking the maximum of an array with a given dtype.

	Parameters:	obj : {ndarray, dtype}

An object that can be queried for it’s numeric type.

	Returns:	val : scalar

The minimum representable value.

	Raises:	TypeError

If obj isn’t a suitable numeric type.

See also

	minimum_fill_value

	The inverse function.

	set_fill_value

	Set the filling value of a masked array.

	MaskedArray.fill_value

	Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()
>>> ma.maximum_fill_value(a)
-128
>>> a = np.int32()
>>> ma.maximum_fill_value(a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_value(a)
-128
>>> a = np.array([1, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_value(a)
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.maximum_fill_value

	
numpy.ma.maximum_fill_value(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L299]

	Return the minimum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for
taking the maximum of an array with a given dtype.

	Parameters:	obj : {ndarray, dtype}

An object that can be queried for it’s numeric type.

	Returns:	val : scalar

The minimum representable value.

	Raises:	TypeError

If obj isn’t a suitable numeric type.

See also

	minimum_fill_value

	The inverse function.

	set_fill_value

	Set the filling value of a masked array.

	MaskedArray.fill_value

	Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()
>>> ma.maximum_fill_value(a)
-128
>>> a = np.int32()
>>> ma.maximum_fill_value(a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_value(a)
-128
>>> a = np.array([1, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_value(a)
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.set_fill_value

	
numpy.ma.set_fill_value(a, fill_value)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L435]

	Set the filling value of a, if a is a masked array.

This function changes the fill value of the masked array a in place.
If a is not a masked array, the function returns silently, without
doing anything.

	Parameters:	a : array_like

Input array.

fill_value : dtype

Filling value. A consistency test is performed to make sure
the value is compatible with the dtype of a.

	Returns:	None

Nothing returned by this function.

See also

	maximum_fill_value

	Return the default fill value for a dtype.

	MaskedArray.fill_value

	Return current fill value.

	MaskedArray.set_fill_value

	Equivalent method.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a = ma.masked_where(a < 3, a)
>>> a
masked_array(data = [-- -- -- 3 4],
 mask = [True True True False False],
 fill_value=999999)
>>> ma.set_fill_value(a, -999)
>>> a
masked_array(data = [-- -- -- 3 4],
 mask = [True True True False False],
 fill_value=-999)

Nothing happens if a is not a masked array.

>>> a = range(5)
>>> a
[0, 1, 2, 3, 4]
>>> ma.set_fill_value(a, 100)
>>> a
[0, 1, 2, 3, 4]
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> ma.set_fill_value(a, 100)
>>> a
array([0, 1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.get_fill_value

	
MaskedArray.get_fill_value()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3376]

	Return the filling value of the masked array.

	Returns:	fill_value : scalar

The filling value.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
... np.ma.array([0, 1], dtype=dt).get_fill_value()
...
999999
999999
1e+20
(1e+20+0j)

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.get_fill_value()
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.set_fill_value

	
MaskedArray.set_fill_value(value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3404]

	Set the filling value of the masked array.

	Parameters:	value : scalar, optional

The new filling value. Default is None, in which case a default
based on the data type is used.

See also

	ma.set_fill_value

	Equivalent function.

Examples

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
-inf
>>> x.set_fill_value(np.pi)
>>> x.fill_value
3.1415926535897931

Reset to default:

>>> x.set_fill_value()
>>> x.fill_value
1e+20

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.fill_value

	
MaskedArray.fill_value

	Filling value.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.anom

	
numpy.ma.anom(self, axis=None, dtype=None) = <numpy.ma.core._frommethod instance at 0x0000000004699448>

	Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Returns an array of anomalies, with the same shape as the input and
where the arithmetic mean is computed along the given axis.

	Parameters:	axis : int, optional

Axis over which the anomalies are taken.
The default is to use the mean of the flattened array as reference.

dtype : dtype, optional

	Type to use in computing the variance. For arrays of integer type

	the default is float32; for arrays of float types it is the same as
the array type.

See also

	mean

	Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.anomalies

	
numpy.ma.anomalies(self, axis=None, dtype=None) = <numpy.ma.core._frommethod instance at 0x0000000004699448>

	Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Returns an array of anomalies, with the same shape as the input and
where the arithmetic mean is computed along the given axis.

	Parameters:	axis : int, optional

Axis over which the anomalies are taken.
The default is to use the mean of the flattened array as reference.

dtype : dtype, optional

	Type to use in computing the variance. For arrays of integer type

	the default is float32; for arrays of float types it is the same as
the array type.

See also

	mean

	Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.average

	
numpy.ma.average(a, axis=None, weights=None, returned=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L470]

	Return the weighted average of array over the given axis.

	Parameters:	a : array_like

Data to be averaged.
Masked entries are not taken into account in the computation.

axis : int, optional

Axis along which the average is computed. The default is to compute
the average of the flattened array.

weights : array_like, optional

The importance that each element has in the computation of the average.
The weights array can either be 1-D (in which case its length must be
the size of a along the given axis) or of the same shape as a.
If weights=None, then all data in a are assumed to have a
weight equal to one. If weights is complex, the imaginary parts
are ignored.

returned : bool, optional

Flag indicating whether a tuple (result, sum of weights)
should be returned as output (True), or just the result (False).
Default is False.

	Returns:	average, [sum_of_weights] : (tuple of) scalar or MaskedArray

The average along the specified axis. When returned is True,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is np.float64
if a is of integer type, otherwise it is of the same type as a.
If returned, sum_of_weights is of the same type as average.

Examples

>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average(a, weights=[3, 1, 0, 0])
1.25

>>> x = np.ma.arange(6.).reshape(3, 2)
>>> print x
[[0. 1.]
 [2. 3.]
 [4. 5.]]
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
... returned=True)
>>> print avg
[2.66666666667 3.66666666667]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.conjugate

	
numpy.ma.conjugate(x[, out]) = <numpy.ma.core._MaskedUnaryOperation instance at 0x000000000467F808>

	Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.

	Parameters:	x : array_like

Input value.

	Returns:	y : ndarray

The complex conjugate of x, with same dtype as y.

Examples

>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[1.-1.j, 0.-0.j],
 [0.-0.j, 1.-1.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.corrcoef

	
numpy.ma.corrcoef(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1375]

	Return correlation coefficients of the input array.

Except for the handling of missing data this function does the same as
numpy.corrcoef. For more details and examples, see numpy.corrcoef.

	Parameters:	x : array_like

A 1-D or 2-D array containing multiple variables and observations.
Each row of x represents a variable, and each column a single
observation of all those variables. Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same
shape as x.

rowvar : bool, optional

If rowvar is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.

bias : bool, optional

Default normalization (False) is by (N-1), where N is the
number of observations given (unbiased estimate). If bias is 1,
then normalization is by N. This keyword can be overridden by
the keyword ddof in numpy versions >= 1.5.

allow_masked : bool, optional

If True, masked values are propagated pair-wise: if a value is masked
in x, the corresponding value is masked in y.
If False, raises an exception.

ddof : {None, int}, optional

New in version 1.5.

If not None normalization is by (N - ddof), where N is
the number of observations; this overrides the value implied by
bias. The default value is None.

See also

	numpy.corrcoef

	Equivalent function in top-level NumPy module.

	cov

	Estimate the covariance matrix.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.cov

	
numpy.ma.cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1302]

	Estimate the covariance matrix.

Except for the handling of missing data this function does the same as
numpy.cov. For more details and examples, see numpy.cov.

By default, masked values are recognized as such. If x and y have the
same shape, a common mask is allocated: if x[i,j] is masked, then
y[i,j] will also be masked.
Setting allow_masked to False will raise an exception if values are
missing in either of the input arrays.

	Parameters:	x : array_like

A 1-D or 2-D array containing multiple variables and observations.
Each row of x represents a variable, and each column a single
observation of all those variables. Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same
form as x.

rowvar : bool, optional

If rowvar is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.

bias : bool, optional

Default normalization (False) is by (N-1), where N is the
number of observations given (unbiased estimate). If bias is True,
then normalization is by N. This keyword can be overridden by
the keyword ddof in numpy versions >= 1.5.

allow_masked : bool, optional

If True, masked values are propagated pair-wise: if a value is masked
in x, the corresponding value is masked in y.
If False, raises a ValueError exception when some values are missing.

ddof : {None, int}, optional

New in version 1.5.

If not None normalization is by (N - ddof), where N is
the number of observations; this overrides the value implied by
bias. The default value is None.

	Raises:	ValueError

Raised if some values are missing and allow_masked is False.

See also

numpy.cov

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.cumsum

	
numpy.ma.cumsum(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699688>

	Return the cumulative sum of the elements along the given axis.
The cumulative sum is calculated over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 0 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to
compute over the flattened array. axis may be negative, in which case
it counts from the last to the first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumsum : ndarray.

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print marr.cumsum()
[0 1 3 -- -- -- 9 16 24 33]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.cumprod

	
numpy.ma.cumprod(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699608>

	Return the cumulative product of the elements along the given axis.
The cumulative product is taken over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the product is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the
default platform integer, then the default platform integer precision
is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumprod : ndarray

A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mean

	
numpy.ma.mean(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699888>

	Returns the average of the array elements.

Masked entries are ignored.
The average is taken over the flattened array by default, otherwise over
the specified axis. Refer to numpy.mean for the full documentation.

	Parameters:	a : array_like

Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute
the mean of the flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default
is float64; for floating point, inputs it is the same as the input
dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

See also

	numpy.ma.mean

	Equivalent function.

	numpy.mean

	Equivalent function on non-masked arrays.

	numpy.ma.average

	Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.mean()
1.5

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.median

	
numpy.ma.median(a, axis=None, out=None, overwrite_input=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L613]

	Compute the median along the specified axis.

Returns the median of the array elements.

	Parameters:	a : array_like

Input array or object that can be converted to an array.

axis : int, optional

Axis along which the medians are computed. The default (None) is
to compute the median along a flattened version of the array.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array (a) for
calculations. The input array will be modified by the call to
median. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted. Default is
False. Note that, if overwrite_input is True, and the input
is not already an ndarray, an error will be raised.

	Returns:	median : ndarray

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
Return data-type is float64 for integers and floats smaller than
float64, or the input data-type, otherwise.

See also

mean

Notes

Given a vector V with N non masked values, the median of V
is the middle value of a sorted copy of V (Vs) - i.e.
Vs[(N-1)/2], when N is odd, or {Vs[N/2 - 1] + Vs[N/2]}/2
when N is even.

Examples

>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
>>> np.ma.extras.median(x)
1.5

>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
>>> np.ma.extras.median(x)
2.5
>>> np.ma.extras.median(x, axis=-1, overwrite_input=True)
masked_array(data = [2. 5.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.power

	
numpy.ma.power(a, b, third=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6126]

	Returns element-wise base array raised to power from second array.

This is the masked array version of numpy.power. For details see
numpy.power.

See also

numpy.power

Notes

The out argument to numpy.power is not supported, third has to be
None.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.prod

	
numpy.ma.prod(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699988>

	Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.

	Parameters:	axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the
product is over all the array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.

See also

	prod

	equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised
on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.std

	
numpy.ma.std(self, axis=None, dtype=None, out=None, ddof=0) = <numpy.ma.core._frommethod instance at 0x0000000004699C48>

	Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.

	Parameters:	a : array_like

Calculate the standard deviation of these values.

axis : int, optional

Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it is
the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements.
By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation,
otherwise return a reference to the output array.

See also

var, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is specified,
the divisor N - ddof is used instead. In standard statistical
practice, ddof=1 provides an unbiased estimator of the variance
of the infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables. The
standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dtype keyword can
alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.sum

	
numpy.ma.sum(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699CC8>

	Return the sum of the array elements over the given axis.
Masked elements are set to 0 internally.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified
axis removed. If self is a 0-d array, or if axis is None, a scalar
is returned. If an output array is specified, a reference to
out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.sum()
25
>>> print x.sum(axis=1)
[4 5 16]
>>> print x.sum(axis=0)
[8 5 12]
>>> print type(x.sum(axis=0, dtype=np.int64)[0])
<type 'numpy.int64'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.var

	
numpy.ma.var(self, axis=None, dtype=None, out=None, ddof=0) = <numpy.ma.core._frommethod instance at 0x0000000004699DC8>

	Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.

	Parameters:	a : array_like

Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance;
otherwise, a reference to the output array is returned.

See also

std, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.var(a)
0.20405951142311096

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932997387
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.20250000000000001

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.anom

	
MaskedArray.anom(axis=None, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4794]

	Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Returns an array of anomalies, with the same shape as the input and
where the arithmetic mean is computed along the given axis.

	Parameters:	axis : int, optional

Axis over which the anomalies are taken.
The default is to use the mean of the flattened array as reference.

dtype : dtype, optional

	Type to use in computing the variance. For arrays of integer type

	the default is float32; for arrays of float types it is the same as
the array type.

See also

	mean

	Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.cumprod

	
MaskedArray.cumprod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4677]

	Return the cumulative product of the elements along the given axis.
The cumulative product is taken over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the product is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the
default platform integer, then the default platform integer precision
is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumprod : ndarray

A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.cumsum

	
MaskedArray.cumsum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4548]

	Return the cumulative sum of the elements along the given axis.
The cumulative sum is calculated over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 0 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to
compute over the flattened array. axis may be negative, in which case
it counts from the last to the first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumsum : ndarray.

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print marr.cumsum()
[0 1 3 -- -- -- 9 16 24 33]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.mean

	
MaskedArray.mean(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4727]

	Returns the average of the array elements.

Masked entries are ignored.
The average is taken over the flattened array by default, otherwise over
the specified axis. Refer to numpy.mean for the full documentation.

	Parameters:	a : array_like

Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute
the mean of the flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default
is float64; for floating point, inputs it is the same as the input
dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

See also

	numpy.ma.mean

	Equivalent function.

	numpy.mean

	Equivalent function on non-masked arrays.

	numpy.ma.average

	Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.mean()
1.5

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.prod

	
MaskedArray.prod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4605]

	Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.

	Parameters:	axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the
product is over all the array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.

See also

	prod

	equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised
on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.std

	
MaskedArray.std(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4874]

	Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.

	Parameters:	a : array_like

Calculate the standard deviation of these values.

axis : int, optional

Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it is
the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements.
By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation,
otherwise return a reference to the output array.

See also

var, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is specified,
the divisor N - ddof is used instead. In standard statistical
practice, ddof=1 provides an unbiased estimator of the variance
of the infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables. The
standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dtype keyword can
alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.sum

	
MaskedArray.sum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4480]

	Return the sum of the array elements over the given axis.
Masked elements are set to 0 internally.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified
axis removed. If self is a 0-d array, or if axis is None, a scalar
is returned. If an output array is specified, a reference to
out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.sum()
25
>>> print x.sum(axis=1)
[4 5 16]
>>> print x.sum(axis=0)
[8 5 12]
>>> print type(x.sum(axis=0, dtype=np.int64)[0])
<type 'numpy.int64'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.var

	
MaskedArray.var(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4831]

	Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.

	Parameters:	a : array_like

Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance;
otherwise, a reference to the output array is returned.

See also

std, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.var(a)
0.20405951142311096

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932997387
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.20250000000000001

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.argmax

	
numpy.ma.argmax(a, axis=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6209]

	Returns array of indices of the maximum values along the given axis.
Masked values are treated as if they had the value fill_value.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	index_array : {integer_array}

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.argmin

	
numpy.ma.argmin(a, axis=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6201]

	Return array of indices to the minimum values along the given axis.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	{ndarray, scalar}

If multi-dimension input, returns a new ndarray of indices to the
minimum values along the given axis. Otherwise, returns a scalar
of index to the minimum values along the given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print x
[[-- --]
 [2 3]]
>>> print x.argmin(axis=0, fill_value=-1)
[0 0]
>>> print x.argmin(axis=0, fill_value=9)
[1 1]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.max

	
numpy.ma.max(obj, axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6025]

	Return the maximum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of maximum_fill_value().

	Returns:	amax : array_like

New array holding the result.
If out was specified, out is returned.

See also

	maximum_fill_value

	Returns the maximum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.min

	
numpy.ma.min(obj, axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6016]

	Return the minimum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of
the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of minimum_fill_value.

	Returns:	amin : array_like

New array holding the result.
If out was specified, out is returned.

See also

	minimum_fill_value

	Returns the minimum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.ptp

	
numpy.ma.ptp(obj, axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6034]

	Return (maximum - minimum) along the the given dimension
(i.e. peak-to-peak value).

	Parameters:	axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the
flattened array is used.

out : {None, array_like}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

	Returns:	ptp : ndarray.

A new array holding the result, unless out was
specified, in which case a reference to out is returned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argmax

	
MaskedArray.argmax(axis=None, fill_value=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5005]

	Returns array of indices of the maximum values along the given axis.
Masked values are treated as if they had the value fill_value.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	index_array : {integer_array}

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argmin

	
MaskedArray.argmin(axis=None, fill_value=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4963]

	Return array of indices to the minimum values along the given axis.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	{ndarray, scalar}

If multi-dimension input, returns a new ndarray of indices to the
minimum values along the given axis. Otherwise, returns a scalar
of index to the minimum values along the given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print x
[[-- --]
 [2 3]]
>>> print x.argmin(axis=0, fill_value=-1)
[0 0]
>>> print x.argmin(axis=0, fill_value=9)
[1 1]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.max

	
MaskedArray.max(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5241]

	Return the maximum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of maximum_fill_value().

	Returns:	amax : array_like

New array holding the result.
If out was specified, out is returned.

See also

	maximum_fill_value

	Returns the maximum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.min

	
MaskedArray.min(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5142]

	Return the minimum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of
the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of minimum_fill_value.

	Returns:	amin : array_like

New array holding the result.
If out was specified, out is returned.

See also

	minimum_fill_value

	Returns the minimum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.ptp

	
MaskedArray.ptp(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5301]

	Return (maximum - minimum) along the the given dimension
(i.e. peak-to-peak value).

	Parameters:	axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the
flattened array is used.

out : {None, array_like}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

	Returns:	ptp : ndarray.

A new array holding the result, unless out was
specified, in which case a reference to out is returned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.argsort

	
numpy.ma.argsort(a, axis=None, kind='quicksort', order=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6191]

	Return an ndarray of indices that sort the array along the
specified axis. Masked values are filled beforehand to
fill_value.

	Parameters:	axis : int, optional

Axis along which to sort. The default is -1 (last axis).
If None, the flattened array is used.

fill_value : var, optional

Value used to fill the array before sorting.
The default is the fill_value attribute of the input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

	Returns:	index_array : ndarray, int

Array of indices that sort a along the specified axis.
In other words, a[index_array] yields a sorted a.

See also

	sort

	Describes sorting algorithms used.

	lexsort

	Indirect stable sort with multiple keys.

	ndarray.sort

	Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.argsort()
array([1, 0, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.sort

	
numpy.ma.sort(a, axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6221]

	Sort the array, in-place

	Parameters:	a : array_like

Array to be sorted.

axis : int, optional

Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices
(at the end of the array) (True) or lower indices (at the beginning).
When the array contains unmasked values of the largest (or smallest if
False) representable value of the datatype the ordering of these values
and the masked values is undefined. To enforce the masked values are
at the end (beginning) in this case one must sort the mask.

fill_value : {var}, optional

Value used internally for the masked values.
If fill_value is not None, it supersedes endwith.

	Returns:	sorted_array : ndarray

Array of the same type and shape as a.

See also

	ndarray.sort

	Method to sort an array in-place.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print a
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print a
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print a
[1 -- -- 3 5]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argsort

	
MaskedArray.argsort(axis=None, kind='quicksort', order=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4909]

	Return an ndarray of indices that sort the array along the
specified axis. Masked values are filled beforehand to
fill_value.

	Parameters:	axis : int, optional

Axis along which to sort. The default is -1 (last axis).
If None, the flattened array is used.

fill_value : var, optional

Value used to fill the array before sorting.
The default is the fill_value attribute of the input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

	Returns:	index_array : ndarray, int

Array of indices that sort a along the specified axis.
In other words, a[index_array] yields a sorted a.

See also

	sort

	Describes sorting algorithms used.

	lexsort

	Indirect stable sort with multiple keys.

	ndarray.sort

	Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.argsort()
array([1, 0, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.sort

	
MaskedArray.sort(axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5043]

	Sort the array, in-place

	Parameters:	a : array_like

Array to be sorted.

axis : int, optional

Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices
(at the end of the array) (True) or lower indices (at the beginning).
When the array contains unmasked values of the largest (or smallest if
False) representable value of the datatype the ordering of these values
and the masked values is undefined. To enforce the masked values are
at the end (beginning) in this case one must sort the mask.

fill_value : {var}, optional

Value used internally for the masked values.
If fill_value is not None, it supersedes endwith.

	Returns:	sorted_array : ndarray

Array of the same type and shape as a.

See also

	ndarray.sort

	Method to sort an array in-place.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print a
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print a
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print a
[1 -- -- 3 5]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.diag

	
numpy.ma.diag(v, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6339]

	Extract a diagonal or construct a diagonal array.

This function is the equivalent of numpy.diag that takes masked
values into account, see numpy.diag for details.

See also

	numpy.diag

	Equivalent function for ndarrays.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dot

	
numpy.ma.dot(a, b, strict=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L996]

	Return the dot product of two arrays.

Note

Works only with 2-D arrays at the moment.

This function is the equivalent of numpy.dot that takes masked values
into account, see numpy.dot for details.

	Parameters:	a, b : ndarray

Inputs arrays.

strict : bool, optional

Whether masked data are propagated (True) or set to 0 (False) for the
computation. Default is False.
Propagating the mask means that if a masked value appears in a row or
column, the whole row or column is considered masked.

See also

	numpy.dot

	Equivalent function for ndarrays.

Examples

>>> a = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
>>> b = ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
>>> np.ma.dot(a, b)
masked_array(data =
 [[21 26]
 [45 64]],
 mask =
 [[False False]
 [False False]],
 fill_value = 999999)
>>> np.ma.dot(a, b, strict=True)
masked_array(data =
 [[-- --]
 [-- 64]],
 mask =
 [[True True]
 [True False]],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.identity

	
numpy.ma.identity(n, dtype=None) = <numpy.ma.core._convert2ma instance at 0x00000000046BB208>

	Return the identity array.

The identity array is a square array with ones on
the main diagonal.

	Parameters:	n : int

Number of rows (and columns) in n x n output.

dtype : data-type, optional

Data-type of the output. Defaults to float.

	Returns:	out : ndarray

n x n array with its main diagonal set to one,
and all other elements 0.

Examples

>>> np.identity(3)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.inner

	
numpy.ma.inner(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6829]

	Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex
conjugation), in higher dimensions a sum product over the last axes.

	Parameters:	a, b : array_like

If a and b are nonscalar, their last dimensions of must match.

	Returns:	out : ndarray

out.shape = a.shape[:-1] + b.shape[:-1]

	Raises:	ValueError

If the last dimension of a and b has different size.

See also

	tensordot

	Sum products over arbitrary axes.

	dot

	Generalised matrix product, using second last dimension of b.

	einsum

	Einstein summation convention.

Notes

Masked values are replaced by 0.

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[14, 38, 62],
 [86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],
 [0., 7.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.innerproduct

	
numpy.ma.innerproduct(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6829]

	Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex
conjugation), in higher dimensions a sum product over the last axes.

	Parameters:	a, b : array_like

If a and b are nonscalar, their last dimensions of must match.

	Returns:	out : ndarray

out.shape = a.shape[:-1] + b.shape[:-1]

	Raises:	ValueError

If the last dimension of a and b has different size.

See also

	tensordot

	Sum products over arbitrary axes.

	dot

	Generalised matrix product, using second last dimension of b.

	einsum

	Einstein summation convention.

Notes

Masked values are replaced by 0.

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[14, 38, 62],
 [86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],
 [0., 7.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.outer

	
numpy.ma.outer(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6852]

	Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and
b = [b0, b1, ..., bN],
the outer product [R50] is:

[[a0*b0 a0*b1 ... a0*bN]
 [a1*b0 .
 [... .
 [aM*b0 aM*bN]]

	Parameters:	a : (M,) array_like

First input vector. Input is flattened if
not already 1-dimensional.

b : (N,) array_like

Second input vector. Input is flattened if
not already 1-dimensional.

out : (M, N) ndarray, optional

A location where the result is stored

New in version 1.9.0.

	Returns:	out : (M, N) ndarray

out[i, j] = a[i] * b[j]

See also

inner, einsum

Notes

Masked values are replaced by 0.

References

	[R50]	(1, 2) : G. H. Golub and C. F. van Loan, Matrix Computations, 3rd
ed., Baltimore, MD, Johns Hopkins University Press, 1996,
pg. 8.

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
 [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
 [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
 [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
 [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
 [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
 [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],
 [b, bb, bbb],
 [c, cc, ccc]], dtype=object)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.outerproduct

	
numpy.ma.outerproduct(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6852]

	Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and
b = [b0, b1, ..., bN],
the outer product [R51] is:

[[a0*b0 a0*b1 ... a0*bN]
 [a1*b0 .
 [... .
 [aM*b0 aM*bN]]

	Parameters:	a : (M,) array_like

First input vector. Input is flattened if
not already 1-dimensional.

b : (N,) array_like

Second input vector. Input is flattened if
not already 1-dimensional.

out : (M, N) ndarray, optional

A location where the result is stored

New in version 1.9.0.

	Returns:	out : (M, N) ndarray

out[i, j] = a[i] * b[j]

See also

inner, einsum

Notes

Masked values are replaced by 0.

References

	[R51]	(1, 2) : G. H. Golub and C. F. van Loan, Matrix Computations, 3rd
ed., Baltimore, MD, Johns Hopkins University Press, 1996,
pg. 8.

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
 [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
 [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
 [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
 [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
 [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
 [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],
 [b, bb, bbb],
 [c, cc, ccc]], dtype=object)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.trace

	
numpy.ma.trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None) a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699D88>

	
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.transpose

	
numpy.ma.transpose(a, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6504]

	Permute the dimensions of an array.

This function is exactly equivalent to numpy.transpose.

See also

	numpy.transpose

	Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
>>>> x
masked_array(data =
 [[0 1]
 [2 --]],
 mask =
 [[False False]
 [False True]],
 fill_value = 999999)
>>> ma.transpose(x)
masked_array(data =
 [[0 2]
 [1 --]],
 mask =
 [[False False]
 [False True]],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.trace

	
MaskedArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4465]

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.transpose

	
MaskedArray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.vander

	
numpy.ma.vander(x, n=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1885]

	Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The
order of the powers is determined by the increasing boolean argument.
Specifically, when increasing is False, the i-th output column is
the input vector raised element-wise to the power of N - i - 1. Such
a matrix with a geometric progression in each row is named for Alexandre-
Theophile Vandermonde.

	Parameters:	x : array_like

1-D input array.

N : int, optional

Number of columns in the output. If N is not specified, a square
array is returned (N = len(x)).

increasing : bool, optional

Order of the powers of the columns. If True, the powers increase
from left to right, if False (the default) they are reversed.

New in version 1.9.0.

	Returns:	out : ndarray

Vandermonde matrix. If increasing is False, the first column is
x^(N-1), the second x^(N-2) and so forth. If increasing is
True, the columns are x^0, x^1, ..., x^(N-1).

See also

polynomial.polynomial.polyvander

Notes

Masked values in the input array result in rows of zeros.

Examples

>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[1, 1, 1],
 [4, 2, 1],
 [9, 3, 1],
 [25, 5, 1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[1, 1, 1],
 [4, 2, 1],
 [9, 3, 1],
 [25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[1, 1, 1, 1],
 [8, 4, 2, 1],
 [27, 9, 3, 1],
 [125, 25, 5, 1]])
>>> np.vander(x, increasing=True)
array([[1, 1, 1, 1],
 [1, 2, 4, 8],
 [1, 3, 9, 27],
 [1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product
of the differences between the values of the input vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.polyfit

	
numpy.ma.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1897]

	Least squares polynomial fit.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg
to points (x, y). Returns a vector of coefficients p that minimises
the squared error.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.

w : array_like, shape (M,), optional

weights to apply to the y-coordinates of the sample points.

cov : bool, optional

Return the estimate and the covariance matrix of the estimate
If full is True, then cov is not returned.

	Returns:	p : ndarray, shape (M,) or (M, K)

Polynomial coefficients, highest power first. If y was 2-D, the
coefficients for k-th data set are in p[:,k].

residuals, rank, singular_values, rcond :

Present only if full = True. Residuals of the least-squares fit,
the effective rank of the scaled Vandermonde coefficient matrix,
its singular values, and the specified value of rcond. For more
details, see linalg.lstsq.

V : ndarray, shape (M,M) or (M,M,K)

Present only if full = False and cov`=True. The covariance
matrix of the polynomial coefficient estimates. The diagonal of
this matrix are the variance estimates for each coefficient. If y
is a 2-D array, then the covariance matrix for the `k-th data set
are in V[:,:,k]

	Warns:	RankWarning

The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)

See also

	polyval

	Computes polynomial values.

	linalg.lstsq

	Computes a least-squares fit.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

Any masked values in x is propagated in y, and vice-versa.

References

	[R52]	Wikipedia, “Curve fitting”,
http://en.wikipedia.org/wiki/Curve_fitting

	[R53]	Wikipedia, “Polynomial interpolation”,
http://en.wikipedia.org/wiki/Polynomial_interpolation

Examples

>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([0.08703704, -0.81349206, 1.69312169, -0.03968254])

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

>>> p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
-0.80000000000000204
>>> p30(5)
-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-ma-polyfit-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.around

	
numpy.ma.around = <numpy.ma.core._MaskedUnaryOperation instance at 0x000000000467FBC8>

	Round an array to the given number of decimals.

Refer to around for full documentation.

See also

	around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.clip

	
numpy.ma.clip(a, a_min, a_max, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1566]

	Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to
the interval edges. For example, if an interval of [0, 1]
is specified, values smaller than 0 become 0, and values larger
than 1 become 1.

	Parameters:	a : array_like

Array containing elements to clip.

a_min : scalar or array_like

Minimum value.

a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will
be broadcasted to the shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input
array for in-place clipping. out must be of the right shape
to hold the output. Its type is preserved.

	Returns:	clipped_array : ndarray

An array with the elements of a, but where values
< a_min are replaced with a_min, and those > a_max
with a_max.

See also

	numpy.doc.ufuncs

	Section “Output arguments”

Examples

>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.round

	
numpy.ma.round(a, decimals=0, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6796]

	Return a copy of a, rounded to ‘decimals’ places.

When ‘decimals’ is negative, it specifies the number of positions
to the left of the decimal point. The real and imaginary parts of
complex numbers are rounded separately. Nothing is done if the
array is not of float type and ‘decimals’ is greater than or equal
to 0.

	Parameters:	decimals : int

Number of decimals to round to. May be negative.

out : array_like

Existing array to use for output.
If not given, returns a default copy of a.

Notes

If out is given and does not have a mask attribute, the mask of a
is lost!

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.clip

	
MaskedArray.clip(a_min, a_max, out=None)

	Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

	numpy.clip

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.round

	
MaskedArray.round(decimals=0, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4886]

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

	numpy.around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.allequal

	
numpy.ma.allequal(a, b, fill_value=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6869]

	Return True if all entries of a and b are equal, using
fill_value as a truth value where either or both are masked.

	Parameters:	a, b : array_like

Input arrays to compare.

fill_value : bool, optional

Whether masked values in a or b are considered equal (True) or not
(False).

	Returns:	y : bool

Returns True if the two arrays are equal within the given
tolerance, False otherwise. If either array contains NaN,
then False is returned.

See also

all, any, numpy.ma.allclose

Examples

>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data = [10000000000.0 1e-07 --],
 mask = [False False True],
 fill_value=1e+20)

>>> b = array([1e10, 1e-7, -42.0])
>>> b
array([1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
>>> ma.allequal(a, b, fill_value=False)
False
>>> ma.allequal(a, b)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.allclose

	
numpy.ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6926]

	Returns True if two arrays are element-wise equal within a tolerance.

This function is equivalent to allclose except that masked values
are treated as equal (default) or unequal, depending on the masked_equal
argument.

	Parameters:	a, b : array_like

Input arrays to compare.

masked_equal : bool, optional

Whether masked values in a and b are considered equal (True) or not
(False). They are considered equal by default.

rtol : float, optional

Relative tolerance. The relative difference is equal to rtol * b.
Default is 1e-5.

atol : float, optional

Absolute tolerance. The absolute difference is equal to atol.
Default is 1e-8.

	Returns:	y : bool

Returns True if the two arrays are equal within the given
tolerance, False otherwise. If either array contains NaN, then
False is returned.

See also

all, any

	numpy.allclose

	the non-masked allclose.

Notes

If the following equation is element-wise True, then allclose returns
True:

absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))

Return True if all elements of a and b are equal subject to
given tolerances.

Examples

>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data = [10000000000.0 1e-07 --],
 mask = [False False True],
 fill_value = 1e+20)
>>> b = ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
False

>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
True
>>> ma.allclose(a, b, masked_equal=False)
False

Masked values are not compared directly.

>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
True
>>> ma.allclose(a, b, masked_equal=False)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.apply_along_axis

	
numpy.ma.apply_along_axis(func1d, axis, arr, *args, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L327]

	Apply a function to 1-D slices along the given axis.

Execute func1d(a, *args) where func1d operates on 1-D arrays and a
is a 1-D slice of arr along axis.

	Parameters:	func1d : function

This function should accept 1-D arrays. It is applied to 1-D
slices of arr along the specified axis.

axis : integer

Axis along which arr is sliced.

arr : ndarray

Input array.

args : any

Additional arguments to func1d.

kwargs: any

Additional named arguments to func1d.

New in version 1.9.0.

	Returns:	apply_along_axis : ndarray

The output array. The shape of outarr is identical to the shape of
arr, except along the axis dimension, where the length of outarr
is equal to the size of the return value of func1d. If func1d
returns a scalar outarr will have one fewer dimensions than arr.

See also

	apply_over_axes

	Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])

For a function that doesn’t return a scalar, the number of dimensions in
outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
 [3, 4, 9],
 [2, 5, 6]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.arange

	
numpy.ma.arange([start,]stop, [step,]dtype=None) = <numpy.ma.core._convert2ma instance at 0x0000000004699F48>

	Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop)
(in other words, the interval including start but excluding stop).
For integer arguments the function is equivalent to the Python built-in
range [http://docs.python.org/lib/built-in-funcs.html] function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use linspace for these cases.

	Parameters:	start : number, optional

Start of interval. The interval includes this value. The default
start value is 0.

stop : number

End of interval. The interval does not include this value, except
in some cases where step is not an integer and floating point
round-off affects the length of out.

step : number, optional

Spacing between values. For any output out, this is the distance
between two adjacent values, out[i+1] - out[i]. The default
step size is 1. If step is specified, start must also be given.

dtype : dtype

The type of the output array. If dtype is not given, infer the data
type from the other input arguments.

	Returns:	arange : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is
ceil((stop - start)/step). Because of floating point overflow,
this rule may result in the last element of out being greater
than stop.

See also

	linspace

	Evenly spaced numbers with careful handling of endpoints.

	ogrid

	Arrays of evenly spaced numbers in N-dimensions.

	mgrid

	Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.choose

	
numpy.ma.choose(indices, choices, out=None, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6722]

	Use an index array to construct a new array from a set of choices.

Given an array of integers and a set of n choice arrays, this method
will create a new array that merges each of the choice arrays. Where a
value in a is i, the new array will have the value that choices[i]
contains in the same place.

	Parameters:	a : ndarray of ints

This array must contain integers in [0, n-1], where n is the
number of choices.

choices : sequence of arrays

Choice arrays. The index array and all of the choices should be
broadcastable to the same shape.

out : array, optional

If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave.

	‘raise’ : raise an error

	‘wrap’ : wrap around

	‘clip’ : clip to the range

	Returns:	merged_array : array

See also

	choose

	equivalent function

Examples

>>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
>>> a = np.array([2, 1, 0])
>>> np.ma.choose(a, choice)
masked_array(data = [3 2 1],
 mask = False,
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.ediff1d

	
numpy.ma.ediff1d(arr, to_end=None, to_begin=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1058]

	Compute the differences between consecutive elements of an array.

This function is the equivalent of numpy.ediff1d that takes masked
values into account, see numpy.ediff1d for details.

See also

	numpy.ediff1d

	Equivalent function for ndarrays.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.indices

	
numpy.ma.indices(dimensions, dtype=<type 'int'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1782]

	Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,...
varying only along the corresponding axis.

	Parameters:	dimensions : sequence of ints

The shape of the grid.

dtype : dtype, optional

Data type of the result.

	Returns:	grid : ndarray

The array of grid indices,
grid.shape = (len(dimensions),) + tuple(dimensions).

See also

mgrid, meshgrid

Notes

The output shape is obtained by prepending the number of dimensions
in front of the tuple of dimensions, i.e. if dimensions is a tuple
(r0, ..., rN-1) of length N, the output shape is
(N,r0,...,rN-1).

The subarrays grid[k] contains the N-D array of indices along the
k-th axis. Explicitly:

grid[k,i0,i1,...,iN-1] = ik

Examples

>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],
 [1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],
 [0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],
 [4, 5, 6]])

Note that it would be more straightforward in the above example to
extract the required elements directly with x[:2, :3].

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.where

	
numpy.ma.where(condition, x=None, y=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6645]

	Return a masked array with elements from x or y, depending on condition.

Returns a masked array, shaped like condition, where the elements
are from x when condition is True, and from y otherwise.
If neither x nor y are given, the function returns a tuple of
indices where condition is True (the result of
condition.nonzero()).

	Parameters:	condition : array_like, bool

The condition to meet. For each True element, yield the corresponding
element from x, otherwise from y.

x, y : array_like, optional

Values from which to choose. x and y need to have the same shape
as condition, or be broadcast-able to that shape.

	Returns:	out : MaskedArray or tuple of ndarrays

The resulting masked array if x and y were given, otherwise
the result of condition.nonzero().

See also

	numpy.where

	Equivalent function in the top-level NumPy module.

Examples

>>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
... [1, 0, 1],
... [0, 1, 0]])
>>> print x
[[0.0 -- 2.0]
 [-- 4.0 --]
 [6.0 -- 8.0]]
>>> np.ma.where(x > 5) # return the indices where x > 5
(array([2, 2]), array([0, 2]))

>>> print np.ma.where(x > 5, x, -3.1416)
[[-3.1416 -- -3.1416]
 [-- -3.1416 --]
 [6.0 -- 8.0]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

The Array Interface

Note

This page describes the numpy-specific API for accessing the contents of
a numpy array from other C extensions. PEP 3118 [http://www.python.org/dev/peps/pep-3118] –
The Revised Buffer Protocol [http://docs.python.org/dev/c-api/buffer.html#c.PyObject_GetBuffer] introduces
similar, standardized API to Python 2.6 and 3.0 for any extension
module to use. Cython [http://cython.org/]‘s buffer array support
uses the PEP 3118 [http://www.python.org/dev/peps/pep-3118] API; see the Cython numpy
tutorial [http://wiki.cython.org/tutorials/numpy]. Cython provides a way to write code that supports the buffer
protocol with Python versions older than 2.6 because it has a
backward-compatible implementation utilizing the array interface
described here.

	version:	3

The array interface (sometimes called array protocol) was created in
2005 as a means for array-like Python objects to re-use each other’s
data buffers intelligently whenever possible. The homogeneous
N-dimensional array interface is a default mechanism for objects to
share N-dimensional array memory and information. The interface
consists of a Python-side and a C-side using two attributes. Objects
wishing to be considered an N-dimensional array in application code
should support at least one of these attributes. Objects wishing to
support an N-dimensional array in application code should look for at
least one of these attributes and use the information provided
appropriately.

This interface describes homogeneous arrays in the sense that each
item of the array has the same “type”. This type can be very simple
or it can be a quite arbitrary and complicated C-like structure.

There are two ways to use the interface: A Python side and a C-side.
Both are separate attributes.

Python side

This approach to the interface consists of the object having an
__array_interface__ attribute.

	
__array_interface__

	A dictionary of items (3 required and 5 optional). The optional
keys in the dictionary have implied defaults if they are not
provided.

The keys are:

shape (required)

Tuple whose elements are the array size in each dimension. Each
entry is an integer (a Python int or long). Note that these
integers could be larger than the platform “int” or “long”
could hold (a Python int is a C long). It is up to the code
using this attribute to handle this appropriately; either by
raising an error when overflow is possible, or by using
Py_LONG_LONG as the C type for the shapes.

typestr (required)

A string providing the basic type of the homogenous array The
basic string format consists of 3 parts: a character describing
the byteorder of the data (<: little-endian, >:
big-endian, |: not-relevant), a character code giving the
basic type of the array, and an integer providing the number of
bytes the type uses.

The basic type character codes are:

	t
	Bit field (following integer gives the number of
bits in the bit field).

	b
	Boolean (integer type where all values are only True or False)

	i
	Integer

	u
	Unsigned integer

	f
	Floating point

	c
	Complex floating point

	O
	Object (i.e. the memory contains a pointer to PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject])

	S
	String (fixed-length sequence of char)

	U
	Unicode (fixed-length sequence of Py_UNICODE [http://docs.python.org/dev/c-api/unicode.html#c.Py_UNICODE])

	V
	Other (void * – each item is a fixed-size chunk of memory)

descr (optional)

A list of tuples providing a more detailed description of the
memory layout for each item in the homogeneous array. Each
tuple in the list has two or three elements. Normally, this
attribute would be used when typestr is V[0-9]+, but this is
not a requirement. The only requirement is that the number of
bytes represented in the typestr key is the same as the total
number of bytes represented here. The idea is to support
descriptions of C-like structs (records) that make up array
elements. The elements of each tuple in the list are

	A string providing a name associated with this portion of
the record. This could also be a tuple of ('full name',
'basic_name') where basic name would be a valid Python
variable name representing the full name of the field.

	Either a basic-type description string as in typestr or
another list (for nested records)

	An optional shape tuple providing how many times this part
of the record should be repeated. No repeats are assumed
if this is not given. Very complicated structures can be
described using this generic interface. Notice, however,
that each element of the array is still of the same
data-type. Some examples of using this interface are given
below.

Default: [('', typestr)]

data (optional)

A 2-tuple whose first argument is an integer (a long integer
if necessary) that points to the data-area storing the array
contents. This pointer must point to the first element of
data (in other words any offset is always ignored in this
case). The second entry in the tuple is a read-only flag (true
means the data area is read-only).

This attribute can also be an object exposing the
buffer interface [http://docs.python.org/dev/c-api/objbuffer.html#c.PyObject_AsCharBuffer] which
will be used to share the data. If this key is not present (or
returns None), then memory sharing will be done
through the buffer interface of the object itself. In this
case, the offset key can be used to indicate the start of the
buffer. A reference to the object exposing the array interface
must be stored by the new object if the memory area is to be
secured.

Default: None

strides (optional)

Either None to indicate a C-style contiguous array or
a Tuple of strides which provides the number of bytes needed
to jump to the next array element in the corresponding
dimension. Each entry must be an integer (a Python
int or long). As with shape, the values may
be larger than can be represented by a C “int” or “long”; the
calling code should handle this appropiately, either by
raising an error, or by using Py_LONG_LONG in C. The
default is None which implies a C-style contiguous
memory buffer. In this model, the last dimension of the array
varies the fastest. For example, the default strides tuple
for an object whose array entries are 8 bytes long and whose
shape is (10,20,30) would be (4800, 240, 8)

Default: None (C-style contiguous)

mask (optional)

None or an object exposing the array interface. All
elements of the mask array should be interpreted only as true
or not true indicating which elements of this array are valid.
The shape of this object should be “broadcastable” to the shape of the
original array.

Default: None (All array values are valid)

offset (optional)

An integer offset into the array data region. This can only be
used when data is None or returns a buffer
object.

Default: 0.

version (required)

An integer showing the version of the interface (i.e. 3 for
this version). Be careful not to use this to invalidate
objects exposing future versions of the interface.

C-struct access

This approach to the array interface allows for faster access to an
array using only one attribute lookup and a well-defined C-structure.

	
__array_struct__

	A PyCObject whose voidptr member contains a
pointer to a filled PyArrayInterface structure. Memory
for the structure is dynamically created and the PyCObject
is also created with an appropriate destructor so the retriever of
this attribute simply has to apply Py_DECREF [http://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF] to the
object returned by this attribute when it is finished. Also,
either the data needs to be copied out, or a reference to the
object exposing this attribute must be held to ensure the data is
not freed. Objects exposing the __array_struct__ interface
must also not reallocate their memory if other objects are
referencing them.

The PyArrayInterface structure is defined in numpy/ndarrayobject.h
as:

typedef struct {
 int two; /* contains the integer 2 -- simple sanity check */
 int nd; /* number of dimensions */
 char typekind; /* kind in array --- character code of typestr */
 int itemsize; /* size of each element */
 int flags; /* flags indicating how the data should be interpreted */
 /* must set ARR_HAS_DESCR bit to validate descr */
 Py_intptr_t *shape; /* A length-nd array of shape information */
 Py_intptr_t *strides; /* A length-nd array of stride information */
 void *data; /* A pointer to the first element of the array */
 PyObject *descr; /* NULL or data-description (same as descr key
 of __array_interface__) -- must set ARR_HAS_DESCR
 flag or this will be ignored. */
} PyArrayInterface;

The flags member may consist of 5 bits showing how the data should be
interpreted and one bit showing how the Interface should be
interpreted. The data-bits are CONTIGUOUS (0x1),
FORTRAN (0x2), ALIGNED (0x100), NOTSWAPPED
(0x200), and WRITEABLE (0x400). A final flag
ARR_HAS_DESCR (0x800) indicates whether or not this structure
has the arrdescr field. The field should not be accessed unless this
flag is present.

New since June 16, 2006:

In the past most implementations used the “desc” member of the
PyCObject itself (do not confuse this with the “descr” member of
the PyArrayInterface structure above — they are two separate
things) to hold the pointer to the object exposing the interface.
This is now an explicit part of the interface. Be sure to own a
reference to the object when the PyCObject is created using
PyCObject_FromVoidPtrAndDesc.

Type description examples

For clarity it is useful to provide some examples of the type
description and corresponding __array_interface__ ‘descr’
entries. Thanks to Scott Gilbert for these examples:

In every case, the ‘descr’ key is optional, but of course provides
more information which may be important for various applications:

* Float data
 typestr == '>f4'
 descr == [('','>f4')]

* Complex double
 typestr == '>c8'
 descr == [('real','>f4'), ('imag','>f4')]

* RGB Pixel data
 typestr == '|V3'
 descr == [('r','|u1'), ('g','|u1'), ('b','|u1')]

* Mixed endian (weird but could happen).
 typestr == '|V8' (or '>u8')
 descr == [('big','>i4'), ('little','<i4')]

* Nested structure
 struct {
 int ival;
 struct {
 unsigned short sval;
 unsigned char bval;
 unsigned char cval;
 } sub;
 }
 typestr == '|V8' (or '<u8' if you want)
 descr == [('ival','<i4'), ('sub', [('sval','<u2'), ('bval','|u1'), ('cval','|u1')])]

* Nested array
 struct {
 int ival;
 double data[16*4];
 }
 typestr == '|V516'
 descr == [('ival','>i4'), ('data','>f8',(16,4))]

* Padded structure
 struct {
 int ival;
 double dval;
 }
 typestr == '|V16'
 descr == [('ival','>i4'),('','|V4'),('dval','>f8')]

It should be clear that any record type could be described using this interface.

Differences with Array interface (Version 2)

The version 2 interface was very similar. The differences were
largely asthetic. In particular:

	The PyArrayInterface structure had no descr member at the end
(and therefore no flag ARR_HAS_DESCR)

	The desc member of the PyCObject returned from __array_struct__ was
not specified. Usually, it was the object exposing the array (so
that a reference to it could be kept and destroyed when the
C-object was destroyed). Now it must be a tuple whose first
element is a string with “PyArrayInterface Version #” and whose
second element is the object exposing the array.

	The tuple returned from __array_interface__[‘data’] used to be a
hex-string (now it is an integer or a long integer).

	There was no __array_interface__ attribute instead all of the keys
(except for version) in the __array_interface__ dictionary were
their own attribute: Thus to obtain the Python-side information you
had to access separately the attributes:
	__array_data__

	__array_shape__

	__array_strides__

	__array_typestr__

	__array_descr__

	__array_offset__

	__array_mask__

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Array objects

Datetimes and Timedeltas

New in version 1.7.0.

Starting in NumPy 1.7, there are core array data types which natively
support datetime functionality. The data type is called “datetime64”,
so named because “datetime” is already taken by the datetime library
included in Python.

Note

The datetime API is experimental in 1.7.0, and may undergo changes
in future versions of NumPy.

Basic Datetimes

The most basic way to create datetimes is from strings in
ISO 8601 date or datetime format. The unit for internal storage
is automatically selected from the form of the string, and can
be either a date unit or a
time unit. The date units are years (‘Y’),
months (‘M’), weeks (‘W’), and days (‘D’), while the time units are
hours (‘h’), minutes (‘m’), seconds (‘s’), milliseconds (‘ms’), and
some additional SI-prefix seconds-based units.

Example

A simple ISO date:

>>> np.datetime64('2005-02-25')
numpy.datetime64('2005-02-25')

Using months for the unit:

>>> np.datetime64('2005-02')
numpy.datetime64('2005-02')

Specifying just the month, but forcing a ‘days’ unit:

>>> np.datetime64('2005-02', 'D')
numpy.datetime64('2005-02-01')

Using UTC “Zulu” time:

>>> np.datetime64('2005-02-25T03:30Z')
numpy.datetime64('2005-02-24T21:30-0600')

ISO 8601 specifies to use the local time zone
if none is explicitly given:

>>> np.datetime64('2005-02-25T03:30')
numpy.datetime64('2005-02-25T03:30-0600')

When creating an array of datetimes from a string, it is still possible
to automatically select the unit from the inputs, by using the
datetime type with generic units.

Example

>>> np.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64')
array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]')

>>> np.array(['2001-01-01T12:00', '2002-02-03T13:56:03.172'], dtype='datetime64')
array(['2001-01-01T12:00:00.000-0600', '2002-02-03T13:56:03.172-0600'], dtype='datetime64[ms]')

The datetime type works with many common NumPy functions, for
example arange can be used to generate ranges of dates.

Example

All the dates for one month:

>>> np.arange('2005-02', '2005-03', dtype='datetime64[D]')
array(['2005-02-01', '2005-02-02', '2005-02-03', '2005-02-04',
 '2005-02-05', '2005-02-06', '2005-02-07', '2005-02-08',
 '2005-02-09', '2005-02-10', '2005-02-11', '2005-02-12',
 '2005-02-13', '2005-02-14', '2005-02-15', '2005-02-16',
 '2005-02-17', '2005-02-18', '2005-02-19', '2005-02-20',
 '2005-02-21', '2005-02-22', '2005-02-23', '2005-02-24',
 '2005-02-25', '2005-02-26', '2005-02-27', '2005-02-28'],
 dtype='datetime64[D]')

The datetime object represents a single moment in time. If two
datetimes have different units, they may still be representing
the same moment of time, and converting from a bigger unit like
months to a smaller unit like days is considered a ‘safe’ cast
because the moment of time is still being represented exactly.

Example

>>> np.datetime64('2005') == np.datetime64('2005-01-01')
True

>>> np.datetime64('2010-03-14T15Z') == np.datetime64('2010-03-14T15:00:00.00Z')
True

An important exception to this rule is between datetimes with
date units and datetimes with
time units. This is because this kind
of conversion generally requires a choice of timezone and
particular time of day on the given date.

Example

>>> np.datetime64('2003-12-25', 's')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Cannot parse "2003-12-25" as unit 's' using casting rule 'same_kind'

>>> np.datetime64('2003-12-25') == np.datetime64('2003-12-25T00Z')
False

Datetime and Timedelta Arithmetic

NumPy allows the subtraction of two Datetime values, an operation which
produces a number with a time unit. Because NumPy doesn’t have a physical
quantities system in its core, the timedelta64 data type was created
to complement datetime64.

Datetimes and Timedeltas work together to provide ways for
simple datetime calculations.

Example

>>> np.datetime64('2009-01-01') - np.datetime64('2008-01-01')
numpy.timedelta64(366,'D')

>>> np.datetime64('2009') + np.timedelta64(20, 'D')
numpy.datetime64('2009-01-21')

>>> np.datetime64('2011-06-15T00:00') + np.timedelta64(12, 'h')
numpy.datetime64('2011-06-15T12:00-0500')

>>> np.timedelta64(1,'W') / np.timedelta64(1,'D')
7.0

There are two Timedelta units (‘Y’, years and ‘M’, months) which are treated
specially, because how much time they represent changes depending
on when they are used. While a timedelta day unit is equivalent to
24 hours, there is no way to convert a month unit into days, because
different months have different numbers of days.

Example

>>> a = np.timedelta64(1, 'Y')

>>> np.timedelta64(a, 'M')
numpy.timedelta64(12,'M')

>>> np.timedelta64(a, 'D')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Cannot cast NumPy timedelta64 scalar from metadata [Y] to [D] according to the rule 'same_kind'

Datetime Units

The Datetime and Timedelta data types support a large number of time
units, as well as generic units which can be coerced into any of the
other units based on input data.

Datetimes are always stored based on POSIX time (though having a TAI
mode which allows for accounting of leap-seconds is proposed), with
a epoch of 1970-01-01T00:00Z. This means the supported dates are
always a symmetric interval around the epoch, called “time span” in the
table below.

The length of the span is the range of a 64-bit integer times the length
of the date or unit. For example, the time span for ‘W’ (week) is exactly
7 times longer than the time span for ‘D’ (day), and the time span for
‘D’ (day) is exactly 24 times longer than the time span for ‘h’ (hour).

Here are the date units:

	Code
	Meaning
	Time span (relative)
	Time span (absolute)

	Y
	year
	+/- 9.2e18 years
	[9.2e18 BC, 9.2e18 AD]

	M
	month
	+/- 7.6e17 years
	[7.6e17 BC, 7.6e17 AD]

	W
	week
	+/- 1.7e17 years
	[1.7e17 BC, 1.7e17 AD]

	D
	day
	+/- 2.5e16 years
	[2.5e16 BC, 2.5e16 AD]

And here are the time units:

	Code
	Meaning
	Time span (relative)
	Time span (absolute)

	h
	hour
	+/- 1.0e15 years
	[1.0e15 BC, 1.0e15 AD]

	m
	minute
	+/- 1.7e13 years
	[1.7e13 BC, 1.7e13 AD]

	s
	second
	+/- 2.9e12 years
	[2.9e9 BC, 2.9e9 AD]

	ms
	millisecond
	+/- 2.9e9 years
	[2.9e6 BC, 2.9e6 AD]

	us
	microsecond
	+/- 2.9e6 years
	[290301 BC, 294241 AD]

	ns
	nanosecond
	+/- 292 years
	[1678 AD, 2262 AD]

	ps
	picosecond
	+/- 106 days
	[1969 AD, 1970 AD]

	fs
	femtosecond
	+/- 2.6 hours
	[1969 AD, 1970 AD]

	as
	attosecond
	+/- 9.2 seconds
	[1969 AD, 1970 AD]

Business Day Functionality

To allow the datetime to be used in contexts where only certain days of
the week are valid, NumPy includes a set of “busday” (business day)
functions.

The default for busday functions is that the only valid days are Monday
through Friday (the usual business days). The implementation is based on
a “weekmask” containing 7 Boolean flags to indicate valid days; custom
weekmasks are possible that specify other sets of valid days.

The “busday” functions can additionally check a list of “holiday” dates,
specific dates that are not valid days.

The function busday_offset allows you to apply offsets
specified in business days to datetimes with a unit of ‘D’ (day).

Example

>>> np.busday_offset('2011-06-23', 1)
numpy.datetime64('2011-06-24')

>>> np.busday_offset('2011-06-23', 2)
numpy.datetime64('2011-06-27')

When an input date falls on the weekend or a holiday,
busday_offset first applies a rule to roll the
date to a valid business day, then applies the offset. The
default rule is ‘raise’, which simply raises an exception.
The rules most typically used are ‘forward’ and ‘backward’.

Example

>>> np.busday_offset('2011-06-25', 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: Non-business day date in busday_offset

>>> np.busday_offset('2011-06-25', 0, roll='forward')
numpy.datetime64('2011-06-27')

>>> np.busday_offset('2011-06-25', 2, roll='forward')
numpy.datetime64('2011-06-29')

>>> np.busday_offset('2011-06-25', 0, roll='backward')
numpy.datetime64('2011-06-24')

>>> np.busday_offset('2011-06-25', 2, roll='backward')
numpy.datetime64('2011-06-28')

In some cases, an appropriate use of the roll and the offset
is necessary to get a desired answer.

Example

The first business day on or after a date:

>>> np.busday_offset('2011-03-20', 0, roll='forward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
numpy.datetime64('2011-03-22','D')

The first business day strictly after a date:

>>> np.busday_offset('2011-03-20', 1, roll='backward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
numpy.datetime64('2011-03-23','D')

The function is also useful for computing some kinds of days
like holidays. In Canada and the U.S., Mother’s day is on
the second Sunday in May, which can be computed with a custom
weekmask.

Example

>>> np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
numpy.datetime64('2012-05-13','D')

When performance is important for manipulating many business dates
with one particular choice of weekmask and holidays, there is
an object busdaycalendar which stores the data necessary
in an optimized form.

np.is_busday():

To test a datetime64 value to see if it is a valid day, use is_busday.

Example

>>> np.is_busday(np.datetime64('2011-07-15')) # a Friday
True
>>> np.is_busday(np.datetime64('2011-07-16')) # a Saturday
False
>>> np.is_busday(np.datetime64('2011-07-16'), weekmask="Sat Sun")
True
>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
>>> np.is_busday(a)
array([True, True, True, True, True, False, False], dtype='bool')

np.busday_count():

To find how many valid days there are in a specified range of datetime64
dates, use busday_count:

Example

>>> np.busday_count(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
5
>>> np.busday_count(np.datetime64('2011-07-18'), np.datetime64('2011-07-11'))
-5

If you have an array of datetime64 day values, and you want a count of
how many of them are valid dates, you can do this:

Example

>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
>>> np.count_nonzero(np.is_busday(a))
5

Custom Weekmasks

Here are several examples of custom weekmask values. These examples
specify the “busday” default of Monday through Friday being valid days.

Some examples:

Positional sequences; positions are Monday through Sunday.
Length of the sequence must be exactly 7.
weekmask = [1, 1, 1, 1, 1, 0, 0]
list or other sequence; 0 == invalid day, 1 == valid day
weekmask = "1111100"
string '0' == invalid day, '1' == valid day

string abbreviations from this list: Mon Tue Wed Thu Fri Sat Sun
weekmask = "Mon Tue Wed Thu Fri"
any amount of whitespace is allowed; abbreviations are case-sensitive.
weekmask = "MonTue Wed Thu\tFri"

Differences Between 1.6 and 1.7 Datetimes

The NumPy 1.6 release includes a more primitive datetime data type
than 1.7. This section documents many of the changes that have taken
place.

String Parsing

The datetime string parser in NumPy 1.6 is very liberal in what it accepts,
and silently allows invalid input without raising errors. The parser in
NumPy 1.7 is quite strict about only accepting ISO 8601 dates, with a few
convenience extensions. 1.6 always creates microsecond (us) units by
default, whereas 1.7 detects a unit based on the format of the string.
Here is a comparison.:

NumPy 1.6.1
>>> np.datetime64('1979-03-22')
1979-03-22 00:00:00
NumPy 1.7.0
>>> np.datetime64('1979-03-22')
numpy.datetime64('1979-03-22')

NumPy 1.6.1, unit default microseconds
>>> np.datetime64('1979-03-22').dtype
dtype('datetime64[us]')
NumPy 1.7.0, unit of days detected from string
>>> np.datetime64('1979-03-22').dtype
dtype('<M8[D]')

NumPy 1.6.1, ignores invalid part of string
>>> np.datetime64('1979-03-2corruptedstring')
1979-03-02 00:00:00
NumPy 1.7.0, raises error for invalid input
>>> np.datetime64('1979-03-2corruptedstring')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: Error parsing datetime string "1979-03-2corruptedstring" at position 8

NumPy 1.6.1, 'nat' produces today's date
>>> np.datetime64('nat')
2012-04-30 00:00:00
NumPy 1.7.0, 'nat' produces not-a-time
>>> np.datetime64('nat')
numpy.datetime64('NaT')

NumPy 1.6.1, 'garbage' produces today's date
>>> np.datetime64('garbage')
2012-04-30 00:00:00
NumPy 1.7.0, 'garbage' raises an exception
>>> np.datetime64('garbage')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: Error parsing datetime string "garbage" at position 0

NumPy 1.6.1, can't specify unit in scalar constructor
>>> np.datetime64('1979-03-22T19:00', 'h')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: function takes at most 1 argument (2 given)
NumPy 1.7.0, unit in scalar constructor
>>> np.datetime64('1979-03-22T19:00', 'h')
numpy.datetime64('1979-03-22T19:00-0500','h')

NumPy 1.6.1, reads ISO 8601 strings w/o TZ as UTC
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]')
array([1979-03-22 19:00:00], dtype=datetime64[h])
NumPy 1.7.0, reads ISO 8601 strings w/o TZ as local (ISO specifies this)
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]')
array(['1979-03-22T19-0500'], dtype='datetime64[h]')

NumPy 1.6.1, doesn't parse all ISO 8601 strings correctly
>>> np.array(['1979-03-22T12'], dtype='M8[h]')
array([1979-03-22 00:00:00], dtype=datetime64[h])
>>> np.array(['1979-03-22T12:00'], dtype='M8[h]')
array([1979-03-22 12:00:00], dtype=datetime64[h])
NumPy 1.7.0, handles this case correctly
>>> np.array(['1979-03-22T12'], dtype='M8[h]')
array(['1979-03-22T12-0500'], dtype='datetime64[h]')
>>> np.array(['1979-03-22T12:00'], dtype='M8[h]')
array(['1979-03-22T12-0500'], dtype='datetime64[h]')

Unit Conversion

The 1.6 implementation of datetime does not convert between units correctly.:

NumPy 1.6.1, the representation value is untouched
>>> np.array(['1979-03-22'], dtype='M8[D]')
array([1979-03-22 00:00:00], dtype=datetime64[D])
>>> np.array(['1979-03-22'], dtype='M8[D]').astype('M8[M]')
array([2250-08-01 00:00:00], dtype=datetime64[M])
NumPy 1.7.0, the representation is scaled accordingly
>>> np.array(['1979-03-22'], dtype='M8[D]')
array(['1979-03-22'], dtype='datetime64[D]')
>>> np.array(['1979-03-22'], dtype='M8[D]').astype('M8[M]')
array(['1979-03'], dtype='datetime64[M]')

Datetime Arithmetic

The 1.6 implementation of datetime only works correctly for a small subset of
arithmetic operations. Here we show some simple cases.:

NumPy 1.6.1, produces invalid results if units are incompatible
>>> a = np.array(['1979-03-22T12'], dtype='M8[h]')
>>> b = np.array([3*60], dtype='m8[m]')
>>> a + b
array([1970-01-01 00:00:00.080988], dtype=datetime64[us])
NumPy 1.7.0, promotes to higher-resolution unit
>>> a = np.array(['1979-03-22T12'], dtype='M8[h]')
>>> b = np.array([3*60], dtype='m8[m]')
>>> a + b
array(['1979-03-22T15:00-0500'], dtype='datetime64[m]')

NumPy 1.6.1, arithmetic works if everything is microseconds
>>> a = np.array(['1979-03-22T12:00'], dtype='M8[us]')
>>> b = np.array([3*60*60*1000000], dtype='m8[us]')
>>> a + b
array([1979-03-22 15:00:00], dtype=datetime64[us])
NumPy 1.7.0
>>> a = np.array(['1979-03-22T12:00'], dtype='M8[us]')
>>> b = np.array([3*60*60*1000000], dtype='m8[us]')
>>> a + b
array(['1979-03-22T15:00:00.000000-0500'], dtype='datetime64[us]')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

Universal functions (ufunc)

A universal function (or ufunc for short) is a function that
operates on ndarrays in an element-by-element fashion,
supporting array broadcasting, type
casting, and several other standard features. That
is, a ufunc is a “vectorized” wrapper for a function that
takes a fixed number of scalar inputs and produces a fixed number of
scalar outputs.

In Numpy, universal functions are instances of the
numpy.ufunc class. Many of the built-in functions are
implemented in compiled C code, but ufunc instances can also
be produced using the frompyfunc factory function.

Broadcasting

Each universal function takes array inputs and produces array outputs
by performing the core function element-wise on the inputs. Standard
broadcasting rules are applied so that inputs not sharing exactly the
same shapes can still be usefully operated on. Broadcasting can be
understood by four rules:

	All input arrays with ndim smaller than the
input array of largest ndim, have 1’s
prepended to their shapes.

	The size in each dimension of the output shape is the maximum of all
the input sizes in that dimension.

	An input can be used in the calculation if its size in a particular
dimension either matches the output size in that dimension, or has
value exactly 1.

	If an input has a dimension size of 1 in its shape, the first data
entry in that dimension will be used for all calculations along
that dimension. In other words, the stepping machinery of the
ufunc will simply not step along that dimension (the
stride will be 0 for that dimension).

Broadcasting is used throughout NumPy to decide how to handle
disparately shaped arrays; for example, all arithmetic operations (+,
-, *, ...) between ndarrays broadcast the
arrays before operation.

A set of arrays is called “broadcastable” to the same shape if
the above rules produce a valid result, i.e., one of the following
is true:

	The arrays all have exactly the same shape.

	The arrays all have the same number of dimensions and the length of
each dimensions is either a common length or 1.

	The arrays that have too few dimensions can have their shapes prepended
with a dimension of length 1 to satisfy property 2.

Example

If a.shape is (5,1), b.shape is (1,6), c.shape is (6,)
and d.shape is () so that d is a scalar, then a, b, c,
and d are all broadcastable to dimension (5,6); and

	a acts like a (5,6) array where a[:,0] is broadcast to the other
columns,

	b acts like a (5,6) array where b[0,:] is broadcast
to the other rows,

	c acts like a (1,6) array and therefore like a (5,6) array
where c[:] is broadcast to every row, and finally,

	d acts like a (5,6) array where the single value is repeated.

Output type determination

The output of the ufunc (and its methods) is not necessarily an
ndarray, if all input arguments are not ndarrays.

All output arrays will be passed to the __array_prepare__ and
__array_wrap__ methods of the input (besides
ndarrays, and scalars) that defines it and has
the highest __array_priority__ of any other input to the
universal function. The default __array_priority__ of the
ndarray is 0.0, and the default __array_priority__ of a subtype
is 1.0. Matrices have __array_priority__ equal to 10.0.

All ufuncs can also take output arguments. If necessary, output will
be cast to the data-type(s) of the provided output array(s). If a class
with an __array__ method is used for the output, results will be
written to the object returned by __array__. Then, if the class
also has an __array_prepare__ method, it is called so metadata
may be determined based on the context of the ufunc (the context
consisting of the ufunc itself, the arguments passed to the ufunc, and
the ufunc domain.) The array object returned by
__array_prepare__ is passed to the ufunc for computation.
Finally, if the class also has an __array_wrap__ method, the returned
ndarray result will be passed to that method just before
passing control back to the caller.

Use of internal buffers

Internally, buffers are used for misaligned data, swapped data, and
data that has to be converted from one data type to another. The size
of internal buffers is settable on a per-thread basis. There can
be up to [image: 2 (n_{\mathrm{inputs}} + n_{\mathrm{outputs}})]
buffers of the specified size created to handle the data from all the
inputs and outputs of a ufunc. The default size of a buffer is
10,000 elements. Whenever buffer-based calculation would be needed,
but all input arrays are smaller than the buffer size, those
misbehaved or incorrectly-typed arrays will be copied before the
calculation proceeds. Adjusting the size of the buffer may therefore
alter the speed at which ufunc calculations of various sorts are
completed. A simple interface for setting this variable is accessible
using the function

	setbufsize(size)
	Set the size of the buffer used in ufuncs.

Error handling

Universal functions can trip special floating-point status registers
in your hardware (such as divide-by-zero). If available on your
platform, these registers will be regularly checked during
calculation. Error handling is controlled on a per-thread basis,
and can be configured using the functions

	seterr([all,divide,over,under,invalid])
	Set how floating-point errors are handled.

	seterrcall(func)
	Set the floating-point error callback function or log object.

Casting Rules

Note

In NumPy 1.6.0, a type promotion API was created to encapsulate the
mechansim for determining output types. See the functions
result_type, promote_types, and
min_scalar_type for more details.

At the core of every ufunc is a one-dimensional strided loop that
implements the actual function for a specific type combination. When a
ufunc is created, it is given a static list of inner loops and a
corresponding list of type signatures over which the ufunc operates.
The ufunc machinery uses this list to determine which inner loop to
use for a particular case. You can inspect the .types attribute for a particular ufunc to see which type
combinations have a defined inner loop and which output type they
produce (character codes are used
in said output for brevity).

Casting must be done on one or more of the inputs whenever the ufunc
does not have a core loop implementation for the input types provided.
If an implementation for the input types cannot be found, then the
algorithm searches for an implementation with a type signature to
which all of the inputs can be cast “safely.” The first one it finds
in its internal list of loops is selected and performed, after all
necessary type casting. Recall that internal copies during ufuncs (even
for casting) are limited to the size of an internal buffer (which is user
settable).

Note

Universal functions in NumPy are flexible enough to have mixed type
signatures. Thus, for example, a universal function could be defined
that works with floating-point and integer values. See ldexp
for an example.

By the above description, the casting rules are essentially
implemented by the question of when a data type can be cast “safely”
to another data type. The answer to this question can be determined in
Python with a function call: can_cast(fromtype, totype). The Figure below shows the results of this call for
the 24 internally supported types on the author’s 64-bit system. You
can generate this table for your system with the code given in the Figure.

Figure

Code segment showing the “can cast safely” table for a 32-bit system.

>>> def print_table(ntypes):
... print 'X',
... for char in ntypes: print char,
... print
... for row in ntypes:
... print row,
... for col in ntypes:
... print int(np.can_cast(row, col)),
... print
>>> print_table(np.typecodes['All'])
X ? b h i l q p B H I L Q P e f d g F D G S U V O M m
? 1
b 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
h 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
i 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
l 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
q 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
p 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
B 0 0 1 0 0
H 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0
I 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
L 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
Q 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
P 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
e 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
S 0 1 1 1 1 0 0
U 0 1 1 1 0 0
V 0 1 1 0 0
O 0 1 1 0 0
M 0 1 0
m 0 1

You should note that, while included in the table for completeness,
the ‘S’, ‘U’, and ‘V’ types cannot be operated on by ufuncs. Also,
note that on a 32-bit system the integer types may have different
sizes, resulting in a slightly altered table.

Mixed scalar-array operations use a different set of casting rules
that ensure that a scalar cannot “upcast” an array unless the scalar is
of a fundamentally different kind of data (i.e., under a different
hierarchy in the data-type hierarchy) than the array. This rule
enables you to use scalar constants in your code (which, as Python
types, are interpreted accordingly in ufuncs) without worrying about
whether the precision of the scalar constant will cause upcasting on
your large (small precision) array.

Overriding Ufunc behavior

Classes (including ndarray subclasses) can override how ufuncs act on
them by defining certain special methods. For details, see
Standard array subclasses.

ufunc

Optional keyword arguments

All ufuncs take optional keyword arguments. Most of these represent
advanced usage and will not typically be used.

out

New in version 1.6.

The first output can provided as either a positional or a keyword parameter.

where

New in version 1.7.

Accepts a boolean array which is broadcast together with the operands.
Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.

casting

New in version 1.6.

May be ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, or ‘unsafe’.
See can_cast for explanations of the parameter values.

Provides a policy for what kind of casting is permitted. For compatibility
with previous versions of NumPy, this defaults to ‘unsafe’ for numpy < 1.7.
In numpy 1.7 a transition to ‘same_kind’ was begun where ufuncs produce a
DeprecationWarning for calls which are allowed under the ‘unsafe’
rules, but not under the ‘same_kind’ rules. In numpy 1.10 the default
will be ‘same_kind’.

order

New in version 1.6.

Specifies the calculation iteration order/memory layout of the output array.
Defaults to ‘K’. ‘C’ means the output should be C-contiguous, ‘F’ means
F-contiguous, ‘A’ means F-contiguous if the inputs are F-contiguous and
not also not C-contiguous, C-contiguous otherwise, and ‘K’ means to match
the element ordering of the inputs as closely as possible.

dtype

New in version 1.6.

Overrides the dtype of the calculation and output arrays. Similar to sig.

subok

New in version 1.6.

Defaults to true. If set to false, the output will always be a strict
array, not a subtype.

sig

Either a data-type, a tuple of data-types, or a special signature
string indicating the input and output types of a ufunc. This argument
allows you to provide a specific signature for the 1-d loop to use
in the underlying calculation. If the loop specified does not exist
for the ufunc, then a TypeError is raised. Normally, a suitable loop is
found automatically by comparing the input types with what is
available and searching for a loop with data-types to which all inputs
can be cast safely. This keyword argument lets you bypass that
search and choose a particular loop. A list of available signatures is
provided by the types attribute of the ufunc object.

extobj

a list of length 1, 2, or 3 specifying the ufunc buffer-size, the
error mode integer, and the error call-back function. Normally, these
values are looked up in a thread-specific dictionary. Passing them
here circumvents that look up and uses the low-level specification
provided for the error mode. This may be useful, for example, as an
optimization for calculations requiring many ufunc calls on small arrays
in a loop.

Attributes

There are some informational attributes that universal functions
possess. None of the attributes can be set.

	__doc__
	A docstring for each ufunc. The first part of the docstring is
dynamically generated from the number of outputs, the name, and
the number of inputs. The second part of the docstring is
provided at creation time and stored with the ufunc.

	__name__
	The name of the ufunc.

	ufunc.nin
	The number of inputs.

	ufunc.nout
	The number of outputs.

	ufunc.nargs
	The number of arguments.

	ufunc.ntypes
	The number of types.

	ufunc.types
	Returns a list with types grouped input->output.

	ufunc.identity
	The identity value.

Methods

All ufuncs have four methods. However, these methods only make sense on
ufuncs that take two input arguments and return one output argument.
Attempting to call these methods on other ufuncs will cause a
ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError]. The reduce-like methods all take an axis keyword
and a dtype keyword, and the arrays must all have dimension >= 1.
The axis keyword specifies the axis of the array over which the reduction
will take place and may be negative, but must be an integer. The
dtype keyword allows you to manage a very common problem that arises
when naively using {op}.reduce. Sometimes you may
have an array of a certain data type and wish to add up all of its
elements, but the result does not fit into the data type of the
array. This commonly happens if you have an array of single-byte
integers. The dtype keyword allows you to alter the data type over which
the reduction takes place (and therefore the type of the output). Thus,
you can ensure that the output is a data type with precision large enough
to handle your output. The responsibility of altering the reduce type is
mostly up to you. There is one exception: if no dtype is given for a
reduction on the “add” or “multiply” operations, then if the input type is
an integer (or Boolean) data-type and smaller than the size of the
int_ data type, it will be internally upcast to the int_
(or uint) data-type.

Ufuncs also have a fifth method that allows in place operations to be
performed using fancy indexing. No buffering is used on the dimensions where
fancy indexing is used, so the fancy index can list an item more than once and
the operation will be performed on the result of the previous operation for
that item.

	ufunc.reduce(a[,axis,dtype,out,keepdims])
	Reduces a‘s dimension by one, by applying ufunc along one axis.

	ufunc.accumulate(array[,axis,dtype,out])
	Accumulate the result of applying the operator to all elements.

	ufunc.reduceat(a,indices[,axis,dtype,out])
	Performs a (local) reduce with specified slices over a single axis.

	ufunc.outer(A,B)
	Apply the ufunc op to all pairs (a, b) with a in A and b in B.

	ufunc.at(a,indices[,b])
	Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’.

Warning

A reduce-like operation on an array with a data-type that has a
range “too small” to handle the result will silently wrap. One
should use dtype to increase the size of the data-type over which
reduction takes place.

Available ufuncs

There are currently more than 60 universal functions defined in
numpy on one or more types, covering a wide variety of
operations. Some of these ufuncs are called automatically on arrays
when the relevant infix notation is used (e.g., add(a, b)
is called internally when a + b is written and a or b is an
ndarray). Nevertheless, you may still want to use the ufunc
call in order to use the optional output argument(s) to place the
output(s) in an object (or objects) of your choice.

Recall that each ufunc operates element-by-element. Therefore, each
ufunc will be described as if acting on a set of scalar inputs to
return a set of scalar outputs.

Note

The ufunc still returns its output(s) even if you use the optional
output argument(s).

Math operations

	add(x1,x2[,out])
	Add arguments element-wise.

	subtract(x1,x2[,out])
	Subtract arguments, element-wise.

	multiply(x1,x2[,out])
	Multiply arguments element-wise.

	divide(x1,x2[,out])
	Divide arguments element-wise.

	logaddexp(x1,x2[,out])
	Logarithm of the sum of exponentiations of the inputs.

	logaddexp2(x1,x2[,out])
	Logarithm of the sum of exponentiations of the inputs in base-2.

	true_divide(x1,x2[,out])
	Returns a true division of the inputs, element-wise.

	floor_divide(x1,x2[,out])
	Return the largest integer smaller or equal to the division of the inputs.

	negative(x[,out])
	Numerical negative, element-wise.

	power(x1,x2[,out])
	First array elements raised to powers from second array, element-wise.

	remainder(x1,x2[,out])
	Return element-wise remainder of division.

	mod(x1,x2[,out])
	Return element-wise remainder of division.

	fmod(x1,x2[,out])
	Return the element-wise remainder of division.

	absolute(x[,out])
	Calculate the absolute value element-wise.

	rint(x[,out])
	Round elements of the array to the nearest integer.

	sign(x[,out])
	Returns an element-wise indication of the sign of a number.

	conj(x[,out])
	Return the complex conjugate, element-wise.

	exp(x[,out])
	Calculate the exponential of all elements in the input array.

	exp2(x[,out])
	Calculate 2**p for all p in the input array.

	log(x[,out])
	Natural logarithm, element-wise.

	log2(x[,out])
	Base-2 logarithm of x.

	log10(x[,out])
	Return the base 10 logarithm of the input array, element-wise.

	expm1(x[,out])
	Calculate exp(x) - 1 for all elements in the array.

	log1p(x[,out])
	Return the natural logarithm of one plus the input array, element-wise.

	sqrt(x[,out])
	Return the positive square-root of an array, element-wise.

	square(x[,out])
	Return the element-wise square of the input.

	reciprocal(x[,out])
	Return the reciprocal of the argument, element-wise.

	ones_like(a[,dtype,order,subok])
	Return an array of ones with the same shape and type as a given array.

Tip

The optional output arguments can be used to help you save memory
for large calculations. If your arrays are large, complicated
expressions can take longer than absolutely necessary due to the
creation and (later) destruction of temporary calculation
spaces. For example, the expression G = a * b + c is equivalent to
t1 = A * B; G = T1 + C; del t1. It will be more quickly executed
as G = A * B; add(G, C, G) which is the same as
G = A * B; G += C.

Trigonometric functions

All trigonometric functions use radians when an angle is called for.
The ratio of degrees to radians is [image: 180^{\circ}/\pi.]

	sin(x[,out])
	Trigonometric sine, element-wise.

	cos(x[,out])
	Cosine element-wise.

	tan(x[,out])
	Compute tangent element-wise.

	arcsin(x[,out])
	Inverse sine, element-wise.

	arccos(x[,out])
	Trigonometric inverse cosine, element-wise.

	arctan(x[,out])
	Trigonometric inverse tangent, element-wise.

	arctan2(x1,x2[,out])
	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	hypot(x1,x2[,out])
	Given the “legs” of a right triangle, return its hypotenuse.

	sinh(x[,out])
	Hyperbolic sine, element-wise.

	cosh(x[,out])
	Hyperbolic cosine, element-wise.

	tanh(x[,out])
	Compute hyperbolic tangent element-wise.

	arcsinh(x[,out])
	Inverse hyperbolic sine element-wise.

	arccosh(x[,out])
	Inverse hyperbolic cosine, element-wise.

	arctanh(x[,out])
	Inverse hyperbolic tangent element-wise.

	deg2rad(x[,out])
	Convert angles from degrees to radians.

	rad2deg(x[,out])
	Convert angles from radians to degrees.

Bit-twiddling functions

These function all require integer arguments and they manipulate the
bit-pattern of those arguments.

	bitwise_and(x1,x2[,out])
	Compute the bit-wise AND of two arrays element-wise.

	bitwise_or(x1,x2[,out])
	Compute the bit-wise OR of two arrays element-wise.

	bitwise_xor(x1,x2[,out])
	Compute the bit-wise XOR of two arrays element-wise.

	invert(x[,out])
	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	left_shift(x1,x2[,out])
	Shift the bits of an integer to the left.

	right_shift(x1,x2[,out])
	Shift the bits of an integer to the right.

Comparison functions

	greater(x1,x2[,out])
	Return the truth value of (x1 > x2) element-wise.

	greater_equal(x1,x2[,out])
	Return the truth value of (x1 >= x2) element-wise.

	less(x1,x2[,out])
	Return the truth value of (x1 < x2) element-wise.

	less_equal(x1,x2[,out])
	Return the truth value of (x1 =< x2) element-wise.

	not_equal(x1,x2[,out])
	Return (x1 != x2) element-wise.

	equal(x1,x2[,out])
	Return (x1 == x2) element-wise.

Warning

Do not use the Python keywords and and or to combine
logical array expressions. These keywords will test the truth
value of the entire array (not element-by-element as you might
expect). Use the bitwise operators & and | instead.

	logical_and(x1,x2[,out])
	Compute the truth value of x1 AND x2 element-wise.

	logical_or(x1,x2[,out])
	Compute the truth value of x1 OR x2 element-wise.

	logical_xor(x1,x2[,out])
	Compute the truth value of x1 XOR x2, element-wise.

	logical_not(x[,out])
	Compute the truth value of NOT x element-wise.

Warning

The bit-wise operators & and | are the proper way to perform
element-by-element array comparisons. Be sure you understand the
operator precedence: (a > 2) & (a < 5) is the proper syntax because
a > 2 & a < 5 will result in an error due to the fact that 2 & a
is evaluated first.

	maximum(x1,x2[,out])
	Element-wise maximum of array elements.

Tip

The Python function max() will find the maximum over a one-dimensional
array, but it will do so using a slower sequence interface. The reduce
method of the maximum ufunc is much faster. Also, the max() method
will not give answers you might expect for arrays with greater than
one dimension. The reduce method of minimum also allows you to compute
a total minimum over an array.

	minimum(x1,x2[,out])
	Element-wise minimum of array elements.

Warning

the behavior of maximum(a, b) is different than that of max(a, b).
As a ufunc, maximum(a, b) performs an element-by-element comparison
of a and b and chooses each element of the result according to which
element in the two arrays is larger. In contrast, max(a, b) treats
the objects a and b as a whole, looks at the (total) truth value of
a > b and uses it to return either a or b (as a whole). A similar
difference exists between minimum(a, b) and min(a, b).

	fmax(x1,x2[,out])
	Element-wise maximum of array elements.

	fmin(x1,x2[,out])
	Element-wise minimum of array elements.

Floating functions

Recall that all of these functions work element-by-element over an
array, returning an array output. The description details only a
single operation.

	isreal(x)
	Returns a bool array, where True if input element is real.

	iscomplex(x)
	Returns a bool array, where True if input element is complex.

	isfinite(x[,out])
	Test element-wise for finiteness (not infinity or not Not a Number).

	isinf(x[,out])
	Test element-wise for positive or negative infinity.

	isnan(x[,out])
	Test element-wise for NaN and return result as a boolean array.

	signbit(x[,out])
	Returns element-wise True where signbit is set (less than zero).

	copysign(x1,x2[,out])
	Change the sign of x1 to that of x2, element-wise.

	nextafter(x1,x2[,out])
	Return the next floating-point value after x1 towards x2, element-wise.

	modf(x[,out1,out2])
	Return the fractional and integral parts of an array, element-wise.

	ldexp(x1,x2[,out])
	Returns x1 * 2**x2, element-wise.

	frexp(x[,out1,out2])
	Decompose the elements of x into mantissa and twos exponent.

	fmod(x1,x2[,out])
	Return the element-wise remainder of division.

	floor(x[,out])
	Return the floor of the input, element-wise.

	ceil(x[,out])
	Return the ceiling of the input, element-wise.

	trunc(x[,out])
	Return the truncated value of the input, element-wise.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Miscellaneous routines

numpy.setbufsize

	
numpy.setbufsize(size)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2574]

	Set the size of the buffer used in ufuncs.

	Parameters:	size : int

Size of buffer.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.seterr

	
numpy.seterr(all=None, divide=None, over=None, under=None, invalid=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2428]

	Set how floating-point errors are handled.

Note that operations on integer scalar types (such as int16) are
handled like floating point, and are affected by these settings.

	Parameters:	all : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Set treatment for all types of floating-point errors at once:

	ignore: Take no action when the exception occurs.

	warn: Print a RuntimeWarning (via the Python warnings [http://docs.python.org/dev/library/warnings.html#module-warnings] module).

	raise: Raise a FloatingPointError.

	call: Call a function specified using the seterrcall function.

	print: Print a warning directly to stdout.

	log: Record error in a Log object specified by seterrcall.

The default is not to change the current behavior.

divide : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for division by zero.

over : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for floating-point overflow.

under : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for floating-point underflow.

invalid : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for invalid floating-point operation.

	Returns:	old_settings : dict

Dictionary containing the old settings.

See also

	seterrcall

	Set a callback function for the ‘call’ mode.

geterr, geterrcall, errstate

Notes

The floating-point exceptions are defined in the IEEE 754 standard [1]:

	Division by zero: infinite result obtained from finite numbers.

	Overflow: result too large to be expressed.

	Underflow: result so close to zero that some precision
was lost.

	Invalid operation: result is not an expressible number, typically
indicates that a NaN was produced.

	[R245]	http://en.wikipedia.org/wiki/IEEE_754

Examples

>>> old_settings = np.seterr(all='ignore') #seterr to known value
>>> np.seterr(over='raise')
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
 'under': 'ignore'}
>>> np.seterr(**old_settings) # reset to default
{'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}

>>> np.int16(32000) * np.int16(3)
30464
>>> old_settings = np.seterr(all='warn', over='raise')
>>> np.int16(32000) * np.int16(3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FloatingPointError: overflow encountered in short_scalars

>>> old_settings = np.seterr(all='print')
>>> np.geterr()
{'over': 'print', 'divide': 'print', 'invalid': 'print', 'under': 'print'}
>>> np.int16(32000) * np.int16(3)
Warning: overflow encountered in short_scalars
30464

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.seterrcall

	
numpy.seterrcall(func)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2609]

	Set the floating-point error callback function or log object.

There are two ways to capture floating-point error messages. The first
is to set the error-handler to ‘call’, using seterr. Then, set
the function to call using this function.

The second is to set the error-handler to ‘log’, using seterr.
Floating-point errors then trigger a call to the ‘write’ method of
the provided object.

	Parameters:	func : callable f(err, flag) or object with write method

Function to call upon floating-point errors (‘call’-mode) or
object whose ‘write’ method is used to log such message (‘log’-mode).

The call function takes two arguments. The first is the
type of error (one of “divide”, “over”, “under”, or “invalid”),
and the second is the status flag. The flag is a byte, whose
least-significant bits indicate the status:

[0 0 0 0 invalid over under invalid]

In other words, flags = divide + 2*over + 4*under + 8*invalid.

If an object is provided, its write method should take one argument,
a string.

	Returns:	h : callable, log instance or None

The old error handler.

See also

seterr, geterr, geterrcall

Examples

Callback upon error:

>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
...

>>> saved_handler = np.seterrcall(err_handler)
>>> save_err = np.seterr(all='call')

>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([Inf, Inf, Inf])

>>> np.seterrcall(saved_handler)
<function err_handler at 0x...>
>>> np.seterr(**save_err)
{'over': 'call', 'divide': 'call', 'invalid': 'call', 'under': 'call'}

Log error message:

>>> class Log(object):
... def write(self, msg):
... print "LOG: %s" % msg
...

>>> log = Log()
>>> saved_handler = np.seterrcall(log)
>>> save_err = np.seterr(all='log')

>>> np.array([1, 2, 3]) / 0.0
LOG: Warning: divide by zero encountered in divide

array([Inf, Inf, Inf])

>>> np.seterrcall(saved_handler)
<__main__.Log object at 0x...>
>>> np.seterr(**save_err)
{'over': 'log', 'divide': 'log', 'invalid': 'log', 'under': 'log'}

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.nin

	
ufunc.nin

	The number of inputs.

Data attribute containing the number of arguments the ufunc treats as input.

Examples

>>> np.add.nin
2
>>> np.multiply.nin
2
>>> np.power.nin
2
>>> np.exp.nin
1

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.nout

	
ufunc.nout

	The number of outputs.

Data attribute containing the number of arguments the ufunc treats as output.

Notes

Since all ufuncs can take output arguments, this will always be (at least) 1.

Examples

>>> np.add.nout
1
>>> np.multiply.nout
1
>>> np.power.nout
1
>>> np.exp.nout
1

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.nargs

	
ufunc.nargs

	The number of arguments.

Data attribute containing the number of arguments the ufunc takes, including
optional ones.

Notes

Typically this value will be one more than what you might expect because all
ufuncs take the optional “out” argument.

Examples

>>> np.add.nargs
3
>>> np.multiply.nargs
3
>>> np.power.nargs
3
>>> np.exp.nargs
2

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.ntypes

	
ufunc.ntypes

	The number of types.

The number of numerical NumPy types - of which there are 18 total - on which
the ufunc can operate.

See also

numpy.ufunc.types

Examples

>>> np.add.ntypes
18
>>> np.multiply.ntypes
18
>>> np.power.ntypes
17
>>> np.exp.ntypes
7
>>> np.remainder.ntypes
14

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.types

	
ufunc.types

	Returns a list with types grouped input->output.

Data attribute listing the data-type “Domain-Range” groupings the ufunc can
deliver. The data-types are given using the character codes.

See also

numpy.ufunc.ntypes

Examples

>>> np.add.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']

>>> np.multiply.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']

>>> np.power.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
'OO->O']

>>> np.exp.types
['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']

>>> np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.identity

	
ufunc.identity

	The identity value.

Data attribute containing the identity element for the ufunc, if it has one.
If it does not, the attribute value is None.

Examples

>>> np.add.identity
0
>>> np.multiply.identity
1
>>> np.power.identity
1
>>> print np.exp.identity
None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.reduce

	
ufunc.reduce(a, axis=0, dtype=None, out=None, keepdims=False)

	Reduces a‘s dimension by one, by applying ufunc along one axis.

Let [image: a.shape = (N_0, ..., N_i, ..., N_{M-1})]. Then
[image: ufunc.reduce(a, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]] =
the result of iterating j over [image: range(N_i)], cumulatively applying
ufunc to each [image: a[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]].
For a one-dimensional array, reduce produces results equivalent to:

r = op.identity # op = ufunc
for i in range(len(A)):
 r = op(r, A[i])
return r

For example, add.reduce() is equivalent to sum().

	Parameters:	a : array_like

The array to act on.

axis : None or int or tuple of ints, optional

Axis or axes along which a reduction is performed.
The default (axis = 0) is perform a reduction over the first
dimension of the input array. axis may be negative, in
which case it counts from the last to the first axis.

New in version 1.7.0.

If this is None, a reduction is performed over all the axes.
If this is a tuple of ints, a reduction is performed on multiple
axes, instead of a single axis or all the axes as before.

For operations which are either not commutative or not associative,
doing a reduction over multiple axes is not well-defined. The
ufuncs do not currently raise an exception in this case, but will
likely do so in the future.

dtype : data-type code, optional

The type used to represent the intermediate results. Defaults
to the data-type of the output array if this is provided, or
the data-type of the input array if no output array is provided.

out : ndarray, optional

A location into which the result is stored. If not provided, a
freshly-allocated array is returned.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

New in version 1.7.0.

	Returns:	r : ndarray

The reduced array. If out was supplied, r is a reference to it.

Examples

>>> np.multiply.reduce([2,3,5])
30

A multi-dimensional array example:

>>> X = np.arange(8).reshape((2,2,2))
>>> X
array([[[0, 1],
 [2, 3]],
 [[4, 5],
 [6, 7]]])
>>> np.add.reduce(X, 0)
array([[4, 6],
 [8, 10]])
>>> np.add.reduce(X) # confirm: default axis value is 0
array([[4, 6],
 [8, 10]])
>>> np.add.reduce(X, 1)
array([[2, 4],
 [10, 12]])
>>> np.add.reduce(X, 2)
array([[1, 5],
 [9, 13]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.accumulate

	
ufunc.accumulate(array, axis=0, dtype=None, out=None)

	Accumulate the result of applying the operator to all elements.

For a one-dimensional array, accumulate produces results equivalent to:

r = np.empty(len(A))
t = op.identity # op = the ufunc being applied to A's elements
for i in range(len(A)):
 t = op(t, A[i])
 r[i] = t
return r

For example, add.accumulate() is equivalent to np.cumsum().

For a multi-dimensional array, accumulate is applied along only one
axis (axis zero by default; see Examples below) so repeated use is
necessary if one wants to accumulate over multiple axes.

	Parameters:	array : array_like

The array to act on.

axis : int, optional

The axis along which to apply the accumulation; default is zero.

dtype : data-type code, optional

The data-type used to represent the intermediate results. Defaults
to the data-type of the output array if such is provided, or the
the data-type of the input array if no output array is provided.

out : ndarray, optional

A location into which the result is stored. If not provided a
freshly-allocated array is returned.

	Returns:	r : ndarray

The accumulated values. If out was supplied, r is a reference to
out.

Examples

1-D array examples:

>>> np.add.accumulate([2, 3, 5])
array([2, 5, 10])
>>> np.multiply.accumulate([2, 3, 5])
array([2, 6, 30])

2-D array examples:

>>> I = np.eye(2)
>>> I
array([[1., 0.],
 [0., 1.]])

Accumulate along axis 0 (rows), down columns:

>>> np.add.accumulate(I, 0)
array([[1., 0.],
 [1., 1.]])
>>> np.add.accumulate(I) # no axis specified = axis zero
array([[1., 0.],
 [1., 1.]])

Accumulate along axis 1 (columns), through rows:

>>> np.add.accumulate(I, 1)
array([[1., 1.],
 [0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.reduceat

	
ufunc.reduceat(a, indices, axis=0, dtype=None, out=None)

	Performs a (local) reduce with specified slices over a single axis.

For i in range(len(indices)), reduceat computes
ufunc.reduce(a[indices[i]:indices[i+1]]), which becomes the i-th
generalized “row” parallel to axis in the final result (i.e., in a
2-D array, for example, if axis = 0, it becomes the i-th row, but if
axis = 1, it becomes the i-th column). There are three exceptions to this:

	when i = len(indices) - 1 (so for the last index),
indices[i+1] = a.shape[axis].

	if indices[i] >= indices[i + 1], the i-th generalized “row” is
simply a[indices[i]].

	if indices[i] >= len(a) or indices[i] < 0, an error is raised.

The shape of the output depends on the size of indices, and may be
larger than a (this happens if len(indices) > a.shape[axis]).

	Parameters:	a : array_like

The array to act on.

indices : array_like

Paired indices, comma separated (not colon), specifying slices to
reduce.

axis : int, optional

The axis along which to apply the reduceat.

dtype : data-type code, optional

The type used to represent the intermediate results. Defaults
to the data type of the output array if this is provided, or
the data type of the input array if no output array is provided.

out : ndarray, optional

A location into which the result is stored. If not provided a
freshly-allocated array is returned.

	Returns:	r : ndarray

The reduced values. If out was supplied, r is a reference to
out.

Notes

A descriptive example:

If a is 1-D, the function ufunc.accumulate(a) is the same as
ufunc.reduceat(a, indices)[::2] where indices is
range(len(array) - 1) with a zero placed
in every other element:
indices = zeros(2 * len(a) - 1), indices[1::2] = range(1, len(a)).

Don’t be fooled by this attribute’s name: reduceat(a) is not
necessarily smaller than a.

Examples

To take the running sum of four successive values:

>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
array([6, 10, 14, 18])

A 2-D example:

>>> x = np.linspace(0, 15, 16).reshape(4,4)
>>> x
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])

reduce such that the result has the following five rows:
[row1 + row2 + row3]
[row4]
[row2]
[row3]
[row1 + row2 + row3 + row4]

>>> np.add.reduceat(x, [0, 3, 1, 2, 0])
array([[12., 15., 18., 21.],
 [12., 13., 14., 15.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [24., 28., 32., 36.]])

reduce such that result has the following two columns:
[col1 * col2 * col3, col4]

>>> np.multiply.reduceat(x, [0, 3], 1)
array([[0., 3.],
 [120., 7.],
 [720., 11.],
 [2184., 15.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.outer

	
ufunc.outer(A, B)

	Apply the ufunc op to all pairs (a, b) with a in A and b in B.

Let M = A.ndim, N = B.ndim. Then the result, C, of
op.outer(A, B) is an array of dimension M + N such that:

[image: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] = op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])]

For A and B one-dimensional, this is equivalent to:

r = empty(len(A),len(B))
for i in range(len(A)):
 for j in range(len(B)):
 r[i,j] = op(A[i], B[j]) # op = ufunc in question

	Parameters:	A : array_like

First array

B : array_like

Second array

	Returns:	r : ndarray

Output array

See also

numpy.outer

Examples

>>> np.multiply.outer([1, 2, 3], [4, 5, 6])
array([[4, 5, 6],
 [8, 10, 12],
 [12, 15, 18]])

A multi-dimensional example:

>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A.shape
(2, 3)
>>> B = np.array([[1, 2, 3, 4]])
>>> B.shape
(1, 4)
>>> C = np.multiply.outer(A, B)
>>> C.shape; C
(2, 3, 1, 4)
array([[[[1, 2, 3, 4]],
 [[2, 4, 6, 8]],
 [[3, 6, 9, 12]]],
 [[[4, 8, 12, 16]],
 [[5, 10, 15, 20]],
 [[6, 12, 18, 24]]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Universal functions (ufunc)

numpy.ufunc.at

	
ufunc.at(a, indices, b=None)

	Performs unbuffered in place operation on operand ‘a’ for elements
specified by ‘indices’. For addition ufunc, this method is equivalent to
a[indices] += b, except that results are accumulated for elements that
are indexed more than once. For example, a[[0,0]] += 1 will only
increment the first element once because of buffering, whereas
add.at(a, [0,0], 1) will increment the first element twice.

New in version 1.8.0.

	Parameters:	a : array_like

The array to perform in place operation on.

indices : array_like or tuple

Array like index object or slice object for indexing into first
operand. If first operand has multiple dimensions, indices can be a
tuple of array like index objects or slice objects.

b : array_like

Second operand for ufuncs requiring two operands. Operand must be
broadcastable over first operand after indexing or slicing.

Examples

Set items 0 and 1 to their negative values:

>>> a = np.array([1, 2, 3, 4])
>>> np.negative.at(a, [0, 1])
>>> print(a)
array([-1, -2, 3, 4])

Increment items 0 and 1, and increment item 2 twice:

>>> a = np.array([1, 2, 3, 4])
>>> np.add.at(a, [0, 1, 2, 2], 1)
>>> print(a)
array([2, 3, 5, 4])

Add items 0 and 1 in first array to second array,
and store results in first array:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([1, 2])
>>> np.add.at(a, [0, 1], b)
>>> print(a)
array([2, 4, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

Routines

In this chapter routine docstrings are presented, grouped by functionality.
Many docstrings contain example code, which demonstrates basic usage
of the routine. The examples assume that NumPy is imported with:

>>> import numpy as np

A convenient way to execute examples is the %doctest_mode mode of
IPython, which allows for pasting of multi-line examples and preserves
indentation.

	Array creation routines
	Ones and zeros

	From existing data

	Creating record arrays (numpy.rec)

	Creating character arrays (numpy.char)

	Numerical ranges

	Building matrices

	The Matrix class

	Array manipulation routines
	Basic operations

	Changing array shape

	Transpose-like operations

	Changing number of dimensions

	Changing kind of array

	Joining arrays

	Splitting arrays

	Tiling arrays

	Adding and removing elements

	Rearranging elements

	Binary operations
	Elementwise bit operations

	Bit packing

	Output formatting

	String operations
	String operations

	Comparison

	String information

	Convenience class

	C-Types Foreign Function Interface (numpy.ctypeslib)

	Datetime Support Functions
	Business Day Functions

	Data type routines
	numpy.can_cast

	numpy.promote_types

	numpy.min_scalar_type

	numpy.result_type

	numpy.common_type

	numpy.obj2sctype

	Creating data types

	Data type information

	Data type testing

	Miscellaneous

	Optionally Scipy-accelerated routines (numpy.dual)
	Linear algebra

	FFT

	Other

	Mathematical functions with automatic domain (numpy.emath)

	Floating point error handling
	Setting and getting error handling

	Internal functions

	Discrete Fourier Transform (numpy.fft)
	Standard FFTs

	Real FFTs

	Hermitian FFTs

	Helper routines

	Background information

	Implementation details

	Real and Hermitian transforms

	Higher dimensions

	References

	Examples

	Financial functions
	Simple financial functions

	Functional programming
	numpy.apply_along_axis

	numpy.apply_over_axes

	numpy.vectorize

	numpy.frompyfunc

	numpy.piecewise

	Numpy-specific help functions
	Finding help

	Reading help

	Indexing routines
	Generating index arrays

	Indexing-like operations

	Inserting data into arrays

	Iterating over arrays

	Input and output
	NPZ files

	Text files

	Raw binary files

	String formatting

	Memory mapping files

	Text formatting options

	Base-n representations

	Data sources

	Linear algebra (numpy.linalg)
	Matrix and vector products

	Decompositions

	Matrix eigenvalues

	Norms and other numbers

	Solving equations and inverting matrices

	Exceptions

	Linear algebra on several matrices at once

	Logic functions
	Truth value testing

	Array contents

	Array type testing

	Logical operations

	Comparison

	Masked array operations
	Constants

	Creation

	Inspecting the array

	Manipulating a MaskedArray

	Operations on masks

	Conversion operations

	Masked arrays arithmetics

	Mathematical functions
	Trigonometric functions

	Hyperbolic functions

	Rounding

	Sums, products, differences

	Exponents and logarithms

	Other special functions

	Floating point routines

	Arithmetic operations

	Handling complex numbers

	Miscellaneous

	Matrix library (numpy.matlib)
	numpy.matlib.empty

	numpy.matlib.zeros

	numpy.matlib.ones

	numpy.matlib.eye

	numpy.matlib.identity

	numpy.matlib.repmat

	numpy.matlib.rand

	numpy.matlib.randn

	Miscellaneous routines
	Buffer objects

	Performance tuning

	Padding Arrays
	numpy.pad

	Polynomials
	Transition notice

	Random sampling (numpy.random)
	Simple random data

	Permutations

	Distributions

	Random generator

	Set routines
	Making proper sets

	Boolean operations

	Sorting, searching, and counting
	Sorting

	Searching

	Counting

	Statistics
	Order statistics

	Averages and variances

	Correlating

	Histograms

	Test Support (numpy.testing)
	Asserts

	Decorators

	Test Running

	Window functions
	Various windows

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Array creation routines

See also

Array creation

Ones and zeros

	empty(shape[,dtype,order])
	Return a new array of given shape and type, without initializing entries.

	empty_like(a[,dtype,order,subok])
	Return a new array with the same shape and type as a given array.

	eye(N[,M,k,dtype])
	Return a 2-D array with ones on the diagonal and zeros elsewhere.

	identity(n[,dtype])
	Return the identity array.

	ones(shape[,dtype,order])
	Return a new array of given shape and type, filled with ones.

	ones_like(a[,dtype,order,subok])
	Return an array of ones with the same shape and type as a given array.

	zeros(shape[,dtype,order])
	Return a new array of given shape and type, filled with zeros.

	zeros_like(a[,dtype,order,subok])
	Return an array of zeros with the same shape and type as a given array.

	full(shape,fill_value[,dtype,order])
	Return a new array of given shape and type, filled with fill_value.

	full_like(a,fill_value[,dtype,order,subok])
	Return a full array with the same shape and type as a given array.

From existing data

	array(object[,dtype,copy,order,subok,ndmin])
	Create an array.

	asarray(a[,dtype,order])
	Convert the input to an array.

	asanyarray(a[,dtype,order])
	Convert the input to an ndarray, but pass ndarray subclasses through.

	ascontiguousarray(a[,dtype])
	Return a contiguous array in memory (C order).

	asmatrix(data[,dtype])
	Interpret the input as a matrix.

	copy(a[,order])
	Return an array copy of the given object.

	frombuffer(buffer[,dtype,count,offset])
	Interpret a buffer as a 1-dimensional array.

	fromfile(file[,dtype,count,sep])
	Construct an array from data in a text or binary file.

	fromfunction(function,shape,**kwargs)
	Construct an array by executing a function over each coordinate.

	fromiter(iterable,dtype[,count])
	Create a new 1-dimensional array from an iterable object.

	fromstring(string[,dtype,count,sep])
	A new 1-D array initialized from raw binary or text data in a string.

	loadtxt(fname[,dtype,comments,delimiter,...])
	Load data from a text file.

Creating record arrays (numpy.rec)

Note

numpy.rec is the preferred alias for
numpy.core.records.

	core.records.array(obj[,dtype,shape,...])
	Construct a record array from a wide-variety of objects.

	core.records.fromarrays(arrayList[,dtype,...])
	create a record array from a (flat) list of arrays

	core.records.fromrecords(recList[,dtype,...])
	create a recarray from a list of records in text form

	core.records.fromstring(datastring[,dtype,...])
	create a (read-only) record array from binary data contained in

	core.records.fromfile(fd[,dtype,shape,...])
	Create an array from binary file data

Creating character arrays (numpy.char)

Note

numpy.char is the preferred alias for
numpy.core.defchararray.

	core.defchararray.array(obj[,itemsize,...])
	Create a chararray.

	core.defchararray.asarray(obj[,itemsize,...])
	Convert the input to a chararray, copying the data only if necessary.

Numerical ranges

	arange([start,]stop[,step,][,dtype])
	Return evenly spaced values within a given interval.

	linspace(start,stop[,num,endpoint,...])
	Return evenly spaced numbers over a specified interval.

	logspace(start,stop[,num,endpoint,base,...])
	Return numbers spaced evenly on a log scale.

	meshgrid(*xi,**kwargs)
	Return coordinate matrices from coordinate vectors.

	mgrid
	nd_grid instance which returns a dense multi-dimensional “meshgrid”.

	ogrid
	nd_grid instance which returns an open multi-dimensional “meshgrid”.

Building matrices

	diag(v[,k])
	Extract a diagonal or construct a diagonal array.

	diagflat(v[,k])
	Create a two-dimensional array with the flattened input as a diagonal.

	tri(N[,M,k,dtype])
	An array with ones at and below the given diagonal and zeros elsewhere.

	tril(m[,k])
	Lower triangle of an array.

	triu(m[,k])
	Upper triangle of an array.

	vander(x[,N,increasing])
	Generate a Vandermonde matrix.

The Matrix class

	mat(data[,dtype])
	Interpret the input as a matrix.

	bmat(obj[,ldict,gdict])
	Build a matrix object from a string, nested sequence, or array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.empty

	
numpy.empty(shape, dtype=float, order='C')

	Return a new array of given shape and type, without initializing entries.

	Parameters:	shape : int or tuple of int

Shape of the empty array

dtype : data-type, optional

Desired output data-type.

order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in C (row-major) or
Fortran (column-major) order in memory.

	Returns:	out : ndarray

Array of uninitialized (arbitrary) data with the given
shape, dtype, and order.

See also

empty_like, zeros, ones

Notes

empty, unlike zeros, does not set the array values to zero,
and may therefore be marginally faster. On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.

Examples

>>> np.empty([2, 2])
array([[-9.74499359e+001, 6.69583040e-309],
 [2.13182611e-314, 3.06959433e-309]]) #random

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
 [496041986, 19249760]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.empty_like

	
numpy.empty_like(a, dtype=None, order='K', subok=True)

	Return a new array with the same shape and type as a given array.

	Parameters:	a : array_like

The shape and data-type of a define these same attributes of the
returned array.

dtype : data-type, optional

New in version 1.6.0.

Overrides the data type of the result.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

New in version 1.6.0.

Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class
type of ‘a’, otherwise it will be a base-class array. Defaults
to True.

	Returns:	out : ndarray

Array of uninitialized (arbitrary) data with the same
shape and type as a.

See also

	ones_like

	Return an array of ones with shape and type of input.

	zeros_like

	Return an array of zeros with shape and type of input.

	empty

	Return a new uninitialized array.

	ones

	Return a new array setting values to one.

	zeros

	Return a new array setting values to zero.

Notes

This function does not initialize the returned array; to do that use
zeros_like or ones_like instead. It may be marginally faster than
the functions that do set the array values.

Examples

>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], #random
 [0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
 [4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.eye

	
numpy.eye(N, M=None, k=0, dtype=<type 'float'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L190]

	Return a 2-D array with ones on the diagonal and zeros elsewhere.

	Parameters:	N : int

Number of rows in the output.

M : int, optional

Number of columns in the output. If None, defaults to N.

k : int, optional

Index of the diagonal: 0 (the default) refers to the main diagonal,
a positive value refers to an upper diagonal, and a negative value
to a lower diagonal.

dtype : data-type, optional

Data-type of the returned array.

	Returns:	I : ndarray of shape (N,M)

An array where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.

See also

	identity

	(almost) equivalent function

	diag

	diagonal 2-D array from a 1-D array specified by the user.

Examples

>>> np.eye(2, dtype=int)
array([[1, 0],
 [0, 1]])
>>> np.eye(3, k=1)
array([[0., 1., 0.],
 [0., 0., 1.],
 [0., 0., 0.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.identity

	
numpy.identity(n, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2125]

	Return the identity array.

The identity array is a square array with ones on
the main diagonal.

	Parameters:	n : int

Number of rows (and columns) in n x n output.

dtype : data-type, optional

Data-type of the output. Defaults to float.

	Returns:	out : ndarray

n x n array with its main diagonal set to one,
and all other elements 0.

Examples

>>> np.identity(3)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.ones

	
numpy.ones(shape, dtype=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L141]

	Return a new array of given shape and type, filled with ones.

	Parameters:	shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

	Returns:	out : ndarray

Array of ones with the given shape, dtype, and order.

See also

zeros, ones_like

Examples

>>> np.ones(5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[1.],
 [1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],
 [1., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.ones_like

	
numpy.ones_like(a, dtype=None, order='K', subok=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L187]

	Return an array of ones with the same shape and type as a given array.

	Parameters:	a : array_like

The shape and data-type of a define these same attributes of
the returned array.

dtype : data-type, optional

New in version 1.6.0.

Overrides the data type of the result.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

New in version 1.6.0.

Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class
type of ‘a’, otherwise it will be a base-class array. Defaults
to True.

	Returns:	out : ndarray

Array of ones with the same shape and type as a.

See also

	zeros_like

	Return an array of zeros with shape and type of input.

	empty_like

	Return an empty array with shape and type of input.

	zeros

	Return a new array setting values to zero.

	ones

	Return a new array setting values to one.

	empty

	Return a new uninitialized array.

Examples

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],
 [1, 1, 1]])

>>> y = np.arange(3, dtype=np.float)
>>> y
array([0., 1., 2.])
>>> np.ones_like(y)
array([1., 1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.zeros

	
numpy.zeros(shape, dtype=float, order='C')

	Return a new array of given shape and type, filled with zeros.

	Parameters:	shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

	Returns:	out : ndarray

Array of zeros with the given shape, dtype, and order.

See also

	zeros_like

	Return an array of zeros with shape and type of input.

	ones_like

	Return an array of ones with shape and type of input.

	empty_like

	Return an empty array with shape and type of input.

	ones

	Return a new array setting values to one.

	empty

	Return a new uninitialized array.

Examples

>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=numpy.int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[0.],
 [0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[0., 0.],
 [0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],
 dtype=[('x', '<i4'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.zeros_like

	
numpy.zeros_like(a, dtype=None, order='K', subok=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L81]

	Return an array of zeros with the same shape and type as a given array.

	Parameters:	a : array_like

The shape and data-type of a define these same attributes of
the returned array.

dtype : data-type, optional

New in version 1.6.0.

Overrides the data type of the result.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

New in version 1.6.0.

Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class
type of ‘a’, otherwise it will be a base-class array. Defaults
to True.

	Returns:	out : ndarray

Array of zeros with the same shape and type as a.

See also

	ones_like

	Return an array of ones with shape and type of input.

	empty_like

	Return an empty array with shape and type of input.

	zeros

	Return a new array setting values to zero.

	ones

	Return a new array setting values to one.

	empty

	Return a new uninitialized array.

Examples

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],
 [0, 0, 0]])

>>> y = np.arange(3, dtype=np.float)
>>> y
array([0., 1., 2.])
>>> np.zeros_like(y)
array([0., 0., 0.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.full

	
numpy.full(shape, fill_value, dtype=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L245]

	Return a new array of given shape and type, filled with fill_value.

	Parameters:	shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

fill_value : scalar

Fill value.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
is chosen as np.array(fill_value).dtype.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

	Returns:	out : ndarray

Array of fill_value with the given shape, dtype, and order.

See also

	zeros_like

	Return an array of zeros with shape and type of input.

	ones_like

	Return an array of ones with shape and type of input.

	empty_like

	Return an empty array with shape and type of input.

	full_like

	Fill an array with shape and type of input.

	zeros

	Return a new array setting values to zero.

	ones

	Return a new array setting values to one.

	empty

	Return a new uninitialized array.

Examples

>>> np.full((2, 2), np.inf)
array([[inf, inf],
 [inf, inf]])
>>> np.full((2, 2), 10, dtype=np.int)
array([[10, 10],
 [10, 10]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.full_like

	
numpy.full_like(a, fill_value, dtype=None, order='K', subok=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L291]

	Return a full array with the same shape and type as a given array.

	Parameters:	a : array_like

The shape and data-type of a define these same attributes of
the returned array.

fill_value : scalar

Fill value.

dtype : data-type, optional

Overrides the data type of the result.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class
type of ‘a’, otherwise it will be a base-class array. Defaults
to True.

	Returns:	out : ndarray

Array of fill_value with the same shape and type as a.

See also

	zeros_like

	Return an array of zeros with shape and type of input.

	ones_like

	Return an array of ones with shape and type of input.

	empty_like

	Return an empty array with shape and type of input.

	zeros

	Return a new array setting values to zero.

	ones

	Return a new array setting values to one.

	empty

	Return a new uninitialized array.

	full

	Fill a new array.

Examples

>>> x = np.arange(6, dtype=np.int)
>>> np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1])
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
>>> np.full_like(x, 0.1, dtype=np.double)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
>>> np.full_like(x, np.nan, dtype=np.double)
array([nan, nan, nan, nan, nan, nan])

>>> y = np.arange(6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.array

	
numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)

	Create an array.

	Parameters:	object : array_like

An array, any object exposing the array interface, an
object whose __array__ method returns an array, or any
(nested) sequence.

dtype : data-type, optional

The desired data-type for the array. If not given, then
the type will be determined as the minimum type required
to hold the objects in the sequence. This argument can only
be used to ‘upcast’ the array. For downcasting, use the
.astype(t) method.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy
will only be made if __array__ returns a copy, if obj is a
nested sequence, or if a copy is needed to satisfy any of the other
requirements (dtype, order, etc.).

order : {‘C’, ‘F’, ‘A’}, optional

Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the
fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the
fastest). If order is ‘A’, then the returned array may
be in any order (either C-, Fortran-contiguous, or even
discontiguous).

subok : bool, optional

If True, then sub-classes will be passed-through, otherwise
the returned array will be forced to be a base-class array (default).

ndmin : int, optional

Specifies the minimum number of dimensions that the resulting
array should have. Ones will be pre-pended to the shape as
needed to meet this requirement.

	Returns:	out : ndarray

An array object satisfying the specified requirements.

See also

empty, empty_like, zeros, zeros_like, ones, ones_like, fill

Examples

>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0])
array([1., 2., 3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],
 [3, 4]])

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex)
array([1.+0.j, 2.+0.j, 3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],
 [3, 4]])

>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asarray

	
numpy.asarray(a, dtype=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L394]

	Convert the input to an array.

	Parameters:	a : array_like

Input data, in any form that can be converted to an array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘F’ for FORTRAN)
memory representation. Defaults to ‘C’.

	Returns:	out : ndarray

Array interpretation of a. No copy is performed if the input
is already an ndarray. If a is a subclass of ndarray, a base
class ndarray is returned.

See also

	asanyarray

	Similar function which passes through subclasses.

	ascontiguousarray

	Convert input to a contiguous array.

	asfarray

	Convert input to a floating point ndarray.

	asfortranarray

	Convert input to an ndarray with column-major memory order.

	asarray_chkfinite

	Similar function which checks input for NaNs and Infs.

	fromiter

	Create an array from an iterator.

	fromfunction

	Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True
>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass(np.matrix, np.ndarray)
True
>>> a = np.matrix([[1, 2]])
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asanyarray

	
numpy.asanyarray(a, dtype=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L464]

	Convert the input to an ndarray, but pass ndarray subclasses through.

	Parameters:	a : array_like

Input data, in any form that can be converted to an array. This
includes scalars, lists, lists of tuples, tuples, tuples of tuples,
tuples of lists, and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘F’) memory
representation. Defaults to ‘C’.

	Returns:	out : ndarray or an ndarray subclass

Array interpretation of a. If a is an ndarray or a subclass
of ndarray, it is returned as-is and no copy is performed.

See also

	asarray

	Similar function which always returns ndarrays.

	ascontiguousarray

	Convert input to a contiguous array.

	asfarray

	Convert input to a floating point ndarray.

	asfortranarray

	Convert input to an ndarray with column-major memory order.

	asarray_chkfinite

	Similar function which checks input for NaNs and Infs.

	fromiter

	Create an array from an iterator.

	fromfunction

	Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray(a)
array([1, 2])

Instances of ndarray subclasses are passed through as-is:

>>> a = np.matrix([1, 2])
>>> np.asanyarray(a) is a
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ascontiguousarray

	
numpy.ascontiguousarray(a, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L516]

	Return a contiguous array in memory (C order).

	Parameters:	a : array_like

Input array.

dtype : str or dtype object, optional

Data-type of returned array.

	Returns:	out : ndarray

Contiguous array of same shape and content as a, with type dtype
if specified.

See also

	asfortranarray

	Convert input to an ndarray with column-major memory order.

	require

	Return an ndarray that satisfies requirements.

	ndarray.flags

	Information about the memory layout of the array.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> np.ascontiguousarray(x, dtype=np.float32)
array([[0., 1., 2.],
 [3., 4., 5.]], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asmatrix

	
numpy.asmatrix(data, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L66]

	Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already
a matrix or an ndarray. Equivalent to matrix(data, copy=False).

	Parameters:	data : array_like

Input data.

	Returns:	mat : matrix

data interpreted as a matrix.

Examples

>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.copy

	
numpy.copy(a, order='K')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L837]

	Return an array copy of the given object.

	Parameters:	a : array_like

Input data.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :meth:ndarray.copy are very
similar, but have different default values for their order=
arguments.)

	Returns:	arr : ndarray

Array interpretation of a.

Notes

This is equivalent to

>>> np.array(a, copy=True)

Examples

Create an array x, with a reference y and a copy z:

>>> x = np.array([1, 2, 3])
>>> y = x
>>> z = np.copy(x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True
>>> x[0] == z[0]
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.frombuffer

	
numpy.frombuffer(buffer, dtype=float, count=-1, offset=0)

	Interpret a buffer as a 1-dimensional array.

	Parameters:	buffer : buffer_like

An object that exposes the buffer interface.

dtype : data-type, optional

Data-type of the returned array; default: float.

count : int, optional

Number of items to read. -1 means all data in the buffer.

offset : int, optional

Start reading the buffer from this offset; default: 0.

Notes

If the buffer has data that is not in machine byte-order, this should
be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be
interpreted correctly.

Examples

>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],
 dtype='|S1')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.fromfile

	
numpy.fromfile(file, dtype=float, count=-1, sep='')

	Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type,
as well as parsing simply formatted text files. Data written using the
tofile method can be read using this function.

	Parameters:	file : file or str

Open file object or filename.

dtype : data-type

Data type of the returned array.
For binary files, it is used to determine the size and byte-order
of the items in the file.

count : int

Number of items to read. -1 means all items (i.e., the complete
file).

sep : str

Separator between items if file is a text file.
Empty (“”) separator means the file should be treated as binary.
Spaces (” ”) in the separator match zero or more whitespace characters.
A separator consisting only of spaces must match at least one
whitespace.

See also

load, save, ndarray.tofile

	loadtxt

	More flexible way of loading data from a text file.

Notes

Do not rely on the combination of tofile and fromfile for
data storage, as the binary files generated are are not platform
independent. In particular, no byte-order or data-type information is
saved. Data can be stored in the platform independent .npy format
using save and load instead.

Examples

Construct an ndarray:

>>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
... ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],
 dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

Save the raw data to disk:

>>> import os
>>> fname = os.tmpnam()
>>> x.tofile(fname)

Read the raw data from disk:

>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],
 dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

The recommended way to store and load data:

>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],
 dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.fromfunction

	
numpy.fromfunction(function, shape, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1855]

	Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at
coordinate (x, y, z).

	Parameters:	function : callable

The function is called with N parameters, where N is the rank of
shape. Each parameter represents the coordinates of the array
varying along a specific axis. For example, if shape
were (2, 2), then the parameters in turn be (0, 0), (0, 1),
(1, 0), (1, 1).

shape : (N,) tuple of ints

Shape of the output array, which also determines the shape of
the coordinate arrays passed to function.

dtype : data-type, optional

Data-type of the coordinate arrays passed to function.
By default, dtype is float.

	Returns:	fromfunction : any

The result of the call to function is passed back directly.
Therefore the shape of fromfunction is completely determined by
function. If function returns a scalar value, the shape of
fromfunction would match the shape parameter.

See also

indices, meshgrid

Notes

Keywords other than dtype are passed to function.

Examples

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[True, False, False],
 [False, True, False],
 [False, False, True]], dtype=bool)

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.fromiter

	
numpy.fromiter(iterable, dtype, count=-1)

	Create a new 1-dimensional array from an iterable object.

	Parameters:	iterable : iterable object

An iterable object providing data for the array.

dtype : data-type

The data-type of the returned array.

count : int, optional

The number of items to read from iterable. The default is -1,
which means all data is read.

	Returns:	out : ndarray

The output array.

Notes

Specify count to improve performance. It allows fromiter to
pre-allocate the output array, instead of resizing it on demand.

Examples

>>> iterable = (x*x for x in range(5))
>>> np.fromiter(iterable, np.float)
array([0., 1., 4., 9., 16.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.fromstring

	
numpy.fromstring(string, dtype=float, count=-1, sep='')

	A new 1-D array initialized from raw binary or text data in a string.

	Parameters:	string : str

A string containing the data.

dtype : data-type, optional

The data type of the array; default: float. For binary input data,
the data must be in exactly this format.

count : int, optional

Read this number of dtype elements from the data. If this is
negative (the default), the count will be determined from the
length of the data.

sep : str, optional

If not provided or, equivalently, the empty string, the data will
be interpreted as binary data; otherwise, as ASCII text with
decimal numbers. Also in this latter case, this argument is
interpreted as the string separating numbers in the data; extra
whitespace between elements is also ignored.

	Returns:	arr : ndarray

The constructed array.

	Raises:	ValueError

If the string is not the correct size to satisfy the requested
dtype and count.

See also

frombuffer, fromfile, fromiter

Examples

>>> np.fromstring('\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
>>> np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])
>>> np.fromstring('\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.loadtxt

	
numpy.loadtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L631]

	Load data from a text file.

Each row in the text file must have the same number of values.

	Parameters:	fname : file or str

File, filename, or generator to read. If the filename extension is
.gz or .bz2, the file is first decompressed. Note that
generators should return byte strings for Python 3k.

dtype : data-type, optional

Data-type of the resulting array; default: float. If this is a
record data-type, the resulting array will be 1-dimensional, and
each row will be interpreted as an element of the array. In this
case, the number of columns used must match the number of fields in
the data-type.

comments : str, optional

The character used to indicate the start of a comment;
default: ‘#’.

delimiter : str, optional

The string used to separate values. By default, this is any
whitespace.

converters : dict, optional

A dictionary mapping column number to a function that will convert
that column to a float. E.g., if column 0 is a date string:
converters = {0: datestr2num}. Converters can also be used to
provide a default value for missing data (but see also genfromtxt):
converters = {3: lambda s: float(s.strip() or 0)}. Default: None.

skiprows : int, optional

Skip the first skiprows lines; default: 0.

usecols : sequence, optional

Which columns to read, with 0 being the first. For example,
usecols = (1,4,5) will extract the 2nd, 5th and 6th columns.
The default, None, results in all columns being read.

unpack : bool, optional

If True, the returned array is transposed, so that arguments may be
unpacked using x, y, z = loadtxt(...). When used with a record
data-type, arrays are returned for each field. Default is False.

ndmin : int, optional

The returned array will have at least ndmin dimensions.
Otherwise mono-dimensional axes will be squeezed.
Legal values: 0 (default), 1 or 2.

New in version 1.6.0.

	Returns:	out : ndarray

Data read from the text file.

See also

load, fromstring, fromregex

	genfromtxt

	Load data with missing values handled as specified.

	scipy.io.loadmat

	reads MATLAB data files

Notes

This function aims to be a fast reader for simply formatted files. The
genfromtxt function provides more sophisticated handling of, e.g.,
lines with missing values.

Examples

>>> from StringIO import StringIO # StringIO behaves like a file object
>>> c = StringIO("0 1\n2 3")
>>> np.loadtxt(c)
array([[0., 1.],
 [2., 3.]])

>>> d = StringIO("M 21 72\nF 35 58")
>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
... 'formats': ('S1', 'i4', 'f4')})
array([('M', 21, 72.0), ('F', 35, 58.0)],
 dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')])

>>> c = StringIO("1,0,2\n3,0,4")
>>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True)
>>> x
array([1., 3.])
>>> y
array([2., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.core.records.array

	
numpy.core.records.array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L731]

	Construct a record array from a wide-variety of objects.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.core.records.fromarrays

	
numpy.core.records.fromarrays(arrayList, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L503]

	create a record array from a (flat) list of arrays

>>> x1=np.array([1,2,3,4])
>>> x2=np.array(['a','dd','xyz','12'])
>>> x3=np.array([1.1,2,3,4])
>>> r = np.core.records.fromarrays([x1,x2,x3],names='a,b,c')
>>> print r[1]
(2, 'dd', 2.0)
>>> x1[1]=34
>>> r.a
array([1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.core.records.fromrecords

	
numpy.core.records.fromrecords(recList, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L569]

	create a recarray from a list of records in text form

The data in the same field can be heterogeneous, they will be promoted
to the highest data type. This method is intended for creating
smaller record arrays. If used to create large array without formats
defined

r=fromrecords([(2,3.,’abc’)]*100000)

it can be slow.

If formats is None, then this will auto-detect formats. Use list of
tuples rather than list of lists for faster processing.

>>> r=np.core.records.fromrecords([(456,'dbe',1.2),(2,'de',1.3)],
... names='col1,col2,col3')
>>> print r[0]
(456, 'dbe', 1.2)
>>> r.col1
array([456, 2])
>>> r.col2
chararray(['dbe', 'de'],
 dtype='|S3')
>>> import pickle
>>> print pickle.loads(pickle.dumps(r))
[(456, 'dbe', 1.2) (2, 'de', 1.3)]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.core.records.fromstring

	
numpy.core.records.fromstring(datastring, dtype=None, shape=None, offset=0, formats=None, names=None, titles=None, aligned=False, byteorder=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L633]

	create a (read-only) record array from binary data contained in
a string

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.core.records.fromfile

	
numpy.core.records.fromfile(fd, dtype=None, shape=None, offset=0, formats=None, names=None, titles=None, aligned=False, byteorder=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L663]

	Create an array from binary file data

If file is a string then that file is opened, else it is assumed
to be a file object.

>>> from tempfile import TemporaryFile
>>> a = np.empty(10,dtype='f8,i4,a5')
>>> a[5] = (0.5,10,'abcde')
>>>
>>> fd=TemporaryFile()
>>> a = a.newbyteorder('<')
>>> a.tofile(fd)
>>>
>>> fd.seek(0)
>>> r=np.core.records.fromfile(fd, formats='f8,i4,a5', shape=10,
... byteorder='<')
>>> print r[5]
(0.5, 10, 'abcde')
>>> r.shape
(10,)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.core.defchararray.array

	
numpy.core.defchararray.array(obj, itemsize=None, copy=True, unicode=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2476]

	Create a chararray.

Note

This class is provided for numarray backward-compatibility.
New code (not concerned with numarray compatibility) should use
arrays of type string_ or unicode_ and use the free functions
in numpy.char for fast
vectorized string operations instead.

Versus a regular Numpy array of type str or unicode, this
class adds the following functionality:

	values automatically have whitespace removed from the end
when indexed

	comparison operators automatically remove whitespace from the
end when comparing values

	vectorized string operations are provided as methods
(e.g. str.endswith) and infix operators (e.g. +, *, %)

	Parameters:	obj : array of str or unicode-like

itemsize : int, optional

itemsize is the number of characters per scalar in the
resulting array. If itemsize is None, and obj is an
object array or a Python list, the itemsize will be
automatically determined. If itemsize is provided and obj
is of type str or unicode, then the obj string will be
chunked into itemsize pieces.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy
will only be made if __array__ returns a copy, if obj is a
nested sequence, or if a copy is needed to satisfy any of the other
requirements (itemsize, unicode, order, etc.).

unicode : bool, optional

When true, the resulting chararray can contain Unicode
characters, when false only 8-bit characters. If unicode is
None and obj is one of the following:

	a chararray,

	an ndarray of type str or unicode

	a Python str or unicode object,

then the unicode setting of the output array will be
automatically determined.

order : {‘C’, ‘F’, ‘A’}, optional

Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the
fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the
fastest). If order is ‘A’, then the returned array may
be in any order (either C-, Fortran-contiguous, or even
discontiguous).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.core.defchararray.asarray

	
numpy.core.defchararray.asarray(obj, itemsize=None, unicode=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2638]

	Convert the input to a chararray, copying the data only if
necessary.

Versus a regular Numpy array of type str or unicode, this
class adds the following functionality:

	values automatically have whitespace removed from the end
when indexed

	comparison operators automatically remove whitespace from the
end when comparing values

	vectorized string operations are provided as methods
(e.g. str.endswith) and infix operators (e.g. +, *, %)

	Parameters:	obj : array of str or unicode-like

itemsize : int, optional

itemsize is the number of characters per scalar in the
resulting array. If itemsize is None, and obj is an
object array or a Python list, the itemsize will be
automatically determined. If itemsize is provided and obj
is of type str or unicode, then the obj string will be
chunked into itemsize pieces.

unicode : bool, optional

When true, the resulting chararray can contain Unicode
characters, when false only 8-bit characters. If unicode is
None and obj is one of the following:

	a chararray,

	an ndarray of type str or ‘unicode`

	a Python str or unicode object,

then the unicode setting of the output array will be
automatically determined.

order : {‘C’, ‘F’}, optional

Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the
fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the
fastest).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.arange

	
numpy.arange([start,]stop, [step,]dtype=None)

	Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop)
(in other words, the interval including start but excluding stop).
For integer arguments the function is equivalent to the Python built-in
range [http://docs.python.org/lib/built-in-funcs.html] function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use linspace for these cases.

	Parameters:	start : number, optional

Start of interval. The interval includes this value. The default
start value is 0.

stop : number

End of interval. The interval does not include this value, except
in some cases where step is not an integer and floating point
round-off affects the length of out.

step : number, optional

Spacing between values. For any output out, this is the distance
between two adjacent values, out[i+1] - out[i]. The default
step size is 1. If step is specified, start must also be given.

dtype : dtype

The type of the output array. If dtype is not given, infer the data
type from the other input arguments.

	Returns:	arange : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is
ceil((stop - start)/step). Because of floating point overflow,
this rule may result in the last element of out being greater
than stop.

See also

	linspace

	Evenly spaced numbers with careful handling of endpoints.

	ogrid

	Arrays of evenly spaced numbers in N-dimensions.

	mgrid

	Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.linspace

	
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\function_base.py#L9]

	Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the
interval [start, stop].

The endpoint of the interval can optionally be excluded.

	Parameters:	start : scalar

The starting value of the sequence.

stop : scalar

The end value of the sequence, unless endpoint is set to False.
In that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop is excluded. Note that the step
size changes when endpoint is False.

num : int, optional

Number of samples to generate. Default is 50.

endpoint : bool, optional

If True, stop is the last sample. Otherwise, it is not included.
Default is True.

retstep : bool, optional

If True, return (samples, step), where step is the spacing
between samples.

dtype : dtype

The type of the output array. If dtype is not given, infer the data
type from the other input arguments.

New in version 1.9.0.

	Returns:	samples : ndarray

There are num equally spaced samples in the closed interval
[start, stop] or the half-open interval [start, stop)
(depending on whether endpoint is True or False).

step : float (only if retstep is True)

Size of spacing between samples.

See also

	arange

	Similar to linspace, but uses a step size (instead of the number of samples).

	logspace

	Samples uniformly distributed in log space.

Examples

>>> np.linspace(2.0, 3.0, num=5)
 array([2. , 2.25, 2.5 , 2.75, 3.])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
 array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
 (array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-linspace-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.logspace

	
numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\function_base.py#L108]

	Return numbers spaced evenly on a log scale.

In linear space, the sequence starts at base ** start
(base to the power of start) and ends with base ** stop
(see endpoint below).

	Parameters:	start : float

base ** start is the starting value of the sequence.

stop : float

base ** stop is the final value of the sequence, unless endpoint
is False. In that case, num + 1 values are spaced over the
interval in log-space, of which all but the last (a sequence of
length num) are returned.

num : integer, optional

Number of samples to generate. Default is 50.

endpoint : boolean, optional

If true, stop is the last sample. Otherwise, it is not included.
Default is True.

base : float, optional

The base of the log space. The step size between the elements in
ln(samples) / ln(base) (or log_base(samples)) is uniform.
Default is 10.0.

dtype : dtype

The type of the output array. If dtype is not given, infer the data
type from the other input arguments.

	Returns:	samples : ndarray

num samples, equally spaced on a log scale.

See also

	arange

	Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included.

	linspace

	Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space.

Notes

Logspace is equivalent to the code

>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
...
>>> power(base, y).astype(dtype)
...

Examples

>>> np.logspace(2.0, 3.0, num=4)
 array([100. , 215.443469 , 464.15888336, 1000.])
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
 array([100. , 177.827941 , 316.22776602, 562.34132519])
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
 array([4. , 5.0396842 , 6.34960421, 8.])

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 10
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
>>> y = np.zeros(N)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-logspace-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.meshgrid

	
numpy.meshgrid(*xi, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L3285]

	Return coordinate matrices from coordinate vectors.

Make N-D coordinate arrays for vectorized evaluations of
N-D scalar/vector fields over N-D grids, given
one-dimensional coordinate arrays x1, x2,..., xn.

Changed in version 1.9: 1-D and 0-D cases are allowed.

	Parameters:	x1, x2,..., xn : array_like

1-D arrays representing the coordinates of a grid.

indexing : {‘xy’, ‘ij’}, optional

Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output.
See Notes for more details.

New in version 1.7.0.

sparse : bool, optional

If True a sparse grid is returned in order to conserve memory.
Default is False.

New in version 1.7.0.

copy : bool, optional

If False, a view into the original arrays are returned in order to
conserve memory. Default is True. Please note that
sparse=False, copy=False will likely return non-contiguous
arrays. Furthermore, more than one element of a broadcast array
may refer to a single memory location. If you need to write to the
arrays, make copies first.

New in version 1.7.0.

	Returns:	X1, X2,..., XN : ndarray

For vectors x1, x2,..., ‘xn’ with lengths Ni=len(xi) ,
return (N1, N2, N3,...Nn) shaped arrays if indexing=’ij’
or (N2, N1, N3,...Nn) shaped arrays if indexing=’xy’
with the elements of xi repeated to fill the matrix along
the first dimension for x1, the second for x2 and so on.

See also

	index_tricks.mgrid

	Construct a multi-dimensional “meshgrid” using indexing notation.

	index_tricks.ogrid

	Construct an open multi-dimensional “meshgrid” using indexing notation.

Notes

This function supports both indexing conventions through the indexing
keyword argument. Giving the string ‘ij’ returns a meshgrid with
matrix indexing, while ‘xy’ returns a meshgrid with Cartesian indexing.
In the 2-D case with inputs of length M and N, the outputs are of shape
(N, M) for ‘xy’ indexing and (M, N) for ‘ij’ indexing. In the 3-D case
with inputs of length M, N and P, outputs are of shape (N, M, P) for
‘xy’ indexing and (M, N, P) for ‘ij’ indexing. The difference is
illustrated by the following code snippet:

xv, yv = meshgrid(x, y, sparse=False, indexing='ij')
for i in range(nx):
 for j in range(ny):
 # treat xv[i,j], yv[i,j]

xv, yv = meshgrid(x, y, sparse=False, indexing='xy')
for i in range(nx):
 for j in range(ny):
 # treat xv[j,i], yv[j,i]

In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

Examples

>>> nx, ny = (3, 2)
>>> x = np.linspace(0, 1, nx)
>>> y = np.linspace(0, 1, ny)
>>> xv, yv = meshgrid(x, y)
>>> xv
array([[0. , 0.5, 1.],
 [0. , 0.5, 1.]])
>>> yv
array([[0., 0., 0.],
 [1., 1., 1.]])
>>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays
>>> xv
array([[0. , 0.5, 1.]])
>>> yv
array([[0.],
 [1.]])

meshgrid is very useful to evaluate functions on a grid.

>>> x = np.arange(-5, 5, 0.1)
>>> y = np.arange(-5, 5, 0.1)
>>> xx, yy = meshgrid(x, y, sparse=True)
>>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
>>> h = plt.contourf(x,y,z)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.mgrid

	
numpy.mgrid = <numpy.lib.index_tricks.nd_grid object at 0x00000000043FC8D0>

	nd_grid instance which returns a dense multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an dense
(or fleshed out) mesh-grid when indexed, so that each returned argument
has the same shape. The dimensions and number of the output arrays are
equal to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value is inclusive.

	Returns:	mesh-grid ndarrays all of the same dimensions

See also

	numpy.lib.index_tricks.nd_grid

	class of ogrid and mgrid objects

	ogrid

	like mgrid but returns open (not fleshed out) mesh grids

	r_

	array concatenator

Examples

>>> np.mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]],
 [[0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4]]])
>>> np.mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.ogrid

	
numpy.ogrid = <numpy.lib.index_tricks.nd_grid object at 0x00000000043FC940>

	nd_grid instance which returns an open multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an open
(i.e. not fleshed out) mesh-grid when indexed, so that only one dimension
of each returned array is greater than 1. The dimension and number of the
output arrays are equal to the number of indexing dimensions. If the step
length is not a complex number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value is inclusive.

	Returns:	mesh-grid ndarrays with only one dimension [image: \neq 1]

See also

	np.lib.index_tricks.nd_grid

	class of ogrid and mgrid objects

	mgrid

	like ogrid but returns dense (or fleshed out) mesh grids

	r_

	array concatenator

Examples

>>> from numpy import ogrid
>>> ogrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])
>>> ogrid[0:5,0:5]
[array([[0],
 [1],
 [2],
 [3],
 [4]]), array([[0, 1, 2, 3, 4]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.diag

	
numpy.diag(v, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L242]

	Extract a diagonal or construct a diagonal array.

See the more detailed documentation for numpy.diagonal if you use this
function to extract a diagonal and wish to write to the resulting array;
whether it returns a copy or a view depends on what version of numpy you
are using.

	Parameters:	v : array_like

If v is a 2-D array, return a copy of its k-th diagonal.
If v is a 1-D array, return a 2-D array with v on the k-th
diagonal.

k : int, optional

Diagonal in question. The default is 0. Use k>0 for diagonals
above the main diagonal, and k<0 for diagonals below the main
diagonal.

	Returns:	out : ndarray

The extracted diagonal or constructed diagonal array.

See also

	diagonal

	Return specified diagonals.

	diagflat

	Create a 2-D array with the flattened input as a diagonal.

	trace

	Sum along diagonals.

	triu

	Upper triangle of an array.

	tril

	Lower triangle of an array.

Examples

>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x, k=1)
array([1, 5])
>>> np.diag(x, k=-1)
array([3, 7])

>>> np.diag(np.diag(x))
array([[0, 0, 0],
 [0, 4, 0],
 [0, 0, 8]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.diagflat

	
numpy.diagflat(v, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L313]

	Create a two-dimensional array with the flattened input as a diagonal.

	Parameters:	v : array_like

Input data, which is flattened and set as the k-th
diagonal of the output.

k : int, optional

Diagonal to set; 0, the default, corresponds to the “main” diagonal,
a positive (negative) k giving the number of the diagonal above
(below) the main.

	Returns:	out : ndarray

The 2-D output array.

See also

	diag

	MATLAB work-alike for 1-D and 2-D arrays.

	diagonal

	Return specified diagonals.

	trace

	Sum along diagonals.

Examples

>>> np.diagflat([[1,2], [3,4]])
array([[1, 0, 0, 0],
 [0, 2, 0, 0],
 [0, 0, 3, 0],
 [0, 0, 0, 4]])

>>> np.diagflat([1,2], 1)
array([[0, 1, 0],
 [0, 0, 2],
 [0, 0, 0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.tri

	
numpy.tri(N, M=None, k=0, dtype=<type 'float'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L372]

	An array with ones at and below the given diagonal and zeros elsewhere.

	Parameters:	N : int

Number of rows in the array.

M : int, optional

Number of columns in the array.
By default, M is taken equal to N.

k : int, optional

The sub-diagonal at and below which the array is filled.
k = 0 is the main diagonal, while k < 0 is below it,
and k > 0 is above. The default is 0.

dtype : dtype, optional

Data type of the returned array. The default is float.

	Returns:	tri : ndarray of shape (N, M)

Array with its lower triangle filled with ones and zero elsewhere;
in other words T[i,j] == 1 for i <= j + k, 0 otherwise.

Examples

>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
 [1, 1, 1, 1, 0],
 [1, 1, 1, 1, 1]])

>>> np.tri(3, 5, -1)
array([[0., 0., 0., 0., 0.],
 [1., 0., 0., 0., 0.],
 [1., 1., 0., 0., 0.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.tril

	
numpy.tril(m, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L421]

	Lower triangle of an array.

Return a copy of an array with elements above the k-th diagonal zeroed.

	Parameters:	m : array_like, shape (M, N)

Input array.

k : int, optional

Diagonal above which to zero elements. k = 0 (the default) is the
main diagonal, k < 0 is below it and k > 0 is above.

	Returns:	tril : ndarray, shape (M, N)

Lower triangle of m, of same shape and data-type as m.

See also

	triu

	same thing, only for the upper triangle

Examples

>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[0, 0, 0],
 [4, 0, 0],
 [7, 8, 0],
 [10, 11, 12]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.triu

	
numpy.triu(m, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L459]

	Upper triangle of an array.

Return a copy of a matrix with the elements below the k-th diagonal
zeroed.

Please refer to the documentation for tril for further details.

See also

	tril

	lower triangle of an array

Examples

>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[1, 2, 3],
 [4, 5, 6],
 [0, 8, 9],
 [0, 0, 12]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.vander

	
numpy.vander(x, N=None, increasing=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L488]

	Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The
order of the powers is determined by the increasing boolean argument.
Specifically, when increasing is False, the i-th output column is
the input vector raised element-wise to the power of N - i - 1. Such
a matrix with a geometric progression in each row is named for Alexandre-
Theophile Vandermonde.

	Parameters:	x : array_like

1-D input array.

N : int, optional

Number of columns in the output. If N is not specified, a square
array is returned (N = len(x)).

increasing : bool, optional

Order of the powers of the columns. If True, the powers increase
from left to right, if False (the default) they are reversed.

New in version 1.9.0.

	Returns:	out : ndarray

Vandermonde matrix. If increasing is False, the first column is
x^(N-1), the second x^(N-2) and so forth. If increasing is
True, the columns are x^0, x^1, ..., x^(N-1).

See also

polynomial.polynomial.polyvander

Examples

>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[1, 1, 1],
 [4, 2, 1],
 [9, 3, 1],
 [25, 5, 1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[1, 1, 1],
 [4, 2, 1],
 [9, 3, 1],
 [25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[1, 1, 1, 1],
 [8, 4, 2, 1],
 [27, 9, 3, 1],
 [125, 25, 5, 1]])
>>> np.vander(x, increasing=True)
array([[1, 1, 1, 1],
 [1, 2, 4, 8],
 [1, 3, 9, 27],
 [1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product
of the differences between the values of the input vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.mat

	
numpy.mat(data, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L66]

	Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already
a matrix or an ndarray. Equivalent to matrix(data, copy=False).

	Parameters:	data : array_like

Input data.

	Returns:	mat : matrix

data interpreted as a matrix.

Examples

>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array creation routines

numpy.bmat

	
numpy.bmat(obj, ldict=None, gdict=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L1025]

	Build a matrix object from a string, nested sequence, or array.

	Parameters:	obj : str or array_like

Input data. Names of variables in the current scope may be
referenced, even if obj is a string.

	Returns:	out : matrix

Returns a matrix object, which is a specialized 2-D array.

See also

matrix

Examples

>>> A = np.mat('1 1; 1 1')
>>> B = np.mat('2 2; 2 2')
>>> C = np.mat('3 4; 5 6')
>>> D = np.mat('7 8; 9 0')

All the following expressions construct the same block matrix:

>>> np.bmat([[A, B], [C, D]])
matrix([[1, 1, 2, 2],
 [1, 1, 2, 2],
 [3, 4, 7, 8],
 [5, 6, 9, 0]])
>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
matrix([[1, 1, 2, 2],
 [1, 1, 2, 2],
 [3, 4, 7, 8],
 [5, 6, 9, 0]])
>>> np.bmat('A,B; C,D')
matrix([[1, 1, 2, 2],
 [1, 1, 2, 2],
 [3, 4, 7, 8],
 [5, 6, 9, 0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Array manipulation routines

Basic operations

	copyto(dst,src[,casting,where])
	Copies values from one array to another, broadcasting as necessary.

Changing array shape

	reshape(a,newshape[,order])
	Gives a new shape to an array without changing its data.

	ravel(a[,order])
	Return a flattened array.

	ndarray.flat
	A 1-D iterator over the array.

	ndarray.flatten([order])
	Return a copy of the array collapsed into one dimension.

Transpose-like operations

	rollaxis(a,axis[,start])
	Roll the specified axis backwards, until it lies in a given position.

	swapaxes(a,axis1,axis2)
	Interchange two axes of an array.

	ndarray.T
	Same as self.transpose(), except that self is returned if self.ndim < 2.

	transpose(a[,axes])
	Permute the dimensions of an array.

Changing number of dimensions

	atleast_1d(*arys)
	Convert inputs to arrays with at least one dimension.

	atleast_2d(*arys)
	View inputs as arrays with at least two dimensions.

	atleast_3d(*arys)
	View inputs as arrays with at least three dimensions.

	broadcast
	Produce an object that mimics broadcasting.

	broadcast_arrays(*args)
	Broadcast any number of arrays against each other.

	expand_dims(a,axis)
	Expand the shape of an array.

	squeeze(a[,axis])
	Remove single-dimensional entries from the shape of an array.

Changing kind of array

	asarray(a[,dtype,order])
	Convert the input to an array.

	asanyarray(a[,dtype,order])
	Convert the input to an ndarray, but pass ndarray subclasses through.

	asmatrix(data[,dtype])
	Interpret the input as a matrix.

	asfarray(a[,dtype])
	Return an array converted to a float type.

	asfortranarray(a[,dtype])
	Return an array laid out in Fortran order in memory.

	ascontiguousarray(a[,dtype])
	Return a contiguous array in memory (C order).

	asarray_chkfinite(a[,dtype,order])
	Convert the input to an array, checking for NaNs or Infs.

	asscalar(a)
	Convert an array of size 1 to its scalar equivalent.

	require(a[,dtype,requirements])
	Return an ndarray of the provided type that satisfies requirements.

Joining arrays

	column_stack(tup)
	Stack 1-D arrays as columns into a 2-D array.

	concatenate((a1,a2,...)[,axis])
	Join a sequence of arrays together.

	dstack(tup)
	Stack arrays in sequence depth wise (along third axis).

	hstack(tup)
	Stack arrays in sequence horizontally (column wise).

	vstack(tup)
	Stack arrays in sequence vertically (row wise).

Splitting arrays

	array_split(ary,indices_or_sections[,axis])
	Split an array into multiple sub-arrays.

	dsplit(ary,indices_or_sections)
	Split array into multiple sub-arrays along the 3rd axis (depth).

	hsplit(ary,indices_or_sections)
	Split an array into multiple sub-arrays horizontally (column-wise).

	split(ary,indices_or_sections[,axis])
	Split an array into multiple sub-arrays.

	vsplit(ary,indices_or_sections)
	Split an array into multiple sub-arrays vertically (row-wise).

Tiling arrays

	tile(A,reps)
	Construct an array by repeating A the number of times given by reps.

	repeat(a,repeats[,axis])
	Repeat elements of an array.

Adding and removing elements

	delete(arr,obj[,axis])
	Return a new array with sub-arrays along an axis deleted.

	insert(arr,obj,values[,axis])
	Insert values along the given axis before the given indices.

	append(arr,values[,axis])
	Append values to the end of an array.

	resize(a,new_shape)
	Return a new array with the specified shape.

	trim_zeros(filt[,trim])
	Trim the leading and/or trailing zeros from a 1-D array or sequence.

	unique(ar[,return_index,return_inverse,...])
	Find the unique elements of an array.

Rearranging elements

	fliplr(m)
	Flip array in the left/right direction.

	flipud(m)
	Flip array in the up/down direction.

	reshape(a,newshape[,order])
	Gives a new shape to an array without changing its data.

	roll(a,shift[,axis])
	Roll array elements along a given axis.

	rot90(m[,k])
	Rotate an array by 90 degrees in the counter-clockwise direction.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.copyto

	
numpy.copyto(dst, src, casting='same_kind', where=None)

	Copies values from one array to another, broadcasting as necessary.

Raises a TypeError if the casting rule is violated, and if
where is provided, it selects which elements to copy.

New in version 1.7.0.

	Parameters:	dst : ndarray

The array into which values are copied.

src : array_like

The array from which values are copied.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur when copying.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

where : array_like of bool, optional

A boolean array which is broadcasted to match the dimensions
of dst, and selects elements to copy from src to dst
wherever it contains the value True.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.reshape

	
numpy.reshape(a, newshape, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L125]

	Gives a new shape to an array without changing its data.

	Parameters:	a : array_like

Array to be reshaped.

newshape : int or tuple of ints

The new shape should be compatible with the original shape. If
an integer, then the result will be a 1-D array of that length.
One shape dimension can be -1. In this case, the value is inferred
from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Read the elements of a using this index order, and place the elements
into the reshaped array using this index order. ‘C’ means to
read / write the elements using C-like index order, with the last axis index
changing fastest, back to the first axis index changing slowest. ‘F’
means to read / write the elements using Fortran-like index order, with
the first index changing fastest, and the last index changing slowest.
Note that the ‘C’ and ‘F’ options take no account of the memory layout
of the underlying array, and only refer to the order of indexing. ‘A’
means to read / write the elements in Fortran-like index order if a is
Fortran contiguous in memory, C-like order otherwise.

	Returns:	reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will
be a copy. Note there is no guarantee of the memory layout (C- or
Fortran- contiguous) of the returned array.

See also

	ndarray.reshape

	Equivalent method.

Notes

It is not always possible to change the shape of an array without
copying the data. If you want an error to be raise if the data is copied,
you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros((10, 2))
A transpose make the array non-contiguous
>>> b = a.T
Taking a view makes it possible to modify the shape without modifying the
initial object.
>>> c = b.view()
>>> c.shape = (20)
AttributeError: incompatible shape for a non-contiguous array

The order keyword gives the index ordering both for fetching the values
from a, and then placing the values into the output array. For example,
let’s say you have an array:

>>> a = np.arange(6).reshape((3, 2))
>>> a
array([[0, 1],
 [2, 3],
 [4, 5]])

You can think of reshaping as first raveling the array (using the given
index order), then inserting the elements from the raveled array into the
new array using the same kind of index ordering as was used for the
raveling.

>>> np.reshape(a, (2, 3)) # C-like index ordering
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
array([[0, 4, 3],
 [2, 1, 5]])
>>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
array([[0, 4, 3],
 [2, 1, 5]])

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)
array([1, 2, 3, 4, 5, 6])
>>> np.reshape(a, 6, order='F')
array([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array([[1, 2],
 [3, 4],
 [5, 6]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ravel

	
numpy.ravel(a, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1283]

	Return a flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is
made only if needed.

	Parameters:	a : array_like

Input array. The elements in a are read in the order specified by
order, and packed as a 1-D array.

order : {‘C’,’F’, ‘A’, ‘K’}, optional

The elements of a are read using this index order. ‘C’ means to
index the elements in C-like order, with the last axis index changing
fastest, back to the first axis index changing slowest. ‘F’ means to
index the elements in Fortran-like index order, with the first index
changing fastest, and the last index changing slowest. Note that the ‘C’
and ‘F’ options take no account of the memory layout of the underlying
array, and only refer to the order of axis indexing. ‘A’ means to read
the elements in Fortran-like index order if a is Fortran contiguous
in memory, C-like order otherwise. ‘K’ means to read the elements in
the order they occur in memory, except for reversing the data when
strides are negative. By default, ‘C’ index order is used.

	Returns:	1d_array : ndarray

Output of the same dtype as a, and of shape (a.size,).

See also

	ndarray.flat

	1-D iterator over an array.

	ndarray.flatten

	1-D array copy of the elements of an array in row-major order.

Notes

In C-like (row-major) order, in two dimensions, the row index varies the
slowest, and the column index the quickest. This can be generalized to
multiple dimensions, where row-major order implies that the index along the
first axis varies slowest, and the index along the last quickest. The
opposite holds for Fortran-like, or column-major, index ordering.

Examples

It is equivalent to reshape(-1, order=order).

>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> print np.ravel(x)
[1 2 3 4 5 6]

>>> print x.reshape(-1)
[1 2 3 4 5 6]

>>> print np.ravel(x, order='F')
[1 4 2 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel(x.T)
[1 4 2 5 3 6]
>>> print np.ravel(x.T, order='A')
[1 2 3 4 5 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’
nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array([2, 1, 0])
>>> a.ravel(order='C')
array([2, 1, 0])
>>> a.ravel(order='K')
array([2, 1, 0])

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
array([[[0, 2, 4],
 [1, 3, 5]],
 [[6, 8, 10],
 [7, 9, 11]]])
>>> a.ravel(order='C')
array([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
>>> a.ravel(order='K')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.flat

	
ndarray.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.flatten

	
ndarray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.rollaxis

	
numpy.rollaxis(a, axis, start=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1347]

	Roll the specified axis backwards, until it lies in a given position.

	Parameters:	a : ndarray

Input array.

axis : int

The axis to roll backwards. The positions of the other axes do not
change relative to one another.

start : int, optional

The axis is rolled until it lies before this position. The default,
0, results in a “complete” roll.

	Returns:	res : ndarray

Output array.

See also

	roll

	Roll the elements of an array by a number of positions along a given axis.

Examples

>>> a = np.ones((3,4,5,6))
>>> np.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> np.rollaxis(a, 2).shape
(5, 3, 4, 6)
>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.swapaxes

	
numpy.swapaxes(a, axis1, axis2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L447]

	Interchange two axes of an array.

	Parameters:	a : array_like

Input array.

axis1 : int

First axis.

axis2 : int

Second axis.

	Returns:	a_swapped : ndarray

If a is an ndarray, then a view of a is returned; otherwise
a new array is created.

Examples

>>> x = np.array([[1,2,3]])
>>> np.swapaxes(x,0,1)
array([[1],
 [2],
 [3]])

>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
array([[[0, 1],
 [2, 3]],
 [[4, 5],
 [6, 7]]])

>>> np.swapaxes(x,0,2)
array([[[0, 4],
 [2, 6]],
 [[1, 5],
 [3, 7]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ndarray.T

	
ndarray.T

	Same as self.transpose(), except that self is returned if
self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.transpose

	
numpy.transpose(a, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L495]

	Permute the dimensions of an array.

	Parameters:	a : array_like

Input array.

axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes
according to the values given.

	Returns:	p : ndarray

a with its axes permuted. A view is returned whenever
possible.

See also

rollaxis

Examples

>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
 [2, 3]])

>>> np.transpose(x)
array([[0, 2],
 [1, 3]])

>>> x = np.ones((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.atleast_1d

	
numpy.atleast_1d(*arys)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\shape_base.py#L8]

	Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst
higher-dimensional inputs are preserved.

	Parameters:	arys1, arys2, ... : array_like

One or more input arrays.

	Returns:	ret : ndarray

An array, or sequence of arrays, each with a.ndim >= 1.
Copies are made only if necessary.

See also

atleast_2d, atleast_3d

Examples

>>> np.atleast_1d(1.0)
array([1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.]])
>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.atleast_2d

	
numpy.atleast_2d(*arys)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\shape_base.py#L60]

	View inputs as arrays with at least two dimensions.

	Parameters:	arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted
to arrays. Arrays that already have two or more dimensions are
preserved.

	Returns:	res, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 2.
Copies are avoided where possible, and views with two or more
dimensions are returned.

See also

atleast_1d, atleast_3d

Examples

>>> np.atleast_2d(3.0)
array([[3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.atleast_3d

	
numpy.atleast_3d(*arys)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\shape_base.py#L112]

	View inputs as arrays with at least three dimensions.

	Parameters:	arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to
arrays. Arrays that already have three or more dimensions are
preserved.

	Returns:	res1, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are
returned. For example, a 1-D array of shape (N,) becomes a view
of shape (1, N, 1), and a 2-D array of shape (M, N) becomes a
view of shape (M, N, 1).

See also

atleast_1d, atleast_2d

Examples

>>> np.atleast_3d(3.0)
array([[[3.]]])

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print arr, arr.shape
...
[[[1]
 [2]]] (1, 2, 1)
[[[1]
 [2]]] (1, 2, 1)
[[[1 2]]] (1, 1, 2)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.broadcast

	
class numpy.broadcast[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	Produce an object that mimics broadcasting.

	Parameters:	in1, in2, ... : array_like

Input parameters.

	Returns:	b : broadcast object

Broadcast the input parameters against one another, and
return an object that encapsulates the result.
Amongst others, it has shape and nd properties, and
may be used as an iterator.

Examples

Manually adding two vectors, using broadcasting:

>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)

>>> out = np.empty(b.shape)
>>> out.flat = [u+v for (u,v) in b]
>>> out
array([[5., 6., 7.],
 [6., 7., 8.],
 [7., 8., 9.]])

Compare against built-in broadcasting:

>>> x + y
array([[5, 6, 7],
 [6, 7, 8],
 [7, 8, 9]])

Attributes

	index
	current index in broadcasted result

	iters
	tuple of iterators along self‘s “components.”

	shape
	Shape of broadcasted result.

	size
	Total size of broadcasted result.

Methods

	next
	x.next() -> the next value, or raise StopIteration

	reset()
	Reset the broadcasted result’s iterator(s).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.index

	
broadcast.index

	current index in broadcasted result

Examples

>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (1, 5), (1, 6))
>>> b.index
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.iters

	
broadcast.iters

	tuple of iterators along self‘s “components.”

Returns a tuple of numpy.flatiter objects, one for each “component”
of self.

See also

numpy.flatiter

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> row, col = b.iters
>>> row.next(), col.next()
(1, 4)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.shape

	
broadcast.shape

	Shape of broadcasted result.

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.shape
(3, 3)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.size

	
broadcast.size

	Total size of broadcasted result.

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.size
9

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.next

	
broadcast.next

	x.next() -> the next value, or raise StopIteration

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

 	numpy.broadcast

numpy.broadcast.reset

	
broadcast.reset()

	Reset the broadcasted result’s iterator(s).

	Parameters:	None

	Returns:	None

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]]
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (2, 4), (3, 4))
>>> b.index
3
>>> b.reset()
>>> b.index
0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.broadcast_arrays

	
numpy.broadcast_arrays(*args)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\stride_tricks.py#L37]

	Broadcast any number of arrays against each other.

	Parameters:	`*args` : array_likes

The arrays to broadcast.

	Returns:	broadcasted : list of arrays

These arrays are views on the original arrays. They are typically
not contiguous. Furthermore, more than one element of a
broadcasted array may refer to a single memory location. If you
need to write to the arrays, make copies first.

Examples

>>> x = np.array([[1,2,3]])
>>> y = np.array([[1],[2],[3]])
>>> np.broadcast_arrays(x, y)
[array([[1, 2, 3],
 [1, 2, 3],
 [1, 2, 3]]), array([[1, 1, 1],
 [2, 2, 2],
 [3, 3, 3]])]

Here is a useful idiom for getting contiguous copies instead of
non-contiguous views.

>>> [np.array(a) for a in np.broadcast_arrays(x, y)]
[array([[1, 2, 3],
 [1, 2, 3],
 [1, 2, 3]]), array([[1, 1, 1],
 [2, 2, 2],
 [3, 3, 3]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.expand_dims

	
numpy.expand_dims(a, axis)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L219]

	Expand the shape of an array.

Insert a new axis, corresponding to a given position in the array shape.

	Parameters:	a : array_like

Input array.

axis : int

Position (amongst axes) where new axis is to be inserted.

	Returns:	res : ndarray

Output array. The number of dimensions is one greater than that of
the input array.

See also

doc.indexing, atleast_1d, atleast_2d, atleast_3d

Examples

>>> x = np.array([1,2])
>>> x.shape
(2,)

The following is equivalent to x[np.newaxis,:] or x[np.newaxis]:

>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)

>>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,newaxis]
>>> y
array([[1],
 [2]])
>>> y.shape
(2, 1)

Note that some examples may use None instead of np.newaxis. These
are the same objects:

>>> np.newaxis is None
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.squeeze

	
numpy.squeeze(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1075]

	Remove single-dimensional entries from the shape of an array.

	Parameters:	a : array_like

Input data.

axis : None or int or tuple of ints, optional

New in version 1.7.0.

Selects a subset of the single-dimensional entries in the
shape. If an axis is selected with shape entry greater than
one, an error is raised.

	Returns:	squeezed : ndarray

The input array, but with all or a subset of the
dimensions of length 1 removed. This is always a itself
or a view into a.

Examples

>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=(2,)).shape
(1, 3)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asarray

	
numpy.asarray(a, dtype=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L394]

	Convert the input to an array.

	Parameters:	a : array_like

Input data, in any form that can be converted to an array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘F’ for FORTRAN)
memory representation. Defaults to ‘C’.

	Returns:	out : ndarray

Array interpretation of a. No copy is performed if the input
is already an ndarray. If a is a subclass of ndarray, a base
class ndarray is returned.

See also

	asanyarray

	Similar function which passes through subclasses.

	ascontiguousarray

	Convert input to a contiguous array.

	asfarray

	Convert input to a floating point ndarray.

	asfortranarray

	Convert input to an ndarray with column-major memory order.

	asarray_chkfinite

	Similar function which checks input for NaNs and Infs.

	fromiter

	Create an array from an iterator.

	fromfunction

	Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True
>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass(np.matrix, np.ndarray)
True
>>> a = np.matrix([[1, 2]])
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asanyarray

	
numpy.asanyarray(a, dtype=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L464]

	Convert the input to an ndarray, but pass ndarray subclasses through.

	Parameters:	a : array_like

Input data, in any form that can be converted to an array. This
includes scalars, lists, lists of tuples, tuples, tuples of tuples,
tuples of lists, and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘F’) memory
representation. Defaults to ‘C’.

	Returns:	out : ndarray or an ndarray subclass

Array interpretation of a. If a is an ndarray or a subclass
of ndarray, it is returned as-is and no copy is performed.

See also

	asarray

	Similar function which always returns ndarrays.

	ascontiguousarray

	Convert input to a contiguous array.

	asfarray

	Convert input to a floating point ndarray.

	asfortranarray

	Convert input to an ndarray with column-major memory order.

	asarray_chkfinite

	Similar function which checks input for NaNs and Infs.

	fromiter

	Create an array from an iterator.

	fromfunction

	Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray(a)
array([1, 2])

Instances of ndarray subclasses are passed through as-is:

>>> a = np.matrix([1, 2])
>>> np.asanyarray(a) is a
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asmatrix

	
numpy.asmatrix(data, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L66]

	Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already
a matrix or an ndarray. Equivalent to matrix(data, copy=False).

	Parameters:	data : array_like

Input data.

	Returns:	mat : matrix

data interpreted as a matrix.

Examples

>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asfarray

	
numpy.asfarray(a, dtype=<type 'numpy.float64'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L75]

	Return an array converted to a float type.

	Parameters:	a : array_like

The input array.

dtype : str or dtype object, optional

Float type code to coerce input array a. If dtype is one of the
‘int’ dtypes, it is replaced with float64.

	Returns:	out : ndarray

The input a as a float ndarray.

Examples

>>> np.asfarray([2, 3])
array([2., 3.])
>>> np.asfarray([2, 3], dtype='float')
array([2., 3.])
>>> np.asfarray([2, 3], dtype='int8')
array([2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asfortranarray

	
numpy.asfortranarray(a, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L552]

	Return an array laid out in Fortran order in memory.

	Parameters:	a : array_like

Input array.

dtype : str or dtype object, optional

By default, the data-type is inferred from the input data.

	Returns:	out : ndarray

The input a in Fortran, or column-major, order.

See also

	ascontiguousarray

	Convert input to a contiguous (C order) array.

	asanyarray

	Convert input to an ndarray with either row or column-major memory order.

	require

	Return an ndarray that satisfies requirements.

	ndarray.flags

	Information about the memory layout of the array.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> y = np.asfortranarray(x)
>>> x.flags['F_CONTIGUOUS']
False
>>> y.flags['F_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.ascontiguousarray

	
numpy.ascontiguousarray(a, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L516]

	Return a contiguous array in memory (C order).

	Parameters:	a : array_like

Input array.

dtype : str or dtype object, optional

Data-type of returned array.

	Returns:	out : ndarray

Contiguous array of same shape and content as a, with type dtype
if specified.

See also

	asfortranarray

	Convert input to an ndarray with column-major memory order.

	require

	Return an ndarray that satisfies requirements.

	ndarray.flags

	Information about the memory layout of the array.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> np.ascontiguousarray(x, dtype=np.float32)
array([[0., 1., 2.],
 [3., 4., 5.]], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asarray_chkfinite

	
numpy.asarray_chkfinite(a, dtype=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L550]

	Convert the input to an array, checking for NaNs or Infs.

	Parameters:	a : array_like

Input data, in any form that can be converted to an array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists and ndarrays. Success requires no NaNs or Infs.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Defaults to ‘C’.

	Returns:	out : ndarray

Array interpretation of a. No copy is performed if the input
is already an ndarray. If a is a subclass of ndarray, a base
class ndarray is returned.

	Raises:	ValueError

Raises ValueError if a contains NaN (Not a Number) or Inf (Infinity).

See also

	asarray

	Create and array.

	asanyarray

	Similar function which passes through subclasses.

	ascontiguousarray

	Convert input to a contiguous array.

	asfarray

	Convert input to a floating point ndarray.

	asfortranarray

	Convert input to an ndarray with column-major memory order.

	fromiter

	Create an array from an iterator.

	fromfunction

	Construct an array by executing a function on grid positions.

Examples

Convert a list into an array. If all elements are finite
asarray_chkfinite is identical to asarray.

>>> a = [1, 2]
>>> np.asarray_chkfinite(a, dtype=float)
array([1., 2.])

Raises ValueError if array_like contains Nans or Infs.

>>> a = [1, 2, np.inf]
>>> try:
... np.asarray_chkfinite(a)
... except ValueError:
... print 'ValueError'
...
ValueError

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.asscalar

	
numpy.asscalar(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L442]

	Convert an array of size 1 to its scalar equivalent.

	Parameters:	a : ndarray

Input array of size 1.

	Returns:	out : scalar

Scalar representation of a. The output data type is the same type
returned by the input’s item method.

Examples

>>> np.asscalar(np.array([24]))
24

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.require

	
numpy.require(a, dtype=None, requirements=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L588]

	Return an ndarray of the provided type that satisfies requirements.

This function is useful to be sure that an array with the correct flags
is returned for passing to compiled code (perhaps through ctypes).

	Parameters:	a : array_like

The object to be converted to a type-and-requirement-satisfying array.

dtype : data-type

The required data-type, the default data-type is float64).

requirements : str or list of str

The requirements list can be any of the following

	‘F_CONTIGUOUS’ (‘F’) - ensure a Fortran-contiguous array

	‘C_CONTIGUOUS’ (‘C’) - ensure a C-contiguous array

	‘ALIGNED’ (‘A’) - ensure a data-type aligned array

	‘WRITEABLE’ (‘W’) - ensure a writable array

	‘OWNDATA’ (‘O’) - ensure an array that owns its own data

See also

	asarray

	Convert input to an ndarray.

	asanyarray

	Convert to an ndarray, but pass through ndarray subclasses.

	ascontiguousarray

	Convert input to a contiguous array.

	asfortranarray

	Convert input to an ndarray with column-major memory order.

	ndarray.flags

	Information about the memory layout of the array.

Notes

The returned array will be guaranteed to have the listed requirements
by making a copy if needed.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> x.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : False
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False

>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
>>> y.flags
 C_CONTIGUOUS : False
 F_CONTIGUOUS : True
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.column_stack

	
numpy.column_stack(tup)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L278]

	Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns
first.

	Parameters:	tup : sequence of 1-D or 2-D arrays.

Arrays to stack. All of them must have the same first dimension.

	Returns:	stacked : 2-D array

The array formed by stacking the given arrays.

See also

hstack, vstack, concatenate

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.concatenate

	
numpy.concatenate((a1, a2, ...), axis=0)

	Join a sequence of arrays together.

	Parameters:	a1, a2, ... : sequence of array_like

The arrays must have the same shape, except in the dimension
corresponding to axis (the first, by default).

axis : int, optional

The axis along which the arrays will be joined. Default is 0.

	Returns:	res : ndarray

The concatenated array.

See also

	ma.concatenate

	Concatenate function that preserves input masks.

	array_split

	Split an array into multiple sub-arrays of equal or near-equal size.

	split

	Split array into a list of multiple sub-arrays of equal size.

	hsplit

	Split array into multiple sub-arrays horizontally (column wise)

	vsplit

	Split array into multiple sub-arrays vertically (row wise)

	dsplit

	Split array into multiple sub-arrays along the 3rd axis (depth).

	hstack

	Stack arrays in sequence horizontally (column wise)

	vstack

	Stack arrays in sequence vertically (row wise)

	dstack

	Stack arrays in sequence depth wise (along third dimension)

Notes

When one or more of the arrays to be concatenated is a MaskedArray,
this function will return a MaskedArray object instead of an ndarray,
but the input masks are not preserved. In cases where a MaskedArray
is expected as input, use the ma.concatenate function from the masked
array module instead.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
 [3, 4],
 [5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
 [3, 4, 6]])

This function will not preserve masking of MaskedArray inputs.

>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
 mask = [False True False],
 fill_value = 999999)
>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data = [0 1 2 2 3 4],
 mask = False,
 fill_value = 999999)
>>> np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
 mask = [False True False False False False],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.dstack

	
numpy.dstack(tup)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L319]

	Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis
to make a single array. Rebuilds arrays divided by dsplit.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing.

	Parameters:	tup : sequence of arrays

Arrays to stack. All of them must have the same shape along all
but the third axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack along first axis.

	hstack

	Stack along second axis.

	concatenate

	Join arrays.

	dsplit

	Split array along third axis.

Notes

Equivalent to np.concatenate(tup, axis=2).

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
 [2, 3],
 [3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
 [[2, 3]],
 [[3, 4]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.hstack

	
numpy.hstack(tup)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\shape_base.py#L230]

	Stack arrays in sequence horizontally (column wise).

Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by hsplit.

	Parameters:	tup : sequence of ndarrays

All arrays must have the same shape along all but the second axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack arrays in sequence vertically (row wise).

	dstack

	Stack arrays in sequence depth wise (along third axis).

	concatenate

	Join a sequence of arrays together.

	hsplit

	Split array along second axis.

Notes

Equivalent to np.concatenate(tup, axis=1)

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.vstack

	
numpy.vstack(tup)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\shape_base.py#L179]

	Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by vsplit.

	Parameters:	tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	hstack

	Stack arrays in sequence horizontally (column wise).

	dstack

	Stack arrays in sequence depth wise (along third dimension).

	concatenate

	Join a sequence of arrays together.

	vsplit

	Split array into a list of multiple sub-arrays vertically.

Notes

Equivalent to np.concatenate(tup, axis=0) if tup contains arrays that
are at least 2-dimensional.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
 [2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
 [2],
 [3],
 [2],
 [3],
 [4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.array_split

	
numpy.array_split(ary, indices_or_sections, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L377]

	Split an array into multiple sub-arrays.

Please refer to the split documentation. The only difference
between these functions is that array_split allows
indices_or_sections to be an integer that does not equally
divide the axis.

See also

	split

	Split array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
 [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.dsplit

	
numpy.dsplit(ary, indices_or_sections)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L624]

	Split array into multiple sub-arrays along the 3rd axis (depth).

Please refer to the split documentation. dsplit is equivalent
to split with axis=2, the array is always split along the third
axis provided the array dimension is greater than or equal to 3.

See also

	split

	Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> x
array([[[0., 1., 2., 3.],
 [4., 5., 6., 7.]],
 [[8., 9., 10., 11.],
 [12., 13., 14., 15.]]])
>>> np.dsplit(x, 2)
[array([[[0., 1.],
 [4., 5.]],
 [[8., 9.],
 [12., 13.]]]),
 array([[[2., 3.],
 [6., 7.]],
 [[10., 11.],
 [14., 15.]]])]
>>> np.dsplit(x, np.array([3, 6]))
[array([[[0., 1., 2.],
 [4., 5., 6.]],
 [[8., 9., 10.],
 [12., 13., 14.]]]),
 array([[[3.],
 [7.]],
 [[11.],
 [15.]]]),
 array([], dtype=float64)]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.hsplit

	
numpy.hsplit(ary, indices_or_sections)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L511]

	Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent
to split with axis=1, the array is always split along the second
axis regardless of the array dimension.

See also

	split

	Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])
>>> np.hsplit(x, 2)
[array([[0., 1.],
 [4., 5.],
 [8., 9.],
 [12., 13.]]),
 array([[2., 3.],
 [6., 7.],
 [10., 11.],
 [14., 15.]])]
>>> np.hsplit(x, np.array([3, 6]))
[array([[0., 1., 2.],
 [4., 5., 6.],
 [8., 9., 10.],
 [12., 13., 14.]]),
 array([[3.],
 [7.],
 [11.],
 [15.]]),
 array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],
 [2., 3.]],
 [[4., 5.],
 [6., 7.]]])
>>> np.hsplit(x, 2)
[array([[[0., 1.]],
 [[4., 5.]]]),
 array([[[2., 3.]],
 [[6., 7.]]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.split

	
numpy.split(ary, indices_or_sections, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L435]

	Split an array into multiple sub-arrays.

	Parameters:	ary : ndarray

Array to be divided into sub-arrays.

indices_or_sections : int or 1-D array

If indices_or_sections is an integer, N, the array will be divided
into N equal arrays along axis. If such a split is not possible,
an error is raised.

If indices_or_sections is a 1-D array of sorted integers, the entries
indicate where along axis the array is split. For example,
[2, 3] would, for axis=0, result in

	ary[:2]

	ary[2:3]

	ary[3:]

If an index exceeds the dimension of the array along axis,
an empty sub-array is returned correspondingly.

axis : int, optional

The axis along which to split, default is 0.

	Returns:	sub-arrays : list of ndarrays

A list of sub-arrays.

	Raises:	ValueError

If indices_or_sections is given as an integer, but
a split does not result in equal division.

See also

	array_split

	Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal division cannot be made.

	hsplit

	Split array into multiple sub-arrays horizontally (column-wise).

	vsplit

	Split array into multiple sub-arrays vertically (row wise).

	dsplit

	Split array into multiple sub-arrays along the 3rd axis (depth).

	concatenate

	Join arrays together.

	hstack

	Stack arrays in sequence horizontally (column wise).

	vstack

	Stack arrays in sequence vertically (row wise).

	dstack

	Stack arrays in sequence depth wise (along third dimension).

Examples

>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]

>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([0., 1., 2.]),
 array([3., 4.]),
 array([5.]),
 array([6., 7.]),
 array([], dtype=float64)]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.vsplit

	
numpy.vsplit(ary, indices_or_sections)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L573]

	Split an array into multiple sub-arrays vertically (row-wise).

Please refer to the split documentation. vsplit is equivalent
to split with axis=0 (default), the array is always split along the
first axis regardless of the array dimension.

See also

	split

	Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])
>>> np.vsplit(x, 2)
[array([[0., 1., 2., 3.],
 [4., 5., 6., 7.]]),
 array([[8., 9., 10., 11.],
 [12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]]),
 array([[12., 13., 14., 15.]]),
 array([], dtype=float64)]

With a higher dimensional array the split is still along the first axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],
 [2., 3.]],
 [[4., 5.],
 [6., 7.]]])
>>> np.vsplit(x, 2)
[array([[[0., 1.],
 [2., 3.]]]),
 array([[[4., 5.],
 [6., 7.]]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.tile

	
numpy.tile(A, reps)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L792]

	Construct an array by repeating A the number of times given by reps.

If reps has length d, the result will have dimension of
max(d, A.ndim).

If A.ndim < d, A is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
or shape (1, 1, 3) for 3-D replication. If this is not the desired
behavior, promote A to d-dimensions manually before calling this
function.

If A.ndim > d, reps is promoted to A.ndim by pre-pending 1’s to it.
Thus for an A of shape (2, 3, 4, 5), a reps of (2, 2) is treated as
(1, 1, 2, 2).

	Parameters:	A : array_like

The input array.

reps : array_like

The number of repetitions of A along each axis.

	Returns:	c : ndarray

The tiled output array.

See also

	repeat

	Repeat elements of an array.

Examples

>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
 [0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
 [[0, 1, 2, 0, 1, 2]]])

>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
 [3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
 [3, 4],
 [1, 2],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.repeat

	
numpy.repeat(a, repeats, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L350]

	Repeat elements of an array.

	Parameters:	a : array_like

Input array.

repeats : {int, array of ints}

The number of repetitions for each element. repeats is broadcasted
to fit the shape of the given axis.

axis : int, optional

The axis along which to repeat values. By default, use the
flattened input array, and return a flat output array.

	Returns:	repeated_array : ndarray

Output array which has the same shape as a, except along
the given axis.

See also

	tile

	Tile an array.

Examples

>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
 [3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],
 [3, 4],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.delete

	
numpy.delete(arr, obj, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L3427]

	Return a new array with sub-arrays along an axis deleted. For a one
dimensional array, this returns those entries not returned by
arr[obj].

	Parameters:	arr : array_like

Input array.

obj : slice, int or array of ints

Indicate which sub-arrays to remove.

axis : int, optional

The axis along which to delete the subarray defined by obj.
If axis is None, obj is applied to the flattened array.

	Returns:	out : ndarray

A copy of arr with the elements specified by obj removed. Note
that delete does not occur in-place. If axis is None, out is
a flattened array.

See also

	insert

	Insert elements into an array.

	append

	Append elements at the end of an array.

Notes

Often it is preferable to use a boolean mask. For example:

>>> mask = np.ones(len(arr), dtype=bool)
>>> mask[[0,2,4]] = False
>>> result = arr[mask,...]

Is equivalent to np.delete(arr, [0,2,4], axis=0), but allows further
use of mask.

Examples

>>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
>>> arr
array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]])
>>> np.delete(arr, 1, 0)
array([[1, 2, 3, 4],
 [9, 10, 11, 12]])

>>> np.delete(arr, np.s_[::2], 1)
array([[2, 4],
 [6, 8],
 [10, 12]])
>>> np.delete(arr, [1,3,5], None)
array([1, 3, 5, 7, 8, 9, 10, 11, 12])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.insert

	
numpy.insert(arr, obj, values, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L3625]

	Insert values along the given axis before the given indices.

	Parameters:	arr : array_like

Input array.

obj : int, slice or sequence of ints

Object that defines the index or indices before which values is
inserted.

New in version 1.8.0.

Support for multiple insertions when obj is a single scalar or a
sequence with one element (similar to calling insert multiple
times).

values : array_like

Values to insert into arr. If the type of values is different
from that of arr, values is converted to the type of arr.
values should be shaped so that arr[...,obj,...] = values
is legal.

axis : int, optional

Axis along which to insert values. If axis is None then arr
is flattened first.

	Returns:	out : ndarray

A copy of arr with values inserted. Note that insert
does not occur in-place: a new array is returned. If
axis is None, out is a flattened array.

See also

	append

	Append elements at the end of an array.

	concatenate

	Join a sequence of arrays together.

	delete

	Delete elements from an array.

Notes

Note that for higher dimensional inserts obj=0 behaves very different
from obj=[0] just like arr[:,0,:] = values is different from
arr[:,[0],:] = values.

Examples

>>> a = np.array([[1, 1], [2, 2], [3, 3]])
>>> a
array([[1, 1],
 [2, 2],
 [3, 3]])
>>> np.insert(a, 1, 5)
array([1, 5, 1, 2, 2, 3, 3])
>>> np.insert(a, 1, 5, axis=1)
array([[1, 5, 1],
 [2, 5, 2],
 [3, 5, 3]])

Difference between sequence and scalars:
>>> np.insert(a, [1], [[1],[2],[3]], axis=1)
array([[1, 1, 1],

[2, 2, 2],
[3, 3, 3]])

>>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1),
... np.insert(a, [1], [[1],[2],[3]], axis=1))
True

>>> b = a.flatten()
>>> b
array([1, 1, 2, 2, 3, 3])
>>> np.insert(b, [2, 2], [5, 6])
array([1, 1, 5, 6, 2, 2, 3, 3])

>>> np.insert(b, slice(2, 4), [5, 6])
array([1, 1, 5, 2, 6, 2, 3, 3])

>>> np.insert(b, [2, 2], [7.13, False]) # type casting
array([1, 1, 7, 0, 2, 2, 3, 3])

>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
>>> np.insert(x, idx, 999, axis=1)
array([[0, 999, 1, 2, 999, 3],
 [4, 999, 5, 6, 999, 7]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.append

	
numpy.append(arr, values, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L3832]

	Append values to the end of an array.

	Parameters:	arr : array_like

Values are appended to a copy of this array.

values : array_like

These values are appended to a copy of arr. It must be of the
correct shape (the same shape as arr, excluding axis). If
axis is not specified, values can be any shape and will be
flattened before use.

axis : int, optional

The axis along which values are appended. If axis is not
given, both arr and values are flattened before use.

	Returns:	append : ndarray

A copy of arr with values appended to axis. Note that
append does not occur in-place: a new array is allocated and
filled. If axis is None, out is a flattened array.

See also

	insert

	Insert elements into an array.

	delete

	Delete elements from an array.

Examples

>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

When axis is specified, values must have the correct shape.

>>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])
>>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
Traceback (most recent call last):
...
ValueError: arrays must have same number of dimensions

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.resize

	
numpy.resize(a, new_shape)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1014]

	Return a new array with the specified shape.

If the new array is larger than the original array, then the new
array is filled with repeated copies of a. Note that this behavior
is different from a.resize(new_shape) which fills with zeros instead
of repeated copies of a.

	Parameters:	a : array_like

Array to be resized.

new_shape : int or tuple of int

Shape of resized array.

	Returns:	reshaped_array : ndarray

The new array is formed from the data in the old array, repeated
if necessary to fill out the required number of elements. The
data are repeated in the order that they are stored in memory.

See also

	ndarray.resize

	resize an array in-place.

Examples

>>> a=np.array([[0,1],[2,3]])
>>> np.resize(a,(1,4))
array([[0, 1, 2, 3]])
>>> np.resize(a,(2,4))
array([[0, 1, 2, 3],
 [0, 1, 2, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.trim_zeros

	
numpy.trim_zeros(filt, trim='fb')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1331]

	Trim the leading and/or trailing zeros from a 1-D array or sequence.

	Parameters:	filt : 1-D array or sequence

Input array.

trim : str, optional

A string with ‘f’ representing trim from front and ‘b’ to trim from
back. Default is ‘fb’, trim zeros from both front and back of the
array.

	Returns:	trimmed : 1-D array or sequence

The result of trimming the input. The input data type is preserved.

Examples

>>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
>>> np.trim_zeros(a)
array([1, 2, 3, 0, 2, 1])

>>> np.trim_zeros(a, 'b')
array([0, 0, 0, 1, 2, 3, 0, 2, 1])

The input data type is preserved, list/tuple in means list/tuple out.

>>> np.trim_zeros([0, 1, 2, 0])
[1, 2]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Set routines

numpy.unique

	
numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraysetops.py#L96]

	Find the unique elements of an array.

Returns the sorted unique elements of an array. There are two optional
outputs in addition to the unique elements: the indices of the input array
that give the unique values, and the indices of the unique array that
reconstruct the input array.

	Parameters:	ar : array_like

Input array. This will be flattened if it is not already 1-D.

return_index : bool, optional

If True, also return the indices of ar that result in the unique
array.

return_inverse : bool, optional

If True, also return the indices of the unique array that can be used
to reconstruct ar.

return_counts : bool, optional

New in version 1.9.0.

If True, also return the number of times each unique value comes up
in ar.

	Returns:	unique : ndarray

The sorted unique values.

unique_indices : ndarray, optional

The indices of the first occurrences of the unique values in the
(flattened) original array. Only provided if return_index is True.

unique_inverse : ndarray, optional

The indices to reconstruct the (flattened) original array from the
unique array. Only provided if return_inverse is True.

unique_counts : ndarray, optional

New in version 1.9.0.

The number of times each of the unique values comes up in the
original array. Only provided if return_counts is True.

See also

	numpy.lib.arraysetops

	Module with a number of other functions for performing set operations on arrays.

Examples

>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'],
 dtype='|S1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'],
 dtype='|S1')

Reconstruct the input array from the unique values:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.fliplr

	
numpy.fliplr(m)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L33]

	Flip array in the left/right direction.

Flip the entries in each row in the left/right direction.
Columns are preserved, but appear in a different order than before.

	Parameters:	m : array_like

Input array, must be at least 2-D.

	Returns:	f : ndarray

A view of m with the columns reversed. Since a view
is returned, this operation is [image: \mathcal O(1)].

See also

	flipud

	Flip array in the up/down direction.

	rot90

	Rotate array counterclockwise.

Notes

Equivalent to A[:,::-1]. Requires the array to be at least 2-D.

Examples

>>> A = np.diag([1.,2.,3.])
>>> A
array([[1., 0., 0.],
 [0., 2., 0.],
 [0., 0., 3.]])
>>> np.fliplr(A)
array([[0., 0., 1.],
 [0., 2., 0.],
 [3., 0., 0.]])

>>> A = np.random.randn(2,3,5)
>>> np.all(np.fliplr(A)==A[:,::-1,...])
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.flipud

	
numpy.flipud(m)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L83]

	Flip array in the up/down direction.

Flip the entries in each column in the up/down direction.
Rows are preserved, but appear in a different order than before.

	Parameters:	m : array_like

Input array.

	Returns:	out : array_like

A view of m with the rows reversed. Since a view is
returned, this operation is [image: \mathcal O(1)].

See also

	fliplr

	Flip array in the left/right direction.

	rot90

	Rotate array counterclockwise.

Notes

Equivalent to A[::-1,...].
Does not require the array to be two-dimensional.

Examples

>>> A = np.diag([1.0, 2, 3])
>>> A
array([[1., 0., 0.],
 [0., 2., 0.],
 [0., 0., 3.]])
>>> np.flipud(A)
array([[0., 0., 3.],
 [0., 2., 0.],
 [1., 0., 0.]])

>>> A = np.random.randn(2,3,5)
>>> np.all(np.flipud(A)==A[::-1,...])
True

>>> np.flipud([1,2])
array([2, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.reshape

	
numpy.reshape(a, newshape, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L125]

	Gives a new shape to an array without changing its data.

	Parameters:	a : array_like

Array to be reshaped.

newshape : int or tuple of ints

The new shape should be compatible with the original shape. If
an integer, then the result will be a 1-D array of that length.
One shape dimension can be -1. In this case, the value is inferred
from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Read the elements of a using this index order, and place the elements
into the reshaped array using this index order. ‘C’ means to
read / write the elements using C-like index order, with the last axis index
changing fastest, back to the first axis index changing slowest. ‘F’
means to read / write the elements using Fortran-like index order, with
the first index changing fastest, and the last index changing slowest.
Note that the ‘C’ and ‘F’ options take no account of the memory layout
of the underlying array, and only refer to the order of indexing. ‘A’
means to read / write the elements in Fortran-like index order if a is
Fortran contiguous in memory, C-like order otherwise.

	Returns:	reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will
be a copy. Note there is no guarantee of the memory layout (C- or
Fortran- contiguous) of the returned array.

See also

	ndarray.reshape

	Equivalent method.

Notes

It is not always possible to change the shape of an array without
copying the data. If you want an error to be raise if the data is copied,
you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros((10, 2))
A transpose make the array non-contiguous
>>> b = a.T
Taking a view makes it possible to modify the shape without modifying the
initial object.
>>> c = b.view()
>>> c.shape = (20)
AttributeError: incompatible shape for a non-contiguous array

The order keyword gives the index ordering both for fetching the values
from a, and then placing the values into the output array. For example,
let’s say you have an array:

>>> a = np.arange(6).reshape((3, 2))
>>> a
array([[0, 1],
 [2, 3],
 [4, 5]])

You can think of reshaping as first raveling the array (using the given
index order), then inserting the elements from the raveled array into the
new array using the same kind of index ordering as was used for the
raveling.

>>> np.reshape(a, (2, 3)) # C-like index ordering
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
array([[0, 4, 3],
 [2, 1, 5]])
>>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
array([[0, 4, 3],
 [2, 1, 5]])

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)
array([1, 2, 3, 4, 5, 6])
>>> np.reshape(a, 6, order='F')
array([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array([[1, 2],
 [3, 4],
 [5, 6]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.roll

	
numpy.roll(a, shift, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1279]

	Roll array elements along a given axis.

Elements that roll beyond the last position are re-introduced at
the first.

	Parameters:	a : array_like

Input array.

shift : int

The number of places by which elements are shifted.

axis : int, optional

The axis along which elements are shifted. By default, the array
is flattened before shifting, after which the original
shape is restored.

	Returns:	res : ndarray

Output array, with the same shape as a.

See also

	rollaxis

	Roll the specified axis backwards, until it lies in a given position.

Examples

>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])

>>> x2 = np.reshape(x, (2,5))
>>> x2
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])
>>> np.roll(x2, 1)
array([[9, 0, 1, 2, 3],
 [4, 5, 6, 7, 8]])
>>> np.roll(x2, 1, axis=0)
array([[5, 6, 7, 8, 9],
 [0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1)
array([[4, 0, 1, 2, 3],
 [9, 5, 6, 7, 8]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Array manipulation routines

numpy.rot90

	
numpy.rot90(m, k=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L137]

	Rotate an array by 90 degrees in the counter-clockwise direction.

The first two dimensions are rotated; therefore, the array must be at
least 2-D.

	Parameters:	m : array_like

Array of two or more dimensions.

k : integer

Number of times the array is rotated by 90 degrees.

	Returns:	y : ndarray

Rotated array.

See also

	fliplr

	Flip an array horizontally.

	flipud

	Flip an array vertically.

Examples

>>> m = np.array([[1,2],[3,4]], int)
>>> m
array([[1, 2],
 [3, 4]])
>>> np.rot90(m)
array([[2, 4],
 [1, 3]])
>>> np.rot90(m, 2)
array([[4, 3],
 [2, 1]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Binary operations

Elementwise bit operations

	bitwise_and(x1,x2[,out])
	Compute the bit-wise AND of two arrays element-wise.

	bitwise_or(x1,x2[,out])
	Compute the bit-wise OR of two arrays element-wise.

	bitwise_xor(x1,x2[,out])
	Compute the bit-wise XOR of two arrays element-wise.

	invert(x[,out])
	Compute bit-wise inversion, or bit-wise NOT, element-wise.

	left_shift(x1,x2[,out])
	Shift the bits of an integer to the left.

	right_shift(x1,x2[,out])
	Shift the bits of an integer to the right.

Bit packing

	packbits(myarray[,axis])
	Packs the elements of a binary-valued array into bits in a uint8 array.

	unpackbits(myarray[,axis])
	Unpacks elements of a uint8 array into a binary-valued output array.

Output formatting

	binary_repr(num[,width])
	Return the binary representation of the input number as a string.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Binary operations

numpy.bitwise_and

	
numpy.bitwise_and(x1, x2[, out]) = <ufunc 'bitwise_and'>

	Compute the bit-wise AND of two arrays element-wise.

Computes the bit-wise AND of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator &.

	Parameters:	x1, x2 : array_like

Only integer and boolean types are handled.

	Returns:	out : array_like

Result.

See also

logical_and, bitwise_or, bitwise_xor

	binary_repr

	Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is
represented by 00010001. The bit-wise AND of 13 and 17 is
therefore 000000001, or 1:

>>> np.bitwise_and(13, 17)
1

>>> np.bitwise_and(14, 13)
12
>>> np.binary_repr(12)
'1100'
>>> np.bitwise_and([14,3], 13)
array([12, 1])

>>> np.bitwise_and([11,7], [4,25])
array([0, 1])
>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
array([2, 4, 16])
>>> np.bitwise_and([True, True], [False, True])
array([False, True], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Binary operations

numpy.bitwise_or

	
numpy.bitwise_or(x1, x2[, out]) = <ufunc 'bitwise_or'>

	Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator |.

	Parameters:	x1, x2 : array_like

Only integer and boolean types are handled.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	out : array_like

Result.

See also

logical_or, bitwise_and, bitwise_xor

	binary_repr

	Return the binary representation of the input number as a string.

Examples

The number 13 has the binaray representation 00001101. Likewise,
16 is represented by 00010000. The bit-wise OR of 13 and 16 is
then 000111011, or 29:

>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'

>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33, 5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33, 6])

>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([6, 5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([6, 5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32),
... np.array([4, 4, 4, 2147483647L], dtype=np.int32))
array([6, 5, 255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
array([True, True], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Binary operations

numpy.bitwise_xor

	
numpy.bitwise_xor(x1, x2[, out]) = <ufunc 'bitwise_xor'>

	Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ^.

	Parameters:	x1, x2 : array_like

Only integer and boolean types are handled.

	Returns:	out : array_like

Result.

See also

logical_xor, bitwise_and, bitwise_or

	binary_repr

	Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is
represented by 00010001. The bit-wise XOR of 13 and 17 is
therefore 00011100, or 28:

>>> np.bitwise_xor(13, 17)
28
>>> np.binary_repr(28)
'11100'

>>> np.bitwise_xor(31, 5)
26
>>> np.bitwise_xor([31,3], 5)
array([26, 6])

>>> np.bitwise_xor([31,3], [5,6])
array([26, 5])
>>> np.bitwise_xor([True, True], [False, True])
array([True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Binary operations

numpy.invert

	
numpy.invert(x[, out]) = <ufunc 'invert'>

	Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ~.

For signed integer inputs, the two’s complement is returned. In a
two’s-complement system negative numbers are represented by the two’s
complement of the absolute value. This is the most common method of
representing signed integers on computers [R32]. A N-bit
two’s-complement system can represent every integer in the range
[image: -2^{N-1}] to [image: +2^{N-1}-1].

	Parameters:	x1 : array_like

Only integer and boolean types are handled.

	Returns:	out : array_like

Result.

See also

bitwise_and, bitwise_or, bitwise_xor, logical_not

	binary_repr

	Return the binary representation of the input number as a string.

Notes

bitwise_not is an alias for invert:

>>> np.bitwise_not is np.invert
True

References

	[R32]	(1, 2) Wikipedia, “Two’s complement”,
http://en.wikipedia.org/wiki/Two’s_complement

Examples

We’ve seen that 13 is represented by 00001101.
The invert or bit-wise NOT of 13 is then:

>>> np.invert(np.array([13], dtype=uint8))
array([242], dtype=uint8)
>>> np.binary_repr(x, width=8)
'00001101'
>>> np.binary_repr(242, width=8)
'11110010'

The result depends on the bit-width:

>>> np.invert(np.array([13], dtype=uint16))
array([65522], dtype=uint16)
>>> np.binary_repr(x, width=16)
'0000000000001101'
>>> np.binary_repr(65522, width=16)
'1111111111110010'

When using signed integer types the result is the two’s complement of
the result for the unsigned type:

>>> np.invert(np.array([13], dtype=int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'

Booleans are accepted as well:

>>> np.invert(array([True, False]))
array([False, True], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Binary operations

numpy.left_shift

	
numpy.left_shift(x1, x2[, out]) = <ufunc 'left_shift'>

	Shift the bits of an integer to the left.

Bits are shifted to the left by appending x2 0s at the right of x1.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying x1 by 2**x2.

	Parameters:	x1 : array_like of integer type

Input values.

x2 : array_like of integer type

Number of zeros to append to x1. Has to be non-negative.

	Returns:	out : array of integer type

Return x1 with bits shifted x2 times to the left.

See also

	right_shift

	Shift the bits of an integer to the right.

	binary_repr

	Return the binary representation of the input number as a string.

Examples

>>> np.binary_repr(5)
'101'
>>> np.left_shift(5, 2)
20
>>> np.binary_repr(20)
'10100'

>>> np.left_shift(5, [1,2,3])
array([10, 20, 40])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Binary operations

numpy.right_shift

	
numpy.right_shift(x1, x2[, out]) = <ufunc 'right_shift'>

	Shift the bits of an integer to the right.

Bits are shifted to the right x2. Because the internal
representation of numbers is in binary format, this operation is
equivalent to dividing x1 by 2**x2.

	Parameters:	x1 : array_like, int

Input values.

x2 : array_like, int

Number of bits to remove at the right of x1.

	Returns:	out : ndarray, int

Return x1 with bits shifted x2 times to the right.

See also

	left_shift

	Shift the bits of an integer to the left.

	binary_repr

	Return the binary representation of the input number as a string.

Examples

>>> np.binary_repr(10)
'1010'
>>> np.right_shift(10, 1)
5
>>> np.binary_repr(5)
'101'

>>> np.right_shift(10, [1,2,3])
array([5, 2, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Binary operations

numpy.packbits

	
numpy.packbits(myarray, axis=None)

	Packs the elements of a binary-valued array into bits in a uint8 array.

The result is padded to full bytes by inserting zero bits at the end.

	Parameters:	myarray : array_like

An integer type array whose elements should be packed to bits.

axis : int, optional

The dimension over which bit-packing is done.
None implies packing the flattened array.

	Returns:	packed : ndarray

Array of type uint8 whose elements represent bits corresponding to the
logical (0 or nonzero) value of the input elements. The shape of
packed has the same number of dimensions as the input (unless axis
is None, in which case the output is 1-D).

See also

	unpackbits

	Unpacks elements of a uint8 array into a binary-valued output array.

Examples

>>> a = np.array([[[1,0,1],
... [0,1,0]],
... [[1,1,0],
... [0,0,1]]])
>>> b = np.packbits(a, axis=-1)
>>> b
array([[[160],[64]],[[192],[32]]], dtype=uint8)

Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
and 32 = 0010 0000.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Binary operations

numpy.unpackbits

	
numpy.unpackbits(myarray, axis=None)

	Unpacks elements of a uint8 array into a binary-valued output array.

Each element of myarray represents a bit-field that should be unpacked
into a binary-valued output array. The shape of the output array is either
1-D (if axis is None) or the same shape as the input array with unpacking
done along the axis specified.

	Parameters:	myarray : ndarray, uint8 type

Input array.

axis : int, optional

Unpacks along this axis.

	Returns:	unpacked : ndarray, uint8 type

The elements are binary-valued (0 or 1).

See also

	packbits

	Packs the elements of a binary-valued array into bits in a uint8 array.

Examples

>>> a = np.array([[2], [7], [23]], dtype=np.uint8)
>>> a
array([[2],
 [7],
 [23]], dtype=uint8)
>>> b = np.unpackbits(a, axis=1)
>>> b
array([[0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 1, 1, 1],
 [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.binary_repr

	
numpy.binary_repr(num, width=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1964]

	Return the binary representation of the input number as a string.

For negative numbers, if width is not given, a minus sign is added to the
front. If width is given, the two’s complement of the number is
returned, with respect to that width.

In a two’s-complement system negative numbers are represented by the two’s
complement of the absolute value. This is the most common method of
representing signed integers on computers [R16]. A N-bit two’s-complement
system can represent every integer in the range
[image: -2^{N-1}] to [image: +2^{N-1}-1].

	Parameters:	num : int

Only an integer decimal number can be used.

width : int, optional

The length of the returned string if num is positive, the length of
the two’s complement if num is negative.

	Returns:	bin : str

Binary representation of num or two’s complement of num.

See also

	base_repr

	Return a string representation of a number in the given base system.

Notes

binary_repr is equivalent to using base_repr with base 2, but about 25x
faster.

References

	[R16]	(1, 2) Wikipedia, “Two’s complement”,
http://en.wikipedia.org/wiki/Two’s_complement

Examples

>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'

The two’s complement is returned when the input number is negative and
width is specified:

>>> np.binary_repr(-3, width=4)
'1101'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

String operations

This module provides a set of vectorized string operations for arrays
of type numpy.string_ or numpy.unicode_. All of them are based on
the string methods in the Python standard library.

String operations

	add(x1,x2)
	Return element-wise string concatenation for two arrays of str or unicode.

	multiply(a,i)
	Return (a * i), that is string multiple concatenation, element-wise.

	mod(a,values)
	Return (a % i), that is pre-Python 2.6 string formatting (iterpolation), element-wise for a pair of array_likes of str or unicode.

	capitalize(a)
	Return a copy of a with only the first character of each element capitalized.

	center(a,width[,fillchar])
	Return a copy of a with its elements centered in a string of length width.

	decode(a[,encoding,errors])
	Calls str.decode element-wise.

	encode(a[,encoding,errors])
	Calls str.encode element-wise.

	join(sep,seq)
	Return a string which is the concatenation of the strings in the sequence seq.

	ljust(a,width[,fillchar])
	Return an array with the elements of a left-justified in a string of length width.

	lower(a)
	Return an array with the elements converted to lowercase.

	lstrip(a[,chars])
	For each element in a, return a copy with the leading characters removed.

	partition(a,sep)
	Partition each element in a around sep.

	replace(a,old,new[,count])
	For each element in a, return a copy of the string with all occurrences of substring old replaced by new.

	rjust(a,width[,fillchar])
	Return an array with the elements of a right-justified in a string of length width.

	rpartition(a,sep)
	Partition (split) each element around the right-most separator.

	rsplit(a[,sep,maxsplit])
	For each element in a, return a list of the words in the string, using sep as the delimiter string.

	rstrip(a[,chars])
	For each element in a, return a copy with the trailing characters removed.

	split(a[,sep,maxsplit])
	For each element in a, return a list of the words in the string, using sep as the delimiter string.

	splitlines(a[,keepends])
	For each element in a, return a list of the lines in the element, breaking at line boundaries.

	strip(a[,chars])
	For each element in a, return a copy with the leading and trailing characters removed.

	swapcase(a)
	Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa.

	title(a)
	Return element-wise title cased version of string or unicode.

	translate(a,table[,deletechars])
	For each element in a, return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table.

	upper(a)
	Return an array with the elements converted to uppercase.

	zfill(a,width)
	Return the numeric string left-filled with zeros

Comparison

Unlike the standard numpy comparison operators, the ones in the char
module strip trailing whitespace characters before performing the
comparison.

	equal(x1,x2)
	Return (x1 == x2) element-wise.

	not_equal(x1,x2)
	Return (x1 != x2) element-wise.

	greater_equal(x1,x2)
	Return (x1 >= x2) element-wise.

	less_equal(x1,x2)
	Return (x1 <= x2) element-wise.

	greater(x1,x2)
	Return (x1 > x2) element-wise.

	less(x1,x2)
	Return (x1 < x2) element-wise.

String information

	count(a,sub[,start,end])
	Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

	find(a,sub[,start,end])
	For each element, return the lowest index in the string where substring sub is found.

	index(a,sub[,start,end])
	Like find, but raises ValueError when the substring is not found.

	isalpha(a)
	Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise.

	isdecimal(a)
	For each element, return True if there are only decimal characters in the element.

	isdigit(a)
	Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise.

	islower(a)
	Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise.

	isnumeric(a)
	For each element, return True if there are only numeric characters in the element.

	isspace(a)
	Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise.

	istitle(a)
	Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise.

	isupper(a)
	Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise.

	rfind(a,sub[,start,end])
	For each element in a, return the highest index in the string where substring sub is found, such that sub is contained within [start, end].

	rindex(a,sub[,start,end])
	Like rfind, but raises ValueError when the substring sub is not found.

	startswith(a,prefix[,start,end])
	Returns a boolean array which is True where the string element in a starts with prefix, otherwise False.

Convenience class

	chararray
	Provides a convenient view on arrays of string and unicode values.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.add

	
numpy.core.defchararray.add(x1, x2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L261]

	Return element-wise string concatenation for two arrays of str or unicode.

Arrays x1 and x2 must have the same shape.

	Parameters:	x1 : array_like of str or unicode

Input array.

x2 : array_like of str or unicode

Input array.

	Returns:	add : ndarray

Output array of string_ or unicode_, depending on input types
of the same shape as x1 and x2.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.multiply

	
numpy.core.defchararray.multiply(a, i)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L287]

	Return (a * i), that is string multiple concatenation,
element-wise.

Values in i of less than 0 are treated as 0 (which yields an
empty string).

	Parameters:	a : array_like of str or unicode

i : array_like of ints

	Returns:	out : ndarray

Output array of str or unicode, depending on input types

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.mod

	
numpy.core.defchararray.mod(a, values)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L315]

	Return (a % i), that is pre-Python 2.6 string formatting
(iterpolation), element-wise for a pair of array_likes of str
or unicode.

	Parameters:	a : array_like of str or unicode

values : array_like of values

These values will be element-wise interpolated into the string.

	Returns:	out : ndarray

Output array of str or unicode, depending on input types

See also

str.__mod__

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.capitalize

	
numpy.core.defchararray.capitalize(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L341]

	Return a copy of a with only the first character of each element
capitalized.

Calls str.capitalize element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like of str or unicode

Input array of strings to capitalize.

	Returns:	out : ndarray

Output array of str or unicode, depending on input
types

See also

str.capitalize [http://docs.python.org/dev/library/stdtypes.html#str.capitalize]

Examples

>>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
array(['a1b2', '1b2a', 'b2a1', '2a1b'],
 dtype='|S4')
>>> np.char.capitalize(c)
array(['A1b2', '1b2a', 'B2a1', '2a1b'],
 dtype='|S4')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.center

	
numpy.core.defchararray.center(a, width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L379]

	Return a copy of a with its elements centered in a string of
length width.

Calls str.center element-wise.

	Parameters:	a : array_like of str or unicode

width : int

The length of the resulting strings

fillchar : str or unicode, optional

The padding character to use (default is space).

	Returns:	out : ndarray

Output array of str or unicode, depending on input
types

See also

str.center [http://docs.python.org/dev/library/stdtypes.html#str.center]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.decode

	
numpy.core.defchararray.decode(a, encoding=None, errors=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L461]

	Calls str.decode element-wise.

The set of available codecs comes from the Python standard library,
and may be extended at runtime. For more information, see the
codecs [http://docs.python.org/dev/library/codecs.html#module-codecs] module.

	Parameters:	a : array_like of str or unicode

encoding : str, optional

The name of an encoding

errors : str, optional

Specifies how to handle encoding errors

	Returns:	out : ndarray

See also

str.decode

Notes

The type of the result will depend on the encoding specified.

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],
 dtype='|S7')
>>> np.char.encode(c, encoding='cp037')
array(['\x81\xc1\x81\xc1\x81\xc1', '@@\x81\xc1@@',
 '\x81\x82\xc2\xc1\xc2\x82\x81'],
 dtype='|S7')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.encode

	
numpy.core.defchararray.encode(a, encoding=None, errors=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L507]

	Calls str.encode element-wise.

The set of available codecs comes from the Python standard library,
and may be extended at runtime. For more information, see the codecs
module.

	Parameters:	a : array_like of str or unicode

encoding : str, optional

The name of an encoding

errors : str, optional

Specifies how to handle encoding errors

	Returns:	out : ndarray

See also

str.encode [http://docs.python.org/dev/library/stdtypes.html#str.encode]

Notes

The type of the result will depend on the encoding specified.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.join

	
numpy.core.defchararray.join(sep, seq)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L854]

	Return a string which is the concatenation of the strings in the
sequence seq.

Calls str.join element-wise.

	Parameters:	sep : array_like of str or unicode

seq : array_like of str or unicode

	Returns:	out : ndarray

Output array of str or unicode, depending on input types

See also

str.join [http://docs.python.org/dev/library/stdtypes.html#str.join]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.ljust

	
numpy.core.defchararray.ljust(a, width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L879]

	Return an array with the elements of a left-justified in a
string of length width.

Calls str.ljust element-wise.

	Parameters:	a : array_like of str or unicode

width : int

The length of the resulting strings

fillchar : str or unicode, optional

The character to use for padding

	Returns:	out : ndarray

Output array of str or unicode, depending on input type

See also

str.ljust [http://docs.python.org/dev/library/stdtypes.html#str.ljust]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.lower

	
numpy.core.defchararray.lower(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L914]

	Return an array with the elements converted to lowercase.

Call str.lower element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like, {str, unicode}

Input array.

	Returns:	out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also

str.lower [http://docs.python.org/dev/library/stdtypes.html#str.lower]

Examples

>>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
array(['A1B C', '1BCA', 'BCA1'],
 dtype='|S5')
>>> np.char.lower(c)
array(['a1b c', '1bca', 'bca1'],
 dtype='|S5')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.lstrip

	
numpy.core.defchararray.lstrip(a, chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L950]

	For each element in a, return a copy with the leading characters
removed.

Calls str.lstrip element-wise.

	Parameters:	a : array-like, {str, unicode}

Input array.

chars : {str, unicode}, optional

The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars
argument defaults to removing whitespace. The chars argument
is not a prefix; rather, all combinations of its values are
stripped.

	Returns:	out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also

str.lstrip [http://docs.python.org/dev/library/stdtypes.html#str.lstrip]

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],
 dtype='|S7')

The ‘a’ variable is unstripped from c[1] because whitespace leading.

>>> np.char.lstrip(c, 'a')
array(['AaAaA', ' aA ', 'bBABba'],
 dtype='|S7')

>>> np.char.lstrip(c, 'A') # leaves c unchanged
array(['aAaAaA', ' aA ', 'abBABba'],
 dtype='|S7')
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all()
... # XXX: is this a regression? this line now returns False
... # np.char.lstrip(c,'') does not modify c at all.
True
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all()
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.partition

	
numpy.core.defchararray.partition(a, sep)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1007]

	Partition each element in a around sep.

Calls str.partition element-wise.

For each element in a, split the element as the first
occurrence of sep, and return 3 strings containing the part
before the separator, the separator itself, and the part after
the separator. If the separator is not found, return 3 strings
containing the string itself, followed by two empty strings.

	Parameters:	a : array_like, {str, unicode}

Input array

sep : {str, unicode}

Separator to split each string element in a.

	Returns:	out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type.
The output array will have an extra dimension with 3
elements per input element.

See also

str.partition [http://docs.python.org/dev/library/stdtypes.html#str.partition]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.replace

	
numpy.core.defchararray.replace(a, old, new, count=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1042]

	For each element in a, return a copy of the string with all
occurrences of substring old replaced by new.

Calls str.replace element-wise.

	Parameters:	a : array-like of str or unicode

old, new : str or unicode

count : int, optional

If the optional argument count is given, only the first
count occurrences are replaced.

	Returns:	out : ndarray

Output array of str or unicode, depending on input type

See also

str.replace [http://docs.python.org/dev/library/stdtypes.html#str.replace]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.rjust

	
numpy.core.defchararray.rjust(a, width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1135]

	Return an array with the elements of a right-justified in a
string of length width.

Calls str.rjust element-wise.

	Parameters:	a : array_like of str or unicode

width : int

The length of the resulting strings

fillchar : str or unicode, optional

The character to use for padding

	Returns:	out : ndarray

Output array of str or unicode, depending on input type

See also

str.rjust [http://docs.python.org/dev/library/stdtypes.html#str.rjust]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.rpartition

	
numpy.core.defchararray.rpartition(a, sep)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1170]

	Partition (split) each element around the right-most separator.

Calls str.rpartition element-wise.

For each element in a, split the element as the last
occurrence of sep, and return 3 strings containing the part
before the separator, the separator itself, and the part after
the separator. If the separator is not found, return 3 strings
containing the string itself, followed by two empty strings.

	Parameters:	a : array_like of str or unicode

Input array

sep : str or unicode

Right-most separator to split each element in array.

	Returns:	out : ndarray

Output array of string or unicode, depending on input
type. The output array will have an extra dimension with
3 elements per input element.

See also

str.rpartition [http://docs.python.org/dev/library/stdtypes.html#str.rpartition]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.rsplit

	
numpy.core.defchararray.rsplit(a, sep=None, maxsplit=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1205]

	For each element in a, return a list of the words in the
string, using sep as the delimiter string.

Calls str.rsplit element-wise.

Except for splitting from the right, rsplit
behaves like split.

	Parameters:	a : array_like of str or unicode

sep : str or unicode, optional

If sep is not specified or None, any whitespace string
is a separator.

maxsplit : int, optional

If maxsplit is given, at most maxsplit splits are done,
the rightmost ones.

	Returns:	out : ndarray

Array of list objects

See also

str.rsplit [http://docs.python.org/dev/library/stdtypes.html#str.rsplit], split

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.rstrip

	
numpy.core.defchararray.rstrip(a, chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1242]

	For each element in a, return a copy with the trailing
characters removed.

Calls str.rstrip element-wise.

	Parameters:	a : array-like of str or unicode

chars : str or unicode, optional

The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars
argument defaults to removing whitespace. The chars argument
is not a suffix; rather, all combinations of its values are
stripped.

	Returns:	out : ndarray

Output array of str or unicode, depending on input type

See also

str.rstrip [http://docs.python.org/dev/library/stdtypes.html#str.rstrip]

Examples

>>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c
array(['aAaAaA', 'abBABba'],
 dtype='|S7')
>>> np.char.rstrip(c, 'a')
array(['aAaAaA', 'abBABb'],
 dtype='|S7')
>>> np.char.rstrip(c, 'A')
array(['aAaAa', 'abBABba'],
 dtype='|S7')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.split

	
numpy.core.defchararray.split(a, sep=None, maxsplit=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1286]

	For each element in a, return a list of the words in the
string, using sep as the delimiter string.

Calls str.rsplit element-wise.

	Parameters:	a : array_like of str or unicode

sep : str or unicode, optional

If sep is not specified or None, any whitespace string is a
separator.

maxsplit : int, optional

If maxsplit is given, at most maxsplit splits are done.

	Returns:	out : ndarray

Array of list objects

See also

str.split [http://docs.python.org/dev/library/stdtypes.html#str.split], rsplit

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.splitlines

	
numpy.core.defchararray.splitlines(a, keepends=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1320]

	For each element in a, return a list of the lines in the
element, breaking at line boundaries.

Calls str.splitlines element-wise.

	Parameters:	a : array_like of str or unicode

keepends : bool, optional

Line breaks are not included in the resulting list unless
keepends is given and true.

	Returns:	out : ndarray

Array of list objects

See also

str.splitlines [http://docs.python.org/dev/library/stdtypes.html#str.splitlines]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.strip

	
numpy.core.defchararray.strip(a, chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1380]

	For each element in a, return a copy with the leading and
trailing characters removed.

Calls str.rstrip element-wise.

	Parameters:	a : array-like of str or unicode

chars : str or unicode, optional

The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars
argument defaults to removing whitespace. The chars argument
is not a prefix or suffix; rather, all combinations of its
values are stripped.

	Returns:	out : ndarray

Output array of str or unicode, depending on input type

See also

str.strip [http://docs.python.org/dev/library/stdtypes.html#str.strip]

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],
 dtype='|S7')
>>> np.char.strip(c)
array(['aAaAaA', 'aA', 'abBABba'],
 dtype='|S7')
>>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads
array(['AaAaA', ' aA ', 'bBABb'],
 dtype='|S7')
>>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails
array(['aAaAa', ' aA ', 'abBABba'],
 dtype='|S7')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.swapcase

	
numpy.core.defchararray.swapcase(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1428]

	Return element-wise a copy of the string with
uppercase characters converted to lowercase and vice versa.

Calls str.swapcase element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like, {str, unicode}

Input array.

	Returns:	out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also

str.swapcase [http://docs.python.org/dev/library/stdtypes.html#str.swapcase]

Examples

>>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],
 dtype='|S5')
>>> np.char.swapcase(c)
array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],
 dtype='|S5')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.title

	
numpy.core.defchararray.title(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1465]

	Return element-wise title cased version of string or unicode.

Title case words start with uppercase characters, all remaining cased
characters are lowercase.

Calls str.title element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like, {str, unicode}

Input array.

	Returns:	out : ndarray

Output array of str or unicode, depending on input type

See also

str.title [http://docs.python.org/dev/library/stdtypes.html#str.title]

Examples

>>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
array(['a1b c', '1b ca', 'b ca1', 'ca1b'],
 dtype='|S5')
>>> np.char.title(c)
array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],
 dtype='|S5')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.translate

	
numpy.core.defchararray.translate(a, table, deletechars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1504]

	For each element in a, return a copy of the string where all
characters occurring in the optional argument deletechars are
removed, and the remaining characters have been mapped through the
given translation table.

Calls str.translate element-wise.

	Parameters:	a : array-like of str or unicode

table : str of length 256

deletechars : str

	Returns:	out : ndarray

Output array of str or unicode, depending on input type

See also

str.translate [http://docs.python.org/dev/library/stdtypes.html#str.translate]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.upper

	
numpy.core.defchararray.upper(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1540]

	Return an array with the elements converted to uppercase.

Calls str.upper element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like, {str, unicode}

Input array.

	Returns:	out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also

str.upper [http://docs.python.org/dev/library/stdtypes.html#str.upper]

Examples

>>> c = np.array(['a1b c', '1bca', 'bca1']); c
array(['a1b c', '1bca', 'bca1'],
 dtype='|S5')
>>> np.char.upper(c)
array(['A1B C', '1BCA', 'BCA1'],
 dtype='|S5')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.zfill

	
numpy.core.defchararray.zfill(a, width)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1576]

	Return the numeric string left-filled with zeros

Calls str.zfill element-wise.

	Parameters:	a : array_like, {str, unicode}

Input array.

width : int

Width of string to left-fill elements in a.

	Returns:	out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also

str.zfill [http://docs.python.org/dev/library/stdtypes.html#str.zfill]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.equal

	
numpy.core.defchararray.equal(x1, x2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L97]

	Return (x1 == x2) element-wise.

Unlike numpy.equal, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.

	Parameters:	x1, x2 : array_like of str or unicode

Input arrays of the same shape.

	Returns:	out : {ndarray, bool}

Output array of bools, or a single bool if x1 and x2 are scalars.

See also

not_equal, greater_equal, less_equal, greater, less

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.not_equal

	
numpy.core.defchararray.not_equal(x1, x2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L121]

	Return (x1 != x2) element-wise.

Unlike numpy.not_equal, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.

	Parameters:	x1, x2 : array_like of str or unicode

Input arrays of the same shape.

	Returns:	out : {ndarray, bool}

Output array of bools, or a single bool if x1 and x2 are scalars.

See also

equal, greater_equal, less_equal, greater, less

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.greater_equal

	
numpy.core.defchararray.greater_equal(x1, x2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L145]

	Return (x1 >= x2) element-wise.

Unlike numpy.greater_equal, this comparison is performed by
first stripping whitespace characters from the end of the string.
This behavior is provided for backward-compatibility with
numarray.

	Parameters:	x1, x2 : array_like of str or unicode

Input arrays of the same shape.

	Returns:	out : {ndarray, bool}

Output array of bools, or a single bool if x1 and x2 are scalars.

See also

equal, not_equal, less_equal, greater, less

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.less_equal

	
numpy.core.defchararray.less_equal(x1, x2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L170]

	Return (x1 <= x2) element-wise.

Unlike numpy.less_equal, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.

	Parameters:	x1, x2 : array_like of str or unicode

Input arrays of the same shape.

	Returns:	out : {ndarray, bool}

Output array of bools, or a single bool if x1 and x2 are scalars.

See also

equal, not_equal, greater_equal, greater, less

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.greater

	
numpy.core.defchararray.greater(x1, x2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L194]

	Return (x1 > x2) element-wise.

Unlike numpy.greater, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.

	Parameters:	x1, x2 : array_like of str or unicode

Input arrays of the same shape.

	Returns:	out : {ndarray, bool}

Output array of bools, or a single bool if x1 and x2 are scalars.

See also

equal, not_equal, greater_equal, less_equal, less

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.less

	
numpy.core.defchararray.less(x1, x2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L218]

	Return (x1 < x2) element-wise.

Unlike numpy.greater, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.

	Parameters:	x1, x2 : array_like of str or unicode

Input arrays of the same shape.

	Returns:	out : {ndarray, bool}

Output array of bools, or a single bool if x1 and x2 are scalars.

See also

equal, not_equal, greater_equal, less_equal, greater

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.count

	
numpy.core.defchararray.count(a, sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L415]

	Returns an array with the number of non-overlapping occurrences of
substring sub in the range [start, end].

Calls str.count element-wise.

	Parameters:	a : array_like of str or unicode

sub : str or unicode

The substring to search for.

start, end : int, optional

Optional arguments start and end are interpreted as slice
notation to specify the range in which to count.

	Returns:	out : ndarray

Output array of ints.

See also

str.count [http://docs.python.org/dev/library/stdtypes.html#str.count]

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],
 dtype='|S7')
>>> np.char.count(c, 'A')
array([3, 1, 1])
>>> np.char.count(c, 'aA')
array([3, 1, 0])
>>> np.char.count(c, 'A', start=1, end=4)
array([2, 1, 1])
>>> np.char.count(c, 'A', start=1, end=3)
array([1, 0, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.find

	
numpy.core.defchararray.find(a, sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L621]

	For each element, return the lowest index in the string where
substring sub is found.

Calls str.find element-wise.

For each element, return the lowest index in the string where
substring sub is found, such that sub is contained in the
range [start, end].

	Parameters:	a : array_like of str or unicode

sub : str or unicode

start, end : int, optional

Optional arguments start and end are interpreted as in
slice notation.

	Returns:	out : ndarray or int

Output array of ints. Returns -1 if sub is not found.

See also

str.find [http://docs.python.org/dev/library/stdtypes.html#str.find]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.index

	
numpy.core.defchararray.index(a, sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L656]

	Like find, but raises ValueError when the substring is not found.

Calls str.index element-wise.

	Parameters:	a : array_like of str or unicode

sub : str or unicode

start, end : int, optional

	Returns:	out : ndarray

Output array of ints. Returns -1 if sub is not found.

See also

find, str.find [http://docs.python.org/dev/library/stdtypes.html#str.find]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.isalpha

	
numpy.core.defchararray.isalpha(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L707]

	Returns true for each element if all characters in the string are
alphabetic and there is at least one character, false otherwise.

Calls str.isalpha element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like of str or unicode

	Returns:	out : ndarray

Output array of bools

See also

str.isalpha [http://docs.python.org/dev/library/stdtypes.html#str.isalpha]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.isdecimal

	
numpy.core.defchararray.isdecimal(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1637]

	For each element, return True if there are only decimal
characters in the element.

Calls unicode.isdecimal element-wise.

Decimal characters include digit characters, and all characters
that that can be used to form decimal-radix numbers,
e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

	Parameters:	a : array_like, unicode

Input array.

	Returns:	out : ndarray, bool

Array of booleans identical in shape to a.

See also

unicode.isdecimal

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.isdigit

	
numpy.core.defchararray.isdigit(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L731]

	Returns true for each element if all characters in the string are
digits and there is at least one character, false otherwise.

Calls str.isdigit element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like of str or unicode

	Returns:	out : ndarray

Output array of bools

See also

str.isdigit [http://docs.python.org/dev/library/stdtypes.html#str.isdigit]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.islower

	
numpy.core.defchararray.islower(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L755]

	Returns true for each element if all cased characters in the
string are lowercase and there is at least one cased character,
false otherwise.

Calls str.islower element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like of str or unicode

	Returns:	out : ndarray

Output array of bools

See also

str.islower [http://docs.python.org/dev/library/stdtypes.html#str.islower]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.isnumeric

	
numpy.core.defchararray.isnumeric(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1606]

	For each element, return True if there are only numeric
characters in the element.

Calls unicode.isnumeric element-wise.

Numeric characters include digit characters, and all characters
that have the Unicode numeric value property, e.g. U+2155,
VULGAR FRACTION ONE FIFTH.

	Parameters:	a : array_like, unicode

Input array.

	Returns:	out : ndarray, bool

Array of booleans of same shape as a.

See also

unicode.isnumeric

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.isspace

	
numpy.core.defchararray.isspace(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L780]

	Returns true for each element if there are only whitespace
characters in the string and there is at least one character,
false otherwise.

Calls str.isspace element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like of str or unicode

	Returns:	out : ndarray

Output array of bools

See also

str.isspace [http://docs.python.org/dev/library/stdtypes.html#str.isspace]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.istitle

	
numpy.core.defchararray.istitle(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L805]

	Returns true for each element if the element is a titlecased
string and there is at least one character, false otherwise.

Call str.istitle element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like of str or unicode

	Returns:	out : ndarray

Output array of bools

See also

str.istitle [http://docs.python.org/dev/library/stdtypes.html#str.istitle]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.isupper

	
numpy.core.defchararray.isupper(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L829]

	Returns true for each element if all cased characters in the
string are uppercase and there is at least one character, false
otherwise.

Call str.isupper element-wise.

For 8-bit strings, this method is locale-dependent.

	Parameters:	a : array_like of str or unicode

	Returns:	out : ndarray

Output array of bools

See also

str.isupper [http://docs.python.org/dev/library/stdtypes.html#str.isupper]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.rfind

	
numpy.core.defchararray.rfind(a, sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1074]

	For each element in a, return the highest index in the string
where substring sub is found, such that sub is contained
within [start, end].

Calls str.rfind element-wise.

	Parameters:	a : array-like of str or unicode

sub : str or unicode

start, end : int, optional

Optional arguments start and end are interpreted as in
slice notation.

	Returns:	out : ndarray

Output array of ints. Return -1 on failure.

See also

str.rfind [http://docs.python.org/dev/library/stdtypes.html#str.rfind]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.rindex

	
numpy.core.defchararray.rindex(a, sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1106]

	Like rfind, but raises ValueError when the substring sub is
not found.

Calls str.rindex element-wise.

	Parameters:	a : array-like of str or unicode

sub : str or unicode

start, end : int, optional

	Returns:	out : ndarray

Output array of ints.

See also

rfind, str.rindex [http://docs.python.org/dev/library/stdtypes.html#str.rindex]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.startswith

	
numpy.core.defchararray.startswith(a, prefix, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1349]

	Returns a boolean array which is True where the string element
in a starts with prefix, otherwise False.

Calls str.startswith element-wise.

	Parameters:	a : array_like of str or unicode

prefix : str

start, end : int, optional

With optional start, test beginning at that position. With
optional end, stop comparing at that position.

	Returns:	out : ndarray

Array of booleans

See also

str.startswith [http://docs.python.org/dev/library/stdtypes.html#str.startswith]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

numpy.core.defchararray.chararray

	
class numpy.core.defchararray.chararray[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1668]

	Provides a convenient view on arrays of string and unicode values.

Note

The chararray class exists for backwards compatibility with
Numarray, it is not recommended for new development. Starting from numpy
1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions
in the numpy.char module for fast vectorized string operations.

Versus a regular Numpy array of type str or unicode, this
class adds the following functionality:

	values automatically have whitespace removed from the end
when indexed

	comparison operators automatically remove whitespace from the
end when comparing values

	vectorized string operations are provided as methods
(e.g. endswith) and infix operators (e.g. "+", "*", "%")

chararrays should be created using numpy.char.array or
numpy.char.asarray, rather than this constructor directly.

This constructor creates the array, using buffer (with offset
and strides) if it is not None. If buffer is None, then
constructs a new array with strides in “C order”, unless both
len(shape) >= 2 and order='Fortran', in which case strides
is in “Fortran order”.

	Parameters:	shape : tuple

Shape of the array.

itemsize : int, optional

Length of each array element, in number of characters. Default is 1.

unicode : bool, optional

Are the array elements of type unicode (True) or string (False).
Default is False.

buffer : int, optional

Memory address of the start of the array data. Default is None,
in which case a new array is created.

offset : int, optional

Fixed stride displacement from the beginning of an axis?
Default is 0. Needs to be >=0.

strides : array_like of ints, optional

Strides for the array (see ndarray.strides for full description).
Default is None.

order : {‘C’, ‘F’}, optional

The order in which the array data is stored in memory: ‘C’ ->
“row major” order (the default), ‘F’ -> “column major”
(Fortran) order.

Examples

>>> charar = np.chararray((3, 3))
>>> charar[:] = 'a'
>>> charar
chararray([['a', 'a', 'a'],
 ['a', 'a', 'a'],
 ['a', 'a', 'a']],
 dtype='|S1')

>>> charar = np.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray([['abc', 'abc', 'abc'],
 ['abc', 'abc', 'abc'],
 ['abc', 'abc', 'abc']],
 dtype='|S5')

Attributes

	T
	Same as self.transpose(), except that self is returned if self.ndim < 2.

	base
	Base object if memory is from some other object.

	ctypes
	An object to simplify the interaction of the array with the ctypes module.

	data
	Python buffer object pointing to the start of the array’s data.

	dtype
	Data-type of the array’s elements.

	flags
	Information about the memory layout of the array.

	flat
	A 1-D iterator over the array.

	imag
	The imaginary part of the array.

	itemsize
	Length of one array element in bytes.

	nbytes
	Total bytes consumed by the elements of the array.

	ndim
	Number of array dimensions.

	real
	The real part of the array.

	shape
	Tuple of array dimensions.

	size
	Number of elements in the array.

	strides
	Tuple of bytes to step in each dimension when traversing an array.

Methods

	astype(dtype[,order,casting,subok,copy])
	Copy of the array, cast to a specified type.

	copy([order])
	Return a copy of the array.

	count(sub[,start,end])
	Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

	decode([encoding,errors])
	Calls str.decode element-wise.

	dump(file)
	Dump a pickle of the array to the specified file.

	dumps()
	Returns the pickle of the array as a string.

	encode([encoding,errors])
	Calls str.encode element-wise.

	endswith(suffix[,start,end])
	Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

	expandtabs([tabsize])
	Return a copy of each string element where all tab characters are replaced by one or more spaces.

	fill(value)
	Fill the array with a scalar value.

	find(sub[,start,end])
	For each element, return the lowest index in the string where substring sub is found.

	flatten([order])
	Return a copy of the array collapsed into one dimension.

	getfield(dtype[,offset])
	Returns a field of the given array as a certain type.

	index(sub[,start,end])
	Like find, but raises ValueError when the substring is not found.

	isalnum()
	Returns true for each element if all characters in the string are alphanumeric and there is at least one character, false otherwise.

	isalpha()
	Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise.

	isdecimal()
	For each element in self, return True if there are only decimal characters in the element.

	isdigit()
	Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise.

	islower()
	Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise.

	isnumeric()
	For each element in self, return True if there are only numeric characters in the element.

	isspace()
	Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise.

	istitle()
	Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise.

	isupper()
	Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise.

	item(*args)
	Copy an element of an array to a standard Python scalar and return it.

	join(seq)
	Return a string which is the concatenation of the strings in the sequence seq.

	ljust(width[,fillchar])
	Return an array with the elements of self left-justified in a string of length width.

	lower()
	Return an array with the elements of self converted to lowercase.

	lstrip([chars])
	For each element in self, return a copy with the leading characters removed.

	nonzero()
	Return the indices of the elements that are non-zero.

	put(indices,values[,mode])
	Set a.flat[n] = values[n] for all n in indices.

	ravel([order])
	Return a flattened array.

	repeat(repeats[,axis])
	Repeat elements of an array.

	replace(old,new[,count])
	For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

	reshape(shape[,order])
	Returns an array containing the same data with a new shape.

	resize(new_shape[,refcheck])
	Change shape and size of array in-place.

	rfind(sub[,start,end])
	For each element in self, return the highest index in the string where substring sub is found, such that sub is contained within [start, end].

	rindex(sub[,start,end])
	Like rfind, but raises ValueError when the substring sub is not found.

	rjust(width[,fillchar])
	Return an array with the elements of self right-justified in a string of length width.

	rsplit([sep,maxsplit])
	For each element in self, return a list of the words in the string, using sep as the delimiter string.

	rstrip([chars])
	For each element in self, return a copy with the trailing characters removed.

	searchsorted(v[,side,sorter])
	Find indices where elements of v should be inserted in a to maintain order.

	setfield(val,dtype[,offset])
	Put a value into a specified place in a field defined by a data-type.

	setflags([write,align,uic])
	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

	sort([axis,kind,order])
	Sort an array, in-place.

	split([sep,maxsplit])
	For each element in self, return a list of the words in the string, using sep as the delimiter string.

	splitlines([keepends])
	For each element in self, return a list of the lines in the element, breaking at line boundaries.

	squeeze([axis])
	Remove single-dimensional entries from the shape of a.

	startswith(prefix[,start,end])
	Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

	strip([chars])
	For each element in self, return a copy with the leading and trailing characters removed.

	swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	swapcase()
	For each element in self, return a copy of the string with uppercase characters converted to lowercase and vice versa.

	take(indices[,axis,out,mode])
	Return an array formed from the elements of a at the given indices.

	title()
	For each element in self, return a titlecased version of the string: words start with uppercase characters, all remaining cased characters are lowercase.

	tofile(fid[,sep,format])
	Write array to a file as text or binary (default).

	tolist()
	Return the array as a (possibly nested) list.

	tostring([order])
	Construct Python bytes containing the raw data bytes in the array.

	translate(table[,deletechars])
	For each element in self, return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table.

	transpose(*axes)
	Returns a view of the array with axes transposed.

	upper()
	Return an array with the elements of self converted to uppercase.

	view([dtype,type])
	New view of array with the same data.

	zfill(width)
	Return the numeric string left-filled with zeros in a string of length width.

	argsort
	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.T

	
chararray.T

	Same as self.transpose(), except that self is returned if
self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.base

	
chararray.base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.ctypes

	
chararray.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters:	None

	Returns:	c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.data

	
chararray.data

	Python buffer object pointing to the start of the array’s data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.dtype

	
chararray.dtype

	Data-type of the array’s elements.

	Parameters:	None

	Returns:	d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.flags

	
chararray.flags

	Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

	C_CONTIGUOUS (C)
	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)
	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)
	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)
	The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

	ALIGNED (A)
	The data and all elements are aligned appropriately for the hardware.

	UPDATEIFCOPY (U)
	This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

	FNC
	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC
	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)
	ALIGNED and WRITEABLE.

	CARRAY (CA)
	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)
	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.flat

	
chararray.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.imag

	
chararray.imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.itemsize

	
chararray.itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.nbytes

	
chararray.nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.ndim

	
chararray.ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.real

	
chararray.real

	The real part of the array.

See also

	numpy.real

	equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.shape

	
chararray.shape

	Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.size

	
chararray.size

	Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.strides

	
chararray.strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.astype

	
chararray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	Parameters:	dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	Returns:	arr_t : ndarray

Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input paramter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

	Raises:	ComplexWarning

When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in ‘safe’ casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.copy

	
chararray.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.count

	
chararray.count(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2028]

	Returns an array with the number of non-overlapping occurrences of
substring sub in the range [start, end].

See also

char.count

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.decode

	
chararray.decode(encoding=None, errors=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2041]

	Calls str.decode element-wise.

See also

char.decode

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.dump

	
chararray.dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	Parameters:	file : str

A string naming the dump file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.dumps

	
chararray.dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

	Parameters:	None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.encode

	
chararray.encode(encoding=None, errors=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2052]

	Calls str.encode element-wise.

See also

char.encode

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.endswith

	
chararray.endswith(suffix, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2063]

	Returns a boolean array which is True where the string element
in self ends with suffix, otherwise False.

See also

char.endswith

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.expandtabs

	
chararray.expandtabs(tabsize=8)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2075]

	Return a copy of each string element where all tab characters are
replaced by one or more spaces.

See also

char.expandtabs

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.fill

	
chararray.fill(value)

	Fill the array with a scalar value.

	Parameters:	value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.find

	
chararray.find(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2087]

	For each element, return the lowest index in the string where
substring sub is found.

See also

char.find

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.flatten

	
chararray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.getfield

	
chararray.getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

	Parameters:	dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.index

	
chararray.index(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2099]

	Like find, but raises ValueError when the substring is not found.

See also

char.index

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.isalnum

	
chararray.isalnum()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2110]

	Returns true for each element if all characters in the string
are alphanumeric and there is at least one character, false
otherwise.

See also

char.isalnum

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.isalpha

	
chararray.isalpha()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2123]

	Returns true for each element if all characters in the string
are alphabetic and there is at least one character, false
otherwise.

See also

char.isalpha

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.isdecimal

	
chararray.isdecimal()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2463]

	For each element in self, return True if there are only
decimal characters in the element.

See also

char.isdecimal

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.isdigit

	
chararray.isdigit()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2136]

	Returns true for each element if all characters in the string are
digits and there is at least one character, false otherwise.

See also

char.isdigit

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.islower

	
chararray.islower()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2148]

	Returns true for each element if all cased characters in the
string are lowercase and there is at least one cased character,
false otherwise.

See also

char.islower

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.isnumeric

	
chararray.isnumeric()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2451]

	For each element in self, return True if there are only
numeric characters in the element.

See also

char.isnumeric

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.isspace

	
chararray.isspace()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2161]

	Returns true for each element if there are only whitespace
characters in the string and there is at least one character,
false otherwise.

See also

char.isspace

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.istitle

	
chararray.istitle()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2174]

	Returns true for each element if the element is a titlecased
string and there is at least one character, false otherwise.

See also

char.istitle

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.isupper

	
chararray.isupper()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2186]

	Returns true for each element if all cased characters in the
string are uppercase and there is at least one character, false
otherwise.

See also

char.isupper

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.item

	
chararray.item(*args)

	Copy an element of an array to a standard Python scalar and return it.

	Parameters:	*args : Arguments (variable number and type)

	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	Returns:	z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.join

	
chararray.join(seq)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2199]

	Return a string which is the concatenation of the strings in the
sequence seq.

See also

char.join

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.ljust

	
chararray.ljust(width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2211]

	Return an array with the elements of self left-justified in a
string of length width.

See also

char.ljust

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.lower

	
chararray.lower()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2223]

	Return an array with the elements of self converted to
lowercase.

See also

char.lower

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.lstrip

	
chararray.lstrip(chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2235]

	For each element in self, return a copy with the leading characters
removed.

See also

char.lstrip

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.nonzero

	
chararray.nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

	numpy.nonzero

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.put

	
chararray.put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

	numpy.put

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.ravel

	
chararray.ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

	numpy.ravel

	equivalent function

	ndarray.flat

	a flat iterator on the array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.repeat

	
chararray.repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.replace

	
chararray.replace(old, new, count=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2257]

	For each element in self, return a copy of the string with all
occurrences of substring old replaced by new.

See also

char.replace

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.reshape

	
chararray.reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

	numpy.reshape

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.resize

	
chararray.resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

	Parameters:	new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

	Returns:	None

	Raises:	ValueError

If a does not own its own data or references or views to it exist,
and the data memory must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See also

	resize

	Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.rfind

	
chararray.rfind(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2269]

	For each element in self, return the highest index in the string
where substring sub is found, such that sub is contained
within [start, end].

See also

char.rfind

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.rindex

	
chararray.rindex(sub, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2282]

	Like rfind, but raises ValueError when the substring sub is
not found.

See also

char.rindex

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.rjust

	
chararray.rjust(width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2294]

	Return an array with the elements of self
right-justified in a string of length width.

See also

char.rjust

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.rsplit

	
chararray.rsplit(sep=None, maxsplit=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2316]

	For each element in self, return a list of the words in
the string, using sep as the delimiter string.

See also

char.rsplit

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.rstrip

	
chararray.rstrip(chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2328]

	For each element in self, return a copy with the trailing
characters removed.

See also

char.rstrip

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.searchsorted

	
chararray.searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

	numpy.searchsorted

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.setfield

	
chararray.setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset
bytes into the field.

	Parameters:	val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

	Returns:	None

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
 [1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
 [1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.setflags

	
chararray.setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)

	Parameters:	write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.sort

	
chararray.sort(axis=-1, kind='quicksort', order=None)

	Sort an array, in-place.

	Parameters:	axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.sort

	Return a sorted copy of an array.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in sorted array.

	partition

	Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.split

	
chararray.split(sep=None, maxsplit=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2340]

	For each element in self, return a list of the words in the
string, using sep as the delimiter string.

See also

char.split

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.splitlines

	
chararray.splitlines(keepends=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2352]

	For each element in self, return a list of the lines in the
element, breaking at line boundaries.

See also

char.splitlines

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.squeeze

	
chararray.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.startswith

	
chararray.startswith(prefix, start=0, end=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2364]

	Returns a boolean array which is True where the string element
in self starts with prefix, otherwise False.

See also

char.startswith

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.strip

	
chararray.strip(chars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2376]

	For each element in self, return a copy with the leading and
trailing characters removed.

See also

char.strip

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.swapaxes

	
chararray.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.swapcase

	
chararray.swapcase()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2388]

	For each element in self, return a copy of the string with
uppercase characters converted to lowercase and vice versa.

See also

char.swapcase

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.take

	
chararray.take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

	numpy.take

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.title

	
chararray.title()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2400]

	For each element in self, return a titlecased version of the
string: words start with uppercase characters, all remaining cased
characters are lowercase.

See also

char.title

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.tofile

	
chararray.tofile(fid, sep="", format="%s")

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	Parameters:	fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

format : str

Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.tolist

	
chararray.tolist()

	Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.

	Parameters:	none

	Returns:	y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.tostring

	
chararray.tostring(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

	Parameters:	order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns:	s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.translate

	
chararray.translate(table, deletechars=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2413]

	For each element in self, return a copy of the string where
all characters occurring in the optional argument
deletechars are removed, and the remaining characters have
been mapped through the given translation table.

See also

char.translate

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.transpose

	
chararray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.upper

	
chararray.upper()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2427]

	Return an array with the elements of self converted to
uppercase.

See also

char.upper

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.view

	
chararray.view(dtype=None, type=None)

	New view of array with the same data.

	Parameters:	dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	String operations

 	numpy.core.defchararray.chararray

numpy.core.defchararray.chararray.zfill

	
chararray.zfill(width)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2439]

	Return the numeric string left-filled with zeros in a string of
length width.

See also

char.zfill

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

C-Types Foreign Function Interface (numpy.ctypeslib)

	
numpy.ctypeslib.as_array(obj, shape=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ctypeslib.py#L394]

	Create a numpy array from a ctypes array or a ctypes POINTER.
The numpy array shares the memory with the ctypes object.

The size parameter must be given if converting from a ctypes POINTER.
The size parameter is ignored if converting from a ctypes array

	
numpy.ctypeslib.as_ctypes(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ctypeslib.py#L410]

	Create and return a ctypes object from a numpy array. Actually
anything that exposes the __array_interface__ is accepted.

	
numpy.ctypeslib.ctypes_load_library(*args, **kwds)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\utils.py#L93]

	ctypes_load_library is deprecated, use load_library instead!

	
numpy.ctypeslib.load_library(libname, loader_path)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ctypeslib.py#L91]

	

	
numpy.ctypeslib.ndpointer(dtype=None, ndim=None, shape=None, flags=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ctypeslib.py#L192]

	Array-checking restype/argtypes.

An ndpointer instance is used to describe an ndarray in restypes
and argtypes specifications. This approach is more flexible than
using, for example, POINTER(c_double), since several restrictions
can be specified, which are verified upon calling the ctypes function.
These include data type, number of dimensions, shape and flags. If a
given array does not satisfy the specified restrictions,
a TypeError is raised.

	Parameters:	dtype : data-type, optional

Array data-type.

ndim : int, optional

Number of array dimensions.

shape : tuple of ints, optional

Array shape.

flags : str or tuple of str

Array flags; may be one or more of:

	C_CONTIGUOUS / C / CONTIGUOUS

	F_CONTIGUOUS / F / FORTRAN

	OWNDATA / O

	WRITEABLE / W

	ALIGNED / A

	UPDATEIFCOPY / U

	Returns:	klass : ndpointer type object

A type object, which is an _ndtpr instance containing
dtype, ndim, shape and flags information.

	Raises:	TypeError

If a given array does not satisfy the specified restrictions.

Examples

>>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64,
... ndim=1,
... flags='C_CONTIGUOUS')]
...
>>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
...

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Datetime Support Functions

Business Day Functions

	busdaycalendar
	A business day calendar object that efficiently stores information defining valid days for the busday family of functions.

	is_busday(dates[,weekmask,holidays,...])
	Calculates which of the given dates are valid days, and which are not.

	busday_offset(dates,offsets[,roll,...])
	First adjusts the date to fall on a valid day according to the roll rule, then applies offsets to the given dates counted in valid days.

	busday_count(begindates,enddates[,...])
	Counts the number of valid days between begindates and enddates, not including the day of enddates.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Datetime Support Functions

numpy.busdaycalendar

	
class numpy.busdaycalendar[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	A business day calendar object that efficiently stores information
defining valid days for the busday family of functions.

The default valid days are Monday through Friday (“business days”).
A busdaycalendar object can be specified with any set of weekly
valid days, plus an optional “holiday” dates that always will be invalid.

Once a busdaycalendar object is created, the weekmask and holidays
cannot be modified.

New in version 1.7.0.

	Parameters:	weekmask : str or array_like of bool, optional

A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like ‘1111100’; or a string
like “Mon Tue Wed Thu Fri”, made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays : array_like of datetime64[D], optional

An array of dates to consider as invalid dates, no matter which
weekday they fall upon. Holiday dates may be specified in any
order, and NaT (not-a-time) dates are ignored. This list is
saved in a normalized form that is suited for fast calculations
of valid days.

	Returns:	out : busdaycalendar

A business day calendar object containing the specified
weekmask and holidays values.

See also

	is_busday

	Returns a boolean array indicating valid days.

	busday_offset

	Applies an offset counted in valid days.

	busday_count

	Counts how many valid days are in a half-open date range.

Examples

>>> # Some important days in July
... bdd = np.busdaycalendar(
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
>>> # Default is Monday to Friday weekdays
... bdd.weekmask
array([True, True, True, True, True, False, False], dtype='bool')
>>> # Any holidays already on the weekend are removed
... bdd.holidays
array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')

Attributes

	weekmask
	A copy of the seven-element boolean mask indicating valid days.

	holidays
	A copy of the holiday array indicating additional invalid days.

	Note: once a busdaycalendar object is created, you cannot modify the
	

	weekmask or holidays. The attributes return copies of internal data.
	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Datetime Support Functions

 	numpy.busdaycalendar

numpy.busdaycalendar.weekmask

	
busdaycalendar.weekmask

	A copy of the seven-element boolean mask indicating valid days.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Datetime Support Functions

 	numpy.busdaycalendar

numpy.busdaycalendar.holidays

	
busdaycalendar.holidays

	A copy of the holiday array indicating additional invalid days.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Datetime Support Functions

numpy.is_busday

	
numpy.is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None)

	Calculates which of the given dates are valid days, and which are not.

New in version 1.7.0.

	Parameters:	dates : array_like of datetime64[D]

The array of dates to process.

weekmask : str or array_like of bool, optional

A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like ‘1111100’; or a string
like “Mon Tue Wed Thu Fri”, made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays : array_like of datetime64[D], optional

An array of dates to consider as invalid dates. They may be
specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for
fast calculations of valid days.

busdaycal : busdaycalendar, optional

A busdaycalendar object which specifies the valid days. If this
parameter is provided, neither weekmask nor holidays may be
provided.

out : array of bool, optional

If provided, this array is filled with the result.

	Returns:	out : array of bool

An array with the same shape as dates, containing True for
each valid day, and False for each invalid day.

See also

	busdaycalendar

	An object that specifies a custom set of valid days.

	busday_offset

	Applies an offset counted in valid days.

	busday_count

	Counts how many valid days are in a half-open date range.

Examples

>>> # The weekdays are Friday, Saturday, and Monday
... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
array([False, False, True], dtype='bool')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Datetime Support Functions

numpy.busday_offset

	
numpy.busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None)

	First adjusts the date to fall on a valid day according to
the roll rule, then applies offsets to the given dates
counted in valid days.

New in version 1.7.0.

	Parameters:	dates : array_like of datetime64[D]

The array of dates to process.

offsets : array_like of int

The array of offsets, which is broadcast with dates.

roll : {‘raise’, ‘nat’, ‘forward’, ‘following’, ‘backward’, ‘preceding’, ‘modifiedfollowing’, ‘modifiedpreceding’}, optional

How to treat dates that do not fall on a valid day. The default
is ‘raise’.

	‘raise’ means to raise an exception for an invalid day.

	‘nat’ means to return a NaT (not-a-time) for an invalid day.

	‘forward’ and ‘following’ mean to take the first valid day
later in time.

	‘backward’ and ‘preceding’ mean to take the first valid day
earlier in time.

	‘modifiedfollowing’ means to take the first valid day
later in time unless it is across a Month boundary, in which
case to take the first valid day earlier in time.

	‘modifiedpreceding’ means to take the first valid day
earlier in time unless it is across a Month boundary, in which
case to take the first valid day later in time.

weekmask : str or array_like of bool, optional

A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like ‘1111100’; or a string
like “Mon Tue Wed Thu Fri”, made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays : array_like of datetime64[D], optional

An array of dates to consider as invalid dates. They may be
specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for
fast calculations of valid days.

busdaycal : busdaycalendar, optional

A busdaycalendar object which specifies the valid days. If this
parameter is provided, neither weekmask nor holidays may be
provided.

out : array of datetime64[D], optional

If provided, this array is filled with the result.

	Returns:	out : array of datetime64[D]

An array with a shape from broadcasting dates and offsets
together, containing the dates with offsets applied.

See also

	busdaycalendar

	An object that specifies a custom set of valid days.

	is_busday

	Returns a boolean array indicating valid days.

	busday_count

	Counts how many valid days are in a half-open date range.

Examples

>>> # First business day in October 2011 (not accounting for holidays)
... np.busday_offset('2011-10', 0, roll='forward')
numpy.datetime64('2011-10-03','D')
>>> # Last business day in February 2012 (not accounting for holidays)
... np.busday_offset('2012-03', -1, roll='forward')
numpy.datetime64('2012-02-29','D')
>>> # Third Wednesday in January 2011
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
numpy.datetime64('2011-01-19','D')
>>> # 2012 Mother's Day in Canada and the U.S.
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
numpy.datetime64('2012-05-13','D')

>>> # First business day on or after a date
... np.busday_offset('2011-03-20', 0, roll='forward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
numpy.datetime64('2011-03-22','D')
>>> # First business day after a date
... np.busday_offset('2011-03-20', 1, roll='backward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
numpy.datetime64('2011-03-23','D')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Datetime Support Functions

numpy.busday_count

	
numpy.busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)

	Counts the number of valid days between begindates and
enddates, not including the day of enddates.

If enddates specifies a date value that is earlier than the
corresponding begindates date value, the count will be negative.

New in version 1.7.0.

	Parameters:	begindates : array_like of datetime64[D]

The array of the first dates for counting.

enddates : array_like of datetime64[D]

The array of the end dates for counting, which are excluded
from the count themselves.

weekmask : str or array_like of bool, optional

A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like ‘1111100’; or a string
like “Mon Tue Wed Thu Fri”, made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays : array_like of datetime64[D], optional

An array of dates to consider as invalid dates. They may be
specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for
fast calculations of valid days.

busdaycal : busdaycalendar, optional

A busdaycalendar object which specifies the valid days. If this
parameter is provided, neither weekmask nor holidays may be
provided.

out : array of int, optional

If provided, this array is filled with the result.

	Returns:	out : array of int

An array with a shape from broadcasting begindates and enddates
together, containing the number of valid days between
the begin and end dates.

See also

	busdaycalendar

	An object that specifies a custom set of valid days.

	is_busday

	Returns a boolean array indicating valid days.

	busday_offset

	Applies an offset counted in valid days.

Examples

>>> # Number of weekdays in January 2011
... np.busday_count('2011-01', '2011-02')
21
>>> # Number of weekdays in 2011
... np.busday_count('2011', '2012')
260
>>> # Number of Saturdays in 2011
... np.busday_count('2011', '2012', weekmask='Sat')
53

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Data type routines

	can_cast(from,totype,casting=)
	Returns True if cast between data types can occur according to the casting rule.

	promote_types(type1,type2)
	Returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be safely cast.

	min_scalar_type(a)
	For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value.

	result_type(*arrays_and_dtypes)
	Returns the type that results from applying the NumPy type promotion rules to the arguments.

	common_type(*arrays)
	Return a scalar type which is common to the input arrays.

	obj2sctype(rep[,default])
	Return the scalar dtype or NumPy equivalent of Python type of an object.

Creating data types

	dtype
	Create a data type object.

	format_parser(formats,names,titles[,...])
	Class to convert formats, names, titles description to a dtype.

Data type information

	finfo
	Machine limits for floating point types.

	iinfo(type)
	Machine limits for integer types.

	MachAr([float_conv,int_conv,...])
	Diagnosing machine parameters.

Data type testing

	issctype(rep)
	Determines whether the given object represents a scalar data-type.

	issubdtype(arg1,arg2)
	Returns True if first argument is a typecode lower/equal in type hierarchy.

	issubsctype(arg1,arg2)
	Determine if the first argument is a subclass of the second argument.

	issubclass_(arg1,arg2)
	Determine if a class is a subclass of a second class.

	find_common_type(array_types,scalar_types)
	Determine common type following standard coercion rules.

Miscellaneous

	typename(char)
	Return a description for the given data type code.

	sctype2char(sctype)
	Return the string representation of a scalar dtype.

	mintypecode(typechars[,typeset,default])
	Return the character for the minimum-size type to which given types can be safely cast.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.can_cast

	
numpy.can_cast(from, totype, casting = 'safe')

	Returns True if cast between data types can occur according to the
casting rule. If from is a scalar or array scalar, also returns
True if the scalar value can be cast without overflow or truncation
to an integer.

	Parameters:	from : dtype, dtype specifier, scalar, or array

Data type, scalar, or array to cast from.

totype : dtype or dtype specifier

Data type to cast to.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

	Returns:	out : bool

True if cast can occur according to the casting rule.

See also

dtype, result_type

Notes

Starting in NumPy 1.9, can_cast function now returns False in ‘safe’
casting mode for integer/float dtype and string dtype if the string dtype
length is not long enough to store the max integer/float value converted
to a string. Previously can_cast in ‘safe’ mode returned True for
integer/float dtype and a string dtype of any length.

Examples

Basic examples

>>> np.can_cast(np.int32, np.int64)
True
>>> np.can_cast(np.float64, np.complex)
True
>>> np.can_cast(np.complex, np.float)
False

>>> np.can_cast('i8', 'f8')
True
>>> np.can_cast('i8', 'f4')
False
>>> np.can_cast('i4', 'S4')
False

Casting scalars

>>> np.can_cast(100, 'i1')
True
>>> np.can_cast(150, 'i1')
False
>>> np.can_cast(150, 'u1')
True

>>> np.can_cast(3.5e100, np.float32)
False
>>> np.can_cast(1000.0, np.float32)
True

Array scalar checks the value, array does not

>>> np.can_cast(np.array(1000.0), np.float32)
True
>>> np.can_cast(np.array([1000.0]), np.float32)
False

Using the casting rules

>>> np.can_cast('i8', 'i8', 'no')
True
>>> np.can_cast('<i8', '>i8', 'no')
False

>>> np.can_cast('<i8', '>i8', 'equiv')
True
>>> np.can_cast('<i4', '>i8', 'equiv')
False

>>> np.can_cast('<i4', '>i8', 'safe')
True
>>> np.can_cast('<i8', '>i4', 'safe')
False

>>> np.can_cast('<i8', '>i4', 'same_kind')
True
>>> np.can_cast('<i8', '>u4', 'same_kind')
False

>>> np.can_cast('<i8', '>u4', 'unsafe')
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.promote_types

	
numpy.promote_types(type1, type2)

	Returns the data type with the smallest size and smallest scalar
kind to which both type1 and type2 may be safely cast.
The returned data type is always in native byte order.

This function is symmetric and associative.

	Parameters:	type1 : dtype or dtype specifier

First data type.

type2 : dtype or dtype specifier

Second data type.

	Returns:	out : dtype

The promoted data type.

See also

result_type, dtype, can_cast

Notes

New in version 1.6.0.

Starting in NumPy 1.9, promote_types function now returns a valid string
length when given an integer or float dtype as one argument and a string
dtype as another argument. Previously it always returned the input string
dtype, even if it wasn’t long enough to store the max integer/float value
converted to a string.

Examples

>>> np.promote_types('f4', 'f8')
dtype('float64')

>>> np.promote_types('i8', 'f4')
dtype('float64')

>>> np.promote_types('>i8', '<c8')
dtype('complex128')

>>> np.promote_types('i4', 'S8')
dtype('S11')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.min_scalar_type

	
numpy.min_scalar_type(a)

	For scalar a, returns the data type with the smallest size
and smallest scalar kind which can hold its value. For non-scalar
array a, returns the vector’s dtype unmodified.

Floating point values are not demoted to integers,
and complex values are not demoted to floats.

	Parameters:	a : scalar or array_like

The value whose minimal data type is to be found.

	Returns:	out : dtype

The minimal data type.

See also

result_type, promote_types, dtype, can_cast

Notes

New in version 1.6.0.

Examples

>>> np.min_scalar_type(10)
dtype('uint8')

>>> np.min_scalar_type(-260)
dtype('int16')

>>> np.min_scalar_type(3.1)
dtype('float16')

>>> np.min_scalar_type(1e50)
dtype('float64')

>>> np.min_scalar_type(np.arange(4,dtype='f8'))
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.result_type

	
numpy.result_type(*arrays_and_dtypes)

	Returns the type that results from applying the NumPy
type promotion rules to the arguments.

Type promotion in NumPy works similarly to the rules in languages
like C++, with some slight differences. When both scalars and
arrays are used, the array’s type takes precedence and the actual value
of the scalar is taken into account.

For example, calculating 3*a, where a is an array of 32-bit floats,
intuitively should result in a 32-bit float output. If the 3 is a
32-bit integer, the NumPy rules indicate it can’t convert losslessly
into a 32-bit float, so a 64-bit float should be the result type.
By examining the value of the constant, ‘3’, we see that it fits in
an 8-bit integer, which can be cast losslessly into the 32-bit float.

	Parameters:	arrays_and_dtypes : list of arrays and dtypes

The operands of some operation whose result type is needed.

	Returns:	out : dtype

The result type.

See also

dtype, promote_types, min_scalar_type, can_cast

Notes

New in version 1.6.0.

The specific algorithm used is as follows.

Categories are determined by first checking which of boolean,
integer (int/uint), or floating point (float/complex) the maximum
kind of all the arrays and the scalars are.

If there are only scalars or the maximum category of the scalars
is higher than the maximum category of the arrays,
the data types are combined with promote_types
to produce the return value.

Otherwise, min_scalar_type is called on each array, and
the resulting data types are all combined with promote_types
to produce the return value.

The set of int values is not a subset of the uint values for types
with the same number of bits, something not reflected in
min_scalar_type, but handled as a special case in result_type.

Examples

>>> np.result_type(3, np.arange(7, dtype='i1'))
dtype('int8')

>>> np.result_type('i4', 'c8')
dtype('complex128')

>>> np.result_type(3.0, -2)
dtype('float64')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.common_type

	
numpy.common_type(*arrays)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L553]

	Return a scalar type which is common to the input arrays.

The return type will always be an inexact (i.e. floating point) scalar
type, even if all the arrays are integer arrays. If one of the inputs is
an integer array, the minimum precision type that is returned is a
64-bit floating point dtype.

All input arrays can be safely cast to the returned dtype without loss
of information.

	Parameters:	array1, array2, ... : ndarrays

Input arrays.

	Returns:	out : data type code

Data type code.

See also

dtype, mintypecode

Examples

>>> np.common_type(np.arange(2, dtype=np.float32))
<type 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<type 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<type 'numpy.complex128'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.obj2sctype

	
numpy.obj2sctype(rep, default=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numerictypes.py#L611]

	Return the scalar dtype or NumPy equivalent of Python type of an object.

	Parameters:	rep : any

The object of which the type is returned.

default : any, optional

If given, this is returned for objects whose types can not be
determined. If not given, None is returned for those objects.

	Returns:	dtype : dtype or Python type

The data type of rep.

See also

sctype2char, issctype, issubsctype, issubdtype, maximum_sctype

Examples

>>> np.obj2sctype(np.int32)
<type 'numpy.int32'>
>>> np.obj2sctype(np.array([1., 2.]))
<type 'numpy.float64'>
>>> np.obj2sctype(np.array([1.j]))
<type 'numpy.complex128'>

>>> np.obj2sctype(dict)
<type 'numpy.object_'>
>>> np.obj2sctype('string')
<type 'numpy.string_'>

>>> np.obj2sctype(1, default=list)
<type 'list'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.dtype

	
class numpy.dtype[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	Create a data type object.

A numpy array is homogeneous, and contains elements described by a
dtype object. A dtype object can be constructed from different
combinations of fundamental numeric types.

	Parameters:	obj

Object to be converted to a data type object.

align : bool, optional

Add padding to the fields to match what a C compiler would output
for a similar C-struct. Can be True only if obj is a dictionary
or a comma-separated string. If a struct dtype is being created,
this also sets a sticky alignment flag isalignedstruct.

copy : bool, optional

Make a new copy of the data-type object. If False, the result
may just be a reference to a built-in data-type object.

See also

result_type

Examples

Using array-scalar type:

>>> np.dtype(np.int16)
dtype('int16')

Record, one field name ‘f1’, containing int16:

>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])

Record, one field named ‘f1’, in itself containing a record with one field:

>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])

Record, two fields: the first field contains an unsigned int, the
second an int32:

>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])

Using array-protocol type strings:

>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples. int is a fixed type, 3 the field’s shape. void
is a flexible type, here of size 10:

>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])

Subdivide int16 into 2 int8‘s, called x and y. 0 and 1 are
the offsets in bytes:

>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])

Offsets in bytes, here 0 and 25:

>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])

Attributes

	base
	

	descr
	Array-interface compliant full description of the data-type.

	fields
	Dictionary of named fields defined for this data type, or None.

	hasobject
	Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

	isalignedstruct
	Boolean indicating whether the dtype is a struct which maintains field alignment.

	isbuiltin
	Integer indicating how this dtype relates to the built-in dtypes.

	isnative
	Boolean indicating whether the byte order of this dtype is native to the platform.

	metadata
	

	name
	A bit-width name for this data-type.

	names
	Ordered list of field names, or None if there are no fields.

	shape
	Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

	str
	The array-protocol typestring of this data-type object.

	subdtype
	Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

Methods

	newbyteorder([new_order])
	Return a new dtype with a different byte order.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.base

	
dtype.base

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.descr

	
dtype.descr

	Array-interface compliant full description of the data-type.

The format is that required by the ‘descr’ key in the
__array_interface__ attribute.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.fields

	
dtype.fields

	Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields.
Each entry in the dictionary is a tuple fully describing the field:

(dtype, offset[, title])

If present, the optional title can be any object (if it is a string
or unicode then it will also be a key in the fields dictionary,
otherwise it’s meta-data). Notice also that the first two elements
of the tuple can be passed directly as arguments to the ndarray.getfield
and ndarray.setfield methods.

See also

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print dt.fields
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.hasobject

	
dtype.hasobject

	Boolean indicating whether this dtype contains any reference-counted
objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing
the Python object is the memory address of that object (a pointer).
Special handling may be required, and this attribute is useful for
distinguishing data types that may contain arbitrary Python objects
and data-types that won’t.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.isalignedstruct

	
dtype.isalignedstruct

	Boolean indicating whether the dtype is a struct which maintains
field alignment. This flag is sticky, so when combining multiple
structs together, it is preserved and produces new dtypes which
are also aligned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.isbuiltin

	
dtype.isbuiltin

	Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

	0
	if this is a structured array type, with fields

	1
	if this is a dtype compiled into numpy (such as ints, floats etc)

	2
	if the dtype is for a user-defined numpy type
A user-defined type uses the numpy C-API machinery to extend
numpy to handle a new array type. See
User-defined data-types in the Numpy manual.

Examples

>>> dt = np.dtype('i2')
>>> dt.isbuiltin
1
>>> dt = np.dtype('f8')
>>> dt.isbuiltin
1
>>> dt = np.dtype([('field1', 'f8')])
>>> dt.isbuiltin
0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.isnative

	
dtype.isnative

	Boolean indicating whether the byte order of this dtype is native
to the platform.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.metadata

	
dtype.metadata

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.name

	
dtype.name

	A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.names

	
dtype.names

	Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be
used, for example, to walk through all of the named fields in offset order.

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
('name', 'grades')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.shape

	
dtype.shape

	Shape tuple of the sub-array if this data type describes a sub-array,
and () otherwise.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.str

	
dtype.str

	The array-protocol typestring of this data-type object.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.subdtype

	
dtype.subdtype

	Tuple (item_dtype, shape) if this dtype describes a sub-array, and
None otherwise.

The shape is the fixed shape of the sub-array described by this
data type, and item_dtype the data type of the array.

If a field whose dtype object has this attribute is retrieved,
then the extra dimensions implied by shape are tacked on to
the end of the retrieved array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.dtype

numpy.dtype.newbyteorder

	
dtype.newbyteorder(new_order='S')

	Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

	Parameters:	new_order : string, optional

Byte order to force; a value from the byte order
specifications below. The default value (‘S’) results in
swapping the current byte order.
new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of
new_order for these alternatives. For example, any of ‘>’
or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

	Returns:	new_dtype : dtype

New dtype object with the given change to the byte order.

Notes

Changes are also made in all fields and sub-arrays of the data type.

Examples

>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> native_dt = np.dtype(native_code+'i2')
>>> swapped_dt = np.dtype(swapped_code+'i2')
>>> native_dt.newbyteorder('S') == swapped_dt
True
>>> native_dt.newbyteorder() == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder('S')
True
>>> native_dt == swapped_dt.newbyteorder('=')
True
>>> native_dt == swapped_dt.newbyteorder('N')
True
>>> native_dt == native_dt.newbyteorder('|')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('<')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('L')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('>')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('B')
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.format_parser

	
class numpy.format_parser(formats, names, titles, aligned=False, byteorder=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\records.py#L84]

	Class to convert formats, names, titles description to a dtype.

After constructing the format_parser object, the dtype attribute is
the converted data-type:
dtype = format_parser(formats, names, titles).dtype

	Parameters:	formats : str or list of str

The format description, either specified as a string with
comma-separated format descriptions in the form 'f8, i4, a5', or
a list of format description strings in the form
['f8', 'i4', 'a5'].

names : str or list/tuple of str

The field names, either specified as a comma-separated string in the
form 'col1, col2, col3', or as a list or tuple of strings in the
form ['col1', 'col2', 'col3'].
An empty list can be used, in that case default field names
(‘f0’, ‘f1’, ...) are used.

titles : sequence

Sequence of title strings. An empty list can be used to leave titles
out.

aligned : bool, optional

If True, align the fields by padding as the C-compiler would.
Default is False.

byteorder : str, optional

If specified, all the fields will be changed to the
provided byte-order. Otherwise, the default byte-order is
used. For all available string specifiers, see dtype.newbyteorder.

See also

dtype, typename, sctype2char

Examples

>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... ['T1', 'T2', 'T3']).dtype
dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4'),
 (('T3', 'col3'), '|S5')])

names and/or titles can be empty lists. If titles is an empty list,
titles will simply not appear. If names is empty, default field names
will be used.

>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... []).dtype
dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '|S5')])
>>> np.format_parser(['f8', 'i4', 'a5'], [], []).dtype
dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', '|S5')])

Attributes

	dtype
	(dtype) The converted data-type.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.finfo

	
class numpy.finfo[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\getlimits.py#L24]

	Machine limits for floating point types.

	Parameters:	dtype : float, dtype, or instance

Kind of floating point data-type about which to get information.

See also

	MachAr

	The implementation of the tests that produce this information.

	iinfo

	The equivalent for integer data types.

Notes

For developers of NumPy: do not instantiate this at the module level.
The initial calculation of these parameters is expensive and negatively
impacts import times. These objects are cached, so calling finfo()
repeatedly inside your functions is not a problem.

Attributes

	eps
	(float) The smallest representable positive number such that 1.0 + eps != 1.0. Type of eps is an appropriate floating point type.

	epsneg
	(floating point number of the appropriate type) The smallest representable positive number such that 1.0 - epsneg != 1.0.

	iexp
	(int) The number of bits in the exponent portion of the floating point representation.

	machar
	(MachAr) The object which calculated these parameters and holds more detailed information.

	machep
	(int) The exponent that yields eps.

	max
	(floating point number of the appropriate type) The largest representable number.

	maxexp
	(int) The smallest positive power of the base (2) that causes overflow.

	min
	(floating point number of the appropriate type) The smallest representable number, typically -max.

	minexp
	(int) The most negative power of the base (2) consistent with there being no leading 0’s in the mantissa.

	negep
	(int) The exponent that yields epsneg.

	nexp
	(int) The number of bits in the exponent including its sign and bias.

	nmant
	(int) The number of bits in the mantissa.

	precision
	(int) The approximate number of decimal digits to which this kind of float is precise.

	resolution
	(floating point number of the appropriate type) The approximate decimal resolution of this type, i.e., 10**-precision.

	tiny
	(float) The smallest positive usable number. Type of tiny is an appropriate floating point type.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.iinfo

	
class numpy.iinfo(type)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\getlimits.py#L194]

	Machine limits for integer types.

	Parameters:	type : integer type, dtype, or instance

The kind of integer data type to get information about.

See also

	finfo

	The equivalent for floating point data types.

Examples

With types:

>>> ii16 = np.iinfo(np.int16)
>>> ii16.min
-32768
>>> ii16.max
32767
>>> ii32 = np.iinfo(np.int32)
>>> ii32.min
-2147483648
>>> ii32.max
2147483647

With instances:

>>> ii32 = np.iinfo(np.int32(10))
>>> ii32.min
-2147483648
>>> ii32.max
2147483647

Attributes

	min
	Minimum value of given dtype.

	max
	Maximum value of given dtype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.iinfo

numpy.iinfo.min

	
iinfo.min

	Minimum value of given dtype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

 	numpy.iinfo

numpy.iinfo.max

	
iinfo.max

	Maximum value of given dtype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.MachAr

	
class numpy.MachAr(float_conv=<type 'float'>, int_conv=<type 'int'>, float_to_float=<type 'float'>, float_to_str=<function <lambda> at 0x0000000004320438>, title='Python floating point number')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\machar.py#L17]

	Diagnosing machine parameters.

	Parameters:	float_conv : function, optional

Function that converts an integer or integer array to a float
or float array. Default is float [http://docs.python.org/dev/library/functions.html#float].

int_conv : function, optional

Function that converts a float or float array to an integer or
integer array. Default is int [http://docs.python.org/dev/library/functions.html#int].

float_to_float : function, optional

Function that converts a float array to float. Default is float [http://docs.python.org/dev/library/functions.html#float].
Note that this does not seem to do anything useful in the current
implementation.

float_to_str : function, optional

Function that converts a single float to a string. Default is
lambda v:'%24.16e' %v.

title : str, optional

Title that is printed in the string representation of MachAr.

See also

	finfo

	Machine limits for floating point types.

	iinfo

	Machine limits for integer types.

References

	[R1]	Press, Teukolsky, Vetterling and Flannery,
“Numerical Recipes in C++,” 2nd ed,
Cambridge University Press, 2002, p. 31.

Attributes

	ibeta
	(int) Radix in which numbers are represented.

	it
	(int) Number of base-ibeta digits in the floating point mantissa M.

	machep
	(int) Exponent of the smallest (most negative) power of ibeta that, added to 1.0, gives something different from 1.0

	eps
	(float) Floating-point number beta**machep (floating point precision)

	negep
	(int) Exponent of the smallest power of ibeta that, substracted from 1.0, gives something different from 1.0.

	epsneg
	(float) Floating-point number beta**negep.

	iexp
	(int) Number of bits in the exponent (including its sign and bias).

	minexp
	(int) Smallest (most negative) power of ibeta consistent with there being no leading zeros in the mantissa.

	xmin
	(float) Floating point number beta**minexp (the smallest [in magnitude] usable floating value).

	maxexp
	(int) Smallest (positive) power of ibeta that causes overflow.

	xmax
	(float) (1-epsneg) * beta**maxexp (the largest [in magnitude] usable floating value).

	irnd
	(int) In range(6), information on what kind of rounding is done in addition, and on how underflow is handled.

	ngrd
	(int) Number of ‘guard digits’ used when truncating the product of two mantissas to fit the representation.

	epsilon
	(float) Same as eps.

	tiny
	(float) Same as xmin.

	huge
	(float) Same as xmax.

	precision
	(float) - int(-log10(eps))

	resolution
	(float) - 10**(-precision)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.issctype

	
numpy.issctype(rep)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numerictypes.py#L567]

	Determines whether the given object represents a scalar data-type.

	Parameters:	rep : any

If rep is an instance of a scalar dtype, True is returned. If not,
False is returned.

	Returns:	out : bool

Boolean result of check whether rep is a scalar dtype.

See also

issubsctype, issubdtype, obj2sctype, sctype2char

Examples

>>> np.issctype(np.int32)
True
>>> np.issctype(list)
False
>>> np.issctype(1.1)
False

Strings are also a scalar type:

>>> np.issctype(np.dtype('str'))
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.issubdtype

	
numpy.issubdtype(arg1, arg2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numerictypes.py#L736]

	Returns True if first argument is a typecode lower/equal in type hierarchy.

	Parameters:	arg1, arg2 : dtype_like

dtype or string representing a typecode.

	Returns:	out : bool

See also

issubsctype, issubclass_

	numpy.core.numerictypes

	Overview of numpy type hierarchy.

Examples

>>> np.issubdtype('S1', str)
True
>>> np.issubdtype(np.float64, np.float32)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.issubsctype

	
numpy.issubsctype(arg1, arg2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numerictypes.py#L706]

	Determine if the first argument is a subclass of the second argument.

	Parameters:	arg1, arg2 : dtype or dtype specifier

Data-types.

	Returns:	out : bool

The result.

See also

issctype, issubdtype, obj2sctype

Examples

>>> np.issubsctype('S8', str)
True
>>> np.issubsctype(np.array([1]), np.int)
True
>>> np.issubsctype(np.array([1]), np.float)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.issubclass

	
numpy.issubclass_(arg1, arg2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numerictypes.py#L668]

	Determine if a class is a subclass of a second class.

issubclass_ is equivalent to the Python built-in issubclass,
except that it returns False instead of raising a TypeError is one
of the arguments is not a class.

	Parameters:	arg1 : class

Input class. True is returned if arg1 is a subclass of arg2.

arg2 : class or tuple of classes.

Input class. If a tuple of classes, True is returned if arg1 is a
subclass of any of the tuple elements.

	Returns:	out : bool

Whether arg1 is a subclass of arg2 or not.

See also

issubsctype, issubdtype, issctype

Examples

>>> np.issubclass_(np.int32, np.int)
True
>>> np.issubclass_(np.int32, np.float)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.find_common_type

	
numpy.find_common_type(array_types, scalar_types)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numerictypes.py#L970]

	Determine common type following standard coercion rules.

	Parameters:	array_types : sequence

A list of dtypes or dtype convertible objects representing arrays.

scalar_types : sequence

A list of dtypes or dtype convertible objects representing scalars.

	Returns:	datatype : dtype

The common data type, which is the maximum of array_types ignoring
scalar_types, unless the maximum of scalar_types is of a
different kind (dtype.kind). If the kind is not understood, then
None is returned.

See also

dtype, common_type, can_cast, mintypecode

Examples

>>> np.find_common_type([], [np.int64, np.float32, np.complex])
dtype('complex128')
>>> np.find_common_type([np.int64, np.float32], [])
dtype('float64')

The standard casting rules ensure that a scalar cannot up-cast an
array unless the scalar is of a fundamentally different kind of data
(i.e. under a different hierarchy in the data type hierarchy) then
the array:

>>> np.find_common_type([np.float32], [np.int64, np.float64])
dtype('float32')

Complex is of a different type, so it up-casts the float in the
array_types argument:

>>> np.find_common_type([np.float32], [np.complex])
dtype('complex128')

Type specifier strings are convertible to dtypes and can therefore
be used instead of dtypes:

>>> np.find_common_type(['f4', 'f4', 'i4'], ['c8'])
dtype('complex128')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.typename

	
numpy.typename(char)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L491]

	Return a description for the given data type code.

	Parameters:	char : str

Data type code.

	Returns:	out : str

Description of the input data type code.

See also

dtype, typecodes

Examples

>>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
>>> for typechar in typechars:
... print typechar, ' : ', np.typename(typechar)
...
S1 : character
? : bool
B : unsigned char
D : complex double precision
G : complex long double precision
F : complex single precision
I : unsigned integer
H : unsigned short
L : unsigned long integer
O : object
Q : unsigned long long integer
S : string
U : unicode
V : void
b : signed char
d : double precision
g : long precision
f : single precision
i : integer
h : short
l : long integer
q : long long integer

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.sctype2char

	
numpy.sctype2char(sctype)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numerictypes.py#L804]

	Return the string representation of a scalar dtype.

	Parameters:	sctype : scalar dtype or object

If a scalar dtype, the corresponding string character is
returned. If an object, sctype2char tries to infer its scalar type
and then return the corresponding string character.

	Returns:	typechar : str

The string character corresponding to the scalar type.

	Raises:	ValueError

If sctype is an object for which the type can not be inferred.

See also

obj2sctype, issctype, issubsctype, mintypecode

Examples

>>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
... print np.sctype2char(sctype)
l
d
D
S
O

>>> x = np.array([1., 2-1.j])
>>> np.sctype2char(x)
'D'
>>> np.sctype2char(list)
'O'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Data type routines

numpy.mintypecode

	
numpy.mintypecode(typechars, typeset='GDFgdf', default='d')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L18]

	Return the character for the minimum-size type to which given types can
be safely cast.

The returned type character must represent the smallest size dtype such
that an array of the returned type can handle the data from an array of
all types in typechars (or if typechars is an array, then its
dtype.char).

	Parameters:	typechars : list of str or array_like

If a list of strings, each string should represent a dtype.
If array_like, the character representation of the array dtype is used.

typeset : str or list of str, optional

The set of characters that the returned character is chosen from.
The default set is ‘GDFgdf’.

default : str, optional

The default character, this is returned if none of the characters in
typechars matches a character in typeset.

	Returns:	typechar : str

The character representing the minimum-size type that was found.

See also

dtype, sctype2char, maximum_sctype

Examples

>>> np.mintypecode(['d', 'f', 'S'])
'd'
>>> x = np.array([1.1, 2-3.j])
>>> np.mintypecode(x)
'D'

>>> np.mintypecode('abceh', default='G')
'G'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Optionally Scipy-accelerated routines (numpy.dual)

Aliases for functions which may be accelerated by Scipy.

Scipy [http://www.scipy.org] can be built to use accelerated or otherwise improved libraries
for FFTs, linear algebra, and special functions. This module allows
developers to transparently support these accelerated functions when
scipy is available but still support users who have only installed
Numpy.

Linear algebra

	cholesky(a)
	Cholesky decomposition.

	det(a)
	Compute the determinant of an array.

	eig(a)
	Compute the eigenvalues and right eigenvectors of a square array.

	eigh(a[,UPLO])
	Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.

	eigvals(a)
	Compute the eigenvalues of a general matrix.

	eigvalsh(a[,UPLO])
	Compute the eigenvalues of a Hermitian or real symmetric matrix.

	inv(a)
	Compute the (multiplicative) inverse of a matrix.

	lstsq(a,b[,rcond])
	Return the least-squares solution to a linear matrix equation.

	norm(x[,ord,axis])
	Matrix or vector norm.

	pinv(a[,rcond])
	Compute the (Moore-Penrose) pseudo-inverse of a matrix.

	solve(a,b)
	Solve a linear matrix equation, or system of linear scalar equations.

	svd(a[,full_matrices,compute_uv])
	Singular Value Decomposition.

FFT

	fft(a[,n,axis])
	Compute the one-dimensional discrete Fourier Transform.

	fft2(a[,s,axes])
	Compute the 2-dimensional discrete Fourier Transform

	fftn(a[,s,axes])
	Compute the N-dimensional discrete Fourier Transform.

	ifft(a[,n,axis])
	Compute the one-dimensional inverse discrete Fourier Transform.

	ifft2(a[,s,axes])
	Compute the 2-dimensional inverse discrete Fourier Transform.

	ifftn(a[,s,axes])
	Compute the N-dimensional inverse discrete Fourier Transform.

Other

	i0(x)
	Modified Bessel function of the first kind, order 0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Mathematical functions with automatic domain (numpy.emath)

Note

numpy.emath is a preferred alias for numpy.lib.scimath,
available after numpy is imported.

Wrapper functions to more user-friendly calling of certain math functions
whose output data-type is different than the input data-type in certain
domains of the input.

For example, for functions like log with branch cuts, the versions in this
module provide the mathematically valid answers in the complex plane:

>>> import math
>>> from numpy.lib import scimath
>>> scimath.log(-math.exp(1)) == (1+1j*math.pi)
True

Similarly, sqrt, other base logarithms, power and trig functions are
correctly handled. See their respective docstrings for specific examples.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Floating point error handling

Setting and getting error handling

	seterr([all,divide,over,under,invalid])
	Set how floating-point errors are handled.

	geterr()
	Get the current way of handling floating-point errors.

	seterrcall(func)
	Set the floating-point error callback function or log object.

	geterrcall()
	Return the current callback function used on floating-point errors.

	errstate(**kwargs)
	Context manager for floating-point error handling.

Internal functions

	seterrobj(errobj)
	Set the object that defines floating-point error handling.

	geterrobj()
	Return the current object that defines floating-point error handling.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.seterr

	
numpy.seterr(all=None, divide=None, over=None, under=None, invalid=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2428]

	Set how floating-point errors are handled.

Note that operations on integer scalar types (such as int16) are
handled like floating point, and are affected by these settings.

	Parameters:	all : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Set treatment for all types of floating-point errors at once:

	ignore: Take no action when the exception occurs.

	warn: Print a RuntimeWarning (via the Python warnings [http://docs.python.org/dev/library/warnings.html#module-warnings] module).

	raise: Raise a FloatingPointError.

	call: Call a function specified using the seterrcall function.

	print: Print a warning directly to stdout.

	log: Record error in a Log object specified by seterrcall.

The default is not to change the current behavior.

divide : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for division by zero.

over : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for floating-point overflow.

under : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for floating-point underflow.

invalid : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for invalid floating-point operation.

	Returns:	old_settings : dict

Dictionary containing the old settings.

See also

	seterrcall

	Set a callback function for the ‘call’ mode.

geterr, geterrcall, errstate

Notes

The floating-point exceptions are defined in the IEEE 754 standard [1]:

	Division by zero: infinite result obtained from finite numbers.

	Overflow: result too large to be expressed.

	Underflow: result so close to zero that some precision
was lost.

	Invalid operation: result is not an expressible number, typically
indicates that a NaN was produced.

	[R245]	http://en.wikipedia.org/wiki/IEEE_754

Examples

>>> old_settings = np.seterr(all='ignore') #seterr to known value
>>> np.seterr(over='raise')
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
 'under': 'ignore'}
>>> np.seterr(**old_settings) # reset to default
{'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}

>>> np.int16(32000) * np.int16(3)
30464
>>> old_settings = np.seterr(all='warn', over='raise')
>>> np.int16(32000) * np.int16(3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FloatingPointError: overflow encountered in short_scalars

>>> old_settings = np.seterr(all='print')
>>> np.geterr()
{'over': 'print', 'divide': 'print', 'invalid': 'print', 'under': 'print'}
>>> np.int16(32000) * np.int16(3)
Warning: overflow encountered in short_scalars
30464

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.geterr

	
numpy.geterr()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2524]

	Get the current way of handling floating-point errors.

	Returns:	res : dict

A dictionary with keys “divide”, “over”, “under”, and “invalid”,
whose values are from the strings “ignore”, “print”, “log”, “warn”,
“raise”, and “call”. The keys represent possible floating-point
exceptions, and the values define how these exceptions are handled.

See also

geterrcall, seterr, seterrcall

Notes

For complete documentation of the types of floating-point exceptions and
treatment options, see seterr.

Examples

>>> np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}
>>> np.arange(3.) / np.arange(3.)
array([NaN, 1., 1.])

>>> oldsettings = np.seterr(all='warn', over='raise')
>>> np.geterr()
{'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
>>> np.arange(3.) / np.arange(3.)
__main__:1: RuntimeWarning: invalid value encountered in divide
array([NaN, 1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.seterrcall

	
numpy.seterrcall(func)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2609]

	Set the floating-point error callback function or log object.

There are two ways to capture floating-point error messages. The first
is to set the error-handler to ‘call’, using seterr. Then, set
the function to call using this function.

The second is to set the error-handler to ‘log’, using seterr.
Floating-point errors then trigger a call to the ‘write’ method of
the provided object.

	Parameters:	func : callable f(err, flag) or object with write method

Function to call upon floating-point errors (‘call’-mode) or
object whose ‘write’ method is used to log such message (‘log’-mode).

The call function takes two arguments. The first is the
type of error (one of “divide”, “over”, “under”, or “invalid”),
and the second is the status flag. The flag is a byte, whose
least-significant bits indicate the status:

[0 0 0 0 invalid over under invalid]

In other words, flags = divide + 2*over + 4*under + 8*invalid.

If an object is provided, its write method should take one argument,
a string.

	Returns:	h : callable, log instance or None

The old error handler.

See also

seterr, geterr, geterrcall

Examples

Callback upon error:

>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
...

>>> saved_handler = np.seterrcall(err_handler)
>>> save_err = np.seterr(all='call')

>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([Inf, Inf, Inf])

>>> np.seterrcall(saved_handler)
<function err_handler at 0x...>
>>> np.seterr(**save_err)
{'over': 'call', 'divide': 'call', 'invalid': 'call', 'under': 'call'}

Log error message:

>>> class Log(object):
... def write(self, msg):
... print "LOG: %s" % msg
...

>>> log = Log()
>>> saved_handler = np.seterrcall(log)
>>> save_err = np.seterr(all='log')

>>> np.array([1, 2, 3]) / 0.0
LOG: Warning: divide by zero encountered in divide

array([Inf, Inf, Inf])

>>> np.seterrcall(saved_handler)
<__main__.Log object at 0x...>
>>> np.seterr(**save_err)
{'over': 'log', 'divide': 'log', 'invalid': 'log', 'under': 'log'}

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.geterrcall

	
numpy.geterrcall()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2699]

	Return the current callback function used on floating-point errors.

When the error handling for a floating-point error (one of “divide”,
“over”, “under”, or “invalid”) is set to ‘call’ or ‘log’, the function
that is called or the log instance that is written to is returned by
geterrcall. This function or log instance has been set with
seterrcall.

	Returns:	errobj : callable, log instance or None

The current error handler. If no handler was set through seterrcall,
None is returned.

See also

seterrcall, seterr, geterr

Notes

For complete documentation of the types of floating-point exceptions and
treatment options, see seterr.

Examples

>>> np.geterrcall() # we did not yet set a handler, returns None

>>> oldsettings = np.seterr(all='call')
>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
>>> oldhandler = np.seterrcall(err_handler)
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([Inf, Inf, Inf])

>>> cur_handler = np.geterrcall()
>>> cur_handler is err_handler
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.errstate

	
class numpy.errstate(**kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2747]

	Context manager for floating-point error handling.

Using an instance of errstate as a context manager allows statements in
that context to execute with a known error handling behavior. Upon entering
the context the error handling is set with seterr and seterrcall, and
upon exiting it is reset to what it was before.

	Parameters:	kwargs : {divide, over, under, invalid}

Keyword arguments. The valid keywords are the possible floating-point
exceptions. Each keyword should have a string value that defines the
treatment for the particular error. Possible values are
{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}.

See also

seterr, geterr, seterrcall, geterrcall

Notes

The with statement was introduced in Python 2.5, and can only be used
there by importing it: from __future__ import with_statement. In
earlier Python versions the with statement is not available.

For complete documentation of the types of floating-point exceptions and
treatment options, see seterr.

Examples

>>> from __future__ import with_statement # use 'with' in Python 2.5
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.

>>> np.arange(3) / 0.
array([NaN, Inf, Inf])
>>> with np.errstate(divide='warn'):
... np.arange(3) / 0.
...
__main__:2: RuntimeWarning: divide by zero encountered in divide
array([NaN, Inf, Inf])

>>> np.sqrt(-1)
nan
>>> with np.errstate(invalid='raise'):
... np.sqrt(-1)
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
FloatingPointError: invalid value encountered in sqrt

Outside the context the error handling behavior has not changed:

>>> np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.seterrobj

	
numpy.seterrobj(errobj)

	Set the object that defines floating-point error handling.

The error object contains all information that defines the error handling
behavior in Numpy. seterrobj is used internally by the other
functions that set error handling behavior (seterr, seterrcall).

	Parameters:	errobj : list

The error object, a list containing three elements:
[internal numpy buffer size, error mask, error callback function].

The error mask is a single integer that holds the treatment information
on all four floating point errors. The information for each error type
is contained in three bits of the integer. If we print it in base 8, we
can see what treatment is set for “invalid”, “under”, “over”, and
“divide” (in that order). The printed string can be interpreted with

	0 : ‘ignore’

	1 : ‘warn’

	2 : ‘raise’

	3 : ‘call’

	4 : ‘print’

	5 : ‘log’

See also

geterrobj, seterr, geterr, seterrcall, geterrcall, getbufsize, setbufsize

Notes

For complete documentation of the types of floating-point exceptions and
treatment options, see seterr.

Examples

>>> old_errobj = np.geterrobj() # first get the defaults
>>> old_errobj
[10000, 0, None]

>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
...
>>> new_errobj = [20000, 12, err_handler]
>>> np.seterrobj(new_errobj)
>>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn')
'14'
>>> np.geterr()
{'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
>>> np.geterrcall() is err_handler
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Floating point error handling

numpy.geterrobj

	
numpy.geterrobj()

	Return the current object that defines floating-point error handling.

The error object contains all information that defines the error handling
behavior in Numpy. geterrobj is used internally by the other
functions that get and set error handling behavior (geterr, seterr,
geterrcall, seterrcall).

	Returns:	errobj : list

The error object, a list containing three elements:
[internal numpy buffer size, error mask, error callback function].

The error mask is a single integer that holds the treatment information
on all four floating point errors. The information for each error type
is contained in three bits of the integer. If we print it in base 8, we
can see what treatment is set for “invalid”, “under”, “over”, and
“divide” (in that order). The printed string can be interpreted with

	0 : ‘ignore’

	1 : ‘warn’

	2 : ‘raise’

	3 : ‘call’

	4 : ‘print’

	5 : ‘log’

See also

seterrobj, seterr, geterr, seterrcall, geterrcall, getbufsize, setbufsize

Notes

For complete documentation of the types of floating-point exceptions and
treatment options, see seterr.

Examples

>>> np.geterrobj() # first get the defaults
[10000, 0, None]

>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
...
>>> old_bufsize = np.setbufsize(20000)
>>> old_err = np.seterr(divide='raise')
>>> old_handler = np.seterrcall(err_handler)
>>> np.geterrobj()
[20000, 2, <function err_handler at 0x91dcaac>]

>>> old_err = np.seterr(all='ignore')
>>> np.base_repr(np.geterrobj()[1], 8)
'0'
>>> old_err = np.seterr(divide='warn', over='log', under='call',
 invalid='print')
>>> np.base_repr(np.geterrobj()[1], 8)
'4351'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Discrete Fourier Transform (numpy.fft)

Standard FFTs

	fft(a[,n,axis])
	Compute the one-dimensional discrete Fourier Transform.

	ifft(a[,n,axis])
	Compute the one-dimensional inverse discrete Fourier Transform.

	fft2(a[,s,axes])
	Compute the 2-dimensional discrete Fourier Transform

	ifft2(a[,s,axes])
	Compute the 2-dimensional inverse discrete Fourier Transform.

	fftn(a[,s,axes])
	Compute the N-dimensional discrete Fourier Transform.

	ifftn(a[,s,axes])
	Compute the N-dimensional inverse discrete Fourier Transform.

Real FFTs

	rfft(a[,n,axis])
	Compute the one-dimensional discrete Fourier Transform for real input.

	irfft(a[,n,axis])
	Compute the inverse of the n-point DFT for real input.

	rfft2(a[,s,axes])
	Compute the 2-dimensional FFT of a real array.

	irfft2(a[,s,axes])
	Compute the 2-dimensional inverse FFT of a real array.

	rfftn(a[,s,axes])
	Compute the N-dimensional discrete Fourier Transform for real input.

	irfftn(a[,s,axes])
	Compute the inverse of the N-dimensional FFT of real input.

Hermitian FFTs

	hfft(a[,n,axis])
	Compute the FFT of a signal which has Hermitian symmetry (real spectrum).

	ihfft(a[,n,axis])
	Compute the inverse FFT of a signal which has Hermitian symmetry.

Helper routines

	fftfreq(n[,d])
	Return the Discrete Fourier Transform sample frequencies.

	rfftfreq(n[,d])
	Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).

	fftshift(x[,axes])
	Shift the zero-frequency component to the center of the spectrum.

	ifftshift(x[,axes])
	The inverse of fftshift.

Background information

Fourier analysis is fundamentally a method for expressing a function as a
sum of periodic components, and for recovering the function from those
components. When both the function and its Fourier transform are
replaced with discretized counterparts, it is called the discrete Fourier
transform (DFT). The DFT has become a mainstay of numerical computing in
part because of a very fast algorithm for computing it, called the Fast
Fourier Transform (FFT), which was known to Gauss (1805) and was brought
to light in its current form by Cooley and Tukey [CT]. Press et al. [NR]
provide an accessible introduction to Fourier analysis and its
applications.

Because the discrete Fourier transform separates its input into
components that contribute at discrete frequencies, it has a great number
of applications in digital signal processing, e.g., for filtering, and in
this context the discretized input to the transform is customarily
referred to as a signal, which exists in the time domain. The output
is called a spectrum or transform and exists in the frequency
domain.

Implementation details

There are many ways to define the DFT, varying in the sign of the
exponent, normalization, etc. In this implementation, the DFT is defined
as

[image: A_k = \sum_{m=0}^{n-1} a_m \exp\left\{-2\pi i{mk \over n}\right\} \qquad k = 0,\ldots,n-1.]

The DFT is in general defined for complex inputs and outputs, and a
single-frequency component at linear frequency [image: f] is
represented by a complex exponential
[image: a_m = \exp\{2\pi i\,f m\Delta t\}], where [image: \Delta t]
is the sampling interval.

The values in the result follow so-called “standard” order: If A =
fft(a, n), then A[0] contains the zero-frequency term (the mean of
the signal), which is always purely real for real inputs. Then A[1:n/2]
contains the positive-frequency terms, and A[n/2+1:] contains the
negative-frequency terms, in order of decreasingly negative frequency.
For an even number of input points, A[n/2] represents both positive and
negative Nyquist frequency, and is also purely real for real input. For
an odd number of input points, A[(n-1)/2] contains the largest positive
frequency, while A[(n+1)/2] contains the largest negative frequency.
The routine np.fft.fftfreq(n) returns an array giving the frequencies
of corresponding elements in the output. The routine
np.fft.fftshift(A) shifts transforms and their frequencies to put the
zero-frequency components in the middle, and np.fft.ifftshift(A) undoes
that shift.

When the input a is a time-domain signal and A = fft(a), np.abs(A)
is its amplitude spectrum and np.abs(A)**2 is its power spectrum.
The phase spectrum is obtained by np.angle(A).

The inverse DFT is defined as

[image: a_m = \frac{1}{n}\sum_{k=0}^{n-1}A_k\exp\left\{2\pi i{mk\over n}\right\} \qquad m = 0,\ldots,n-1.]

It differs from the forward transform by the sign of the exponential
argument and the normalization by [image: 1/n].

Real and Hermitian transforms

When the input is purely real, its transform is Hermitian, i.e., the
component at frequency [image: f_k] is the complex conjugate of the
component at frequency [image: -f_k], which means that for real
inputs there is no information in the negative frequency components that
is not already available from the positive frequency components.
The family of rfft functions is
designed to operate on real inputs, and exploits this symmetry by
computing only the positive frequency components, up to and including the
Nyquist frequency. Thus, n input points produce n/2+1 complex
output points. The inverses of this family assumes the same symmetry of
its input, and for an output of n points uses n/2+1 input points.

Correspondingly, when the spectrum is purely real, the signal is
Hermitian. The hfft family of functions exploits this symmetry by
using n/2+1 complex points in the input (time) domain for n real
points in the frequency domain.

In higher dimensions, FFTs are used, e.g., for image analysis and
filtering. The computational efficiency of the FFT means that it can
also be a faster way to compute large convolutions, using the property
that a convolution in the time domain is equivalent to a point-by-point
multiplication in the frequency domain.

Higher dimensions

In two dimensions, the DFT is defined as

[image: A_{kl} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} a_{mn}\exp\left\{-2\pi i \left({mk\over M}+{nl\over N}\right)\right\} \qquad k = 0, \ldots, M-1;\quad l = 0, \ldots, N-1,]

which extends in the obvious way to higher dimensions, and the inverses
in higher dimensions also extend in the same way.

References

	[CT]	Cooley, James W., and John W. Tukey, 1965, “An algorithm for the
machine calculation of complex Fourier series,” Math. Comput.
19: 297-301.

	[NR]	Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P.,
2007, Numerical Recipes: The Art of Scientific Computing, ch.
12-13. Cambridge Univ. Press, Cambridge, UK.

Examples

For examples, see the various functions.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.fft

	
numpy.fft.fft(a, n=None, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L91]

	Compute the one-dimensional discrete Fourier Transform.

This function computes the one-dimensional n-point discrete Fourier
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
algorithm [CT].

	Parameters:	a : array_like

Input array, can be complex.

n : int, optional

Length of the transformed axis of the output.
If n is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

axis : int, optional

Axis over which to compute the FFT. If not given, the last axis is
used.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.

	Raises:	IndexError

if axes is larger than the last axis of a.

See also

	numpy.fft

	for definition of the DFT and conventions used.

	ifft

	The inverse of fft.

	fft2

	The two-dimensional FFT.

	fftn

	The n-dimensional FFT.

	rfftn

	The n-dimensional FFT of real input.

	fftfreq

	Frequency bins for given FFT parameters.

Notes

FFT (Fast Fourier Transform) refers to a way the discrete Fourier
Transform (DFT) can be calculated efficiently, by using symmetries in the
calculated terms. The symmetry is highest when n is a power of 2, and
the transform is therefore most efficient for these sizes.

The DFT is defined, with the conventions used in this implementation, in
the documentation for the numpy.fft module.

References

	[CT]	Cooley, James W., and John W. Tukey, 1965, “An algorithm for the
machine calculation of complex Fourier series,” Math. Comput.
19: 297-301.

Examples

>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([-3.44505240e-16 +1.14383329e-17j,
 8.00000000e+00 -5.71092652e-15j,
 2.33482938e-16 +1.22460635e-16j,
 1.64863782e-15 +1.77635684e-15j,
 9.95839695e-17 +2.33482938e-16j,
 0.00000000e+00 +1.66837030e-15j,
 1.14383329e-17 +1.22460635e-16j,
 -1.64863782e-15 +1.77635684e-15j])

>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()

In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the numpy.fft documentation.

(Source code)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.ifft

	
numpy.fft.ifft(a, n=None, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L176]

	Compute the one-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the one-dimensional n-point
discrete Fourier transform computed by fft. In other words,
ifft(fft(a)) == a to within numerical accuracy.
For a general description of the algorithm and definitions,
see numpy.fft.

The input should be ordered in the same way as is returned by fft,
i.e., a[0] should contain the zero frequency term,
a[1:n/2+1] should contain the positive-frequency terms, and
a[n/2+1:] should contain the negative-frequency terms, in order of
decreasingly negative frequency. See numpy.fft for details.

	Parameters:	a : array_like

Input array, can be complex.

n : int, optional

Length of the transformed axis of the output.
If n is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.
See notes about padding issues.

axis : int, optional

Axis over which to compute the inverse DFT. If not given, the last
axis is used.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.

	Raises:	IndexError

If axes is larger than the last axis of a.

See also

	numpy.fft

	An introduction, with definitions and general explanations.

	fft

	The one-dimensional (forward) FFT, of which ifft is the inverse

	ifft2

	The two-dimensional inverse FFT.

	ifftn

	The n-dimensional inverse FFT.

Notes

If the input parameter n is larger than the size of the input, the input
is padded by appending zeros at the end. Even though this is the common
approach, it might lead to surprising results. If a different padding is
desired, it must be performed before calling ifft.

Examples

>>> np.fft.ifft([0, 4, 0, 0])
array([1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])

Create and plot a band-limited signal with random phases:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(400)
>>> n = np.zeros((400,), dtype=complex)
>>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
>>> s = np.fft.ifft(n)
>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.legend(('real', 'imaginary'))
<matplotlib.legend.Legend object at 0x...>
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-fft-ifft-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.fft2

	
numpy.fft.fft2(a, s=None, axes=(-2, -1))[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L756]

	Compute the 2-dimensional discrete Fourier Transform

This function computes the n-dimensional discrete Fourier Transform
over any axes in an M-dimensional array by means of the
Fast Fourier Transform (FFT). By default, the transform is computed over
the last two axes of the input array, i.e., a 2-dimensional FFT.

	Parameters:	a : array_like

Input array, can be complex

s : sequence of ints, optional

Shape (length of each transformed axis) of the output
(s[0] refers to axis 0, s[1] to axis 1, etc.).
This corresponds to n for fft(x, n).
Along each axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used.

axes : sequence of ints, optional

Axes over which to compute the FFT. If not given, the last two
axes are used. A repeated index in axes means the transform over
that axis is performed multiple times. A one-element sequence means
that a one-dimensional FFT is performed.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axes
indicated by axes, or the last two axes if axes is not given.

	Raises:	ValueError

If s and axes have different length, or axes not given and
len(s) != 2.

IndexError

If an element of axes is larger than than the number of axes of a.

See also

	numpy.fft

	Overall view of discrete Fourier transforms, with definitions and conventions used.

	ifft2

	The inverse two-dimensional FFT.

	fft

	The one-dimensional FFT.

	fftn

	The n-dimensional FFT.

	fftshift

	Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants.

Notes

fft2 is just fftn with a different default for axes.

The output, analogously to fft, contains the term for zero frequency in
the low-order corner of the transformed axes, the positive frequency terms
in the first half of these axes, the term for the Nyquist frequency in the
middle of the axes and the negative frequency terms in the second half of
the axes, in order of decreasingly negative frequency.

See fftn for details and a plotting example, and numpy.fft for
definitions and conventions used.

Examples

>>> a = np.mgrid[:5, :5][0]
>>> np.fft.fft2(a)
array([[50.0 +0.j , 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j],
 [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j],
 [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j],
 [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j],
 [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j ,
 0.0 +0.j , 0.0 +0.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.ifft2

	
numpy.fft.ifft2(a, s=None, axes=(-2, -1))[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L842]

	Compute the 2-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the 2-dimensional discrete Fourier
Transform over any number of axes in an M-dimensional array by means of
the Fast Fourier Transform (FFT). In other words, ifft2(fft2(a)) == a
to within numerical accuracy. By default, the inverse transform is
computed over the last two axes of the input array.

The input, analogously to ifft, should be ordered in the same way as is
returned by fft2, i.e. it should have the term for zero frequency
in the low-order corner of the two axes, the positive frequency terms in
the first half of these axes, the term for the Nyquist frequency in the
middle of the axes and the negative frequency terms in the second half of
both axes, in order of decreasingly negative frequency.

	Parameters:	a : array_like

Input array, can be complex.

s : sequence of ints, optional

Shape (length of each axis) of the output (s[0] refers to axis 0,
s[1] to axis 1, etc.). This corresponds to n for ifft(x, n).
Along each axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used. See notes for issue on ifft zero padding.

axes : sequence of ints, optional

Axes over which to compute the FFT. If not given, the last two
axes are used. A repeated index in axes means the transform over
that axis is performed multiple times. A one-element sequence means
that a one-dimensional FFT is performed.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axes
indicated by axes, or the last two axes if axes is not given.

	Raises:	ValueError

If s and axes have different length, or axes not given and
len(s) != 2.

IndexError

If an element of axes is larger than than the number of axes of a.

See also

	numpy.fft

	Overall view of discrete Fourier transforms, with definitions and conventions used.

	fft2

	The forward 2-dimensional FFT, of which ifft2 is the inverse.

	ifftn

	The inverse of the n-dimensional FFT.

	fft

	The one-dimensional FFT.

	ifft

	The one-dimensional inverse FFT.

Notes

ifft2 is just ifftn with a different default for axes.

See ifftn for details and a plotting example, and numpy.fft for
definition and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to
the input along the specified dimension. Although this is the common
approach, it might lead to surprising results. If another form of zero
padding is desired, it must be performed before ifft2 is called.

Examples

>>> a = 4 * np.eye(4)
>>> np.fft.ifft2(a)
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
 [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
 [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.fftn

	
numpy.fft.fftn(a, s=None, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L571]

	Compute the N-dimensional discrete Fourier Transform.

This function computes the N-dimensional discrete Fourier Transform over
any number of axes in an M-dimensional array by means of the Fast Fourier
Transform (FFT).

	Parameters:	a : array_like

Input array, can be complex.

s : sequence of ints, optional

Shape (length of each transformed axis) of the output
(s[0] refers to axis 0, s[1] to axis 1, etc.).
This corresponds to n for fft(x, n).
Along any axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used.

axes : sequence of ints, optional

Axes over which to compute the FFT. If not given, the last len(s)
axes are used, or all axes if s is also not specified.
Repeated indices in axes means that the transform over that axis is
performed multiple times.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axes
indicated by axes, or by a combination of s and a,
as explained in the parameters section above.

	Raises:	ValueError

If s and axes have different length.

IndexError

If an element of axes is larger than than the number of axes of a.

See also

	numpy.fft

	Overall view of discrete Fourier transforms, with definitions and conventions used.

	ifftn

	The inverse of fftn, the inverse n-dimensional FFT.

	fft

	The one-dimensional FFT, with definitions and conventions used.

	rfftn

	The n-dimensional FFT of real input.

	fft2

	The two-dimensional FFT.

	fftshift

	Shifts zero-frequency terms to centre of array

Notes

The output, analogously to fft, contains the term for zero frequency in
the low-order corner of all axes, the positive frequency terms in the
first half of all axes, the term for the Nyquist frequency in the middle
of all axes and the negative frequency terms in the second half of all
axes, in order of decreasingly negative frequency.

See numpy.fft for details, definitions and conventions used.

Examples

>>> a = np.mgrid[:3, :3, :3][0]
>>> np.fft.fftn(a, axes=(1, 2))
array([[[0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]],
 [[9.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]],
 [[18.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]]])
>>> np.fft.fftn(a, (2, 2), axes=(0, 1))
array([[[2.+0.j, 2.+0.j, 2.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]],
 [[-2.+0.j, -2.+0.j, -2.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]]])

>>> import matplotlib.pyplot as plt
>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
... 2 * np.pi * np.arange(200) / 34)
>>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
>>> FS = np.fft.fftn(S)
>>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-fft-fftn-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.ifftn

	
numpy.fft.ifftn(a, s=None, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L663]

	Compute the N-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the N-dimensional discrete
Fourier Transform over any number of axes in an M-dimensional array by
means of the Fast Fourier Transform (FFT). In other words,
ifftn(fftn(a)) == a to within numerical accuracy.
For a description of the definitions and conventions used, see numpy.fft.

The input, analogously to ifft, should be ordered in the same way as is
returned by fftn, i.e. it should have the term for zero frequency
in all axes in the low-order corner, the positive frequency terms in the
first half of all axes, the term for the Nyquist frequency in the middle
of all axes and the negative frequency terms in the second half of all
axes, in order of decreasingly negative frequency.

	Parameters:	a : array_like

Input array, can be complex.

s : sequence of ints, optional

Shape (length of each transformed axis) of the output
(s[0] refers to axis 0, s[1] to axis 1, etc.).
This corresponds to n for ifft(x, n).
Along any axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used. See notes for issue on ifft zero padding.

axes : sequence of ints, optional

Axes over which to compute the IFFT. If not given, the last len(s)
axes are used, or all axes if s is also not specified.
Repeated indices in axes means that the inverse transform over that
axis is performed multiple times.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axes
indicated by axes, or by a combination of s or a,
as explained in the parameters section above.

	Raises:	ValueError

If s and axes have different length.

IndexError

If an element of axes is larger than than the number of axes of a.

See also

	numpy.fft

	Overall view of discrete Fourier transforms, with definitions and conventions used.

	fftn

	The forward n-dimensional FFT, of which ifftn is the inverse.

	ifft

	The one-dimensional inverse FFT.

	ifft2

	The two-dimensional inverse FFT.

	ifftshift

	Undoes fftshift, shifts zero-frequency terms to beginning of array.

Notes

See numpy.fft for definitions and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to
the input along the specified dimension. Although this is the common
approach, it might lead to surprising results. If another form of zero
padding is desired, it must be performed before ifftn is called.

Examples

>>> a = np.eye(4)
>>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

Create and plot an image with band-limited frequency content:

>>> import matplotlib.pyplot as plt
>>> n = np.zeros((200,200), dtype=complex)
>>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
>>> im = np.fft.ifftn(n).real
>>> plt.imshow(im)
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-fft-ifftn-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.rfft

	
numpy.fft.rfft(a, n=None, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L256]

	Compute the one-dimensional discrete Fourier Transform for real input.

This function computes the one-dimensional n-point discrete Fourier
Transform (DFT) of a real-valued array by means of an efficient algorithm
called the Fast Fourier Transform (FFT).

	Parameters:	a : array_like

Input array

n : int, optional

Number of points along transformation axis in the input to use.
If n is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

axis : int, optional

Axis over which to compute the FFT. If not given, the last axis is
used.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.
If n is even, the length of the transformed axis is (n/2)+1.
If n is odd, the length is (n+1)/2.

	Raises:	IndexError

If axis is larger than the last axis of a.

See also

	numpy.fft

	For definition of the DFT and conventions used.

	irfft

	The inverse of rfft.

	fft

	The one-dimensional FFT of general (complex) input.

	fftn

	The n-dimensional FFT.

	rfftn

	The n-dimensional FFT of real input.

Notes

When the DFT is computed for purely real input, the output is
Hermitian-symmetric, i.e. the negative frequency terms are just the complex
conjugates of the corresponding positive-frequency terms, and the
negative-frequency terms are therefore redundant. This function does not
compute the negative frequency terms, and the length of the transformed
axis of the output is therefore n//2 + 1.

When A = rfft(a) and fs is the sampling frequency, A[0] contains
the zero-frequency term 0*fs, which is real due to Hermitian symmetry.

If n is even, A[-1] contains the term representing both positive
and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
real. If n is odd, there is no term at fs/2; A[-1] contains
the largest positive frequency (fs/2*(n-1)/n), and is complex in the
general case.

If the input a contains an imaginary part, it is silently discarded.

Examples

>>> np.fft.fft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j])
>>> np.fft.rfft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j])

Notice how the final element of the fft output is the complex conjugate
of the second element, for real input. For rfft, this symmetry is
exploited to compute only the non-negative frequency terms.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.irfft

	
numpy.fft.irfft(a, n=None, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L335]

	Compute the inverse of the n-point DFT for real input.

This function computes the inverse of the one-dimensional n-point
discrete Fourier Transform of real input computed by rfft.
In other words, irfft(rfft(a), len(a)) == a to within numerical
accuracy. (See Notes below for why len(a) is necessary here.)

The input is expected to be in the form returned by rfft, i.e. the
real zero-frequency term followed by the complex positive frequency terms
in order of increasing frequency. Since the discrete Fourier Transform of
real input is Hermitian-symmetric, the negative frequency terms are taken
to be the complex conjugates of the corresponding positive frequency terms.

	Parameters:	a : array_like

The input array.

n : int, optional

Length of the transformed axis of the output.
For n output points, n//2+1 input points are necessary. If the
input is longer than this, it is cropped. If it is shorter than this,
it is padded with zeros. If n is not given, it is determined from
the length of the input along the axis specified by axis.

axis : int, optional

Axis over which to compute the inverse FFT. If not given, the last
axis is used.

	Returns:	out : ndarray

The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.
The length of the transformed axis is n, or, if n is not given,
2*(m-1) where m is the length of the transformed axis of the
input. To get an odd number of output points, n must be specified.

	Raises:	IndexError

If axis is larger than the last axis of a.

See also

	numpy.fft

	For definition of the DFT and conventions used.

	rfft

	The one-dimensional FFT of real input, of which irfft is inverse.

	fft

	The one-dimensional FFT.

	irfft2

	The inverse of the two-dimensional FFT of real input.

	irfftn

	The inverse of the n-dimensional FFT of real input.

Notes

Returns the real valued n-point inverse discrete Fourier transform
of a, where a contains the non-negative frequency terms of a
Hermitian-symmetric sequence. n is the length of the result, not the
input.

If you specify an n such that a must be zero-padded or truncated, the
extra/removed values will be added/removed at high frequencies. One can
thus resample a series to m points via Fourier interpolation by:
a_resamp = irfft(rfft(a), m).

Examples

>>> np.fft.ifft([1, -1j, -1, 1j])
array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j])
>>> np.fft.irfft([1, -1j, -1])
array([0., 1., 0., 0.])

Notice how the last term in the input to the ordinary ifft is the
complex conjugate of the second term, and the output has zero imaginary
part everywhere. When calling irfft, the negative frequencies are not
specified, and the output array is purely real.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.rfft2

	
numpy.fft.rfft2(a, s=None, axes=(-2, -1))[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L1012]

	Compute the 2-dimensional FFT of a real array.

	Parameters:	a : array

Input array, taken to be real.

s : sequence of ints, optional

Shape of the FFT.

axes : sequence of ints, optional

Axes over which to compute the FFT.

	Returns:	out : ndarray

The result of the real 2-D FFT.

See also

	rfftn

	Compute the N-dimensional discrete Fourier Transform for real input.

Notes

This is really just rfftn with different default behavior.
For more details see rfftn.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.irfft2

	
numpy.fft.irfft2(a, s=None, axes=(-2, -1))[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L1133]

	Compute the 2-dimensional inverse FFT of a real array.

	Parameters:	a : array_like

The input array

s : sequence of ints, optional

Shape of the inverse FFT.

axes : sequence of ints, optional

The axes over which to compute the inverse fft.
Default is the last two axes.

	Returns:	out : ndarray

The result of the inverse real 2-D FFT.

See also

	irfftn

	Compute the inverse of the N-dimensional FFT of real input.

Notes

This is really irfftn with different defaults.
For more details see irfftn.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.rfftn

	
numpy.fft.rfftn(a, s=None, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L925]

	Compute the N-dimensional discrete Fourier Transform for real input.

This function computes the N-dimensional discrete Fourier Transform over
any number of axes in an M-dimensional real array by means of the Fast
Fourier Transform (FFT). By default, all axes are transformed, with the
real transform performed over the last axis, while the remaining
transforms are complex.

	Parameters:	a : array_like

Input array, taken to be real.

s : sequence of ints, optional

Shape (length along each transformed axis) to use from the input.
(s[0] refers to axis 0, s[1] to axis 1, etc.).
The final element of s corresponds to n for rfft(x, n), while
for the remaining axes, it corresponds to n for fft(x, n).
Along any axis, if the given shape is smaller than that of the input,
the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified
by axes is used.

axes : sequence of ints, optional

Axes over which to compute the FFT. If not given, the last len(s)
axes are used, or all axes if s is also not specified.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axes
indicated by axes, or by a combination of s and a,
as explained in the parameters section above.
The length of the last axis transformed will be s[-1]//2+1,
while the remaining transformed axes will have lengths according to
s, or unchanged from the input.

	Raises:	ValueError

If s and axes have different length.

IndexError

If an element of axes is larger than than the number of axes of a.

See also

	irfftn

	The inverse of rfftn, i.e. the inverse of the n-dimensional FFT of real input.

	fft

	The one-dimensional FFT, with definitions and conventions used.

	rfft

	The one-dimensional FFT of real input.

	fftn

	The n-dimensional FFT.

	rfft2

	The two-dimensional FFT of real input.

Notes

The transform for real input is performed over the last transformation
axis, as by rfft, then the transform over the remaining axes is
performed as by fftn. The order of the output is as for rfft for the
final transformation axis, and as for fftn for the remaining
transformation axes.

See fft for details, definitions and conventions used.

Examples

>>> a = np.ones((2, 2, 2))
>>> np.fft.rfftn(a)
array([[[8.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]],
 [[0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]]])

>>> np.fft.rfftn(a, axes=(2, 0))
array([[[4.+0.j, 0.+0.j],
 [4.+0.j, 0.+0.j]],
 [[0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.irfftn

	
numpy.fft.irfftn(a, s=None, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L1044]

	Compute the inverse of the N-dimensional FFT of real input.

This function computes the inverse of the N-dimensional discrete
Fourier Transform for real input over any number of axes in an
M-dimensional array by means of the Fast Fourier Transform (FFT). In
other words, irfftn(rfftn(a), a.shape) == a to within numerical
accuracy. (The a.shape is necessary like len(a) is for irfft,
and for the same reason.)

The input should be ordered in the same way as is returned by rfftn,
i.e. as for irfft for the final transformation axis, and as for ifftn
along all the other axes.

	Parameters:	a : array_like

Input array.

s : sequence of ints, optional

Shape (length of each transformed axis) of the output
(s[0] refers to axis 0, s[1] to axis 1, etc.). s is also the
number of input points used along this axis, except for the last axis,
where s[-1]//2+1 points of the input are used.
Along any axis, if the shape indicated by s is smaller than that of
the input, the input is cropped. If it is larger, the input is padded
with zeros. If s is not given, the shape of the input along the
axes specified by axes is used.

axes : sequence of ints, optional

Axes over which to compute the inverse FFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified.
Repeated indices in axes means that the inverse transform over that
axis is performed multiple times.

	Returns:	out : ndarray

The truncated or zero-padded input, transformed along the axes
indicated by axes, or by a combination of s or a,
as explained in the parameters section above.
The length of each transformed axis is as given by the corresponding
element of s, or the length of the input in every axis except for the
last one if s is not given. In the final transformed axis the length
of the output when s is not given is 2*(m-1) where m is the
length of the final transformed axis of the input. To get an odd
number of output points in the final axis, s must be specified.

	Raises:	ValueError

If s and axes have different length.

IndexError

If an element of axes is larger than than the number of axes of a.

See also

	rfftn

	The forward n-dimensional FFT of real input, of which ifftn is the inverse.

	fft

	The one-dimensional FFT, with definitions and conventions used.

	irfft

	The inverse of the one-dimensional FFT of real input.

	irfft2

	The inverse of the two-dimensional FFT of real input.

Notes

See fft for definitions and conventions used.

See rfft for definitions and conventions used for real input.

Examples

>>> a = np.zeros((3, 2, 2))
>>> a[0, 0, 0] = 3 * 2 * 2
>>> np.fft.irfftn(a)
array([[[1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.hfft

	
numpy.fft.hfft(a, n=None, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L415]

	Compute the FFT of a signal which has Hermitian symmetry (real spectrum).

	Parameters:	a : array_like

The input array.

n : int, optional

Length of the transformed axis of the output.
For n output points, n//2+1 input points are necessary. If the
input is longer than this, it is cropped. If it is shorter than this,
it is padded with zeros. If n is not given, it is determined from
the length of the input along the axis specified by axis.

axis : int, optional

Axis over which to compute the FFT. If not given, the last
axis is used.

	Returns:	out : ndarray

The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.
The length of the transformed axis is n, or, if n is not given,
2*(m-1) where m is the length of the transformed axis of the
input. To get an odd number of output points, n must be specified.

	Raises:	IndexError

If axis is larger than the last axis of a.

See also

	rfft

	Compute the one-dimensional FFT for real input.

	ihfft

	The inverse of hfft.

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the
opposite case: here the signal has Hermitian symmetry in the time domain
and is real in the frequency domain. So here it’s hfft for which
you must supply the length of the result if it is to be odd:
ihfft(hfft(a), len(a)) == a, within numerical accuracy.

Examples

>>> signal = np.array([1, 2, 3, 4, 3, 2])
>>> np.fft.fft(signal)
array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j])
>>> np.fft.hfft(signal[:4]) # Input first half of signal
array([15., -4., 0., -1., 0., -4.])
>>> np.fft.hfft(signal, 6) # Input entire signal and truncate
array([15., -4., 0., -1., 0., -4.])

>>> signal = np.array([[1, 1.j], [-1.j, 2]])
>>> np.conj(signal.T) - signal # check Hermitian symmetry
array([[0.-0.j, 0.+0.j],
 [0.+0.j, 0.-0.j]])
>>> freq_spectrum = np.fft.hfft(signal)
>>> freq_spectrum
array([[1., 1.],
 [2., -2.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.ihfft

	
numpy.fft.ihfft(a, n=None, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/..\mklfft\fftpack.py#L488]

	Compute the inverse FFT of a signal which has Hermitian symmetry.

	Parameters:	a : array_like

Input array.

n : int, optional

Length of the inverse FFT.
Number of points along transformation axis in the input to use.
If n is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

axis : int, optional

Axis over which to compute the inverse FFT. If not given, the last
axis is used.

	Returns:	out : complex ndarray

The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.
If n is even, the length of the transformed axis is (n/2)+1.
If n is odd, the length is (n+1)/2.

See also

hfft, irfft

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the
opposite case: here the signal has Hermitian symmetry in the time domain
and is real in the frequency domain. So here it’s hfft for which
you must supply the length of the result if it is to be odd:
ihfft(hfft(a), len(a)) == a, within numerical accuracy.

Examples

>>> spectrum = np.array([15, -4, 0, -1, 0, -4])
>>> np.fft.ifft(spectrum)
array([1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j])
>>> np.fft.ihfft(spectrum)
array([1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.fftfreq

	
numpy.fft.fftfreq(n, d=1.0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/fft\helper.py#L127]

	Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

	Parameters:	n : int

Window length.

d : scalar, optional

Sample spacing (inverse of the sampling rate). Defaults to 1.

	Returns:	f : ndarray

Array of length n containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.rfftfreq

	
numpy.fft.rfftfreq(n, d=1.0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/fft\helper.py#L176]

	Return the Discrete Fourier Transform sample frequencies
(for usage with rfft, irfft).

The returned float array f contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd

Unlike fftfreq (but like scipy.fftpack.rfftfreq)
the Nyquist frequency component is considered to be positive.

	Parameters:	n : int

Window length.

d : scalar, optional

Sample spacing (inverse of the sampling rate). Defaults to 1.

	Returns:	f : ndarray

Array of length n//2 + 1 containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
>>> fourier = np.fft.rfft(signal)
>>> n = signal.size
>>> sample_rate = 100
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
>>> freq
array([0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
>>> freq
array([0., 10., 20., 30., 40., 50.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.fftshift

	
numpy.fft.fftshift(x, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/fft\helper.py#L19]

	Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all).
Note that y[0] is the Nyquist component only if len(x) is even.

	Parameters:	x : array_like

Input array.

axes : int or shape tuple, optional

Axes over which to shift. Default is None, which shifts all axes.

	Returns:	y : ndarray

The shifted array.

See also

	ifftshift

	The inverse of fftshift.

Examples

>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

Shift the zero-frequency component only along the second axis:

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[2., 0., 1.],
 [-4., 3., 4.],
 [-1., -3., -2.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Discrete Fourier Transform (numpy.fft)

numpy.fft.ifftshift

	
numpy.fft.ifftshift(x, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/fft\helper.py#L78]

	The inverse of fftshift. Although identical for even-length x, the
functions differ by one sample for odd-length x.

	Parameters:	x : array_like

Input array.

axes : int or shape tuple, optional

Axes over which to calculate. Defaults to None, which shifts all axes.

	Returns:	y : ndarray

The shifted array.

See also

	fftshift

	Shift zero-frequency component to the center of the spectrum.

Examples

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Financial functions

Simple financial functions

	fv(rate,nper,pmt,pv[,when])
	Compute the future value.

	pv(rate,nper,pmt[,fv,when])
	Compute the present value.

	npv(rate,values)
	Returns the NPV (Net Present Value) of a cash flow series.

	pmt(rate,nper,pv[,fv,when])
	Compute the payment against loan principal plus interest.

	ppmt(rate,per,nper,pv[,fv,when])
	Compute the payment against loan principal.

	ipmt(rate,per,nper,pv[,fv,when])
	Compute the interest portion of a payment.

	irr(values)
	Return the Internal Rate of Return (IRR).

	mirr(values,finance_rate,reinvest_rate)
	Modified internal rate of return.

	nper(rate,pmt,pv[,fv,when])
	Compute the number of periodic payments.

	rate(nper,pmt,pv,fv[,when,guess,tol,...])
	Compute the rate of interest per period.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.fv

	
numpy.fv(rate, nper, pmt, pv, when='end')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L36]

	Compute the future value.

	Given:

	
	a present value, pv

	an interest rate compounded once per period, of which
there are

	nper total

	a (fixed) payment, pmt, paid either

	at the beginning (when = {‘begin’, 1}) or the end
(when = {‘end’, 0}) of each period

	Return:

	the value at the end of the nper periods

	Parameters:	rate : scalar or array_like of shape(M,)

Rate of interest as decimal (not per cent) per period

nper : scalar or array_like of shape(M,)

Number of compounding periods

pmt : scalar or array_like of shape(M,)

Payment

pv : scalar or array_like of shape(M,)

Present value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0)).
Defaults to {‘end’, 0}.

	Returns:	out : ndarray

Future values. If all input is scalar, returns a scalar float. If
any input is array_like, returns future values for each input element.
If multiple inputs are array_like, they all must have the same shape.

Notes

The future value is computed by solving the equation:

fv +
pv*(1+rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when rate == 0:

fv + pv + pmt * nper == 0

References

	[WRW]	Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

Examples

What is the future value after 10 years of saving $100 now, with
an additional monthly savings of $100. Assume the interest rate is
5% (annually) compounded monthly?

>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748

By convention, the negative sign represents cash flow out (i.e. money not
available today). Thus, saving $100 a month at 5% annual interest leads
to $15,692.93 available to spend in 10 years.

If any input is array_like, returns an array of equal shape. Let’s
compare different interest rates from the example above.

>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
array([15692.92889434, 16569.87435405, 17509.44688102])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.pv

	
numpy.pv(rate, nper, pmt, fv=0.0, when='end')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L418]

	Compute the present value.

	Given:

	
	a future value, fv

	an interest rate compounded once per period, of which
there are

	nper total

	a (fixed) payment, pmt, paid either

	at the beginning (when = {‘begin’, 1}) or the end
(when = {‘end’, 0}) of each period

	Return:

	the value now

	Parameters:	rate : array_like

Rate of interest (per period)

nper : array_like

Number of compounding periods

pmt : array_like

Payment

fv : array_like, optional

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0))

	Returns:	out : ndarray, float

Present value of a series of payments or investments.

Notes

The present value is computed by solving the equation:

fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0

or, when rate = 0:

fv + pv + pmt * nper = 0

for pv, which is then returned.

References

	[WRW]	Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

Examples

What is the present value (e.g., the initial investment)
of an investment that needs to total $15692.93
after 10 years of saving $100 every month? Assume the
interest rate is 5% (annually) compounded monthly.

>>> np.pv(0.05/12, 10*12, -100, 15692.93)
-100.00067131625819

By convention, the negative sign represents cash flow out
(i.e., money not available today). Thus, to end up with
$15,692.93 in 10 years saving $100 a month at 5% annual
interest, one’s initial deposit should also be $100.

If any input is array_like, pv returns an array of equal shape.
Let’s compare different interest rates in the example above:

>>> a = np.array((0.05, 0.04, 0.03))/12
>>> np.pv(a, 10*12, -100, 15692.93)
array([-100.00067132, -649.26771385, -1273.78633713])

So, to end up with the same $15692.93 under the same $100 per month
“savings plan,” for annual interest rates of 4% and 3%, one would
need initial investments of $649.27 and $1273.79, respectively.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.npv

	
numpy.npv(rate, values)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L663]

	Returns the NPV (Net Present Value) of a cash flow series.

	Parameters:	rate : scalar

The discount rate.

values : array_like, shape(M,)

The values of the time series of cash flows. The (fixed) time
interval between cash flow “events” must be the same as that for
which rate is given (i.e., if rate is per year, then precisely
a year is understood to elapse between each cash flow event). By
convention, investments or “deposits” are negative, income or
“withdrawals” are positive; values must begin with the initial
investment, thus values[0] will typically be negative.

	Returns:	out : float

The NPV of the input cash flow series values at the discount
rate.

Notes

Returns the result of: [G53]

[image: \sum_{t=0}^{M-1}{\frac{values_t}{(1+rate)^{t}}}]

References

	[G53]	(1, 2) L. J. Gitman, “Principles of Managerial Finance, Brief,” 3rd ed.,
Addison-Wesley, 2003, pg. 346.

Examples

>>> np.npv(0.281,[-100, 39, 59, 55, 20])
-0.0084785916384548798

(Compare with the Example given for numpy.lib.financial.irr)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.pmt

	
numpy.pmt(rate, nper, pv, fv=0, when='end')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L126]

	Compute the payment against loan principal plus interest.

	Given:

	
	a present value, pv (e.g., an amount borrowed)

	a future value, fv (e.g., 0)

	an interest rate compounded once per period, of which
there are

	nper total

	and (optional) specification of whether payment is made
at the beginning (when = {‘begin’, 1}) or the end
(when = {‘end’, 0}) of each period

	Return:

	the (fixed) periodic payment.

	Parameters:	rate : array_like

Rate of interest (per period)

nper : array_like

Number of compounding periods

pv : array_like

Present value

fv : array_like (optional)

Future value (default = 0)

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}

When payments are due (‘begin’ (1) or ‘end’ (0))

	Returns:	out : ndarray

Payment against loan plus interest. If all input is scalar, returns a
scalar float. If any input is array_like, returns payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.

Notes

The payment is computed by solving the equation:

fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when rate == 0:

fv + pv + pmt * nper == 0

for pmt.

Note that computing a monthly mortgage payment is only
one use for this function. For example, pmt returns the
periodic deposit one must make to achieve a specified
future balance given an initial deposit, a fixed,
periodically compounded interest rate, and the total
number of periods.

References

	[WRW]	Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php
?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt

Examples

What is the monthly payment needed to pay off a $200,000 loan in 15
years at an annual interest rate of 7.5%?

>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619

In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained
today, a monthly payment of $1,854.02 would be required. Note that this
example illustrates usage of fv having a default value of 0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.ppmt

	
numpy.ppmt(rate, per, nper, pv, fv=0.0, when='end')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L390]

	Compute the payment against loan principal.

	Parameters:	rate : array_like

Rate of interest (per period)

per : array_like, int

Amount paid against the loan changes. The per is the period of
interest.

nper : array_like

Number of compounding periods

pv : array_like

Present value

fv : array_like, optional

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}

When payments are due (‘begin’ (1) or ‘end’ (0))

See also

pmt, pv, ipmt

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.ipmt

	
numpy.ipmt(rate, per, nper, pv, fv=0.0, when='end')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L286]

	Compute the interest portion of a payment.

	Parameters:	rate : scalar or array_like of shape(M,)

Rate of interest as decimal (not per cent) per period

per : scalar or array_like of shape(M,)

Interest paid against the loan changes during the life or the loan.
The per is the payment period to calculate the interest amount.

nper : scalar or array_like of shape(M,)

Number of compounding periods

pv : scalar or array_like of shape(M,)

Present value

fv : scalar or array_like of shape(M,), optional

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0)).
Defaults to {‘end’, 0}.

	Returns:	out : ndarray

Interest portion of payment. If all input is scalar, returns a scalar
float. If any input is array_like, returns interest payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.

See also

ppmt, pmt, pv

Notes

The total payment is made up of payment against principal plus interest.

pmt = ppmt + ipmt

Examples

What is the amortization schedule for a 1 year loan of $2500 at
8.24% interest per year compounded monthly?

>>> principal = 2500.00

The ‘per’ variable represents the periods of the loan. Remember that
financial equations start the period count at 1!

>>> per = np.arange(1*12) + 1
>>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal)
>>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal)

Each element of the sum of the ‘ipmt’ and ‘ppmt’ arrays should equal
‘pmt’.

>>> pmt = np.pmt(0.0824/12, 1*12, principal)
>>> np.allclose(ipmt + ppmt, pmt)
True

>>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}'
>>> for payment in per:
... index = payment - 1
... principal = principal + ppmt[index]
... print fmt.format(payment, ppmt[index], ipmt[index], principal)
 1 -200.58 -17.17 2299.42
 2 -201.96 -15.79 2097.46
 3 -203.35 -14.40 1894.11
 4 -204.74 -13.01 1689.37
 5 -206.15 -11.60 1483.22
 6 -207.56 -10.18 1275.66
 7 -208.99 -8.76 1066.67
 8 -210.42 -7.32 856.25
 9 -211.87 -5.88 644.38
10 -213.32 -4.42 431.05
11 -214.79 -2.96 216.26
12 -216.26 -1.49 -0.00

>>> interestpd = np.sum(ipmt)
>>> np.round(interestpd, 2)
-112.98

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.irr

	
numpy.irr(values)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L591]

	Return the Internal Rate of Return (IRR).

This is the “average” periodically compounded rate of return
that gives a net present value of 0.0; for a more complete explanation,
see Notes below.

	Parameters:	values : array_like, shape(N,)

Input cash flows per time period. By convention, net “deposits”
are negative and net “withdrawals” are positive. Thus, for
example, at least the first element of values, which represents
the initial investment, will typically be negative.

	Returns:	out : float

Internal Rate of Return for periodic input values.

Notes

The IRR is perhaps best understood through an example (illustrated
using np.irr in the Examples section below). Suppose one invests 100
units and then makes the following withdrawals at regular (fixed)
intervals: 39, 59, 55, 20. Assuming the ending value is 0, one’s 100
unit investment yields 173 units; however, due to the combination of
compounding and the periodic withdrawals, the “average” rate of return
is neither simply 0.73/4 nor (1.73)^0.25-1. Rather, it is the solution
(for [image: r]) of the equation:

[image: -100 + \frac{39}{1+r} + \frac{59}{(1+r)^2} + \frac{55}{(1+r)^3} + \frac{20}{(1+r)^4} = 0]

In general, for values [image: = [v_0, v_1, ... v_M]],
irr is the solution of the equation: [G32]

[image: \sum_{t=0}^M{\frac{v_t}{(1+irr)^{t}}} = 0]

References

	[G32]	(1, 2) L. J. Gitman, “Principles of Managerial Finance, Brief,” 3rd ed.,
Addison-Wesley, 2003, pg. 348.

Examples

>>> round(irr([-100, 39, 59, 55, 20]), 5)
0.28095
>>> round(irr([-100, 0, 0, 74]), 5)
-0.0955
>>> round(irr([-100, 100, 0, -7]), 5)
-0.0833
>>> round(irr([-100, 100, 0, 7]), 5)
0.06206
>>> round(irr([-5, 10.5, 1, -8, 1]), 5)
0.0886

(Compare with the Example given for numpy.lib.financial.npv)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.mirr

	
numpy.mirr(values, finance_rate, reinvest_rate)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L708]

	Modified internal rate of return.

	Parameters:	values : array_like

Cash flows (must contain at least one positive and one negative
value) or nan is returned. The first value is considered a sunk
cost at time zero.

finance_rate : scalar

Interest rate paid on the cash flows

reinvest_rate : scalar

Interest rate received on the cash flows upon reinvestment

	Returns:	out : float

Modified internal rate of return

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.nper

	
numpy.nper(rate, pmt, pv, fv=0, when='end')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L218]

	Compute the number of periodic payments.

	Parameters:	rate : array_like

Rate of interest (per period)

pmt : array_like

Payment

pv : array_like

Present value

fv : array_like, optional

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0))

Notes

The number of periods nper is computed by solving the equation:

fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0

but if rate = 0 then:

fv + pv + pmt*nper = 0

Examples

If you only had $150/month to pay towards the loan, how long would it take
to pay-off a loan of $8,000 at 7% annual interest?

>>> print round(np.nper(0.07/12, -150, 8000), 5)
64.07335

So, over 64 months would be required to pay off the loan.

The same analysis could be done with several different interest rates
and/or payments and/or total amounts to produce an entire table.

>>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
... -150 : -99 : 50 ,
... 8000 : 9001 : 1000]))
array([[[64.07334877, 74.06368256],
 [108.07548412, 127.99022654]],
 [[66.12443902, 76.87897353],
 [114.70165583, 137.90124779]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Financial functions

numpy.rate

	
numpy.rate(nper, pmt, pv, fv, when='end', guess=0.1, tol=1e-06, maxiter=100)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\financial.py#L531]

	Compute the rate of interest per period.

	Parameters:	nper : array_like

Number of compounding periods

pmt : array_like

Payment

pv : array_like

Present value

fv : array_like

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0))

guess : float, optional

Starting guess for solving the rate of interest

tol : float, optional

Required tolerance for the solution

maxiter : int, optional

Maximum iterations in finding the solution

Notes

The rate of interest is computed by iteratively solving the
(non-linear) equation:

fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

for rate.

References

Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
Organization for the Advancement of Structured Information Standards
(OASIS). Billerica, MA, USA. [ODT Document]. Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Functional programming

	apply_along_axis(func1d,axis,arr,*args,...)
	Apply a function to 1-D slices along the given axis.

	apply_over_axes(func,a,axes)
	Apply a function repeatedly over multiple axes.

	vectorize(pyfunc[,otypes,doc,excluded,cache])
	Generalized function class.

	frompyfunc(func,nin,nout)
	Takes an arbitrary Python function and returns a Numpy ufunc.

	piecewise(x,condlist,funclist,*args,**kw)
	Evaluate a piecewise-defined function.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Functional programming

numpy.apply_along_axis

	
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L20]

	Apply a function to 1-D slices along the given axis.

Execute func1d(a, *args) where func1d operates on 1-D arrays and a
is a 1-D slice of arr along axis.

	Parameters:	func1d : function

This function should accept 1-D arrays. It is applied to 1-D
slices of arr along the specified axis.

axis : integer

Axis along which arr is sliced.

arr : ndarray

Input array.

args : any

Additional arguments to func1d.

kwargs: any

Additional named arguments to func1d.

New in version 1.9.0.

	Returns:	apply_along_axis : ndarray

The output array. The shape of outarr is identical to the shape of
arr, except along the axis dimension, where the length of outarr
is equal to the size of the return value of func1d. If func1d
returns a scalar outarr will have one fewer dimensions than arr.

See also

	apply_over_axes

	Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])

For a function that doesn’t return a scalar, the number of dimensions in
outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
 [3, 4, 9],
 [2, 5, 6]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Functional programming

numpy.apply_over_axes

	
numpy.apply_over_axes(func, a, axes)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L134]

	Apply a function repeatedly over multiple axes.

func is called as res = func(a, axis), where axis is the first
element of axes. The result res of the function call must have
either the same dimensions as a or one less dimension. If res
has one less dimension than a, a dimension is inserted before
axis. The call to func is then repeated for each axis in axes,
with res as the first argument.

	Parameters:	func : function

This function must take two arguments, func(a, axis).

a : array_like

Input array.

axes : array_like

Axes over which func is applied; the elements must be integers.

	Returns:	apply_over_axis : ndarray

The output array. The number of dimensions is the same as a,
but the shape can be different. This depends on whether func
changes the shape of its output with respect to its input.

See also

	apply_along_axis

	Apply a function to 1-D slices of an array along the given axis.

Notes

This function is equivalent to tuple axis arguments to reorderable ufuncs
with keepdims=True. Tuple axis arguments to ufuncs have been availabe since
version 1.7.0.

Examples

>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])

Sum over axes 0 and 2. The result has same number of dimensions
as the original array:

>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[60],
 [92],
 [124]]])

Tuple axis arguments to ufuncs are equivalent:

>>> np.sum(a, axis=(0,2), keepdims=True)
array([[[60],
 [92],
 [124]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Functional programming

numpy.vectorize

	
class numpy.vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1529]

	Generalized function class.

Define a vectorized function which takes a nested sequence
of objects or numpy arrays as inputs and returns a
numpy array as output. The vectorized function evaluates pyfunc over
successive tuples of the input arrays like the python map function,
except it uses the broadcasting rules of numpy.

The data type of the output of vectorized is determined by calling
the function with the first element of the input. This can be avoided
by specifying the otypes argument.

	Parameters:	pyfunc : callable

A python function or method.

otypes : str or list of dtypes, optional

The output data type. It must be specified as either a string of
typecode characters or a list of data type specifiers. There should
be one data type specifier for each output.

doc : str, optional

The docstring for the function. If None, the docstring will be the
pyfunc.__doc__.

excluded : set, optional

Set of strings or integers representing the positional or keyword
arguments for which the function will not be vectorized. These will be
passed directly to pyfunc unmodified.

New in version 1.7.0.

cache : bool, optional

If True, then cache the first function call that determines the number
of outputs if otypes is not provided.

New in version 1.7.0.

	Returns:	vectorized : callable

Vectorized function.

Notes

The vectorize function is provided primarily for convenience, not for
performance. The implementation is essentially a for loop.

If otypes is not specified, then a call to the function with the
first argument will be used to determine the number of outputs. The
results of this call will be cached if cache is True to prevent
calling the function twice. However, to implement the cache, the
original function must be wrapped which will slow down subsequent
calls, so only do this if your function is expensive.

The new keyword argument interface and excluded argument support
further degrades performance.

Examples

>>> def myfunc(a, b):
... "Return a-b if a>b, otherwise return a+b"
... if a > b:
... return a - b
... else:
... return a + b

>>> vfunc = np.vectorize(myfunc)
>>> vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])

The docstring is taken from the input function to vectorize unless it
is specified

>>> vfunc.__doc__
'Return a-b if a>b, otherwise return a+b'
>>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`')
>>> vfunc.__doc__
'Vectorized `myfunc`'

The output type is determined by evaluating the first element of the input,
unless it is specified

>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<type 'numpy.int32'>
>>> vfunc = np.vectorize(myfunc, otypes=[np.float])
>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<type 'numpy.float64'>

The excluded argument can be used to prevent vectorizing over certain
arguments. This can be useful for array-like arguments of a fixed length
such as the coefficients for a polynomial as in polyval:

>>> def mypolyval(p, x):
... _p = list(p)
... res = _p.pop(0)
... while _p:
... res = res*x + _p.pop(0)
... return res
>>> vpolyval = np.vectorize(mypolyval, excluded=['p'])
>>> vpolyval(p=[1, 2, 3], x=[0, 1])
array([3, 6])

Positional arguments may also be excluded by specifying their position:

>>> vpolyval.excluded.add(0)
>>> vpolyval([1, 2, 3], x=[0, 1])
array([3, 6])

Methods

	__call__(*args,**kwargs)
	Return arrays with the results of pyfunc broadcast (vectorized) over args and kwargs not in excluded.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Functional programming

 	numpy.vectorize

numpy.vectorize.__call__

	
vectorize.__call__(*args, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1672]

	Return arrays with the results of pyfunc broadcast (vectorized) over
args and kwargs not in excluded.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Functional programming

numpy.frompyfunc

	
numpy.frompyfunc(func, nin, nout)

	Takes an arbitrary Python function and returns a Numpy ufunc.

Can be used, for example, to add broadcasting to a built-in Python
function (see Examples section).

	Parameters:	func : Python function object

An arbitrary Python function.

nin : int

The number of input arguments.

nout : int

The number of objects returned by func.

	Returns:	out : ufunc

Returns a Numpy universal function (ufunc) object.

Notes

The returned ufunc always returns PyObject arrays.

Examples

Use frompyfunc to add broadcasting to the Python function oct:

>>> oct_array = np.frompyfunc(oct, 1, 1)
>>> oct_array(np.array((10, 30, 100)))
array([012, 036, 0144], dtype=object)
>>> np.array((oct(10), oct(30), oct(100))) # for comparison
array(['012', '036', '0144'],
 dtype='|S4')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Functional programming

numpy.piecewise

	
numpy.piecewise(x, condlist, funclist, *args, **kw)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L617]

	Evaluate a piecewise-defined function.

Given a set of conditions and corresponding functions, evaluate each
function on the input data wherever its condition is true.

	Parameters:	x : ndarray

The input domain.

condlist : list of bool arrays

Each boolean array corresponds to a function in funclist. Wherever
condlist[i] is True, funclist[i](x) is used as the output value.

Each boolean array in condlist selects a piece of x,
and should therefore be of the same shape as x.

The length of condlist must correspond to that of funclist.
If one extra function is given, i.e. if
len(funclist) - len(condlist) == 1, then that extra function
is the default value, used wherever all conditions are false.

funclist : list of callables, f(x,*args,**kw), or scalars

Each function is evaluated over x wherever its corresponding
condition is True. It should take an array as input and give an array
or a scalar value as output. If, instead of a callable,
a scalar is provided then a constant function (lambda x: scalar) is
assumed.

args : tuple, optional

Any further arguments given to piecewise are passed to the functions
upon execution, i.e., if called piecewise(..., ..., 1, 'a'), then
each function is called as f(x, 1, 'a').

kw : dict, optional

Keyword arguments used in calling piecewise are passed to the
functions upon execution, i.e., if called
piecewise(..., ..., lambda=1), then each function is called as
f(x, lambda=1).

	Returns:	out : ndarray

The output is the same shape and type as x and is found by
calling the functions in funclist on the appropriate portions of x,
as defined by the boolean arrays in condlist. Portions not covered
by any condition have a default value of 0.

See also

choose, select, where

Notes

This is similar to choose or select, except that functions are
evaluated on elements of x that satisfy the corresponding condition from
condlist.

The result is:

 |--
 |funclist[0](x[condlist[0]])
out = |funclist[1](x[condlist[1]])
 |...
 |funclist[n2](x[condlist[n2]])
 |--

Examples

Define the sigma function, which is -1 for x < 0 and +1 for x >= 0.

>>> x = np.linspace(-2.5, 2.5, 6)
>>> np.piecewise(x, [x < 0, x >= 0], [-1, 1])
array([-1., -1., -1., 1., 1., 1.])

Define the absolute value, which is -x for x <0 and x for
x >= 0.

>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
array([2.5, 1.5, 0.5, 0.5, 1.5, 2.5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Numpy-specific help functions

Finding help

	lookfor(what[,module,import_modules,...])
	Do a keyword search on docstrings.

Reading help

	info([object,maxwidth,output,toplevel])
	Get help information for a function, class, or module.

	source(object[,output])
	Print or write to a file the source code for a Numpy object.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Numpy-specific help functions

numpy.lookfor

	
numpy.lookfor(what, module=None, import_modules=True, regenerate=False, output=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\utils.py#L700]

	Do a keyword search on docstrings.

A list of of objects that matched the search is displayed,
sorted by relevance. All given keywords need to be found in the
docstring for it to be returned as a result, but the order does
not matter.

	Parameters:	what : str

String containing words to look for.

module : str or list, optional

Name of module(s) whose docstrings to go through.

import_modules : bool, optional

Whether to import sub-modules in packages. Default is True.

regenerate : bool, optional

Whether to re-generate the docstring cache. Default is False.

output : file-like, optional

File-like object to write the output to. If omitted, use a pager.

See also

source, info

Notes

Relevance is determined only roughly, by checking if the keywords occur
in the function name, at the start of a docstring, etc.

Examples

>>> np.lookfor('binary representation')
Search results for 'binary representation'
--
numpy.binary_repr
 Return the binary representation of the input number as a string.
numpy.core.setup_common.long_double_representation
 Given a binary dump as given by GNU od -b, look for long double
numpy.base_repr
 Return a string representation of a number in the given base system.
...

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Numpy-specific help functions

numpy.info

	
numpy.info(object=None, maxwidth=76, output=<open file '<stdout>', mode 'w' at 0x00000000020C20C0>, toplevel='numpy')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\utils.py#L438]

	Get help information for a function, class, or module.

	Parameters:	object : object or str, optional

Input object or name to get information about. If object [http://docs.python.org/dev/library/functions.html#object] is a
numpy object, its docstring is given. If it is a string, available
modules are searched for matching objects. If None, information
about info itself is returned.

maxwidth : int, optional

Printing width.

output : file like object, optional

File like object that the output is written to, default is
stdout. The object has to be opened in ‘w’ or ‘a’ mode.

toplevel : str, optional

Start search at this level.

See also

source, lookfor

Notes

When used interactively with an object, np.info(obj) is equivalent
to help(obj) on the Python prompt or obj? on the IPython
prompt.

Examples

>>> np.info(np.polyval)
 polyval(p, x)
 Evaluate the polynomial p at x.
 ...

When using a string for object [http://docs.python.org/dev/library/functions.html#object] it is possible to get multiple results.

>>> np.info('fft')
 *** Found in numpy ***
Core FFT routines
...
 *** Found in numpy.fft ***
 fft(a, n=None, axis=-1)
...
 *** Repeat reference found in numpy.fft.fftpack ***
 *** Total of 3 references found. ***

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Numpy-specific help functions

numpy.source

	
numpy.source(object, output=<open file '<stdout>', mode 'w' at 0x00000000020C20C0>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\utils.py#L643]

	Print or write to a file the source code for a Numpy object.

The source code is only returned for objects written in Python. Many
functions and classes are defined in C and will therefore not return
useful information.

	Parameters:	object : numpy object

Input object. This can be any object (function, class, module,
...).

output : file object, optional

If output not supplied then source code is printed to screen
(sys.stdout). File object must be created with either write ‘w’ or
append ‘a’ modes.

See also

lookfor, info

Examples

>>> np.source(np.interp)
In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py
def interp(x, xp, fp, left=None, right=None):
 """.... (full docstring printed)"""
 if isinstance(x, (float, int, number)):
 return compiled_interp([x], xp, fp, left, right).item()
 else:
 return compiled_interp(x, xp, fp, left, right)

The source code is only returned for objects written in Python.

>>> np.source(np.array)
Not available for this object.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Indexing routines

See also

Indexing

Generating index arrays

	c_
	Translates slice objects to concatenation along the second axis.

	r_
	Translates slice objects to concatenation along the first axis.

	s_
	A nicer way to build up index tuples for arrays.

	nonzero(a)
	Return the indices of the elements that are non-zero.

	where(condition,[x,y])
	Return elements, either from x or y, depending on condition.

	indices(dimensions[,dtype])
	Return an array representing the indices of a grid.

	ix_(*args)
	Construct an open mesh from multiple sequences.

	ogrid
	nd_grid instance which returns an open multi-dimensional “meshgrid”.

	ravel_multi_index(multi_index,dims[,mode,...])
	Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.

	unravel_index(indices,dims[,order])
	Converts a flat index or array of flat indices into a tuple of coordinate arrays.

	diag_indices(n[,ndim])
	Return the indices to access the main diagonal of an array.

	diag_indices_from(arr)
	Return the indices to access the main diagonal of an n-dimensional array.

	mask_indices(n,mask_func[,k])
	Return the indices to access (n, n) arrays, given a masking function.

	tril_indices(n[,k,m])
	Return the indices for the lower-triangle of an (n, m) array.

	tril_indices_from(arr[,k])
	Return the indices for the lower-triangle of arr.

	triu_indices(n[,k,m])
	Return the indices for the upper-triangle of an (n, m) array.

	triu_indices_from(arr[,k])
	Return the indices for the upper-triangle of arr.

Indexing-like operations

	take(a,indices[,axis,out,mode])
	Take elements from an array along an axis.

	choose(a,choices[,out,mode])
	Construct an array from an index array and a set of arrays to choose from.

	compress(condition,a[,axis,out])
	Return selected slices of an array along given axis.

	diag(v[,k])
	Extract a diagonal or construct a diagonal array.

	diagonal(a[,offset,axis1,axis2])
	Return specified diagonals.

	select(condlist,choicelist[,default])
	Return an array drawn from elements in choicelist, depending on conditions.

Inserting data into arrays

	place(arr,mask,vals)
	Change elements of an array based on conditional and input values.

	put(a,ind,v[,mode])
	Replaces specified elements of an array with given values.

	putmask(a,mask,values)
	Changes elements of an array based on conditional and input values.

	fill_diagonal(a,val[,wrap])
	Fill the main diagonal of the given array of any dimensionality.

Iterating over arrays

	nditer
	Efficient multi-dimensional iterator object to iterate over arrays.

	ndenumerate(arr)
	Multidimensional index iterator.

	ndindex(*shape)
	An N-dimensional iterator object to index arrays.

	flatiter
	Flat iterator object to iterate over arrays.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.c

	
numpy.c_ = <numpy.lib.index_tricks.CClass object at 0x00000000043FCA58>

	Translates slice objects to concatenation along the second axis.

This is short-hand for np.r_['-1,2,0', index expression], which is
useful because of its common occurrence. In particular, arrays will be
stacked along their last axis after being upgraded to at least 2-D with
1’s post-pended to the shape (column vectors made out of 1-D arrays).

For detailed documentation, see r_.

Examples

>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
array([[1, 2, 3, 0, 0, 4, 5, 6]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.r

	
numpy.r_ = <numpy.lib.index_tricks.RClass object at 0x00000000043FC9B0>

	Translates slice objects to concatenation along the first axis.

This is a simple way to build up arrays quickly. There are two use cases.

	If the index expression contains comma separated arrays, then stack
them along their first axis.

	If the index expression contains slice notation or scalars then create
a 1-D array with a range indicated by the slice notation.

If slice notation is used, the syntax start:stop:step is equivalent
to np.arange(start, stop, step) inside of the brackets. However, if
step is an imaginary number (i.e. 100j) then its integer portion is
interpreted as a number-of-points desired and the start and stop are
inclusive. In other words start:stop:stepj is interpreted as
np.linspace(start, stop, step, endpoint=1) inside of the brackets.
After expansion of slice notation, all comma separated sequences are
concatenated together.

Optional character strings placed as the first element of the index
expression can be used to change the output. The strings ‘r’ or ‘c’ result
in matrix output. If the result is 1-D and ‘r’ is specified a 1 x N (row)
matrix is produced. If the result is 1-D and ‘c’ is specified, then a N x 1
(column) matrix is produced. If the result is 2-D then both provide the
same matrix result.

A string integer specifies which axis to stack multiple comma separated
arrays along. A string of two comma-separated integers allows indication
of the minimum number of dimensions to force each entry into as the
second integer (the axis to concatenate along is still the first integer).

A string with three comma-separated integers allows specification of the
axis to concatenate along, the minimum number of dimensions to force the
entries to, and which axis should contain the start of the arrays which
are less than the specified number of dimensions. In other words the third
integer allows you to specify where the 1’s should be placed in the shape
of the arrays that have their shapes upgraded. By default, they are placed
in the front of the shape tuple. The third argument allows you to specify
where the start of the array should be instead. Thus, a third argument of
‘0’ would place the 1’s at the end of the array shape. Negative integers
specify where in the new shape tuple the last dimension of upgraded arrays
should be placed, so the default is ‘-1’.

	Parameters:	Not a function, so takes no parameters

	Returns:	A concatenated ndarray or matrix.

See also

	concatenate

	Join a sequence of arrays together.

	c_

	Translates slice objects to concatenation along the second axis.

Examples

>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6.])

String integers specify the axis to concatenate along or the minimum
number of dimensions to force entries into.

>>> a = np.array([[0, 1, 2], [3, 4, 5]])
>>> np.r_['-1', a, a] # concatenate along last axis
array([[0, 1, 2, 0, 1, 2],
 [3, 4, 5, 3, 4, 5]])
>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
array([[1, 2, 3],
 [4, 5, 6]])

>>> np.r_['0,2,0', [1,2,3], [4,5,6]]
array([[1],
 [2],
 [3],
 [4],
 [5],
 [6]])
>>> np.r_['1,2,0', [1,2,3], [4,5,6]]
array([[1, 4],
 [2, 5],
 [3, 6]])

Using ‘r’ or ‘c’ as a first string argument creates a matrix.

>>> np.r_['r',[1,2,3], [4,5,6]]
matrix([[1, 2, 3, 4, 5, 6]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.s

	
numpy.s_ = <numpy.lib.index_tricks.IndexExpression object at 0x00000000043FCB70>

	A nicer way to build up index tuples for arrays.

Note

Use one of the two predefined instances index_exp or s_
rather than directly using IndexExpression.

For any index combination, including slicing and axis insertion,
a[indices] is the same as a[np.index_exp[indices]] for any
array a. However, np.index_exp[indices] can be used anywhere
in Python code and returns a tuple of slice objects that can be
used in the construction of complex index expressions.

	Parameters:	maketuple : bool

If True, always returns a tuple.

See also

	index_exp

	Predefined instance that always returns a tuple: index_exp = IndexExpression(maketuple=True).

	s_

	Predefined instance without tuple conversion: s_ = IndexExpression(maketuple=False).

Notes

You can do all this with slice() plus a few special objects,
but there’s a lot to remember and this version is simpler because
it uses the standard array indexing syntax.

Examples

>>> np.s_[2::2]
slice(2, None, 2)
>>> np.index_exp[2::2]
(slice(2, None, 2),)

>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
array([2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.nonzero

	
numpy.nonzero(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1372]

	Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing
the indices of the non-zero elements in that dimension. The
corresponding non-zero values can be obtained with:

a[nonzero(a)]

To group the indices by element, rather than dimension, use:

transpose(nonzero(a))

The result of this is always a 2-D array, with a row for
each non-zero element.

	Parameters:	a : array_like

Input array.

	Returns:	tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also

	flatnonzero

	Return indices that are non-zero in the flattened version of the input array.

	ndarray.nonzero

	Equivalent ndarray method.

	count_nonzero

	Counts the number of non-zero elements in the input array.

Examples

>>> x = np.eye(3)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> np.nonzero(x)
(array([0, 1, 2]), array([0, 1, 2]))

>>> x[np.nonzero(x)]
array([1., 1., 1.])
>>> np.transpose(np.nonzero(x))
array([[0, 0],
 [1, 1],
 [2, 2]])

A common use for nonzero is to find the indices of an array, where
a condition is True. Given an array a, the condition a > 3 is a
boolean array and since False is interpreted as 0, np.nonzero(a > 3)
yields the indices of the a where the condition is true.

>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
array([[False, False, False],
 [True, True, True],
 [True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the boolean array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.where

	
numpy.where(condition[, x, y])

	Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

	Parameters:	condition : array_like, bool

When True, yield x, otherwise yield y.

x, y : array_like, optional

Values from which to choose. x and y need to have the same
shape as condition.

	Returns:	out : ndarray or tuple of ndarrays

If both x and y are specified, the output array contains
elements of x where condition is True, and elements from
y elsewhere.

If only condition is given, return the tuple
condition.nonzero(), the indices where condition is True.

See also

nonzero, choose

Notes

If x and y are given and input arrays are 1-D, where is
equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

Examples

>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
 [3, 4]])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

>>> x = np.arange(9.).reshape(3, 3)
>>> np.where(x > 5)
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where(x > 3.0)] # Note: result is 1D.
array([4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[0., 1., 2.],
 [3., 4., -1.],
 [-1., -1., -1.]])

Find the indices of elements of x that are in goodvalues.

>>> goodvalues = [3, 4, 7]
>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)
>>> ix
array([[False, False, False],
 [True, True, False],
 [False, True, False]], dtype=bool)
>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.indices

	
numpy.indices(dimensions, dtype=<type 'int'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1782]

	Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,...
varying only along the corresponding axis.

	Parameters:	dimensions : sequence of ints

The shape of the grid.

dtype : dtype, optional

Data type of the result.

	Returns:	grid : ndarray

The array of grid indices,
grid.shape = (len(dimensions),) + tuple(dimensions).

See also

mgrid, meshgrid

Notes

The output shape is obtained by prepending the number of dimensions
in front of the tuple of dimensions, i.e. if dimensions is a tuple
(r0, ..., rN-1) of length N, the output shape is
(N,r0,...,rN-1).

The subarrays grid[k] contains the N-D array of indices along the
k-th axis. Explicitly:

grid[k,i0,i1,...,iN-1] = ik

Examples

>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],
 [1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],
 [0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],
 [4, 5, 6]])

Note that it would be more straightforward in the above example to
extract the required elements directly with x[:2, :3].

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.ix

	
numpy.ix_(*args)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L28]

	Construct an open mesh from multiple sequences.

This function takes N 1-D sequences and returns N outputs with N
dimensions each, such that the shape is 1 in all but one dimension
and the dimension with the non-unit shape value cycles through all
N dimensions.

Using ix_ one can quickly construct index arrays that will index
the cross product. a[np.ix_([1,3],[2,5])] returns the array
[[a[1,2] a[1,5]], [a[3,2] a[3,5]]].

	Parameters:	args : 1-D sequences

	Returns:	out : tuple of ndarrays

N arrays with N dimensions each, with N the number of input
sequences. Together these arrays form an open mesh.

See also

ogrid, mgrid, meshgrid

Examples

>>> a = np.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])
>>> ixgrid = np.ix_([0,1], [2,4])
>>> ixgrid
(array([[0],
 [1]]), array([[2, 4]]))
>>> ixgrid[0].shape, ixgrid[1].shape
((2, 1), (1, 2))
>>> a[ixgrid]
array([[2, 4],
 [7, 9]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.ogrid

	
numpy.ogrid = <numpy.lib.index_tricks.nd_grid object at 0x00000000043FC940>

	nd_grid instance which returns an open multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an open
(i.e. not fleshed out) mesh-grid when indexed, so that only one dimension
of each returned array is greater than 1. The dimension and number of the
output arrays are equal to the number of indexing dimensions. If the step
length is not a complex number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value is inclusive.

	Returns:	mesh-grid ndarrays with only one dimension [image: \neq 1]

See also

	np.lib.index_tricks.nd_grid

	class of ogrid and mgrid objects

	mgrid

	like ogrid but returns dense (or fleshed out) mesh grids

	r_

	array concatenator

Examples

>>> from numpy import ogrid
>>> ogrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])
>>> ogrid[0:5,0:5]
[array([[0],
 [1],
 [2],
 [3],
 [4]]), array([[0, 1, 2, 3, 4]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.ravel_multi_index

	
numpy.ravel_multi_index(multi_index, dims, mode='raise', order='C')

	Converts a tuple of index arrays into an array of flat
indices, applying boundary modes to the multi-index.

	Parameters:	multi_index : tuple of array_like

A tuple of integer arrays, one array for each dimension.

dims : tuple of ints

The shape of array into which the indices from multi_index apply.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices are handled. Can specify
either one mode or a tuple of modes, one mode per index.

	‘raise’ – raise an error (default)

	‘wrap’ – wrap around

	‘clip’ – clip to the range

In ‘clip’ mode, a negative index which would normally
wrap will clip to 0 instead.

order : {‘C’, ‘F’}, optional

Determines whether the multi-index should be viewed as indexing in
C (row-major) order or FORTRAN (column-major) order.

	Returns:	raveled_indices : ndarray

An array of indices into the flattened version of an array
of dimensions dims.

See also

unravel_index

Notes

New in version 1.6.0.

Examples

>>> arr = np.array([[3,6,6],[4,5,1]])
>>> np.ravel_multi_index(arr, (7,6))
array([22, 41, 37])
>>> np.ravel_multi_index(arr, (7,6), order='F')
array([31, 41, 13])
>>> np.ravel_multi_index(arr, (4,6), mode='clip')
array([22, 23, 19])
>>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
array([12, 13, 13])

>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1621

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.unravel_index

	
numpy.unravel_index(indices, dims, order='C')

	Converts a flat index or array of flat indices into a tuple
of coordinate arrays.

	Parameters:	indices : array_like

An integer array whose elements are indices into the flattened
version of an array of dimensions dims. Before version 1.6.0,
this function accepted just one index value.

dims : tuple of ints

The shape of the array to use for unraveling indices.

order : {‘C’, ‘F’}, optional

New in version 1.6.0.

Determines whether the indices should be viewed as indexing in
C (row-major) order or FORTRAN (column-major) order.

	Returns:	unraveled_coords : tuple of ndarray

Each array in the tuple has the same shape as the indices
array.

See also

ravel_multi_index

Examples

>>> np.unravel_index([22, 41, 37], (7,6))
(array([3, 6, 6]), array([4, 5, 1]))
>>> np.unravel_index([31, 41, 13], (7,6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))

>>> np.unravel_index(1621, (6,7,8,9))
(3, 1, 4, 1)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.diag_indices

	
numpy.diag_indices(n, ndim=2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L774]

	Return the indices to access the main diagonal of an array.

This returns a tuple of indices that can be used to access the main
diagonal of an array a with a.ndim >= 2 dimensions and shape
(n, n, ..., n). For a.ndim = 2 this is the usual diagonal, for
a.ndim > 2 this is the set of indices to access a[i, i, ..., i]
for i = [0..n-1].

	Parameters:	n : int

The size, along each dimension, of the arrays for which the returned
indices can be used.

ndim : int, optional

The number of dimensions.

See also

diag_indices_from

Notes

New in version 1.4.0.

Examples

Create a set of indices to access the diagonal of a (4, 4) array:

>>> di = np.diag_indices(4)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])
>>> a[di] = 100
>>> a
array([[100, 1, 2, 3],
 [4, 100, 6, 7],
 [8, 9, 100, 11],
 [12, 13, 14, 100]])

Now, we create indices to manipulate a 3-D array:

>>> d3 = np.diag_indices(2, 3)
>>> d3
(array([0, 1]), array([0, 1]), array([0, 1]))

And use it to set the diagonal of an array of zeros to 1:

>>> a = np.zeros((2, 2, 2), dtype=np.int)
>>> a[d3] = 1
>>> a
array([[[1, 0],
 [0, 0]],
 [[0, 0],
 [0, 1]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.diag_indices_from

	
numpy.diag_indices_from(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L842]

	Return the indices to access the main diagonal of an n-dimensional array.

See diag_indices for full details.

	Parameters:	arr : array, at least 2-D

See also

diag_indices

Notes

New in version 1.4.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.mask_indices

	
numpy.mask_indices(n, mask_func, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L714]

	Return the indices to access (n, n) arrays, given a masking function.

Assume mask_func is a function that, for a square array a of size
(n, n) with a possible offset argument k, when called as
mask_func(a, k) returns a new array with zeros in certain locations
(functions like triu or tril do precisely this). Then this function
returns the indices where the non-zero values would be located.

	Parameters:	n : int

The returned indices will be valid to access arrays of shape (n, n).

mask_func : callable

A function whose call signature is similar to that of triu, tril.
That is, mask_func(x, k) returns a boolean array, shaped like x.
k is an optional argument to the function.

k : scalar

An optional argument which is passed through to mask_func. Functions
like triu, tril take a second argument that is interpreted as an
offset.

	Returns:	indices : tuple of arrays.

The n arrays of indices corresponding to the locations where
mask_func(np.ones((n, n)), k) is True.

See also

triu, tril, triu_indices, tril_indices

Notes

New in version 1.4.0.

Examples

These are the indices that would allow you to access the upper triangular
part of any 3x3 array:

>>> iu = np.mask_indices(3, np.triu)

For example, if a is a 3x3 array:

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
>>> a[iu]
array([0, 1, 2, 4, 5, 8])

An offset can be passed also to the masking function. This gets us the
indices starting on the first diagonal right of the main one:

>>> iu1 = np.mask_indices(3, np.triu, 1)

with which we now extract only three elements:

>>> a[iu1]
array([1, 2, 5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.tril_indices

	
numpy.tril_indices(n, k=0, m=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L784]

	Return the indices for the lower-triangle of an (n, m) array.

	Parameters:	n : int

The row dimension of the arrays for which the returned
indices will be valid.

k : int, optional

Diagonal offset (see tril for details).

m : int, optional

New in version 1.9.0.

The column dimension of the arrays for which the returned
arrays will be valid.
By default m is taken equal to n.

	Returns:	inds : tuple of arrays

The indices for the triangle. The returned tuple contains two arrays,
each with the indices along one dimension of the array.

See also

	triu_indices

	similar function, for upper-triangular.

	mask_indices

	generic function accepting an arbitrary mask function.

tril, triu

Notes

New in version 1.4.0.

Examples

Compute two different sets of indices to access 4x4 arrays, one for the
lower triangular part starting at the main diagonal, and one starting two
diagonals further right:

>>> il1 = np.tril_indices(4)
>>> il2 = np.tril_indices(4, 2)

Here is how they can be used with a sample array:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

Both for indexing:

>>> a[il1]
array([0, 4, 5, 8, 9, 10, 12, 13, 14, 15])

And for assigning values:

>>> a[il1] = -1
>>> a
array([[-1, 1, 2, 3],
 [-1, -1, 6, 7],
 [-1, -1, -1, 11],
 [-1, -1, -1, -1]])

These cover almost the whole array (two diagonals right of the main one):

>>> a[il2] = -10
>>> a
array([[-10, -10, -10, 3],
 [-10, -10, -10, -10],
 [-10, -10, -10, -10],
 [-10, -10, -10, -10]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.tril_indices_from

	
numpy.tril_indices_from(arr, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L864]

	Return the indices for the lower-triangle of arr.

See tril_indices for full details.

	Parameters:	arr : array_like

The indices will be valid for square arrays whose dimensions are
the same as arr.

k : int, optional

Diagonal offset (see tril for details).

See also

tril_indices, tril

Notes

New in version 1.4.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.triu_indices

	
numpy.triu_indices(n, k=0, m=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L892]

	Return the indices for the upper-triangle of an (n, m) array.

	Parameters:	n : int

The size of the arrays for which the returned indices will
be valid.

k : int, optional

Diagonal offset (see triu for details).

m : int, optional

New in version 1.9.0.

The column dimension of the arrays for which the returned
arrays will be valid.
By default m is taken equal to n.

	Returns:	inds : tuple, shape(2) of ndarrays, shape(n)

The indices for the triangle. The returned tuple contains two arrays,
each with the indices along one dimension of the array. Can be used
to slice a ndarray of shape(n, n).

See also

	tril_indices

	similar function, for lower-triangular.

	mask_indices

	generic function accepting an arbitrary mask function.

triu, tril

Notes

New in version 1.4.0.

Examples

Compute two different sets of indices to access 4x4 arrays, one for the
upper triangular part starting at the main diagonal, and one starting two
diagonals further right:

>>> iu1 = np.triu_indices(4)
>>> iu2 = np.triu_indices(4, 2)

Here is how they can be used with a sample array:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

Both for indexing:

>>> a[iu1]
array([0, 1, 2, 3, 5, 6, 7, 10, 11, 15])

And for assigning values:

>>> a[iu1] = -1
>>> a
array([[-1, -1, -1, -1],
 [4, -1, -1, -1],
 [8, 9, -1, -1],
 [12, 13, 14, -1]])

These cover only a small part of the whole array (two diagonals right
of the main one):

>>> a[iu2] = -10
>>> a
array([[-1, -1, -10, -10],
 [4, -1, -1, -10],
 [8, 9, -1, -1],
 [12, 13, 14, -1]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.triu_indices_from

	
numpy.triu_indices_from(arr, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L974]

	Return the indices for the upper-triangle of arr.

See triu_indices for full details.

	Parameters:	arr : ndarray, shape(N, N)

The indices will be valid for square arrays.

k : int, optional

Diagonal offset (see triu for details).

	Returns:	triu_indices_from : tuple, shape(2) of ndarray, shape(N)

Indices for the upper-triangle of arr.

See also

triu_indices, triu

Notes

New in version 1.4.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.take

	
numpy.take(a, indices, axis=None, out=None, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L53]

	Take elements from an array along an axis.

This function does the same thing as “fancy” indexing (indexing arrays
using arrays); however, it can be easier to use if you need elements
along a given axis.

	Parameters:	a : array_like

The source array.

indices : array_like

The indices of the values to extract.

New in version 1.8.0.

Also allow scalars for indices.

axis : int, optional

The axis over which to select values. By default, the flattened
input array is used.

out : ndarray, optional

If provided, the result will be placed in this array. It should
be of the appropriate shape and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave.

	‘raise’ – raise an error (default)

	‘wrap’ – wrap around

	‘clip’ – clip to the range

‘clip’ mode means that all indices that are too large are replaced
by the index that addresses the last element along that axis. Note
that this disables indexing with negative numbers.

	Returns:	subarray : ndarray

The returned array has the same type as a.

See also

	compress

	Take elements using a boolean mask

	ndarray.take

	equivalent method

Examples

>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array([4, 3, 6])

In this example if a is an ndarray, “fancy” indexing can be used.

>>> a = np.array(a)
>>> a[indices]
array([4, 3, 6])

If indices is not one dimensional, the output also has these dimensions.

>>> np.take(a, [[0, 1], [2, 3]])
array([[4, 3],
 [5, 7]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.choose

	
numpy.choose(a, choices, out=None, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L224]

	Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples -
in its full generality, this function is less simple than it might
seem from the following code description (below ndi =
numpy.lib.index_tricks):

np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)]).

But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays
(choices), a and each choice array are first broadcast, as necessary,
to arrays of a common shape; calling these Ba and Bchoices[i], i =
0,...,n-1 we have that, necessarily, Ba.shape == Bchoices[i].shape
for each i. Then, a new array with shape Ba.shape is created as
follows:

	if mode=raise (the default), then, first of all, each element of
a (and thus Ba) must be in the range [0, n-1]; now, suppose that
i (in that range) is the value at the (j0, j1, ..., jm) position
in Ba - then the value at the same position in the new array is the
value in Bchoices[i] at that same position;

	if mode=wrap, values in a (and thus Ba) may be any (signed)
integer; modular arithmetic is used to map integers outside the range
[0, n-1] back into that range; and then the new array is constructed
as above;

	if mode=clip, values in a (and thus Ba) may be any (signed)
integer; negative integers are mapped to 0; values greater than n-1
are mapped to n-1; and then the new array is constructed as above.

	Parameters:	a : int array

This array must contain integers in [0, n-1], where n is the number
of choices, unless mode=wrap or mode=clip, in which cases any
integers are permissible.

choices : sequence of arrays

Choice arrays. a and all of the choices must be broadcastable to the
same shape. If choices is itself an array (not recommended), then
its outermost dimension (i.e., the one corresponding to
choices.shape[0]) is taken as defining the “sequence”.

out : array, optional

If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype.

mode : {‘raise’ (default), ‘wrap’, ‘clip’}, optional

Specifies how indices outside [0, n-1] will be treated:

	‘raise’ : an exception is raised

	‘wrap’ : value becomes value mod n

	‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

	Returns:	merged_array : array

The merged result.

	Raises:	ValueError: shape mismatch

If a and each choice array are not all broadcastable to the same
shape.

See also

	ndarray.choose

	equivalent method

Notes

To reduce the chance of misinterpretation, even though the following
“abuse” is nominally supported, choices should neither be, nor be
thought of as, a single array, i.e., the outermost sequence-like container
should be either a list or a tuple.

Examples

>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices
... # the first element of the result will be the first element of the
... # third (2+1) "array" in choices, namely, 20; the second element
... # will be the second element of the fourth (3+1) choice array, i.e.,
... # 31, etc.
...)
array([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
array([20, 31, 12, 3])
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
array([20, 1, 12, 3])
>>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
>>> choices = [-10, 10]
>>> np.choose(a, choices)
array([[10, -10, 10],
 [-10, 10, -10],
 [10, -10, 10]])

>>> # With thanks to Anne Archibald
>>> a = np.array([0, 1]).reshape((2,1,1))
>>> c1 = np.array([1, 2, 3]).reshape((1,3,1))
>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
>>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
array([[[1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3]],
 [[-1, -2, -3, -4, -5],
 [-1, -2, -3, -4, -5],
 [-1, -2, -3, -4, -5]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.compress

	
numpy.compress(condition, a, axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1499]

	Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in
output for each index where condition evaluates to True. When
working on a 1-D array, compress is equivalent to extract.

	Parameters:	condition : 1-D array of bools

Array that selects which entries to return. If len(condition)
is less than the size of a along the given axis, then output is
truncated to the length of the condition array.

a : array_like

Array from which to extract a part.

axis : int, optional

Axis along which to take slices. If None (default), work on the
flattened array.

out : ndarray, optional

Output array. Its type is preserved and it must be of the right
shape to hold the output.

	Returns:	compressed_array : ndarray

A copy of a without the slices along axis for which condition
is false.

See also

take, choose, diag, diagonal, select

	ndarray.compress

	Equivalent method in ndarray

	np.extract

	Equivalent method when working on 1-D arrays

	numpy.doc.ufuncs

	Section “Output arguments”

Examples

>>> a = np.array([[1, 2], [3, 4], [5, 6]])
>>> a
array([[1, 2],
 [3, 4],
 [5, 6]])
>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([False, True, True], a, axis=0)
array([[3, 4],
 [5, 6]])
>>> np.compress([False, True], a, axis=1)
array([[2],
 [4],
 [6]])

Working on the flattened array does not return slices along an axis but
selects elements.

>>> np.compress([False, True], a)
array([2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.diag

	
numpy.diag(v, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L242]

	Extract a diagonal or construct a diagonal array.

See the more detailed documentation for numpy.diagonal if you use this
function to extract a diagonal and wish to write to the resulting array;
whether it returns a copy or a view depends on what version of numpy you
are using.

	Parameters:	v : array_like

If v is a 2-D array, return a copy of its k-th diagonal.
If v is a 1-D array, return a 2-D array with v on the k-th
diagonal.

k : int, optional

Diagonal in question. The default is 0. Use k>0 for diagonals
above the main diagonal, and k<0 for diagonals below the main
diagonal.

	Returns:	out : ndarray

The extracted diagonal or constructed diagonal array.

See also

	diagonal

	Return specified diagonals.

	diagflat

	Create a 2-D array with the flattened input as a diagonal.

	trace

	Sum along diagonals.

	triu

	Upper triangle of an array.

	tril

	Lower triangle of an array.

Examples

>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x, k=1)
array([1, 5])
>>> np.diag(x, k=-1)
array([3, 7])

>>> np.diag(np.diag(x))
array([[0, 0, 0],
 [0, 4, 0],
 [0, 0, 8]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.diagonal

	
numpy.diagonal(a, offset=0, axis1=0, axis2=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1120]

	Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset,
i.e., the collection of elements of the form a[i, i+offset]. If
a has more than two dimensions, then the axes specified by axis1
and axis2 are used to determine the 2-D sub-array whose diagonal is
returned. The shape of the resulting array can be determined by
removing axis1 and axis2 and appending an index to the right equal
to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new,
independent array containing a copy of the values in the diagonal.

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal,
but depending on this fact is deprecated. Writing to the resulting
array continues to work as it used to, but a FutureWarning is issued.

In NumPy 1.9 it returns a read-only view on the original array.
Attempting to write to the resulting array will produce an error.

In NumPy 1.10, it will return a read/write view, Writing to the returned
array will alter your original array.

If you don’t write to the array returned by this function, then you can
just ignore all of the above.

If you depend on the current behavior, then we suggest copying the
returned array explicitly, i.e., use np.diagonal(a).copy() instead of
just np.diagonal(a). This will work with both past and future versions
of NumPy.

	Parameters:	a : array_like

Array from which the diagonals are taken.

offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or
negative. Defaults to main diagonal (0).

axis1 : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which
the diagonals should be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from
which the diagonals should be taken. Defaults to second axis (1).

	Returns:	array_of_diagonals : ndarray

If a is 2-D, a 1-D array containing the diagonal is returned.
If the dimension of a is larger, then an array of diagonals is
returned, “packed” from left-most dimension to right-most (e.g.,
if a is 3-D, then the diagonals are “packed” along rows).

	Raises:	ValueError

If the dimension of a is less than 2.

See also

	diag

	MATLAB work-a-like for 1-D and 2-D arrays.

	diagflat

	Create diagonal arrays.

	trace

	Sum along diagonals.

Examples

>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
 [2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])

A 3-D example:

>>> a = np.arange(8).reshape(2,2,2); a
array([[[0, 1],
 [2, 3]],
 [[4, 5],
 [6, 7]]])
>>> a.diagonal(0, # Main diagonals of two arrays created by skipping
... 0, # across the outer(left)-most axis last and
... 1) # the "middle" (row) axis first.
array([[0, 6],
 [1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each
corresponds to fixing the right-most (column) axis, and that the
diagonals are “packed” in rows.

>>> a[:,:,0] # main diagonal is [0 6]
array([[0, 2],
 [4, 6]])
>>> a[:,:,1] # main diagonal is [1 7]
array([[1, 3],
 [5, 7]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.select

	
numpy.select(condlist, choicelist, default=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L736]

	Return an array drawn from elements in choicelist, depending on conditions.

	Parameters:	condlist : list of bool ndarrays

The list of conditions which determine from which array in choicelist
the output elements are taken. When multiple conditions are satisfied,
the first one encountered in condlist is used.

choicelist : list of ndarrays

The list of arrays from which the output elements are taken. It has
to be of the same length as condlist.

default : scalar, optional

The element inserted in output when all conditions evaluate to False.

	Returns:	output : ndarray

The output at position m is the m-th element of the array in
choicelist where the m-th element of the corresponding array in
condlist is True.

See also

	where

	Return elements from one of two arrays depending on condition.

take, choose, compress, diag, diagonal

Examples

>>> x = np.arange(10)
>>> condlist = [x<3, x>5]
>>> choicelist = [x, x**2]
>>> np.select(condlist, choicelist)
array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.place

	
numpy.place(arr, mask, vals)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1449]

	Change elements of an array based on conditional and input values.

Similar to np.copyto(arr, vals, where=mask), the difference is that
place uses the first N elements of vals, where N is the number of
True values in mask, while copyto uses the elements where mask
is True.

Note that extract does the exact opposite of place.

	Parameters:	arr : array_like

Array to put data into.

mask : array_like

Boolean mask array. Must have the same size as a.

vals : 1-D sequence

Values to put into a. Only the first N elements are used, where
N is the number of True values in mask. If vals is smaller
than N it will be repeated.

See also

copyto, put, take, extract

Examples

>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[0, 1, 2],
 [44, 55, 44]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.put

	
numpy.put(a, ind, v, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L396]

	Replaces specified elements of an array with given values.

The indexing works on the flattened target array. put is roughly
equivalent to:

a.flat[ind] = v

	Parameters:	a : ndarray

Target array.

ind : array_like

Target indices, interpreted as integers.

v : array_like

Values to place in a at target indices. If v is shorter than
ind it will be repeated as necessary.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave.

	‘raise’ – raise an error (default)

	‘wrap’ – wrap around

	‘clip’ – clip to the range

‘clip’ mode means that all indices that are too large are replaced
by the index that addresses the last element along that axis. Note
that this disables indexing with negative numbers.

See also

putmask, place

Examples

>>> a = np.arange(5)
>>> np.put(a, [0, 2], [-44, -55])
>>> a
array([-44, 1, -55, 3, 4])

>>> a = np.arange(5)
>>> np.put(a, 22, -5, mode='clip')
>>> a
array([0, 1, 2, 3, -5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.putmask

	
numpy.putmask(a, mask, values)

	Changes elements of an array based on conditional and input values.

Sets a.flat[n] = values[n] for each n where mask.flat[n]==True.

If values is not the same size as a and mask then it will repeat.
This gives behavior different from a[mask] = values.

	Parameters:	a : array_like

Target array.

mask : array_like

Boolean mask array. It has to be the same shape as a.

values : array_like

Values to put into a where mask is True. If values is smaller
than a it will be repeated.

See also

place, put, take, copyto

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> np.putmask(x, x>2, x**2)
>>> x
array([[0, 1, 2],
 [9, 16, 25]])

If values is smaller than a it is repeated:

>>> x = np.arange(5)
>>> np.putmask(x, x>1, [-33, -44])
>>> x
array([0, 1, -33, -44, -33])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.fill_diagonal

	
numpy.fill_diagonal(a, val, wrap=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L665]

	Fill the main diagonal of the given array of any dimensionality.

For an array a with a.ndim > 2, the diagonal is the list of
locations with indices a[i, i, ..., i] all identical. This function
modifies the input array in-place, it does not return a value.

	Parameters:	a : array, at least 2-D.

Array whose diagonal is to be filled, it gets modified in-place.

val : scalar

Value to be written on the diagonal, its type must be compatible with
that of the array a.

wrap : bool

For tall matrices in NumPy version up to 1.6.2, the
diagonal “wrapped” after N columns. You can have this behavior
with this option. This affect only tall matrices.

See also

diag_indices, diag_indices_from

Notes

New in version 1.4.0.

This functionality can be obtained via diag_indices, but internally
this version uses a much faster implementation that never constructs the
indices and uses simple slicing.

Examples

>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],
 [0, 5, 0],
 [0, 0, 5]])

The same function can operate on a 4-D array:

>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)

We only show a few blocks for clarity:

>>> a[0, 0]
array([[4, 0, 0],
 [0, 0, 0],
 [0, 0, 0]])
>>> a[1, 1]
array([[0, 0, 0],
 [0, 4, 0],
 [0, 0, 0]])
>>> a[2, 2]
array([[0, 0, 0],
 [0, 0, 0],
 [0, 0, 4]])

tall matrices no wrap
>>> a = np.zeros((5, 3),int)
>>> fill_diagonal(a, 4)
array([[4, 0, 0],

[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[0, 0, 0]])

tall matrices wrap
>>> a = np.zeros((5, 3),int)
>>> fill_diagonal(a, 4)
array([[4, 0, 0],

[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[4, 0, 0]])

wide matrices
>>> a = np.zeros((3, 5),int)
>>> fill_diagonal(a, 4)
array([[4, 0, 0, 0, 0],

[0, 4, 0, 0, 0],
[0, 0, 4, 0, 0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.nditer

	
class numpy.nditer[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	Efficient multi-dimensional iterator object to iterate over arrays.
To get started using this object, see the
introductory guide to array iteration.

	Parameters:	op : ndarray or sequence of array_like

The array(s) to iterate over.

flags : sequence of str, optional

Flags to control the behavior of the iterator.

	“buffered” enables buffering when required.

	“c_index” causes a C-order index to be tracked.

	“f_index” causes a Fortran-order index to be tracked.

	“multi_index” causes a multi-index, or a tuple of indices
with one per iteration dimension, to be tracked.

	“common_dtype” causes all the operands to be converted to
a common data type, with copying or buffering as necessary.

	“delay_bufalloc” delays allocation of the buffers until
a reset() call is made. Allows “allocate” operands to
be initialized before their values are copied into the buffers.

	“external_loop” causes the values given to be
one-dimensional arrays with multiple values instead of
zero-dimensional arrays.

	“grow_inner” allows the value array sizes to be made
larger than the buffer size when both “buffered” and
“external_loop” is used.

	“ranged” allows the iterator to be restricted to a sub-range
of the iterindex values.

	“refs_ok” enables iteration of reference types, such as
object arrays.

	“reduce_ok” enables iteration of “readwrite” operands
which are broadcasted, also known as reduction operands.

	“zerosize_ok” allows itersize to be zero.

op_flags : list of list of str, optional

This is a list of flags for each operand. At minimum, one of
“readonly”, “readwrite”, or “writeonly” must be specified.

	“readonly” indicates the operand will only be read from.

	“readwrite” indicates the operand will be read from and written to.

	“writeonly” indicates the operand will only be written to.

	“no_broadcast” prevents the operand from being broadcasted.

	“contig” forces the operand data to be contiguous.

	“aligned” forces the operand data to be aligned.

	“nbo” forces the operand data to be in native byte order.

	“copy” allows a temporary read-only copy if required.

	“updateifcopy” allows a temporary read-write copy if required.

	“allocate” causes the array to be allocated if it is None
in the op parameter.

	“no_subtype” prevents an “allocate” operand from using a subtype.

	“arraymask” indicates that this operand is the mask to use
for selecting elements when writing to operands with the
‘writemasked’ flag set. The iterator does not enforce this,
but when writing from a buffer back to the array, it only
copies those elements indicated by this mask.

	‘writemasked’ indicates that only elements where the chosen
‘arraymask’ operand is True will be written to.

op_dtypes : dtype or tuple of dtype(s), optional

The required data type(s) of the operands. If copying or buffering
is enabled, the data will be converted to/from their original types.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the iteration order. ‘C’ means C order, ‘F’ means
Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible. This also
affects the element memory order of “allocate” operands, as they
are allocated to be compatible with iteration order.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur when making a copy
or buffering. Setting this to ‘unsafe’ is not recommended,
as it can adversely affect accumulations.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

op_axes : list of list of ints, optional

If provided, is a list of ints or None for each operands.
The list of axes for an operand is a mapping from the dimensions
of the iterator to the dimensions of the operand. A value of
-1 can be placed for entries, causing that dimension to be
treated as “newaxis”.

itershape : tuple of ints, optional

The desired shape of the iterator. This allows “allocate” operands
with a dimension mapped by op_axes not corresponding to a dimension
of a different operand to get a value not equal to 1 for that
dimension.

buffersize : int, optional

When buffering is enabled, controls the size of the temporary
buffers. Set to 0 for the default value.

Notes

nditer supersedes flatiter. The iterator implementation behind
nditer is also exposed by the Numpy C API.

The Python exposure supplies two iteration interfaces, one which follows
the Python iterator protocol, and another which mirrors the C-style
do-while pattern. The native Python approach is better in most cases, but
if you need the iterator’s coordinates or index, use the C-style pattern.

Examples

Here is how we might write an iter_add function, using the
Python iterator protocol:

def iter_add_py(x, y, out=None):
 addop = np.add
 it = np.nditer([x, y, out], [],
 [['readonly'], ['readonly'], ['writeonly','allocate']])
 for (a, b, c) in it:
 addop(a, b, out=c)
 return it.operands[2]

Here is the same function, but following the C-style pattern:

def iter_add(x, y, out=None):
 addop = np.add

 it = np.nditer([x, y, out], [],
 [['readonly'], ['readonly'], ['writeonly','allocate']])

 while not it.finished:
 addop(it[0], it[1], out=it[2])
 it.iternext()

 return it.operands[2]

Here is an example outer product function:

def outer_it(x, y, out=None):
 mulop = np.multiply

 it = np.nditer([x, y, out], ['external_loop'],
 [['readonly'], ['readonly'], ['writeonly', 'allocate']],
 op_axes=[range(x.ndim)+[-1]*y.ndim,
 [-1]*x.ndim+range(y.ndim),
 None])

 for (a, b, c) in it:
 mulop(a, b, out=c)

 return it.operands[2]

>>> a = np.arange(2)+1
>>> b = np.arange(3)+1
>>> outer_it(a,b)
array([[1, 2, 3],
 [2, 4, 6]])

Here is an example function which operates like a “lambda” ufunc:

def luf(lamdaexpr, *args, **kwargs):
 "luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)"
 nargs = len(args)
 op = (kwargs.get('out',None),) + args
 it = np.nditer(op, ['buffered','external_loop'],
 [['writeonly','allocate','no_broadcast']] +
 [['readonly','nbo','aligned']]*nargs,
 order=kwargs.get('order','K'),
 casting=kwargs.get('casting','safe'),
 buffersize=kwargs.get('buffersize',0))
 while not it.finished:
 it[0] = lamdaexpr(*it[1:])
 it.iternext()
 return it.operands[0]

>>> a = np.arange(5)
>>> b = np.ones(5)
>>> luf(lambda i,j:i*i + j/2, a, b)
array([0.5, 1.5, 4.5, 9.5, 16.5])

Attributes

	dtypes
	(tuple of dtype(s)) The data types of the values provided in value. This may be different from the operand data types if buffering is enabled.

	finished
	(bool) Whether the iteration over the operands is finished or not.

	has_delayed_bufalloc
	(bool) If True, the iterator was created with the “delay_bufalloc” flag, and no reset() function was called on it yet.

	has_index
	(bool) If True, the iterator was created with either the “c_index” or the “f_index” flag, and the property index can be used to retrieve it.

	has_multi_index
	(bool) If True, the iterator was created with the “multi_index” flag, and the property multi_index can be used to retrieve it.

	index :
	When the “c_index” or “f_index” flag was used, this property provides access to the index. Raises a ValueError if accessed and has_index is False.

	iterationneedsapi
	(bool) Whether iteration requires access to the Python API, for example if one of the operands is an object array.

	iterindex
	(int) An index which matches the order of iteration.

	itersize
	(int) Size of the iterator.

	itviews :
	Structured view(s) of operands in memory, matching the reordered and optimized iterator access pattern.

	multi_index :
	When the “multi_index” flag was used, this property provides access to the index. Raises a ValueError if accessed accessed and has_multi_index is False.

	ndim
	(int) The iterator’s dimension.

	nop
	(int) The number of iterator operands.

	operands
	(tuple of operand(s)) The array(s) to be iterated over.

	shape
	(tuple of ints) Shape tuple, the shape of the iterator.

	value :
	Value of operands at current iteration. Normally, this is a tuple of array scalars, but if the flag “external_loop” is used, it is a tuple of one dimensional arrays.

Methods

	copy()
	Get a copy of the iterator in its current state.

	debug_print()
	Print the current state of the nditer instance and debug info to stdout.

	enable_external_loop()
	When the “external_loop” was not used during construction, but is desired, this modifies the iterator to behave as if the flag was specified.

	iternext()
	Check whether iterations are left, and perform a single internal iteration without returning the result.

	next
	x.next() -> the next value, or raise StopIteration

	remove_axis(i)
	Removes axis i from the iterator.

	remove_multi_index()
	When the “multi_index” flag was specified, this removes it, allowing the internal iteration structure to be optimized further.

	reset()
	Reset the iterator to its initial state.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.nditer

numpy.nditer.copy

	
nditer.copy()

	Get a copy of the iterator in its current state.

Examples

>>> x = np.arange(10)
>>> y = x + 1
>>> it = np.nditer([x, y])
>>> it.next()
(array(0), array(1))
>>> it2 = it.copy()
>>> it2.next()
(array(1), array(2))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.nditer

numpy.nditer.debug_print

	
nditer.debug_print()

	Print the current state of the nditer instance and debug info to stdout.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.nditer

numpy.nditer.enable_external_loop

	
nditer.enable_external_loop()

	When the “external_loop” was not used during construction, but
is desired, this modifies the iterator to behave as if the flag
was specified.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.nditer

numpy.nditer.iternext

	
nditer.iternext()

	Check whether iterations are left, and perform a single internal iteration
without returning the result. Used in the C-style pattern do-while
pattern. For an example, see nditer.

	Returns:	iternext : bool

Whether or not there are iterations left.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.nditer

numpy.nditer.next

	
nditer.next

	x.next() -> the next value, or raise StopIteration

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.nditer

numpy.nditer.remove_axis

	
nditer.remove_axis(i)

	Removes axis i from the iterator. Requires that the flag “multi_index”
be enabled.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.nditer

numpy.nditer.remove_multi_index

	
nditer.remove_multi_index()

	When the “multi_index” flag was specified, this removes it, allowing
the internal iteration structure to be optimized further.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.nditer

numpy.nditer.reset

	
nditer.reset()

	Reset the iterator to its initial state.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.ndenumerate

	
class numpy.ndenumerate(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L475]

	Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values.

	Parameters:	a : ndarray

Input array.

See also

ndindex, flatiter

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> for index, x in np.ndenumerate(a):
... print index, x
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4

Methods

	next()
	Standard iterator method, returns the index tuple and array value.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.ndenumerate

numpy.ndenumerate.next

	
ndenumerate.next()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L505]

	Standard iterator method, returns the index tuple and array value.

	Returns:	coords : tuple of ints

The indices of the current iteration.

val : scalar

The array element of the current iteration.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.ndindex

	
class numpy.ndindex(*shape)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L525]

	An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over
the N-dimensional index of the array. At each iteration a tuple
of indices is returned, the last dimension is iterated over first.

	Parameters:	`*args` : ints

The size of each dimension of the array.

See also

ndenumerate, flatiter

Examples

>>> for index in np.ndindex(3, 2, 1):
... print index
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

Methods

	ndincr()
	Increment the multi-dimensional index by one.

	next()
	Standard iterator method, updates the index and returns the index tuple.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.ndindex

numpy.ndindex.ndincr

	
ndindex.ndincr()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L566]

	Increment the multi-dimensional index by one.

This method is for backward compatibility only: do not use.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.ndindex

numpy.ndindex.next

	
ndindex.next()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\index_tricks.py#L574]

	Standard iterator method, updates the index and returns the index
tuple.

	Returns:	val : tuple of ints

Returns a tuple containing the indices of the current
iteration.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

numpy.flatiter

	
class numpy.flatiter[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	Flat iterator object to iterate over arrays.

A flatiter iterator is returned by x.flat for any array x.
It allows iterating over the array as if it were a 1-D array,
either in a for-loop or by calling its next method.

Iteration is done in C-contiguous style, with the last index varying the
fastest. The iterator can also be indexed using basic slicing or
advanced indexing.

See also

	ndarray.flat

	Return a flat iterator over an array.

	ndarray.flatten

	Returns a flattened copy of an array.

Notes

A flatiter iterator can not be constructed directly from Python code
by calling the flatiter constructor.

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> type(fl)
<type 'numpy.flatiter'>
>>> for item in fl:
... print item
...
0
1
2
3
4
5

>>> fl[2:4]
array([2, 3])

Attributes

	coords
	An N-dimensional tuple of current coordinates.

Methods

	copy()
	Get a copy of the iterator as a 1-D array.

	next
	x.next() -> the next value, or raise StopIteration

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.flatiter

numpy.flatiter.coords

	
flatiter.coords

	An N-dimensional tuple of current coordinates.

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> fl.coords
(0, 0)
>>> fl.next()
0
>>> fl.coords
(0, 1)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.flatiter

numpy.flatiter.copy

	
flatiter.copy()

	Get a copy of the iterator as a 1-D array.

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> x
array([[0, 1, 2],
 [3, 4, 5]])
>>> fl = x.flat
>>> fl.copy()
array([0, 1, 2, 3, 4, 5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Indexing routines

 	numpy.flatiter

numpy.flatiter.next

	
flatiter.next

	x.next() -> the next value, or raise StopIteration

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Input and output

NPZ files

	load(file[,mmap_mode])
	Load arrays or pickled objects from .npy, .npz or pickled files.

	save(file,arr)
	Save an array to a binary file in NumPy .npy format.

	savez(file,*args,**kwds)
	Save several arrays into a single file in uncompressed .npz format.

	savez_compressed(file,*args,**kwds)
	Save several arrays into a single file in compressed .npz format.

Text files

	loadtxt(fname[,dtype,comments,delimiter,...])
	Load data from a text file.

	savetxt(fname,X[,fmt,delimiter,newline,...])
	Save an array to a text file.

	genfromtxt(fname[,dtype,comments,...])
	Load data from a text file, with missing values handled as specified.

	fromregex(file,regexp,dtype)
	Construct an array from a text file, using regular expression parsing.

	fromstring(string[,dtype,count,sep])
	A new 1-D array initialized from raw binary or text data in a string.

	ndarray.tofile(fid[,sep,format])
	Write array to a file as text or binary (default).

	ndarray.tolist()
	Return the array as a (possibly nested) list.

Raw binary files

	fromfile(file[,dtype,count,sep])
	Construct an array from data in a text or binary file.

	ndarray.tofile(fid[,sep,format])
	Write array to a file as text or binary (default).

String formatting

	array_repr(arr[,max_line_width,precision,...])
	Return the string representation of an array.

	array_str(a[,max_line_width,precision,...])
	Return a string representation of the data in an array.

Memory mapping files

	memmap
	Create a memory-map to an array stored in a binary file on disk.

Text formatting options

	set_printoptions([precision,threshold,...])
	Set printing options.

	get_printoptions()
	Return the current print options.

	set_string_function(f[,repr])
	Set a Python function to be used when pretty printing arrays.

Base-n representations

	binary_repr(num[,width])
	Return the binary representation of the input number as a string.

	base_repr(number[,base,padding])
	Return a string representation of a number in the given base system.

Data sources

	DataSource([destpath])
	A generic data source file (file, http, ftp, ...).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.load

	
numpy.load(file, mmap_mode=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L284]

	Load arrays or pickled objects from .npy, .npz or pickled files.

	Parameters:	file : file-like object or string

The file to read. File-like objects must support the
seek() and read() methods. Pickled files require that the
file-like object support the readline() method as well.

mmap_mode : {None, ‘r+’, ‘r’, ‘w+’, ‘c’}, optional

If not None, then memory-map the file, using the given mode (see
numpy.memmap for a detailed description of the modes). A
memory-mapped array is kept on disk. However, it can be accessed
and sliced like any ndarray. Memory mapping is especially useful
for accessing small fragments of large files without reading the
entire file into memory.

	Returns:	result : array, tuple, dict, etc.

Data stored in the file. For .npz files, the returned instance
of NpzFile class must be closed to avoid leaking file descriptors.

	Raises:	IOError

If the input file does not exist or cannot be read.

See also

save, savez, savez_compressed, loadtxt

	memmap

	Create a memory-map to an array stored in a file on disk.

Notes

	If the file contains pickle data, then whatever object is stored
in the pickle is returned.

	If the file is a .npy file, then a single array is returned.

	If the file is a .npz file, then a dictionary-like object is
returned, containing {filename: array} key-value pairs, one for
each file in the archive.

	If the file is a .npz file, the returned value supports the
context manager protocol in a similar fashion to the open function:

with load('foo.npz') as data:
 a = data['a']

The underlying file descriptor is closed when exiting the ‘with’
block.

Examples

Store data to disk, and load it again:

>>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
>>> np.load('/tmp/123.npy')
array([[1, 2, 3],
 [4, 5, 6]])

Store compressed data to disk, and load it again:

>>> a=np.array([[1, 2, 3], [4, 5, 6]])
>>> b=np.array([1, 2])
>>> np.savez('/tmp/123.npz', a=a, b=b)
>>> data = np.load('/tmp/123.npz')
>>> data['a']
array([[1, 2, 3],
 [4, 5, 6]])
>>> data['b']
array([1, 2])
>>> data.close()

Mem-map the stored array, and then access the second row
directly from disk:

>>> X = np.load('/tmp/123.npy', mmap_mode='r')
>>> X[1, :]
memmap([4, 5, 6])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.save

	
numpy.save(file, arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L406]

	Save an array to a binary file in NumPy .npy format.

	Parameters:	file : file or str

File or filename to which the data is saved. If file is a file-object,
then the filename is unchanged. If file is a string, a .npy
extension will be appended to the file name if it does not already
have one.

arr : array_like

Array data to be saved.

See also

	savez

	Save several arrays into a .npz archive

savetxt, load

Notes

For a description of the .npy format, see format.

Examples

>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()

>>> x = np.arange(10)
>>> np.save(outfile, x)

>>> outfile.seek(0) # Only needed here to simulate closing & reopening file
>>> np.load(outfile)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.savez

	
numpy.savez(file, *args, **kwds)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L459]

	Save several arrays into a single file in uncompressed .npz format.

If arguments are passed in with no keywords, the corresponding variable
names, in the .npz file, are ‘arr_0’, ‘arr_1’, etc. If keyword
arguments are given, the corresponding variable names, in the .npz
file will match the keyword names.

	Parameters:	file : str or file

Either the file name (string) or an open file (file-like object)
where the data will be saved. If file is a string, the .npz
extension will be appended to the file name if it is not already there.

args : Arguments, optional

Arrays to save to the file. Since it is not possible for Python to
know the names of the arrays outside savez, the arrays will be saved
with names “arr_0”, “arr_1”, and so on. These arguments can be any
expression.

kwds : Keyword arguments, optional

Arrays to save to the file. Arrays will be saved in the file with the
keyword names.

	Returns:	None

See also

	save

	Save a single array to a binary file in NumPy format.

	savetxt

	Save an array to a file as plain text.

	savez_compressed

	Save several arrays into a compressed .npz archive

Notes

The .npz file format is a zipped archive of files named after the
variables they contain. The archive is not compressed and each file
in the archive contains one variable in .npy format. For a
description of the .npy format, see format.

When opening the saved .npz file with load a NpzFile object is
returned. This is a dictionary-like object which can be queried for
its list of arrays (with the .files attribute), and for the arrays
themselves.

Examples

>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()
>>> x = np.arange(10)
>>> y = np.sin(x)

Using savez with *args, the arrays are saved with default names.

>>> np.savez(outfile, x, y)
>>> outfile.seek(0) # Only needed here to simulate closing & reopening file
>>> npzfile = np.load(outfile)
>>> npzfile.files
['arr_1', 'arr_0']
>>> npzfile['arr_0']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Using savez with **kwds, the arrays are saved with the keyword names.

>>> outfile = TemporaryFile()
>>> np.savez(outfile, x=x, y=y)
>>> outfile.seek(0)
>>> npzfile = np.load(outfile)
>>> npzfile.files
['y', 'x']
>>> npzfile['x']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.savez_compressed

	
numpy.savez_compressed(file, *args, **kwds)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L537]

	Save several arrays into a single file in compressed .npz format.

If keyword arguments are given, then filenames are taken from the keywords.
If arguments are passed in with no keywords, then stored file names are
arr_0, arr_1, etc.

	Parameters:	file : str

File name of .npz file.

args : Arguments

Function arguments.

kwds : Keyword arguments

Keywords.

See also

	numpy.savez

	Save several arrays into an uncompressed .npz file format

	numpy.load

	Load the files created by savez_compressed.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.loadtxt

	
numpy.loadtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L631]

	Load data from a text file.

Each row in the text file must have the same number of values.

	Parameters:	fname : file or str

File, filename, or generator to read. If the filename extension is
.gz or .bz2, the file is first decompressed. Note that
generators should return byte strings for Python 3k.

dtype : data-type, optional

Data-type of the resulting array; default: float. If this is a
record data-type, the resulting array will be 1-dimensional, and
each row will be interpreted as an element of the array. In this
case, the number of columns used must match the number of fields in
the data-type.

comments : str, optional

The character used to indicate the start of a comment;
default: ‘#’.

delimiter : str, optional

The string used to separate values. By default, this is any
whitespace.

converters : dict, optional

A dictionary mapping column number to a function that will convert
that column to a float. E.g., if column 0 is a date string:
converters = {0: datestr2num}. Converters can also be used to
provide a default value for missing data (but see also genfromtxt):
converters = {3: lambda s: float(s.strip() or 0)}. Default: None.

skiprows : int, optional

Skip the first skiprows lines; default: 0.

usecols : sequence, optional

Which columns to read, with 0 being the first. For example,
usecols = (1,4,5) will extract the 2nd, 5th and 6th columns.
The default, None, results in all columns being read.

unpack : bool, optional

If True, the returned array is transposed, so that arguments may be
unpacked using x, y, z = loadtxt(...). When used with a record
data-type, arrays are returned for each field. Default is False.

ndmin : int, optional

The returned array will have at least ndmin dimensions.
Otherwise mono-dimensional axes will be squeezed.
Legal values: 0 (default), 1 or 2.

New in version 1.6.0.

	Returns:	out : ndarray

Data read from the text file.

See also

load, fromstring, fromregex

	genfromtxt

	Load data with missing values handled as specified.

	scipy.io.loadmat

	reads MATLAB data files

Notes

This function aims to be a fast reader for simply formatted files. The
genfromtxt function provides more sophisticated handling of, e.g.,
lines with missing values.

Examples

>>> from StringIO import StringIO # StringIO behaves like a file object
>>> c = StringIO("0 1\n2 3")
>>> np.loadtxt(c)
array([[0., 1.],
 [2., 3.]])

>>> d = StringIO("M 21 72\nF 35 58")
>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
... 'formats': ('S1', 'i4', 'f4')})
array([('M', 21, 72.0), ('F', 35, 58.0)],
 dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')])

>>> c = StringIO("1,0,2\n3,0,4")
>>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True)
>>> x
array([1., 3.])
>>> y
array([2., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.savetxt

	
numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L895]

	Save an array to a text file.

	Parameters:	fname : filename or file handle

If the filename ends in .gz, the file is automatically saved in
compressed gzip format. loadtxt understands gzipped files
transparently.

X : array_like

Data to be saved to a text file.

fmt : str or sequence of strs, optional

A single format (%10.5f), a sequence of formats, or a
multi-format string, e.g. ‘Iteration %d – %10.5f’, in which
case delimiter is ignored. For complex X, the legal options
for fmt are:

	
	a single specifier, fmt=’%.4e’, resulting in numbers formatted

	like ‘ (%s+%sj)’ % (fmt, fmt)

	
	a full string specifying every real and imaginary part, e.g.

	‘ %.4e %+.4j %.4e %+.4j %.4e %+.4j’ for 3 columns

	
	a list of specifiers, one per column - in this case, the real

	and imaginary part must have separate specifiers,
e.g. [‘%.3e + %.3ej’, ‘(%.15e%+.15ej)’] for 2 columns

delimiter : str, optional

String or character separating columns.

newline : str, optional

String or character separating lines.

New in version 1.5.0.

header : str, optional

String that will be written at the beginning of the file.

New in version 1.7.0.

footer : str, optional

String that will be written at the end of the file.

New in version 1.7.0.

comments : str, optional

String that will be prepended to the header and footer strings,
to mark them as comments. Default: ‘# ‘, as expected by e.g.
numpy.loadtxt.

New in version 1.7.0.

See also

	save

	Save an array to a binary file in NumPy .npy format

	savez

	Save several arrays into an uncompressed .npz archive

	savez_compressed

	Save several arrays into a compressed .npz archive

Notes

Further explanation of the fmt parameter
(%[flag]width[.precision]specifier):

	flags:

	- : left justify

+ : Forces to precede result with + or -.

0 : Left pad the number with zeros instead of space (see width).

	width:

	Minimum number of characters to be printed. The value is not truncated
if it has more characters.

	precision:

	
	For integer specifiers (eg. d,i,o,x), the minimum number of
digits.

	For e, E and f specifiers, the number of digits to print
after the decimal point.

	For g and G, the maximum number of significant digits.

	For s, the maximum number of characters.

	specifiers:

	c : character

d or i : signed decimal integer

e or E : scientific notation with e or E.

f : decimal floating point

g,G : use the shorter of e,E or f

o : signed octal

s : string of characters

u : unsigned decimal integer

x,X : unsigned hexadecimal integer

This explanation of fmt is not complete, for an exhaustive
specification see [R244].

References

	[R244]	(1, 2) Format Specification Mini-Language [http://docs.python.org/library/string.html#format-specification-mini-language], Python Documentation.

Examples

>>> x = y = z = np.arange(0.0,5.0,1.0)
>>> np.savetxt('test.out', x, delimiter=',') # X is an array
>>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
>>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.genfromtxt

	
numpy.genfromtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, skiprows=0, skip_header=0, skip_footer=0, converters=None, missing='', missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False, loose=True, invalid_raise=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L1180]

	Load data from a text file, with missing values handled as specified.

Each line past the first skip_header lines is split at the delimiter
character, and characters following the comments character are discarded.

	Parameters:	fname : file or str

File, filename, or generator to read. If the filename extension is
gz or bz2 [http://docs.python.org/dev/library/bz2.html#module-bz2], the file is first decompressed. Note that
generators must return byte strings in Python 3k.

dtype : dtype, optional

Data type of the resulting array.
If None, the dtypes will be determined by the contents of each
column, individually.

comments : str, optional

The character used to indicate the start of a comment.
All the characters occurring on a line after a comment are discarded

delimiter : str, int, or sequence, optional

The string used to separate values. By default, any consecutive
whitespaces act as delimiter. An integer or sequence of integers
can also be provided as width(s) of each field.

skip_rows : int, optional

skip_rows was deprecated in numpy 1.5, and will be removed in
numpy 2.0. Please use skip_header instead.

skip_header : int, optional

The number of lines to skip at the beginning of the file.

skip_footer : int, optional

The number of lines to skip at the end of the file.

converters : variable, optional

The set of functions that convert the data of a column to a value.
The converters can also be used to provide a default value
for missing data: converters = {3: lambda s: float(s or 0)}.

missing : variable, optional

missing was deprecated in numpy 1.5, and will be removed in
numpy 2.0. Please use missing_values instead.

missing_values : variable, optional

The set of strings corresponding to missing data.

filling_values : variable, optional

The set of values to be used as default when the data are missing.

usecols : sequence, optional

Which columns to read, with 0 being the first. For example,
usecols = (1, 4, 5) will extract the 2nd, 5th and 6th columns.

names : {None, True, str, sequence}, optional

If names is True, the field names are read from the first valid line
after the first skip_header lines.
If names is a sequence or a single-string of comma-separated names,
the names will be used to define the field names in a structured dtype.
If names is None, the names of the dtype fields will be used, if any.

excludelist : sequence, optional

A list of names to exclude. This list is appended to the default list
[‘return’,’file’,’print’]. Excluded names are appended an underscore:
for example, file would become file_.

deletechars : str, optional

A string combining invalid characters that must be deleted from the
names.

defaultfmt : str, optional

A format used to define default field names, such as “f%i” or “f_%02i”.

autostrip : bool, optional

Whether to automatically strip white spaces from the variables.

replace_space : char, optional

Character(s) used in replacement of white spaces in the variables
names. By default, use a ‘_’.

case_sensitive : {True, False, ‘upper’, ‘lower’}, optional

If True, field names are case sensitive.
If False or ‘upper’, field names are converted to upper case.
If ‘lower’, field names are converted to lower case.

unpack : bool, optional

If True, the returned array is transposed, so that arguments may be
unpacked using x, y, z = loadtxt(...)

usemask : bool, optional

If True, return a masked array.
If False, return a regular array.

loose : bool, optional

If True, do not raise errors for invalid values.

invalid_raise : bool, optional

If True, an exception is raised if an inconsistency is detected in the
number of columns.
If False, a warning is emitted and the offending lines are skipped.

	Returns:	out : ndarray

Data read from the text file. If usemask is True, this is a
masked array.

See also

	numpy.loadtxt

	equivalent function when no data is missing.

Notes

	When spaces are used as delimiters, or when no delimiter has been given
as input, there should not be any missing data between two fields.

	When the variables are named (either by a flexible dtype or with names,
there must not be any header in the file (else a ValueError
exception is raised).

	Individual values are not stripped of spaces by default.
When using a custom converter, make sure the function does remove spaces.

References

	[R20]	Numpy User Guide, section I/O with Numpy [http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html].

Examples

>>> from StringIO import StringIO
>>> import numpy as np

Comma delimited file with mixed dtype

>>> s = StringIO("1,1.3,abcde")
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
 dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

Using dtype = None

>>> s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
 dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

Specifying dtype and names

>>> s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
 dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

An example with fixed-width columns

>>> s = StringIO("11.3abcde")
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
... delimiter=[1,3,5])
>>> data
array((1, 1.3, 'abcde'),
 dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.fromregex

	
numpy.fromregex(file, regexp, dtype)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\npyio.py#L1092]

	Construct an array from a text file, using regular expression parsing.

The returned array is always a structured array, and is constructed from
all matches of the regular expression in the file. Groups in the regular
expression are converted to fields of the structured array.

	Parameters:	file : str or file

File name or file object to read.

regexp : str or regexp

Regular expression used to parse the file.
Groups in the regular expression correspond to fields in the dtype.

dtype : dtype or list of dtypes

Dtype for the structured array.

	Returns:	output : ndarray

The output array, containing the part of the content of file that
was matched by regexp. output is always a structured array.

	Raises:	TypeError

When dtype is not a valid dtype for a structured array.

See also

fromstring, loadtxt

Notes

Dtypes for structured arrays can be specified in several forms, but all
forms specify at least the data type and field name. For details see
doc.structured_arrays.

Examples

>>> f = open('test.dat', 'w')
>>> f.write("1312 foo\n1534 bar\n444 qux")
>>> f.close()

>>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything]
>>> output = np.fromregex('test.dat', regexp,
... [('num', np.int64), ('key', 'S3')])
>>> output
array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],
 dtype=[('num', '<i8'), ('key', '|S3')])
>>> output['num']
array([1312, 1534, 444], dtype=int64)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.fromstring

	
numpy.fromstring(string, dtype=float, count=-1, sep='')

	A new 1-D array initialized from raw binary or text data in a string.

	Parameters:	string : str

A string containing the data.

dtype : data-type, optional

The data type of the array; default: float. For binary input data,
the data must be in exactly this format.

count : int, optional

Read this number of dtype elements from the data. If this is
negative (the default), the count will be determined from the
length of the data.

sep : str, optional

If not provided or, equivalently, the empty string, the data will
be interpreted as binary data; otherwise, as ASCII text with
decimal numbers. Also in this latter case, this argument is
interpreted as the string separating numbers in the data; extra
whitespace between elements is also ignored.

	Returns:	arr : ndarray

The constructed array.

	Raises:	ValueError

If the string is not the correct size to satisfy the requested
dtype and count.

See also

frombuffer, fromfile, fromiter

Examples

>>> np.fromstring('\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
>>> np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])
>>> np.fromstring('\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.ndarray.tofile

	
ndarray.tofile(fid, sep="", format="%s")

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	Parameters:	fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

format : str

Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.ndarray.tolist

	
ndarray.tolist()

	Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.

	Parameters:	none

	Returns:	y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.array_repr

	
numpy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1609]

	Return the string representation of an array.

	Parameters:	arr : ndarray

Input array.

max_line_width : int, optional

The maximum number of columns the string should span. Newline
characters split the string appropriately after array elements.

precision : int, optional

Floating point precision. Default is the current printing precision
(usually 8), which can be altered using set_printoptions.

suppress_small : bool, optional

Represent very small numbers as zero, default is False. Very small
is defined by precision, if the precision is 8 then
numbers smaller than 5e-9 are represented as zero.

	Returns:	string : str

The string representation of an array.

See also

array_str, array2string, set_printoptions

Examples

>>> np.array_repr(np.array([1,2]))
'array([1, 2])'
>>> np.array_repr(np.ma.array([0.]))
'MaskedArray([0.])'
>>> np.array_repr(np.array([], np.int32))
'array([], dtype=int32)'

>>> x = np.array([1e-6, 4e-7, 2, 3])
>>> np.array_repr(x, precision=6, suppress_small=True)
'array([0.000001, 0. , 2. , 3.])'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.array_str

	
numpy.array_str(a, max_line_width=None, precision=None, suppress_small=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1681]

	Return a string representation of the data in an array.

The data in the array is returned as a single string. This function is
similar to array_repr, the difference being that array_repr also
returns information on the kind of array and its data type.

	Parameters:	a : ndarray

Input array.

max_line_width : int, optional

Inserts newlines if text is longer than max_line_width. The
default is, indirectly, 75.

precision : int, optional

Floating point precision. Default is the current printing precision
(usually 8), which can be altered using set_printoptions.

suppress_small : bool, optional

Represent numbers “very close” to zero as zero; default is False.
Very close is defined by precision: if the precision is 8, e.g.,
numbers smaller (in absolute value) than 5e-9 are represented as
zero.

See also

array2string, array_repr, set_printoptions

Examples

>>> np.array_str(np.arange(3))
'[0 1 2]'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.memmap

	
class numpy.memmap[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\memmap.py#L23]

	Create a memory-map to an array stored in a binary file on disk.

Memory-mapped files are used for accessing small segments of large files
on disk, without reading the entire file into memory. Numpy’s
memmap’s are array-like objects. This differs from Python’s mmap
module, which uses file-like objects.

This subclass of ndarray has some unpleasant interactions with
some operations, because it doesn’t quite fit properly as a subclass.
An alternative to using this subclass is to create the mmap
object yourself, then create an ndarray with ndarray.__new__ directly,
passing the object created in its ‘buffer=’ parameter.

This class may at some point be turned into a factory function
which returns a view into an mmap buffer.

Delete the memmap instance to close.

	Parameters:	filename : str or file-like object

The file name or file object to be used as the array data buffer.

dtype : data-type, optional

The data-type used to interpret the file contents.
Default is uint8.

mode : {‘r+’, ‘r’, ‘w+’, ‘c’}, optional

The file is opened in this mode:

	‘r’
	Open existing file for reading only.

	‘r+’
	Open existing file for reading and writing.

	‘w+’
	Create or overwrite existing file for reading and writing.

	‘c’
	Copy-on-write: assignments affect data in memory, but
changes are not saved to disk. The file on disk is
read-only.

Default is ‘r+’.

offset : int, optional

In the file, array data starts at this offset. Since offset is
measured in bytes, it should normally be a multiple of the byte-size
of dtype. When mode != 'r', even positive offsets beyond end of
file are valid; The file will be extended to accommodate the
additional data. By default, memmap will start at the beginning of
the file, even if filename is a file pointer fp and
fp.tell() != 0.

shape : tuple, optional

The desired shape of the array. If mode == 'r' and the number
of remaining bytes after offset is not a multiple of the byte-size
of dtype, you must specify shape. By default, the returned array
will be 1-D with the number of elements determined by file size
and data-type.

order : {‘C’, ‘F’}, optional

Specify the order of the ndarray memory layout: C (row-major) or
Fortran (column-major). This only has an effect if the shape is
greater than 1-D. The default order is ‘C’.

Notes

The memmap object can be used anywhere an ndarray is accepted.
Given a memmap fp, isinstance(fp, numpy.ndarray) returns
True.

Memory-mapped arrays use the Python memory-map object which
(prior to Python 2.5) does not allow files to be larger than a
certain size depending on the platform. This size is always < 2GB
even on 64-bit systems.

Examples

>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))

This example uses a temporary file so that doctest doesn’t write
files to your directory. You would use a ‘normal’ filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
memmap([[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.]], dtype=float32)

Write data to memmap array:

>>> fp[:] = data[:]
>>> fp
memmap([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)

>>> fp.filename == path.abspath(filename)
True

Deletion flushes memory changes to disk before removing the object:

>>> del fp

Load the memmap and verify data was stored:

>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> newfp
memmap([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)

Read-only memmap:

>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only
written into the memory copy of the array, and not written to disk:

>>> fpc
memmap([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)
>>> fpc[0,:] = 0
>>> fpc
memmap([[0., 0., 0., 0.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
>>> fpo
memmap([4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)

Attributes

	filename
	(str) Path to the mapped file.

	offset
	(int) Offset position in the file.

	mode
	(str) File mode.

Methods

	flush()
	Write any changes in the array to the file on disk.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

 	numpy.memmap

numpy.memmap.flush

	
memmap.flush()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\memmap.py#L292]

	Write any changes in the array to the file on disk.

For further information, see memmap.

	Parameters:	None

See also

memmap

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.set_printoptions

	
numpy.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\arrayprint.py#L45]

	Set printing options.

These options determine the way floating point numbers, arrays and
other NumPy objects are displayed.

	Parameters:	precision : int, optional

Number of digits of precision for floating point output (default 8).

threshold : int, optional

Total number of array elements which trigger summarization
rather than full repr (default 1000).

edgeitems : int, optional

Number of array items in summary at beginning and end of
each dimension (default 3).

linewidth : int, optional

The number of characters per line for the purpose of inserting
line breaks (default 75).

suppress : bool, optional

Whether or not suppress printing of small floating point values
using scientific notation (default False).

nanstr : str, optional

String representation of floating point not-a-number (default nan).

infstr : str, optional

String representation of floating point infinity (default inf).

formatter : dict of callables, optional

If not None, the keys should indicate the type(s) that the respective
formatting function applies to. Callables should return a string.
Types that are not specified (by their corresponding keys) are handled
by the default formatters. Individual types for which a formatter
can be set are:

- 'bool'
- 'int'
- 'timedelta' : a `numpy.timedelta64`
- 'datetime' : a `numpy.datetime64`
- 'float'
- 'longfloat' : 128-bit floats
- 'complexfloat'
- 'longcomplexfloat' : composed of two 128-bit floats
- 'numpy_str' : types `numpy.string_` and `numpy.unicode_`
- 'str' : all other strings

Other keys that can be used to set a group of types at once are:

- 'all' : sets all types
- 'int_kind' : sets 'int'
- 'float_kind' : sets 'float' and 'longfloat'
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
- 'str_kind' : sets 'str' and 'numpystr'

See also

get_printoptions, set_string_function, array2string

Notes

formatter [http://docs.python.org/dev/library/formatter.html#module-formatter] is always reset with a call to set_printoptions.

Examples

Floating point precision can be set:

>>> np.set_printoptions(precision=4)
>>> print np.array([1.123456789])
[1.1235]

Long arrays can be summarised:

>>> np.set_printoptions(threshold=5)
>>> print np.arange(10)
[0 1 2 ..., 7 8 9]

Small results can be suppressed:

>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)
>>> x**2 - (x + eps)**2
array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)
>>> x**2 - (x + eps)**2
array([-0., -0., 0., 0.])

A custom formatter can be used to display array elements as desired:

>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
>>> x = np.arange(3)
>>> x
array([int: 0, int: -1, int: -2])
>>> np.set_printoptions() # formatter gets reset
>>> x
array([0, 1, 2])

To put back the default options, you can use:

>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.get_printoptions

	
numpy.get_printoptions()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\arrayprint.py#L169]

	Return the current print options.

	Returns:	print_opts : dict

Dictionary of current print options with keys

	precision : int

	threshold : int

	edgeitems : int

	linewidth : int

	suppress : bool

	nanstr : str

	infstr : str

	formatter : dict of callables

For a full description of these options, see set_printoptions.

See also

set_printoptions, set_string_function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.set_string_function

	
numpy.set_string_function(f, repr=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1717]

	Set a Python function to be used when pretty printing arrays.

	Parameters:	f : function or None

Function to be used to pretty print arrays. The function should expect
a single array argument and return a string of the representation of
the array. If None, the function is reset to the default NumPy function
to print arrays.

repr : bool, optional

If True (default), the function for pretty printing (__repr__)
is set, if False the function that returns the default string
representation (__str__) is set.

See also

set_printoptions, get_printoptions

Examples

>>> def pprint(arr):
... return 'HA! - What are you going to do now?'
...
>>> np.set_string_function(pprint)
>>> a = np.arange(10)
>>> a
HA! - What are you going to do now?
>>> print a
[0 1 2 3 4 5 6 7 8 9]

We can reset the function to the default:

>>> np.set_string_function(None)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

repr [http://docs.python.org/dev/library/functions.html#repr] affects either pretty printing or normal string representation.
Note that __repr__ is still affected by setting __str__
because the width of each array element in the returned string becomes
equal to the length of the result of __str__().

>>> x = np.arange(4)
>>> np.set_string_function(lambda x:'random', repr=False)
>>> x.__str__()
'random'
>>> x.__repr__()
'array([0, 1, 2, 3])'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.binary_repr

	
numpy.binary_repr(num, width=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1964]

	Return the binary representation of the input number as a string.

For negative numbers, if width is not given, a minus sign is added to the
front. If width is given, the two’s complement of the number is
returned, with respect to that width.

In a two’s-complement system negative numbers are represented by the two’s
complement of the absolute value. This is the most common method of
representing signed integers on computers [R16]. A N-bit two’s-complement
system can represent every integer in the range
[image: -2^{N-1}] to [image: +2^{N-1}-1].

	Parameters:	num : int

Only an integer decimal number can be used.

width : int, optional

The length of the returned string if num is positive, the length of
the two’s complement if num is negative.

	Returns:	bin : str

Binary representation of num or two’s complement of num.

See also

	base_repr

	Return a string representation of a number in the given base system.

Notes

binary_repr is equivalent to using base_repr with base 2, but about 25x
faster.

References

	[R16]	(1, 2) Wikipedia, “Two’s complement”,
http://en.wikipedia.org/wiki/Two’s_complement

Examples

>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'

The two’s complement is returned when the input number is negative and
width is specified:

>>> np.binary_repr(-3, width=4)
'1101'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.base_repr

	
numpy.base_repr(number, base=2, padding=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2040]

	Return a string representation of a number in the given base system.

	Parameters:	number : int

The value to convert. Only positive values are handled.

base : int, optional

Convert number to the base number system. The valid range is 2-36,
the default value is 2.

padding : int, optional

Number of zeros padded on the left. Default is 0 (no padding).

	Returns:	out : str

String representation of number in base system.

See also

	binary_repr

	Faster version of base_repr for base 2.

Examples

>>> np.base_repr(5)
'101'
>>> np.base_repr(6, 5)
'11'
>>> np.base_repr(7, base=5, padding=3)
'00012'

>>> np.base_repr(10, base=16)
'A'
>>> np.base_repr(32, base=16)
'20'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

numpy.DataSource

	
class numpy.DataSource(destpath='.')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib_datasource.py#L154]

	A generic data source file (file, http, ftp, ...).

DataSources can be local files or remote files/URLs. The files may
also be compressed or uncompressed. DataSource hides some of the
low-level details of downloading the file, allowing you to simply pass
in a valid file path (or URL) and obtain a file object.

	Parameters:	destpath : str or None, optional

Path to the directory where the source file gets downloaded to for
use. If destpath is None, a temporary directory will be created.
The default path is the current directory.

Notes

URLs require a scheme string (http://) to be used, without it they
will fail:

>>> repos = DataSource()
>>> repos.exists('www.google.com/index.html')
False
>>> repos.exists('http://www.google.com/index.html')
True

Temporary directories are deleted when the DataSource is deleted.

Examples

>>> ds = DataSource('/home/guido')
>>> urlname = 'http://www.google.com/index.html'
>>> gfile = ds.open('http://www.google.com/index.html') # remote file
>>> ds.abspath(urlname)
'/home/guido/www.google.com/site/index.html'

>>> ds = DataSource(None) # use with temporary file
>>> ds.open('/home/guido/foobar.txt')
<open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430>
>>> ds.abspath('/home/guido/foobar.txt')
'/tmp/tmpy4pgsP/home/guido/foobar.txt'

Methods

	abspath(path)
	Return absolute path of file in the DataSource directory.

	exists(path)
	Test if path exists.

	open(path[,mode])
	Open and return file-like object.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

 	numpy.DataSource

numpy.DataSource.abspath

	
DataSource.abspath(path)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib_datasource.py#L343]

	Return absolute path of file in the DataSource directory.

If path is an URL, then abspath will return either the location
the file exists locally or the location it would exist when opened
using the open method.

	Parameters:	path : str

Can be a local file or a remote URL.

	Returns:	out : str

Complete path, including the DataSource destination directory.

Notes

The functionality is based on os.path.abspath [http://docs.python.org/dev/library/os.path.html#os.path.abspath].

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

 	numpy.DataSource

numpy.DataSource.exists

	
DataSource.exists(path)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib_datasource.py#L402]

	Test if path exists.

Test if path exists as (and in this order):

	a local file.

	a remote URL that has been downloaded and stored locally in the
DataSource directory.

	a remote URL that has not been downloaded, but is valid and
accessible.

	Parameters:	path : str

Can be a local file or a remote URL.

	Returns:	out : bool

True if path exists.

Notes

When path is an URL, exists will return True if it’s either
stored locally in the DataSource directory, or is a valid remote
URL. DataSource does not discriminate between the two, the file
is accessible if it exists in either location.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Input and output

 	numpy.DataSource

numpy.DataSource.open

	
DataSource.open(path, mode='r')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib_datasource.py#L461]

	Open and return file-like object.

If path is an URL, it will be downloaded, stored in the
DataSource directory and opened from there.

	Parameters:	path : str

Local file path or URL to open.

mode : {‘r’, ‘w’, ‘a’}, optional

Mode to open path. Mode ‘r’ for reading, ‘w’ for writing,
‘a’ to append. Available modes depend on the type of object
specified by path. Default is ‘r’.

	Returns:	out : file object

File object.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Linear algebra (numpy.linalg)

Matrix and vector products

	dot(a,b[,out])
	Dot product of two arrays.

	vdot(a,b)
	Return the dot product of two vectors.

	inner(a,b)
	Inner product of two arrays.

	outer(a,b[,out])
	Compute the outer product of two vectors.

	tensordot(a,b[,axes])
	Compute tensor dot product along specified axes for arrays >= 1-D.

	einsum(subscripts,*operands[,out,dtype,...])
	Evaluates the Einstein summation convention on the operands.

	linalg.matrix_power(M,n)
	Raise a square matrix to the (integer) power n.

	kron(a,b)
	Kronecker product of two arrays.

Decompositions

	linalg.cholesky(a)
	Cholesky decomposition.

	linalg.qr(a[,mode])
	Compute the qr factorization of a matrix.

	linalg.svd(a[,full_matrices,compute_uv])
	Singular Value Decomposition.

Matrix eigenvalues

	linalg.eig(a)
	Compute the eigenvalues and right eigenvectors of a square array.

	linalg.eigh(a[,UPLO])
	Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.

	linalg.eigvals(a)
	Compute the eigenvalues of a general matrix.

	linalg.eigvalsh(a[,UPLO])
	Compute the eigenvalues of a Hermitian or real symmetric matrix.

Norms and other numbers

	linalg.norm(x[,ord,axis])
	Matrix or vector norm.

	linalg.cond(x[,p])
	Compute the condition number of a matrix.

	linalg.det(a)
	Compute the determinant of an array.

	linalg.matrix_rank(M[,tol])
	Return matrix rank of array using SVD method

	linalg.slogdet(a)
	Compute the sign and (natural) logarithm of the determinant of an array.

	trace(a[,offset,axis1,axis2,dtype,out])
	Return the sum along diagonals of the array.

Solving equations and inverting matrices

	linalg.solve(a,b)
	Solve a linear matrix equation, or system of linear scalar equations.

	linalg.tensorsolve(a,b[,axes])
	Solve the tensor equation a x = b for x.

	linalg.lstsq(a,b[,rcond])
	Return the least-squares solution to a linear matrix equation.

	linalg.inv(a)
	Compute the (multiplicative) inverse of a matrix.

	linalg.pinv(a[,rcond])
	Compute the (Moore-Penrose) pseudo-inverse of a matrix.

	linalg.tensorinv(a[,ind])
	Compute the ‘inverse’ of an N-dimensional array.

Exceptions

	linalg.LinAlgError
	Generic Python-exception-derived object raised by linalg functions.

Linear algebra on several matrices at once

Several of the linear algebra routines listed above are able to
compute results for several matrices at once, if they are stacked into
the same array.

This is indicated in the documentation via input parameter
specifications such as a : (..., M, M) array_like. This means that
if for instance given an input array a.shape == (N, M, M), it is
interpreted as a “stack” of N matrices, each of size M-by-M. Similar
specification applies to return values, for instance the determinant
has det : (...) and will in this case return an array of shape
det(a).shape == (N,). This generalizes to linear algebra
operations on higher-dimensional arrays: the last 1 or 2 dimensions of
a multidimensional array are interpreted as vectors or matrices, as
appropriate for each operation.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.dot

	
numpy.dot(a, b, out=None)

	Dot product of two arrays.

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D
arrays to inner product of vectors (without complex conjugation). For
N dimensions it is a sum product over the last axis of a and
the second-to-last of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

	Parameters:	a : array_like

First argument.

b : array_like

Second argument.

out : ndarray, optional

Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be
C-contiguous, and its dtype must be the dtype that would be returned
for dot(a,b). This is a performance feature. Therefore, if these
conditions are not met, an exception is raised, instead of attempting
to be flexible.

	Returns:	output : ndarray

Returns the dot product of a and b. If a and b are both
scalars or both 1-D arrays then a scalar is returned; otherwise
an array is returned.
If out is given, then it is returned.

	Raises:	ValueError

If the last dimension of a is not the same size as
the second-to-last dimension of b.

See also

	vdot

	Complex-conjugating dot product.

	tensordot

	Sum products over arbitrary axes.

	einsum

	Einstein summation convention.

Examples

>>> np.dot(3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)

For 2-D arrays it’s the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
 [2, 2]])

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.vdot

	
numpy.vdot(a, b)

	Return the dot product of two vectors.

The vdot(a, b) function handles complex numbers differently than
dot(a, b). If the first argument is complex the complex conjugate
of the first argument is used for the calculation of the dot product.

Note that vdot handles multidimensional arrays differently than dot:
it does not perform a matrix product, but flattens input arguments
to 1-D vectors first. Consequently, it should only be used for vectors.

	Parameters:	a : array_like

If a is complex the complex conjugate is taken before calculation
of the dot product.

b : array_like

Second argument to the dot product.

	Returns:	output : ndarray

Dot product of a and b. Can be an int, float, or
complex depending on the types of a and b.

See also

	dot

	Return the dot product without using the complex conjugate of the first argument.

Examples

>>> a = np.array([1+2j,3+4j])
>>> b = np.array([5+6j,7+8j])
>>> np.vdot(a, b)
(70-8j)
>>> np.vdot(b, a)
(70+8j)

Note that higher-dimensional arrays are flattened!

>>> a = np.array([[1, 4], [5, 6]])
>>> b = np.array([[4, 1], [2, 2]])
>>> np.vdot(a, b)
30
>>> np.vdot(b, a)
30
>>> 1*4 + 4*1 + 5*2 + 6*2
30

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.inner

	
numpy.inner(a, b)

	Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex
conjugation), in higher dimensions a sum product over the last axes.

	Parameters:	a, b : array_like

If a and b are nonscalar, their last dimensions of must match.

	Returns:	out : ndarray

out.shape = a.shape[:-1] + b.shape[:-1]

	Raises:	ValueError

If the last dimension of a and b has different size.

See also

	tensordot

	Sum products over arbitrary axes.

	dot

	Generalised matrix product, using second last dimension of b.

	einsum

	Einstein summation convention.

Notes

For vectors (1-D arrays) it computes the ordinary inner-product:

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
 = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[14, 38, 62],
 [86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],
 [0., 7.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.outer

	
numpy.outer(a, b, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L998]

	Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and
b = [b0, b1, ..., bN],
the outer product [R55] is:

[[a0*b0 a0*b1 ... a0*bN]
 [a1*b0 .
 [... .
 [aM*b0 aM*bN]]

	Parameters:	a : (M,) array_like

First input vector. Input is flattened if
not already 1-dimensional.

b : (N,) array_like

Second input vector. Input is flattened if
not already 1-dimensional.

out : (M, N) ndarray, optional

A location where the result is stored

New in version 1.9.0.

	Returns:	out : (M, N) ndarray

out[i, j] = a[i] * b[j]

See also

inner, einsum

References

	[R55]	(1, 2) : G. H. Golub and C. F. van Loan, Matrix Computations, 3rd
ed., Baltimore, MD, Johns Hopkins University Press, 1996,
pg. 8.

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
 [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
 [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
 [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
 [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
 [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
 [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],
 [b, bb, bbb],
 [c, cc, ccc]], dtype=object)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.tensordot

	
numpy.tensordot(a, b, axes=2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1106]

	Compute tensor dot product along specified axes for arrays >= 1-D.

Given two tensors (arrays of dimension greater than or equal to one),
a and b, and an array_like object containing two array_like
objects, (a_axes, b_axes), sum the products of a‘s and b‘s
elements (components) over the axes specified by a_axes and
b_axes. The third argument can be a single non-negative
integer_like scalar, N; if it is such, then the last N
dimensions of a and the first N dimensions of b are summed
over.

	Parameters:	a, b : array_like, len(shape) >= 1

Tensors to “dot”.

axes : variable type

	integer_like scalar
Number of axes to sum over (applies to both arrays); or

	(2,) array_like, both elements array_like of the same length
List of axes to be summed over, first sequence applying to a,
second to b.

See also

dot, einsum

Notes

When there is more than one axis to sum over - and they are not the last
(first) axes of a (b) - the argument axes should consist of
two sequences of the same length, with the first axis to sum over given
first in both sequences, the second axis second, and so forth.

Examples

A “traditional” example:

>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5, 2)
>>> c
array([[4400., 4730.],
 [4532., 4874.],
 [4664., 5018.],
 [4796., 5162.],
 [4928., 5306.]])
>>> # A slower but equivalent way of computing the same...
>>> d = np.zeros((5,2))
>>> for i in range(5):
... for j in range(2):
... for k in range(3):
... for n in range(4):
... d[i,j] += a[k,n,i] * b[n,k,j]
>>> c == d
array([[True, True],
 [True, True],
 [True, True],
 [True, True],
 [True, True]], dtype=bool)

An extended example taking advantage of the overloading of + and *:

>>> a = np.array(range(1, 9))
>>> a.shape = (2, 2, 2)
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
>>> A.shape = (2, 2)
>>> a; A
array([[[1, 2],
 [3, 4]],
 [[5, 6],
 [7, 8]]])
array([[a, b],
 [c, d]], dtype=object)

>>> np.tensordot(a, A) # third argument default is 2
array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object)

>>> np.tensordot(a, A, 1)
array([[[acc, bdd],
 [aaacccc, bbbdddd]],
 [[aaaaacccccc, bbbbbdddddd],
 [aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object)

>>> np.tensordot(a, A, 0) # "Left for reader" (result too long to incl.)
array([[[[[a, b],
 [c, d]],
 ...

>>> np.tensordot(a, A, (0, 1))
array([[[abbbbb, cddddd],
 [aabbbbbb, ccdddddd]],
 [[aaabbbbbbb, cccddddddd],
 [aaaabbbbbbbb, ccccdddddddd]]], dtype=object)

>>> np.tensordot(a, A, (2, 1))
array([[[abb, cdd],
 [aaabbbb, cccdddd]],
 [[aaaaabbbbbb, cccccdddddd],
 [aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object)

>>> np.tensordot(a, A, ((0, 1), (0, 1)))
array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object)

>>> np.tensordot(a, A, ((2, 1), (1, 0)))
array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.einsum

	
numpy.einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe')

	Evaluates the Einstein summation convention on the operands.

Using the Einstein summation convention, many common multi-dimensional
array operations can be represented in a simple fashion. This function
provides a way compute such summations. The best way to understand this
function is to try the examples below, which show how many common NumPy
functions can be implemented as calls to einsum.

	Parameters:	subscripts : str

Specifies the subscripts for summation.

operands : list of array_like

These are the arrays for the operation.

out : ndarray, optional

If provided, the calculation is done into this array.

dtype : data-type, optional

If provided, forces the calculation to use the data type specified.
Note that you may have to also give a more liberal casting
parameter to allow the conversions.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the output. ‘C’ means it should
be C contiguous. ‘F’ means it should be Fortran contiguous,
‘A’ means it should be ‘F’ if the inputs are all ‘F’, ‘C’ otherwise.
‘K’ means it should be as close to the layout as the inputs as
is possible, including arbitrarily permuted axes.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Setting this to
‘unsafe’ is not recommended, as it can adversely affect accumulations.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

	Returns:	output : ndarray

The calculation based on the Einstein summation convention.

See also

dot, inner, outer, tensordot

Notes

New in version 1.6.0.

The subscripts string is a comma-separated list of subscript labels,
where each label refers to a dimension of the corresponding operand.
Repeated subscripts labels in one operand take the diagonal. For example,
np.einsum('ii', a) is equivalent to np.trace(a).

Whenever a label is repeated, it is summed, so np.einsum('i,i', a, b)
is equivalent to np.inner(a,b). If a label appears only once,
it is not summed, so np.einsum('i', a) produces a view of a
with no changes.

The order of labels in the output is by default alphabetical. This
means that np.einsum('ij', a) doesn’t affect a 2D array, while
np.einsum('ji', a) takes its transpose.

The output can be controlled by specifying output subscript labels
as well. This specifies the label order, and allows summing to
be disallowed or forced when desired. The call np.einsum('i->', a)
is like np.sum(a, axis=-1), and np.einsum('ii->i', a)
is like np.diag(a). The difference is that einsum does not
allow broadcasting by default.

To enable and control broadcasting, use an ellipsis. Default
NumPy-style broadcasting is done by adding an ellipsis
to the left of each term, like np.einsum('...ii->...i', a).
To take the trace along the first and last axes,
you can do np.einsum('i...i', a), or to do a matrix-matrix
product with the left-most indices instead of rightmost, you can do
np.einsum('ij...,jk...->ik...', a, b).

When there is only one operand, no axes are summed, and no output
parameter is provided, a view into the operand is returned instead
of a new array. Thus, taking the diagonal as np.einsum('ii->i', a)
produces a view.

An alternative way to provide the subscripts and operands is as
einsum(op0, sublist0, op1, sublist1, ..., [sublistout]). The examples
below have corresponding einsum calls with the two parameter methods.

Examples

>>> a = np.arange(25).reshape(5,5)
>>> b = np.arange(5)
>>> c = np.arange(6).reshape(2,3)

>>> np.einsum('ii', a)
60
>>> np.einsum(a, [0,0])
60
>>> np.trace(a)
60

>>> np.einsum('ii->i', a)
array([0, 6, 12, 18, 24])
>>> np.einsum(a, [0,0], [0])
array([0, 6, 12, 18, 24])
>>> np.diag(a)
array([0, 6, 12, 18, 24])

>>> np.einsum('ij,j', a, b)
array([30, 80, 130, 180, 230])
>>> np.einsum(a, [0,1], b, [1])
array([30, 80, 130, 180, 230])
>>> np.dot(a, b)
array([30, 80, 130, 180, 230])
>>> np.einsum('...j,j', a, b)
array([30, 80, 130, 180, 230])

>>> np.einsum('ji', c)
array([[0, 3],
 [1, 4],
 [2, 5]])
>>> np.einsum(c, [1,0])
array([[0, 3],
 [1, 4],
 [2, 5]])
>>> c.T
array([[0, 3],
 [1, 4],
 [2, 5]])

>>> np.einsum('..., ...', 3, c)
array([[0, 3, 6],
 [9, 12, 15]])
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
array([[0, 3, 6],
 [9, 12, 15]])
>>> np.multiply(3, c)
array([[0, 3, 6],
 [9, 12, 15]])

>>> np.einsum('i,i', b, b)
30
>>> np.einsum(b, [0], b, [0])
30
>>> np.inner(b,b)
30

>>> np.einsum('i,j', np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],
 [0, 2, 4, 6, 8]])
>>> np.einsum(np.arange(2)+1, [0], b, [1])
array([[0, 1, 2, 3, 4],
 [0, 2, 4, 6, 8]])
>>> np.outer(np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],
 [0, 2, 4, 6, 8]])

>>> np.einsum('i...->...', a)
array([50, 55, 60, 65, 70])
>>> np.einsum(a, [0,Ellipsis], [Ellipsis])
array([50, 55, 60, 65, 70])
>>> np.sum(a, axis=0)
array([50, 55, 60, 65, 70])

>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> np.einsum('ijk,jil->kl', a, b)
array([[4400., 4730.],
 [4532., 4874.],
 [4664., 5018.],
 [4796., 5162.],
 [4928., 5306.]])
>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
array([[4400., 4730.],
 [4532., 4874.],
 [4664., 5018.],
 [4796., 5162.],
 [4928., 5306.]])
>>> np.tensordot(a,b, axes=([1,0],[0,1]))
array([[4400., 4730.],
 [4532., 4874.],
 [4664., 5018.],
 [4796., 5162.],
 [4928., 5306.]])

>>> a = np.arange(6).reshape((3,2))
>>> b = np.arange(12).reshape((4,3))
>>> np.einsum('ki,jk->ij', a, b)
array([[10, 28, 46, 64],
 [13, 40, 67, 94]])
>>> np.einsum('ki,...k->i...', a, b)
array([[10, 28, 46, 64],
 [13, 40, 67, 94]])
>>> np.einsum('k...,jk', a, b)
array([[10, 28, 46, 64],
 [13, 40, 67, 94]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.matrix_power

	
numpy.linalg.matrix_power(M, n)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matrixlib\defmatrix.py#L98]

	Raise a square matrix to the (integer) power n.

For positive integers n, the power is computed by repeated matrix
squarings and matrix multiplications. If n == 0, the identity matrix
of the same shape as M is returned. If n < 0, the inverse
is computed and then raised to the abs(n).

	Parameters:	M : ndarray or matrix object

Matrix to be “powered.” Must be square, i.e. M.shape == (m, m),
with m a positive integer.

n : int

The exponent can be any integer or long integer, positive,
negative, or zero.

	Returns:	M**n : ndarray or matrix object

The return value is the same shape and type as M;
if the exponent is positive or zero then the type of the
elements is the same as those of M. If the exponent is
negative the elements are floating-point.

	Raises:	LinAlgError

If the matrix is not numerically invertible.

See also

	matrix

	Provides an equivalent function as the exponentiation operator (**, not ^).

Examples

>>> from numpy import linalg as LA
>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
>>> LA.matrix_power(i, 3) # should = -i
array([[0, -1],
 [1, 0]])
>>> LA.matrix_power(np.matrix(i), 3) # matrix arg returns matrix
matrix([[0, -1],
 [1, 0]])
>>> LA.matrix_power(i, 0)
array([[1, 0],
 [0, 1]])
>>> LA.matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
array([[0., 1.],
 [-1., 0.]])

Somewhat more sophisticated example

>>> q = np.zeros((4, 4))
>>> q[0:2, 0:2] = -i
>>> q[2:4, 2:4] = i
>>> q # one of the three quarternion units not equal to 1
array([[0., -1., 0., 0.],
 [1., 0., 0., 0.],
 [0., 0., 0., 1.],
 [0., 0., -1., 0.]])
>>> LA.matrix_power(q, 2) # = -np.eye(4)
array([[-1., 0., 0., 0.],
 [0., -1., 0., 0.],
 [0., 0., -1., 0.],
 [0., 0., 0., -1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.kron

	
numpy.kron(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\shape_base.py#L693]

	Kronecker product of two arrays.

Computes the Kronecker product, a composite array made of blocks of the
second array scaled by the first.

	Parameters:	a, b : array_like

	Returns:	out : ndarray

See also

	outer

	The outer product

Notes

The function assumes that the number of dimenensions of a and b
are the same, if necessary prepending the smallest with ones.
If a.shape = (r0,r1,..,rN) and b.shape = (s0,s1,...,sN),
the Kronecker product has shape (r0*s0, r1*s1, ..., rN*SN).
The elements are products of elements from a and b, organized
explicitly by:

kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

where:

kt = it * st + jt, t = 0,...,N

In the common 2-D case (N=1), the block structure can be visualized:

[[a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b],
 [... ...],
 [a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b]]

Examples

>>> np.kron([1,10,100], [5,6,7])
array([5, 6, 7, 50, 60, 70, 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([5, 50, 500, 6, 60, 600, 7, 70, 700])

>>> np.kron(np.eye(2), np.ones((2,2)))
array([[1., 1., 0., 0.],
 [1., 1., 0., 0.],
 [0., 0., 1., 1.],
 [0., 0., 1., 1.]])

>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
>>> c = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
>>> c[K] == a[I]*b[J]
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.cholesky

	
numpy.linalg.cholesky(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L526]

	Cholesky decomposition.

Return the Cholesky decomposition, L * L.H, of the square matrix a,
where L is lower-triangular and .H is the conjugate transpose operator
(which is the ordinary transpose if a is real-valued). a must be
Hermitian (symmetric if real-valued) and positive-definite. Only L is
actually returned.

	Parameters:	a : (..., M, M) array_like

Hermitian (symmetric if all elements are real), positive-definite
input matrix.

	Returns:	L : (..., M, M) array_like

Upper or lower-triangular Cholesky factor of a. Returns a
matrix object if a is a matrix object.

	Raises:	LinAlgError

If the decomposition fails, for example, if a is not
positive-definite.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

The Cholesky decomposition is often used as a fast way of solving

[image: A \mathbf{x} = \mathbf{b}]

(when A is both Hermitian/symmetric and positive-definite).

First, we solve for [image: \mathbf{y}] in

[image: L \mathbf{y} = \mathbf{b},]

and then for [image: \mathbf{x}] in

[image: L.H \mathbf{x} = \mathbf{y}.]

Examples

>>> A = np.array([[1,-2j],[2j,5]])
>>> A
array([[1.+0.j, 0.-2.j],
 [0.+2.j, 5.+0.j]])
>>> L = np.linalg.cholesky(A)
>>> L
array([[1.+0.j, 0.+0.j],
 [0.+2.j, 1.+0.j]])
>>> np.dot(L, L.T.conj()) # verify that L * L.H = A
array([[1.+0.j, 0.-2.j],
 [0.+2.j, 5.+0.j]])
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
>>> np.linalg.cholesky(A) # an ndarray object is returned
array([[1.+0.j, 0.+0.j],
 [0.+2.j, 1.+0.j]])
>>> # But a matrix object is returned if A is a matrix object
>>> LA.cholesky(np.matrix(A))
matrix([[1.+0.j, 0.+0.j],
 [0.+2.j, 1.+0.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.qr

	
numpy.linalg.qr(a, mode='reduced')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L607]

	Compute the qr factorization of a matrix.

Factor the matrix a as qr, where q is orthonormal and r is
upper-triangular.

	Parameters:	a : array_like, shape (M, N)

Matrix to be factored.

mode : {‘reduced’, ‘complete’, ‘r’, ‘raw’, ‘full’, ‘economic’}, optional

If K = min(M, N), then

‘reduced’ : returns q, r with dimensions (M, K), (K, N) (default)
‘complete’ : returns q, r with dimensions (M, M), (M, N)
‘r’ : returns r only with dimensions (K, N)
‘raw’ : returns h, tau with dimensions (N, M), (K,)
‘full’ : alias of ‘reduced’, deprecated
‘economic’ : returns h from ‘raw’, deprecated.

The options ‘reduced’, ‘complete, and ‘raw’ are new in numpy 1.8,
see the notes for more information. The default is ‘reduced’ and to
maintain backward compatibility with earlier versions of numpy both
it and the old default ‘full’ can be omitted. Note that array h
returned in ‘raw’ mode is transposed for calling Fortran. The
‘economic’ mode is deprecated. The modes ‘full’ and ‘economic’ may
be passed using only the first letter for backwards compatibility,
but all others must be spelled out. See the Notes for more
explanation.

	Returns:	q : ndarray of float or complex, optional

A matrix with orthonormal columns. When mode = ‘complete’ the
result is an orthogonal/unitary matrix depending on whether or not
a is real/complex. The determinant may be either +/- 1 in that
case.

r : ndarray of float or complex, optional

The upper-triangular matrix.

(h, tau) : ndarrays of np.double or np.cdouble, optional

The array h contains the Householder reflectors that generate q
along with r. The tau array contains scaling factors for the
reflectors. In the deprecated ‘economic’ mode only h is returned.

	Raises:	LinAlgError

If factoring fails.

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf,
dorgqr, and zungqr.

For more information on the qr factorization, see for example:
http://en.wikipedia.org/wiki/QR_factorization

Subclasses of ndarray are preserved except for the ‘raw’ mode. So if
a is of type matrix, all the return values will be matrices too.

New ‘reduced’, ‘complete’, and ‘raw’ options for mode were added in
Numpy 1.8 and the old option ‘full’ was made an alias of ‘reduced’. In
addition the options ‘full’ and ‘economic’ were deprecated. Because
‘full’ was the previous default and ‘reduced’ is the new default,
backward compatibility can be maintained by letting mode default.
The ‘raw’ option was added so that LAPACK routines that can multiply
arrays by q using the Householder reflectors can be used. Note that in
this case the returned arrays are of type np.double or np.cdouble and
the h array is transposed to be FORTRAN compatible. No routines using
the ‘raw’ return are currently exposed by numpy, but some are available
in lapack_lite and just await the necessary work.

Examples

>>> a = np.random.randn(9, 6)
>>> q, r = np.linalg.qr(a)
>>> np.allclose(a, np.dot(q, r)) # a does equal qr
True
>>> r2 = np.linalg.qr(a, mode='r')
>>> r3 = np.linalg.qr(a, mode='economic')
>>> np.allclose(r, r2) # mode='r' returns the same r as mode='full'
True
>>> # But only triu parts are guaranteed equal when mode='economic'
>>> np.allclose(r, np.triu(r3[:6,:6], k=0))
True

Example illustrating a common use of qr: solving of least squares
problems

What are the least-squares-best m and y0 in y = y0 + mx for
the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points
and you’ll see that it should be y0 = 0, m = 1.) The answer is provided
by solving the over-determined matrix equation Ax = b, where:

A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
x = array([[y0], [m]])
b = array([[1], [0], [2], [1]])

If A = qr such that q is orthonormal (which is always possible via
Gram-Schmidt), then x = inv(r) * (q.T) * b. (In numpy practice,
however, we simply use lstsq.)

>>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
>>> A
array([[0, 1],
 [1, 1],
 [1, 1],
 [2, 1]])
>>> b = np.array([1, 0, 2, 1])
>>> q, r = LA.qr(A)
>>> p = np.dot(q.T, b)
>>> np.dot(LA.inv(r), p)
array([1.1e-16, 1.0e+00])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.svd

	
numpy.linalg.svd(a, full_matrices=1, compute_uv=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1225]

	Singular Value Decomposition.

Factors the matrix a as u * np.diag(s) * v, where u and v
are unitary and s is a 1-d array of a‘s singular values.

	Parameters:	a : (..., M, N) array_like

A real or complex matrix of shape (M, N) .

full_matrices : bool, optional

If True (default), u and v have the shapes (M, M) and
(N, N), respectively. Otherwise, the shapes are (M, K)
and (K, N), respectively, where K = min(M, N).

compute_uv : bool, optional

Whether or not to compute u and v in addition to s. True
by default.

	Returns:	u : { (..., M, M), (..., M, K) } array

Unitary matrices. The actual shape depends on the value of
full_matrices. Only returned when compute_uv is True.

s : (..., K) array

The singular values for every matrix, sorted in descending order.

v : { (..., N, N), (..., K, N) } array

Unitary matrices. The actual shape depends on the value of
full_matrices. Only returned when compute_uv is True.

	Raises:	LinAlgError

If SVD computation does not converge.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

The decomposition is performed using LAPACK routine _gesdd

The SVD is commonly written as a = U S V.H. The v returned
by this function is V.H and u = U.

If U is a unitary matrix, it means that it
satisfies U.H = inv(U).

The rows of v are the eigenvectors of a.H a. The columns
of u are the eigenvectors of a a.H. For row i in
v and column i in u, the corresponding eigenvalue is
s[i]**2.

If a is a matrix object (as opposed to an ndarray), then so
are all the return values.

Examples

>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)

Reconstruction based on full SVD:

>>> U, s, V = np.linalg.svd(a, full_matrices=True)
>>> U.shape, V.shape, s.shape
((9, 9), (6, 6), (6,))
>>> S = np.zeros((9, 6), dtype=complex)
>>> S[:6, :6] = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, V)))
True

Reconstruction based on reduced SVD:

>>> U, s, V = np.linalg.svd(a, full_matrices=False)
>>> U.shape, V.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, V)))
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.eig

	
numpy.linalg.eig(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L982]

	Compute the eigenvalues and right eigenvectors of a square array.

	Parameters:	a : (..., M, M) array

Matrices for which the eigenvalues and right eigenvectors will
be computed

	Returns:	w : (..., M) array

The eigenvalues, each repeated according to its multiplicity.
The eigenvalues are not necessarily ordered. The resulting
array will be always be of complex type. When a is real
the resulting eigenvalues will be real (0 imaginary part) or
occur in conjugate pairs

v : (..., M, M) array

The normalized (unit “length”) eigenvectors, such that the
column v[:,i] is the eigenvector corresponding to the
eigenvalue w[i].

	Raises:	LinAlgError

If the eigenvalue computation does not converge.

See also

	eigvalsh

	eigenvalues of a symmetric or Hermitian (conjugate symmetric) array.

	eigvals

	eigenvalues of a non-symmetric array.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

This is implemented using the _geev LAPACK routines which compute
the eigenvalues and eigenvectors of general square arrays.

The number w is an eigenvalue of a if there exists a vector
v such that dot(a,v) = w * v. Thus, the arrays a, w, and
v satisfy the equations dot(a[:,:], v[:,i]) = w[i] * v[:,i]
for [image: i \in \{0,...,M-1\}].

The array v of eigenvectors may not be of maximum rank, that is, some
of the columns may be linearly dependent, although round-off error may
obscure that fact. If the eigenvalues are all different, then theoretically
the eigenvectors are linearly independent. Likewise, the (complex-valued)
matrix of eigenvectors v is unitary if the matrix a is normal, i.e.,
if dot(a, a.H) = dot(a.H, a), where a.H denotes the conjugate
transpose of a.

Finally, it is emphasized that v consists of the right (as in
right-hand side) eigenvectors of a. A vector y satisfying
dot(y.T, a) = z * y.T for some number z is called a left
eigenvector of a, and, in general, the left and right eigenvectors
of a matrix are not necessarily the (perhaps conjugate) transposes
of each other.

References

G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL,
Academic Press, Inc., 1980, Various pp.

Examples

>>> from numpy import linalg as LA

(Almost) trivial example with real e-values and e-vectors.

>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([1., 2., 3.])
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

Real matrix possessing complex e-values and e-vectors; note that the
e-values are complex conjugates of each other.

>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([1. + 1.j, 1. - 1.j])
array([[0.70710678+0.j , 0.70710678+0.j],
 [0.00000000-0.70710678j, 0.00000000+0.70710678j]])

Complex-valued matrix with real e-values (but complex-valued e-vectors);
note that a.conj().T = a, i.e., a is Hermitian.

>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0}
array([[0.00000000+0.70710678j, 0.70710678+0.j],
 [0.70710678+0.j , 0.00000000+0.70710678j]])

Be careful about round-off error!

>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([1., 1.])
array([[1., 0.],
 [0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.eigh

	
numpy.linalg.eigh(a, UPLO='L')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1116]

	Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.

Returns two objects, a 1-D array containing the eigenvalues of a, and
a 2-D square array or matrix (depending on the input type) of the
corresponding eigenvectors (in columns).

	Parameters:	A : (..., M, M) array

Hermitian/Symmetric matrices whose eigenvalues and
eigenvectors are to be computed.

UPLO : {‘L’, ‘U’}, optional

Specifies whether the calculation is done with the lower triangular
part of a (‘L’, default) or the upper triangular part (‘U’).

	Returns:	w : (..., M) ndarray

The eigenvalues, not necessarily ordered.

v : {(..., M, M) ndarray, (..., M, M) matrix}

The column v[:, i] is the normalized eigenvector corresponding
to the eigenvalue w[i]. Will return a matrix object if a is
a matrix object.

	Raises:	LinAlgError

If the eigenvalue computation does not converge.

See also

	eigvalsh

	eigenvalues of symmetric or Hermitian arrays.

	eig

	eigenvalues and right eigenvectors for non-symmetric arrays.

	eigvals

	eigenvalues of non-symmetric arrays.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

The eigenvalues/eigenvectors are computed using LAPACK routines _ssyevd,
_heevd

The eigenvalues of real symmetric or complex Hermitian matrices are
always real. [R38] The array v of (column) eigenvectors is unitary
and a, w, and v satisfy the equations
dot(a, v[:, i]) = w[i] * v[:, i].

References

	[R38]	(1, 2) G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando,
FL, Academic Press, Inc., 1980, pg. 222.

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> a
array([[1.+0.j, 0.-2.j],
 [0.+2.j, 5.+0.j]])
>>> w, v = LA.eigh(a)
>>> w; v
array([0.17157288, 5.82842712])
array([[-0.92387953+0.j , -0.38268343+0.j],
 [0.00000000+0.38268343j, 0.00000000-0.92387953j]])

>>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair
array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j])
>>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair
array([0.+0.j, 0.+0.j])

>>> A = np.matrix(a) # what happens if input is a matrix object
>>> A
matrix([[1.+0.j, 0.-2.j],
 [0.+2.j, 5.+0.j]])
>>> w, v = LA.eigh(A)
>>> w; v
array([0.17157288, 5.82842712])
matrix([[-0.92387953+0.j , -0.38268343+0.j],
 [0.00000000+0.38268343j, 0.00000000-0.92387953j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.eigvals

	
numpy.linalg.eigvals(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L820]

	Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren’t
returned.

	Parameters:	a : (..., M, M) array_like

A complex- or real-valued matrix whose eigenvalues will be computed.

	Returns:	w : (..., M,) ndarray

The eigenvalues, each repeated according to its multiplicity.
They are not necessarily ordered, nor are they necessarily
real for real matrices.

	Raises:	LinAlgError

If the eigenvalue computation does not converge.

See also

	eig

	eigenvalues and right eigenvectors of general arrays

	eigvalsh

	eigenvalues of symmetric or Hermitian arrays.

	eigh

	eigenvalues and eigenvectors of symmetric/Hermitian arrays.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

This is implemented using the _geev LAPACK routines which compute
the eigenvalues and eigenvectors of general square arrays.

Examples

Illustration, using the fact that the eigenvalues of a diagonal matrix
are its diagonal elements, that multiplying a matrix on the left
by an orthogonal matrix, Q, and on the right by Q.T (the transpose
of Q), preserves the eigenvalues of the “middle” matrix. In other words,
if Q is orthogonal, then Q * A * Q.T has the same eigenvalues as
A:

>>> from numpy import linalg as LA
>>> x = np.random.random()
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
(1.0, 1.0, 0.0)

Now multiply a diagonal matrix by Q on one side and by Q.T on the other:

>>> D = np.diag((-1,1))
>>> LA.eigvals(D)
array([-1., 1.])
>>> A = np.dot(Q, D)
>>> A = np.dot(A, Q.T)
>>> LA.eigvals(A)
array([1., -1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.eigvalsh

	
numpy.linalg.eigvalsh(a, UPLO='L')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L905]

	Compute the eigenvalues of a Hermitian or real symmetric matrix.

Main difference from eigh: the eigenvectors are not computed.

	Parameters:	a : (..., M, M) array_like

A complex- or real-valued matrix whose eigenvalues are to be
computed.

UPLO : {‘L’, ‘U’}, optional

Same as lower, with ‘L’ for lower and ‘U’ for upper triangular.
Deprecated.

	Returns:	w : (..., M,) ndarray

The eigenvalues, not necessarily ordered, each repeated according to
its multiplicity.

	Raises:	LinAlgError

If the eigenvalue computation does not converge.

See also

	eigh

	eigenvalues and eigenvectors of symmetric/Hermitian arrays.

	eigvals

	eigenvalues of general real or complex arrays.

	eig

	eigenvalues and right eigenvectors of general real or complex arrays.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

The eigenvalues are computed using LAPACK routines _ssyevd, _heevd

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> LA.eigvalsh(a)
array([0.17157288+0.j, 5.82842712+0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.norm

	
numpy.linalg.norm(x, ord=None, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1924]

	Matrix or vector norm.

This function is able to return one of seven different matrix norms,
or one of an infinite number of vector norms (described below), depending
on the value of the ord parameter.

	Parameters:	x : array_like

Input array. If axis is None, x must be 1-D or 2-D.

ord : {non-zero int, inf, -inf, ‘fro’}, optional

Order of the norm (see table under Notes). inf means numpy’s
inf object.

axis : {int, 2-tuple of ints, None}, optional

If axis is an integer, it specifies the axis of x along which to
compute the vector norms. If axis is a 2-tuple, it specifies the
axes that hold 2-D matrices, and the matrix norms of these matrices
are computed. If axis is None then either a vector norm (when x
is 1-D) or a matrix norm (when x is 2-D) is returned.

	Returns:	n : float or ndarray

Norm of the matrix or vector(s).

Notes

For values of ord <= 0, the result is, strictly speaking, not a
mathematical ‘norm’, but it may still be useful for various numerical
purposes.

The following norms can be calculated:

	ord
	norm for matrices
	norm for vectors

	None
	Frobenius norm
	2-norm

	‘fro’
	Frobenius norm
	–

	inf
	max(sum(abs(x), axis=1))
	max(abs(x))

	-inf
	min(sum(abs(x), axis=1))
	min(abs(x))

	0
	–
	sum(x != 0)

	1
	max(sum(abs(x), axis=0))
	as below

	-1
	min(sum(abs(x), axis=0))
	as below

	2
	2-norm (largest sing. value)
	as below

	-2
	smallest singular value
	as below

	other
	–
	sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [R41]:

[image: ||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}]

References

	[R41]	(1, 2) G. H. Golub and C. F. Van Loan, Matrix Computations,
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

Examples

>>> from numpy import linalg as LA
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],
 [-1, 0, 1],
 [2, 3, 4]])

>>> LA.norm(a)
7.745966692414834
>>> LA.norm(b)
7.745966692414834
>>> LA.norm(b, 'fro')
7.745966692414834
>>> LA.norm(a, np.inf)
4
>>> LA.norm(b, np.inf)
9
>>> LA.norm(a, -np.inf)
0
>>> LA.norm(b, -np.inf)
2

>>> LA.norm(a, 1)
20
>>> LA.norm(b, 1)
7
>>> LA.norm(a, -1)
-4.6566128774142013e-010
>>> LA.norm(b, -1)
6
>>> LA.norm(a, 2)
7.745966692414834
>>> LA.norm(b, 2)
7.3484692283495345

>>> LA.norm(a, -2)
nan
>>> LA.norm(b, -2)
1.8570331885190563e-016
>>> LA.norm(a, 3)
5.8480354764257312
>>> LA.norm(a, -3)
nan

Using the axis argument to compute vector norms:

>>> c = np.array([[1, 2, 3],
... [-1, 1, 4]])
>>> LA.norm(c, axis=0)
array([1.41421356, 2.23606798, 5.])
>>> LA.norm(c, axis=1)
array([3.74165739, 4.24264069])
>>> LA.norm(c, ord=1, axis=1)
array([6, 6])

Using the axis argument to compute matrix norms:

>>> m = np.arange(8).reshape(2,2,2)
>>> LA.norm(m, axis=(1,2))
array([3.74165739, 11.22497216])
>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
(3.7416573867739413, 11.224972160321824)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.cond

	
numpy.linalg.cond(x, p=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1343]

	Compute the condition number of a matrix.

This function is capable of returning the condition number using
one of seven different norms, depending on the value of p (see
Parameters below).

	Parameters:	x : (M, N) array_like

The matrix whose condition number is sought.

p : {None, 1, -1, 2, -2, inf, -inf, ‘fro’}, optional

Order of the norm:

	p
	norm for matrices

	None
	2-norm, computed directly using the SVD

	‘fro’
	Frobenius norm

	inf
	max(sum(abs(x), axis=1))

	-inf
	min(sum(abs(x), axis=1))

	1
	max(sum(abs(x), axis=0))

	-1
	min(sum(abs(x), axis=0))

	2
	2-norm (largest sing. value)

	-2
	smallest singular value

inf means the numpy.inf object, and the Frobenius norm is
the root-of-sum-of-squares norm.

	Returns:	c : {float, inf}

The condition number of the matrix. May be infinite.

See also

numpy.linalg.norm

Notes

The condition number of x is defined as the norm of x times the
norm of the inverse of x [R37]; the norm can be the usual L2-norm
(root-of-sum-of-squares) or one of a number of other matrix norms.

References

	[R37]	(1, 2) G. Strang, Linear Algebra and Its Applications, Orlando, FL,
Academic Press, Inc., 1980, pg. 285.

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
>>> a
array([[1, 0, -1],
 [0, 1, 0],
 [1, 0, 1]])
>>> LA.cond(a)
1.4142135623730951
>>> LA.cond(a, 'fro')
3.1622776601683795
>>> LA.cond(a, np.inf)
2.0
>>> LA.cond(a, -np.inf)
1.0
>>> LA.cond(a, 1)
2.0
>>> LA.cond(a, -1)
1.0
>>> LA.cond(a, 2)
1.4142135623730951
>>> LA.cond(a, -2)
0.70710678118654746
>>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0))
0.70710678118654746

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.det

	
numpy.linalg.det(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1679]

	Compute the determinant of an array.

	Parameters:	a : (..., M, M) array_like

Input array to compute determinants for.

	Returns:	det : (...) array_like

Determinant of a.

See also

	slogdet

	Another way to representing the determinant, more suitable for large matrices where underflow/overflow may occur.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

The determinant is computed via LU factorization using the LAPACK
routine z/dgetrf.

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.linalg.det(a)
-2.0

Computing determinants for a stack of matrices:

>>> a = np.array([[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]])
>>> a.shape
(2, 2, 2
>>> np.linalg.det(a)
array([-2., -3., -8.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.matrix_rank

	
numpy.linalg.matrix_rank(M, tol=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1430]

	Return matrix rank of array using SVD method

Rank of the array is the number of SVD singular values of the array that are
greater than tol.

	Parameters:	M : {(M,), (M, N)} array_like

array of <=2 dimensions

tol : {None, float}, optional

threshold below which SVD values are considered zero. If tol is
None, and S is an array with singular values for M, and
eps is the epsilon value for datatype of S, then tol is
set to S.max() * max(M.shape) * eps.

Notes

The default threshold to detect rank deficiency is a test on the magnitude
of the singular values of M. By default, we identify singular values less
than S.max() * max(M.shape) * eps as indicating rank deficiency (with
the symbols defined above). This is the algorithm MATLAB uses [1]. It also
appears in Numerical recipes in the discussion of SVD solutions for linear
least squares [2].

This default threshold is designed to detect rank deficiency accounting for
the numerical errors of the SVD computation. Imagine that there is a column
in M that is an exact (in floating point) linear combination of other
columns in M. Computing the SVD on M will not produce a singular value
exactly equal to 0 in general: any difference of the smallest SVD value from
0 will be caused by numerical imprecision in the calculation of the SVD.
Our threshold for small SVD values takes this numerical imprecision into
account, and the default threshold will detect such numerical rank
deficiency. The threshold may declare a matrix M rank deficient even if
the linear combination of some columns of M is not exactly equal to
another column of M but only numerically very close to another column of
M.

We chose our default threshold because it is in wide use. Other thresholds
are possible. For example, elsewhere in the 2007 edition of Numerical
recipes there is an alternative threshold of S.max() *
np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.). The authors describe
this threshold as being based on “expected roundoff error” (p 71).

The thresholds above deal with floating point roundoff error in the
calculation of the SVD. However, you may have more information about the
sources of error in M that would make you consider other tolerance values
to detect effective rank deficiency. The most useful measure of the
tolerance depends on the operations you intend to use on your matrix. For
example, if your data come from uncertain measurements with uncertainties
greater than floating point epsilon, choosing a tolerance near that
uncertainty may be preferable. The tolerance may be absolute if the
uncertainties are absolute rather than relative.

References

	[R39]	MATLAB reference documention, “Rank”
http://www.mathworks.com/help/techdoc/ref/rank.html

	[R40]	W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
“Numerical Recipes (3rd edition)”, Cambridge University Press, 2007,
page 795.

Examples

>>> from numpy.linalg import matrix_rank
>>> matrix_rank(np.eye(4)) # Full rank matrix
4
>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
>>> matrix_rank(I)
3
>>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
1
>>> matrix_rank(np.zeros((4,)))
0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.slogdet

	
numpy.linalg.slogdet(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1599]

	Compute the sign and (natural) logarithm of the determinant of an array.

If an array has a very small or very large determinant, than a call to
det may overflow or underflow. This routine is more robust against such
issues, because it computes the logarithm of the determinant rather than
the determinant itself.

	Parameters:	a : (..., M, M) array_like

Input array, has to be a square 2-D array.

	Returns:	sign : (...) array_like

A number representing the sign of the determinant. For a real matrix,
this is 1, 0, or -1. For a complex matrix, this is a complex number
with absolute value 1 (i.e., it is on the unit circle), or else 0.

logdet : (...) array_like

The natural log of the absolute value of the determinant.

If the determinant is zero, then sign will be 0 and logdet will be

-Inf. In all cases, the determinant is equal to sign * np.exp(logdet).

See also

det

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

The determinant is computed via LU factorization using the LAPACK
routine z/dgetrf.

New in version 1.6.0..

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> a = np.array([[1, 2], [3, 4]])
>>> (sign, logdet) = np.linalg.slogdet(a)
>>> (sign, logdet)
(-1, 0.69314718055994529)
>>> sign * np.exp(logdet)
-2.0

Computing log-determinants for a stack of matrices:

>>> a = np.array([[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]])
>>> a.shape
(3, 2, 2)
>>> sign, logdet = np.linalg.slogdet(a)
>>> (sign, logdet)
(array([-1., -1., -1.]), array([0.69314718, 1.09861229, 2.07944154]))
>>> sign * np.exp(logdet)
array([-2., -3., -8.])

This routine succeeds where ordinary det does not:

>>> np.linalg.det(np.eye(500) * 0.1)
0.0
>>> np.linalg.slogdet(np.eye(500) * 0.1)
(1, -1151.2925464970228)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.trace

	
numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1225]

	Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset
is returned, i.e., the sum of elements a[i,i+offset] for all i.

If a has more than two dimensions, then the axes specified by axis1 and
axis2 are used to determine the 2-D sub-arrays whose traces are returned.
The shape of the resulting array is the same as that of a with axis1
and axis2 removed.

	Parameters:	a : array_like

Input array, from which the diagonals are taken.

offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to 0.

axis1, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays
from which the diagonals should be taken. Defaults are the first two
axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and a is
of integer type of precision less than the default integer
precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and
it must be of the right shape to hold the output.

	Returns:	sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has
larger dimensions, then an array of sums along diagonals is returned.

See also

diag, diagonal, diagflat

Examples

>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])

>>> a = np.arange(24).reshape((2,2,2,3))
>>> np.trace(a).shape
(2, 3)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.solve

	
numpy.linalg.solve(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L296]

	Solve a linear matrix equation, or system of linear scalar equations.

Computes the “exact” solution, x, of the well-determined, i.e., full
rank, linear matrix equation ax = b.

	Parameters:	a : (..., M, M) array_like

Coefficient matrix.

b : {(..., M,), (..., M, K)}, array_like

Ordinate or “dependent variable” values.

	Returns:	x : {(..., M,), (..., M, K)} ndarray

Solution to the system a x = b. Returned shape is identical to b.

	Raises:	LinAlgError

If a is singular or not square.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

The solutions are computed using LAPACK routine _gesv

a must be square and of full-rank, i.e., all rows (or, equivalently,
columns) must be linearly independent; if either is not true, use
lstsq for the least-squares best “solution” of the
system/equation.

References

	[R43]	G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando,
FL, Academic Press, Inc., 1980, pg. 22.

Examples

Solve the system of equations 3 * x0 + x1 = 9 and x0 + 2 * x1 = 8:

>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> x = np.linalg.solve(a, b)
>>> x
array([2., 3.])

Check that the solution is correct:

>>> np.allclose(np.dot(a, x), b)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.tensorsolve

	
numpy.linalg.tensorsolve(a, b, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L227]

	Solve the tensor equation a x = b for x.

It is assumed that all indices of x are summed over in the product,
together with the rightmost indices of a, as is done in, for example,
tensordot(a, x, axes=len(b.shape)).

	Parameters:	a : array_like

Coefficient tensor, of shape b.shape + Q. Q, a tuple, equals
the shape of that sub-tensor of a consisting of the appropriate
number of its rightmost indices, and must be such that

prod(Q) == prod(b.shape) (in which sense a is said to be
‘square’).

b : array_like

Right-hand tensor, which can be of any shape.

axes : tuple of ints, optional

Axes in a to reorder to the right, before inversion.
If None (default), no reordering is done.

	Returns:	x : ndarray, shape Q

	Raises:	LinAlgError

If a is singular or not ‘square’ (in the above sense).

See also

tensordot, tensorinv, einsum

Examples

>>> a = np.eye(2*3*4)
>>> a.shape = (2*3, 4, 2, 3, 4)
>>> b = np.random.randn(2*3, 4)
>>> x = np.linalg.tensorsolve(a, b)
>>> x.shape
(2, 3, 4)
>>> np.allclose(np.tensordot(a, x, axes=3), b)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.lstsq

	
numpy.linalg.lstsq(a, b, rcond=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1733]

	Return the least-squares solution to a linear matrix equation.

Solves the equation a x = b by computing a vector x that
minimizes the Euclidean 2-norm || b - a x ||^2. The equation may
be under-, well-, or over- determined (i.e., the number of
linearly independent rows of a can be less than, equal to, or
greater than its number of linearly independent columns). If a
is square and of full rank, then x (but for round-off error) is
the “exact” solution of the equation.

	Parameters:	a : (M, N) array_like

“Coefficient” matrix.

b : {(M,), (M, K)} array_like

Ordinate or “dependent variable” values. If b is two-dimensional,
the least-squares solution is calculated for each of the K columns
of b.

rcond : float, optional

Cut-off ratio for small singular values of a.
Singular values are set to zero if they are smaller than rcond
times the largest singular value of a.

	Returns:	x : {(N,), (N, K)} ndarray

Least-squares solution. If b is two-dimensional,
the solutions are in the K columns of x.

residuals : {(), (1,), (K,)} ndarray

Sums of residuals; squared Euclidean 2-norm for each column in
b - a*x.
If the rank of a is < N or M <= N, this is an empty array.
If b is 1-dimensional, this is a (1,) shape array.
Otherwise the shape is (K,).

rank : int

Rank of matrix a.

s : (min(M, N),) ndarray

Singular values of a.

	Raises:	LinAlgError

If computation does not converge.

Notes

If b is a matrix, then all array results are returned as matrices.

Examples

Fit a line, y = mx + c, through some noisy data-points:

>>> x = np.array([0, 1, 2, 3])
>>> y = np.array([-1, 0.2, 0.9, 2.1])

By examining the coefficients, we see that the line should have a
gradient of roughly 1 and cut the y-axis at, more or less, -1.

We can rewrite the line equation as y = Ap, where A = [[x 1]]
and p = [[m], [c]]. Now use lstsq to solve for p:

>>> A = np.vstack([x, np.ones(len(x))]).T
>>> A
array([[0., 1.],
 [1., 1.],
 [2., 1.],
 [3., 1.]])

>>> m, c = np.linalg.lstsq(A, y)[0]
>>> print m, c
1.0 -0.95

Plot the data along with the fitted line:

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', label='Original data', markersize=10)
>>> plt.plot(x, m*x + c, 'r', label='Fitted line')
>>> plt.legend()
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-linalg-lstsq-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.inv

	
numpy.linalg.inv(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L455]

	Compute the (multiplicative) inverse of a matrix.

Given a square matrix a, return the matrix ainv satisfying
dot(a, ainv) = dot(ainv, a) = eye(a.shape[0]).

	Parameters:	a : (..., M, M) array_like

Matrix to be inverted.

	Returns:	ainv : (..., M, M) ndarray or matrix

(Multiplicative) inverse of the matrix a.

	Raises:	LinAlgError

If a is not square or inversion fails.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for
details.

Examples

>>> from numpy.linalg import inv
>>> a = np.array([[1., 2.], [3., 4.]])
>>> ainv = inv(a)
>>> np.allclose(np.dot(a, ainv), np.eye(2))
True
>>> np.allclose(np.dot(ainv, a), np.eye(2))
True

If a is a matrix object, then the return value is a matrix as well:

>>> ainv = inv(np.matrix(a))
>>> ainv
matrix([[-2. , 1.],
 [1.5, -0.5]])

Inverses of several matrices can be computed at once:

>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
>>> inv(a)
array([[[-2. , 1.],
 [1.5, -0.5]],
 [[-5. , 2.],
 [3. , -1.]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.pinv

	
numpy.linalg.pinv(a, rcond=1e-15)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L1519]

	Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate the generalized inverse of a matrix using its
singular-value decomposition (SVD) and including all
large singular values.

	Parameters:	a : (M, N) array_like

Matrix to be pseudo-inverted.

rcond : float

Cutoff for small singular values.
Singular values smaller (in modulus) than
rcond * largest_singular_value (again, in modulus)
are set to zero.

	Returns:	B : (N, M) ndarray

The pseudo-inverse of a. If a is a matrix instance, then so
is B.

	Raises:	LinAlgError

If the SVD computation does not converge.

Notes

The pseudo-inverse of a matrix A, denoted [image: A^+], is
defined as: “the matrix that ‘solves’ [the least-squares problem]
[image: Ax = b],” i.e., if [image: \bar{x}] is said solution, then
[image: A^+] is that matrix such that [image: \bar{x} = A^+b].

It can be shown that if [image: Q_1 \Sigma Q_2^T = A] is the singular
value decomposition of A, then
[image: A^+ = Q_2 \Sigma^+ Q_1^T], where [image: Q_{1,2}] are
orthogonal matrices, [image: \Sigma] is a diagonal matrix consisting
of A’s so-called singular values, (followed, typically, by
zeros), and then [image: \Sigma^+] is simply the diagonal matrix
consisting of the reciprocals of A’s singular values
(again, followed by zeros). [R42]

References

	[R42]	(1, 2) G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando,
FL, Academic Press, Inc., 1980, pp. 139-142.

Examples

The following example checks that a * a+ * a == a and
a+ * a * a+ == a+:

>>> a = np.random.randn(9, 6)
>>> B = np.linalg.pinv(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.tensorinv

	
numpy.linalg.tensorinv(a, ind=2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L386]

	Compute the ‘inverse’ of an N-dimensional array.

The result is an inverse for a relative to the tensordot operation
tensordot(a, b, ind), i. e., up to floating-point accuracy,
tensordot(tensorinv(a), a, ind) is the “identity” tensor for the
tensordot operation.

	Parameters:	a : array_like

Tensor to ‘invert’. Its shape must be ‘square’, i. e.,
prod(a.shape[:ind]) == prod(a.shape[ind:]).

ind : int, optional

Number of first indices that are involved in the inverse sum.
Must be a positive integer, default is 2.

	Returns:	b : ndarray

a‘s tensordot inverse, shape a.shape[ind:] + a.shape[:ind].

	Raises:	LinAlgError

If a is singular or not ‘square’ (in the above sense).

See also

tensordot, tensorsolve

Examples

>>> a = np.eye(4*6)
>>> a.shape = (4, 6, 8, 3)
>>> ainv = np.linalg.tensorinv(a, ind=2)
>>> ainv.shape
(8, 3, 4, 6)
>>> b = np.random.randn(4, 6)
>>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
True

>>> a = np.eye(4*6)
>>> a.shape = (24, 8, 3)
>>> ainv = np.linalg.tensorinv(a, ind=1)
>>> ainv.shape
(8, 3, 24)
>>> b = np.random.randn(24)
>>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Linear algebra (numpy.linalg)

numpy.linalg.LinAlgError

	
exception numpy.linalg.LinAlgError[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/linalg\linalg.py#L43]

	Generic Python-exception-derived object raised by linalg functions.

General purpose exception class, derived from Python’s exception.Exception
class, programmatically raised in linalg functions when a Linear
Algebra-related condition would prevent further correct execution of the
function.

	Parameters:	None

Examples

>>> from numpy import linalg as LA
>>> LA.inv(np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "...linalg.py", line 350,
 in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
 File "...linalg.py", line 249,
 in solve
 raise LinAlgError('Singular matrix')
numpy.linalg.LinAlgError: Singular matrix

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Logic functions

Truth value testing

	all(a[,axis,out,keepdims])
	Test whether all array elements along a given axis evaluate to True.

	any(a[,axis,out,keepdims])
	Test whether any array element along a given axis evaluates to True.

Array contents

	isfinite(x[,out])
	Test element-wise for finiteness (not infinity or not Not a Number).

	isinf(x[,out])
	Test element-wise for positive or negative infinity.

	isnan(x[,out])
	Test element-wise for NaN and return result as a boolean array.

	isneginf(x[,y])
	Test element-wise for negative infinity, return result as bool array.

	isposinf(x[,y])
	Test element-wise for positive infinity, return result as bool array.

Array type testing

	iscomplex(x)
	Returns a bool array, where True if input element is complex.

	iscomplexobj(x)
	Check for a complex type or an array of complex numbers.

	isfortran(a)
	Returns True if array is arranged in Fortran-order in memory and not C-order.

	isreal(x)
	Returns a bool array, where True if input element is real.

	isrealobj(x)
	Return True if x is a not complex type or an array of complex numbers.

	isscalar(num)
	Returns True if the type of num is a scalar type.

Logical operations

	logical_and(x1,x2[,out])
	Compute the truth value of x1 AND x2 element-wise.

	logical_or(x1,x2[,out])
	Compute the truth value of x1 OR x2 element-wise.

	logical_not(x[,out])
	Compute the truth value of NOT x element-wise.

	logical_xor(x1,x2[,out])
	Compute the truth value of x1 XOR x2, element-wise.

Comparison

	allclose(a,b[,rtol,atol])
	Returns True if two arrays are element-wise equal within a tolerance.

	isclose(a,b[,rtol,atol,equal_nan])
	Returns a boolean array where two arrays are element-wise equal within a tolerance.

	array_equal(a1,a2)
	True if two arrays have the same shape and elements, False otherwise.

	array_equiv(a1,a2)
	Returns True if input arrays are shape consistent and all elements equal.

	greater(x1,x2[,out])
	Return the truth value of (x1 > x2) element-wise.

	greater_equal(x1,x2[,out])
	Return the truth value of (x1 >= x2) element-wise.

	less(x1,x2[,out])
	Return the truth value of (x1 < x2) element-wise.

	less_equal(x1,x2[,out])
	Return the truth value of (x1 =< x2) element-wise.

	equal(x1,x2[,out])
	Return (x1 == x2) element-wise.

	not_equal(x1,x2[,out])
	Return (x1 != x2) element-wise.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.all

	
numpy.all(a, axis=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1844]

	Test whether all array elements along a given axis evaluate to True.

	Parameters:	a : array_like

Input array or object that can be converted to an array.

axis : None or int or tuple of ints, optional

Axis or axes along which a logical AND reduction is performed.
The default (axis = None) is to perform a logical AND over all
the dimensions of the input array. axis may be negative, in
which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a reduction is performed on multiple
axes, instead of a single axis or all the axes as before.

out : ndarray, optional

Alternate output array in which to place the result.
It must have the same shape as the expected output and its
type is preserved (e.g., if dtype(out) is float, the result
will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section
“Output arguments”) for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	all : ndarray, bool

A new boolean or array is returned unless out is specified,
in which case a reference to out is returned.

See also

	ndarray.all

	equivalent method

	any

	Test whether any element along a given axis evaluates to True.

Notes

Not a Number (NaN), positive infinity and negative infinity
evaluate to True because these are not equal to zero.

Examples

>>> np.all([[True,False],[True,True]])
False

>>> np.all([[True,False],[True,True]], axis=0)
array([True, False], dtype=bool)

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])
>>> z=np.all([-1, 4, 5], out=o)
>>> id(z), id(o), z
(28293632, 28293632, array([True], dtype=bool))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.any

	
numpy.any(a, axis=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1764]

	Test whether any array element along a given axis evaluates to True.

Returns single boolean unless axis is not None

	Parameters:	a : array_like

Input array or object that can be converted to an array.

axis : None or int or tuple of ints, optional

Axis or axes along which a logical OR reduction is performed.
The default (axis = None) is to perform a logical OR over all
the dimensions of the input array. axis may be negative, in
which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a reduction is performed on multiple
axes, instead of a single axis or all the axes as before.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output and its type is preserved
(e.g., if it is of type float, then it will remain so, returning
1.0 for True and 0.0 for False, regardless of the type of a).
See doc.ufuncs (Section “Output arguments”) for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	any : bool or ndarray

A new boolean or ndarray is returned unless out is specified,
in which case a reference to out is returned.

See also

	ndarray.any

	equivalent method

	all

	Test whether all elements along a given axis evaluate to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate
to True because these are not equal to zero.

Examples

>>> np.any([[True, False], [True, True]])
True

>>> np.any([[True, False], [False, False]], axis=0)
array([True, False], dtype=bool)

>>> np.any([-1, 0, 5])
True

>>> np.any(np.nan)
True

>>> o=np.array([False])
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
(array([True], dtype=bool), array([True], dtype=bool))
>>> # Check now that z is a reference to o
>>> z is o
True
>>> id(z), id(o) # identity of z and o
(191614240, 191614240)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isfinite

	
numpy.isfinite(x[, out]) = <ufunc 'isfinite'>

	Test element-wise for finiteness (not infinity or not Not a Number).

The result is returned as a boolean array.

	Parameters:	x : array_like

Input values.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	y : ndarray, bool

For scalar input, the result is a new boolean with value True
if the input is finite; otherwise the value is False (input is
either positive infinity, negative infinity or Not a Number).

For array input, the result is a boolean array with the same
dimensions as the input and the values are True if the
corresponding element of the input is finite; otherwise the values
are False (element is either positive infinity, negative infinity
or Not a Number).

See also

isinf, isneginf, isposinf, isnan

Notes

Not a Number, positive infinity and negative infinity are considered
to be non-finite.

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity. Errors result if the
second argument is also supplied when x is a scalar input, or if
first and second arguments have different shapes.

Examples

>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(np.NINF)
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)])
array([False, True, False], dtype=bool)

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isfinite(x, y)
array([0, 1, 0])
>>> y
array([0, 1, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isinf

	
numpy.isinf(x[, out]) = <ufunc 'isinf'>

	Test element-wise for positive or negative infinity.

Returns a boolean array of the same shape as x, True where x ==
+/-inf, otherwise False.

	Parameters:	x : array_like

Input values

out : array_like, optional

An array with the same shape as x to store the result.

	Returns:	y : bool (scalar) or boolean ndarray

For scalar input, the result is a new boolean with value True if
the input is positive or negative infinity; otherwise the value is
False.

For array input, the result is a boolean array with the same shape
as the input and the values are True where the corresponding
element of the input is positive or negative infinity; elsewhere
the values are False. If a second argument was supplied the result
is stored there. If the type of that array is a numeric type the
result is represented as zeros and ones, if the type is boolean
then as False and True, respectively. The return value y is then
a reference to that array.

See also

isneginf, isposinf, isnan, isfinite

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).

Errors result if the second argument is supplied when the first
argument is a scalar, or if the first and second arguments have
different shapes.

Examples

>>> np.isinf(np.inf)
True
>>> np.isinf(np.nan)
False
>>> np.isinf(np.NINF)
True
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
array([True, True, False, False], dtype=bool)

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isinf(x, y)
array([1, 0, 1])
>>> y
array([1, 0, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isnan

	
numpy.isnan(x[, out]) = <ufunc 'isnan'>

	Test element-wise for NaN and return result as a boolean array.

	Parameters:	x : array_like

Input array.

	Returns:	y : {ndarray, bool}

For scalar input, the result is a new boolean with value True if
the input is NaN; otherwise the value is False.

For array input, the result is a boolean array of the same
dimensions as the input and the values are True if the
corresponding element of the input is NaN; otherwise the values are
False.

See also

isinf, isneginf, isposinf, isfinite

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.

Examples

>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan([np.log(-1.),1.,np.log(0)])
array([True, False, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isneginf

	
numpy.isneginf(x, y=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\ufunclike.py#L116]

	Test element-wise for negative infinity, return result as bool array.

	Parameters:	x : array_like

The input array.

y : array_like, optional

A boolean array with the same shape and type as x to store the
result.

	Returns:	y : ndarray

A boolean array with the same dimensions as the input.
If second argument is not supplied then a numpy boolean array is
returned with values True where the corresponding element of the
input is negative infinity and values False where the element of
the input is not negative infinity.

If a second argument is supplied the result is stored there. If the
type of that array is a numeric type the result is represented as
zeros and ones, if the type is boolean then as False and True. The
return value y is then a reference to that array.

See also

isinf, isposinf, isnan, isfinite

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).

Errors result if the second argument is also supplied when x is a scalar
input, or if first and second arguments have different shapes.

Examples

>>> np.isneginf(np.NINF)
array(True, dtype=bool)
>>> np.isneginf(np.inf)
array(False, dtype=bool)
>>> np.isneginf(np.PINF)
array(False, dtype=bool)
>>> np.isneginf([-np.inf, 0., np.inf])
array([True, False, False], dtype=bool)

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isneginf(x, y)
array([1, 0, 0])
>>> y
array([1, 0, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isposinf

	
numpy.isposinf(x, y=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\ufunclike.py#L54]

	Test element-wise for positive infinity, return result as bool array.

	Parameters:	x : array_like

The input array.

y : array_like, optional

A boolean array with the same shape as x to store the result.

	Returns:	y : ndarray

A boolean array with the same dimensions as the input.
If second argument is not supplied then a boolean array is returned
with values True where the corresponding element of the input is
positive infinity and values False where the element of the input is
not positive infinity.

If a second argument is supplied the result is stored there. If the
type of that array is a numeric type the result is represented as zeros
and ones, if the type is boolean then as False and True.
The return value y is then a reference to that array.

See also

isinf, isneginf, isfinite, isnan

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).

Errors result if the second argument is also supplied when x is a
scalar input, or if first and second arguments have different shapes.

Examples

>>> np.isposinf(np.PINF)
array(True, dtype=bool)
>>> np.isposinf(np.inf)
array(True, dtype=bool)
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True], dtype=bool)

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isposinf(x, y)
array([0, 0, 1])
>>> y
array([0, 0, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.iscomplex

	
numpy.iscomplex(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L172]

	Returns a bool array, where True if input element is complex.

What is tested is whether the input has a non-zero imaginary part, not if
the input type is complex.

	Parameters:	x : array_like

Input array.

	Returns:	out : ndarray of bools

Output array.

See also

isreal

	iscomplexobj

	Return True if x is a complex type or an array of complex numbers.

Examples

>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([True, False, False, False, False, True], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.iscomplexobj

	
numpy.iscomplexobj(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L237]

	Check for a complex type or an array of complex numbers.

The type of the input is checked, not the value. Even if the input
has an imaginary part equal to zero, iscomplexobj evaluates to True.

	Parameters:	x : any

The input can be of any type and shape.

	Returns:	iscomplexobj : bool

The return value, True if x is of a complex type or has at least
one complex element.

See also

isrealobj, iscomplex

Examples

>>> np.iscomplexobj(1)
False
>>> np.iscomplexobj(1+0j)
True
>>> np.iscomplexobj([3, 1+0j, True])
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isfortran

	
numpy.isfortran(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L676]

	Returns True if array is arranged in Fortran-order in memory
and not C-order.

	Parameters:	a : ndarray

Input array.

Examples

np.array allows to specify whether the array is written in C-contiguous
order (last index varies the fastest), or FORTRAN-contiguous order in
memory (first index varies the fastest).

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],
 [4, 5, 6]])
>>> np.isfortran(a)
False

>>> b = np.array([[1, 2, 3], [4, 5, 6]], order='FORTRAN')
>>> b
array([[1, 2, 3],
 [4, 5, 6]])
>>> np.isfortran(b)
True

The transpose of a C-ordered array is a FORTRAN-ordered array.

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],
 [4, 5, 6]])
>>> np.isfortran(a)
False
>>> b = a.T
>>> b
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> np.isfortran(b)
True

C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.

>>> np.isfortran(np.array([1, 2], order='FORTRAN'))
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isreal

	
numpy.isreal(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L207]

	Returns a bool array, where True if input element is real.

If element has complex type with zero complex part, the return value
for that element is True.

	Parameters:	x : array_like

Input array.

	Returns:	out : ndarray, bool

Boolean array of same shape as x.

See also

iscomplex

	isrealobj

	Return True if x is not a complex type.

Examples

>>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([False, True, True, True, True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isrealobj

	
numpy.isrealobj(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L271]

	Return True if x is a not complex type or an array of complex numbers.

The type of the input is checked, not the value. So even if the input
has an imaginary part equal to zero, isrealobj evaluates to False
if the data type is complex.

	Parameters:	x : any

The input can be of any type and shape.

	Returns:	y : bool

The return value, False if x is of a complex type.

See also

iscomplexobj, isreal

Examples

>>> np.isrealobj(1)
True
>>> np.isrealobj(1+0j)
False
>>> np.isrealobj([3, 1+0j, True])
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isscalar

	
numpy.isscalar(num)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1910]

	Returns True if the type of num is a scalar type.

	Parameters:	num : any

Input argument, can be of any type and shape.

	Returns:	val : bool

True if num is a scalar type, False if it is not.

Examples

>>> np.isscalar(3.1)
True
>>> np.isscalar([3.1])
False
>>> np.isscalar(False)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.logical_and

	
numpy.logical_and(x1, x2[, out]) = <ufunc 'logical_and'>

	Compute the truth value of x1 AND x2 element-wise.

	Parameters:	x1, x2 : array_like

Input arrays. x1 and x2 must be of the same shape.

	Returns:	y : {ndarray, bool}

Boolean result with the same shape as x1 and x2 of the logical
AND operation on corresponding elements of x1 and x2.

See also

logical_or, logical_not, logical_xor, bitwise_and

Examples

>>> np.logical_and(True, False)
False
>>> np.logical_and([True, False], [False, False])
array([False, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_and(x>1, x<4)
array([False, False, True, True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.logical_or

	
numpy.logical_or(x1, x2[, out]) = <ufunc 'logical_or'>

	Compute the truth value of x1 OR x2 element-wise.

	Parameters:	x1, x2 : array_like

Logical OR is applied to the elements of x1 and x2.
They have to be of the same shape.

	Returns:	y : {ndarray, bool}

Boolean result with the same shape as x1 and x2 of the logical
OR operation on elements of x1 and x2.

See also

logical_and, logical_not, logical_xor, bitwise_or

Examples

>>> np.logical_or(True, False)
True
>>> np.logical_or([True, False], [False, False])
array([True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_or(x < 1, x > 3)
array([True, False, False, False, True], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.logical_not

	
numpy.logical_not(x[, out]) = <ufunc 'logical_not'>

	Compute the truth value of NOT x element-wise.

	Parameters:	x : array_like

Logical NOT is applied to the elements of x.

	Returns:	y : bool or ndarray of bool

Boolean result with the same shape as x of the NOT operation
on elements of x.

See also

logical_and, logical_or, logical_xor

Examples

>>> np.logical_not(3)
False
>>> np.logical_not([True, False, 0, 1])
array([False, True, True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_not(x<3)
array([False, False, False, True, True], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.logical_xor

	
numpy.logical_xor(x1, x2[, out]) = <ufunc 'logical_xor'>

	Compute the truth value of x1 XOR x2, element-wise.

	Parameters:	x1, x2 : array_like

Logical XOR is applied to the elements of x1 and x2. They must
be broadcastable to the same shape.

	Returns:	y : bool or ndarray of bool

Boolean result of the logical XOR operation applied to the elements
of x1 and x2; the shape is determined by whether or not
broadcasting of one or both arrays was required.

See also

logical_and, logical_or, logical_not, bitwise_xor

Examples

>>> np.logical_xor(True, False)
True
>>> np.logical_xor([True, True, False, False], [True, False, True, False])
array([False, True, True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_xor(x < 1, x > 3)
array([True, False, False, False, True], dtype=bool)

Simple example showing support of broadcasting

>>> np.logical_xor(0, np.eye(2))
array([[True, False],
 [False, True]], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.allclose

	
numpy.allclose(a, b, rtol=1e-05, atol=1e-08)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2156]

	Returns True if two arrays are element-wise equal within a tolerance.

The tolerance values are positive, typically very small numbers. The
relative difference (rtol * abs(b)) and the absolute difference
atol are added together to compare against the absolute difference
between a and b.

If either array contains one or more NaNs, False is returned.
Infs are treated as equal if they are in the same place and of the same
sign in both arrays.

	Parameters:	a, b : array_like

Input arrays to compare.

rtol : float

The relative tolerance parameter (see Notes).

atol : float

The absolute tolerance parameter (see Notes).

	Returns:	allclose : bool

Returns True if the two arrays are equal within the given
tolerance; False otherwise.

See also

isclose, all, any

Notes

If the following equation is element-wise True, then allclose returns
True.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that
allclose(a, b) might be different from allclose(b, a) in
some rare cases.

Examples

>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
False
>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
True
>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
False
>>> np.allclose([1.0, np.nan], [1.0, np.nan])
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.isclose

	
numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2238]

	Returns a boolean array where two arrays are element-wise equal within a
tolerance.

The tolerance values are positive, typically very small numbers. The
relative difference (rtol * abs(b)) and the absolute difference
atol are added together to compare against the absolute difference
between a and b.

	Parameters:	a, b : array_like

Input arrays to compare.

rtol : float

The relative tolerance parameter (see Notes).

atol : float

The absolute tolerance parameter (see Notes).

equal_nan : bool

Whether to compare NaN’s as equal. If True, NaN’s in a will be
considered equal to NaN’s in b in the output array.

	Returns:	y : array_like

Returns a boolean array of where a and b are equal within the
given tolerance. If both a and b are scalars, returns a single
boolean value.

See also

allclose

Notes

New in version 1.7.0.

For finite values, isclose uses the following equation to test whether
two floating point values are equivalent.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that
isclose(a, b) might be different from isclose(b, a) in
some rare cases.

Examples

>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
array([True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
array([True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
array([False, True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan])
array([True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
array([True, True])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.array_equal

	
numpy.array_equal(a1, a2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2328]

	True if two arrays have the same shape and elements, False otherwise.

	Parameters:	a1, a2 : array_like

Input arrays.

	Returns:	b : bool

Returns True if the arrays are equal.

See also

	allclose

	Returns True if two arrays are element-wise equal within a tolerance.

	array_equiv

	Returns True if input arrays are shape consistent and all elements equal.

Examples

>>> np.array_equal([1, 2], [1, 2])
True
>>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
True
>>> np.array_equal([1, 2], [1, 2, 3])
False
>>> np.array_equal([1, 2], [1, 4])
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.array_equiv

	
numpy.array_equiv(a1, a2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2369]

	Returns True if input arrays are shape consistent and all elements equal.

Shape consistent means they are either the same shape, or one input array
can be broadcasted to create the same shape as the other one.

	Parameters:	a1, a2 : array_like

Input arrays.

	Returns:	out : bool

True if equivalent, False otherwise.

Examples

>>> np.array_equiv([1, 2], [1, 2])
True
>>> np.array_equiv([1, 2], [1, 3])
False

Showing the shape equivalence:

>>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
True
>>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
False

>>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.greater

	
numpy.greater(x1, x2[, out]) = <ufunc 'greater'>

	Return the truth value of (x1 > x2) element-wise.

	Parameters:	x1, x2 : array_like

Input arrays. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	Returns:	out : bool or ndarray of bool

Array of bools, or a single bool if x1 and x2 are scalars.

See also

greater_equal, less, less_equal, equal, not_equal

Examples

>>> np.greater([4,2],[2,2])
array([True, False], dtype=bool)

If the inputs are ndarrays, then np.greater is equivalent to ‘>’.

>>> a = np.array([4,2])
>>> b = np.array([2,2])
>>> a > b
array([True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.greater_equal

	
numpy.greater_equal(x1, x2[, out]) = <ufunc 'greater_equal'>

	Return the truth value of (x1 >= x2) element-wise.

	Parameters:	x1, x2 : array_like

Input arrays. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	Returns:	out : bool or ndarray of bool

Array of bools, or a single bool if x1 and x2 are scalars.

See also

greater, less, less_equal, equal, not_equal

Examples

>>> np.greater_equal([4, 2, 1], [2, 2, 2])
array([True, True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.less

	
numpy.less(x1, x2[, out]) = <ufunc 'less'>

	Return the truth value of (x1 < x2) element-wise.

	Parameters:	x1, x2 : array_like

Input arrays. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	Returns:	out : bool or ndarray of bool

Array of bools, or a single bool if x1 and x2 are scalars.

See also

greater, less_equal, greater_equal, equal, not_equal

Examples

>>> np.less([1, 2], [2, 2])
array([True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.less_equal

	
numpy.less_equal(x1, x2[, out]) = <ufunc 'less_equal'>

	Return the truth value of (x1 =< x2) element-wise.

	Parameters:	x1, x2 : array_like

Input arrays. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	Returns:	out : bool or ndarray of bool

Array of bools, or a single bool if x1 and x2 are scalars.

See also

greater, less, greater_equal, equal, not_equal

Examples

>>> np.less_equal([4, 2, 1], [2, 2, 2])
array([False, True, True], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.equal

	
numpy.equal(x1, x2[, out]) = <ufunc 'equal'>

	Return (x1 == x2) element-wise.

	Parameters:	x1, x2 : array_like

Input arrays of the same shape.

	Returns:	out : {ndarray, bool}

Output array of bools, or a single bool if x1 and x2 are scalars.

See also

not_equal, greater_equal, less_equal, greater, less

Examples

>>> np.equal([0, 1, 3], np.arange(3))
array([True, True, False], dtype=bool)

What is compared are values, not types. So an int (1) and an array of
length one can evaluate as True:

>>> np.equal(1, np.ones(1))
array([True], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Logic functions

numpy.not_equal

	
numpy.not_equal(x1, x2[, out]) = <ufunc 'not_equal'>

	Return (x1 != x2) element-wise.

	Parameters:	x1, x2 : array_like

Input arrays.

out : ndarray, optional

A placeholder the same shape as x1 to store the result.
See doc.ufuncs (Section “Output arguments”) for more details.

	Returns:	not_equal : ndarray bool, scalar bool

For each element in x1, x2, return True if x1 is not equal
to x2 and False otherwise.

See also

equal, greater, greater_equal, less, less_equal

Examples

>>> np.not_equal([1.,2.], [1., 3.])
array([False, True], dtype=bool)
>>> np.not_equal([1, 2], [[1, 3],[1, 4]])
array([[False, True],
 [False, True]], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Masked array operations

Constants

	ma.MaskType
	alias of bool_

Creation

From existing data

	ma.masked_array
	alias of MaskedArray

	ma.array(data[,dtype,copy,order,mask,...])
	An array class with possibly masked values.

	ma.copy
	copy

	ma.frombuffer(buffer[,dtype,count,offset])
	Interpret a buffer as a 1-dimensional array.

	ma.fromfunction(function,shape,**kwargs)
	Construct an array by executing a function over each coordinate.

	ma.MaskedArray.copy([order])
	Return a copy of the array.

Ones and zeros

	ma.empty(shape[,dtype,order])
	Return a new array of given shape and type, without initializing entries.

	ma.empty_like(a[,dtype,order,subok])
	Return a new array with the same shape and type as a given array.

	ma.masked_all(shape[,dtype])
	Empty masked array with all elements masked.

	ma.masked_all_like(arr)
	Empty masked array with the properties of an existing array.

	ma.ones(shape[,dtype,order])
	Return a new array of given shape and type, filled with ones.

	ma.zeros(shape[,dtype,order])
	Return a new array of given shape and type, filled with zeros.

Inspecting the array

	ma.all(self[,axis,out])
	Check if all of the elements of a are true.

	ma.any(self[,axis,out])
	Check if any of the elements of a are true.

	ma.count(a[,axis])
	Count the non-masked elements of the array along the given axis.

	ma.count_masked(arr[,axis])
	Count the number of masked elements along the given axis.

	ma.getmask(a)
	Return the mask of a masked array, or nomask.

	ma.getmaskarray(arr)
	Return the mask of a masked array, or full boolean array of False.

	ma.getdata(a[,subok])
	Return the data of a masked array as an ndarray.

	ma.nonzero(self)
	Return the indices of unmasked elements that are not zero.

	ma.shape(obj)
	Return the shape of an array.

	ma.size(obj[,axis])
	Return the number of elements along a given axis.

	ma.is_masked(x)
	Determine whether input has masked values.

	ma.is_mask(m)
	Return True if m is a valid, standard mask.

	ma.MaskedArray.data
	Return the current data, as a view of the original underlying data.

	ma.MaskedArray.mask
	Mask

	ma.MaskedArray.recordmask
	Return the mask of the records.

	ma.MaskedArray.all([axis,out])
	Check if all of the elements of a are true.

	ma.MaskedArray.any([axis,out])
	Check if any of the elements of a are true.

	ma.MaskedArray.count([axis])
	Count the non-masked elements of the array along the given axis.

	ma.MaskedArray.nonzero()
	Return the indices of unmasked elements that are not zero.

	ma.shape(obj)
	Return the shape of an array.

	ma.size(obj[,axis])
	Return the number of elements along a given axis.

Manipulating a MaskedArray

Changing the shape

	ma.ravel(self)
	Returns a 1D version of self, as a view.

	ma.reshape(a,new_shape[,order])
	Returns an array containing the same data with a new shape.

	ma.resize(x,new_shape)
	Return a new masked array with the specified size and shape.

	ma.MaskedArray.flatten([order])
	Return a copy of the array collapsed into one dimension.

	ma.MaskedArray.ravel()
	Returns a 1D version of self, as a view.

	ma.MaskedArray.reshape(*s,**kwargs)
	Give a new shape to the array without changing its data.

	ma.MaskedArray.resize(newshape[,refcheck,...])
	

Modifying axes

	ma.swapaxes
	swapaxes

	ma.transpose(a[,axes])
	Permute the dimensions of an array.

	ma.MaskedArray.swapaxes(axis1,axis2)
	Return a view of the array with axis1 and axis2 interchanged.

	ma.MaskedArray.transpose(*axes)
	Returns a view of the array with axes transposed.

Changing the number of dimensions

	ma.atleast_1d(*arys)
	Convert inputs to arrays with at least one dimension.

	ma.atleast_2d(*arys)
	View inputs as arrays with at least two dimensions.

	ma.atleast_3d(*arys)
	View inputs as arrays with at least three dimensions.

	ma.expand_dims(x,axis)
	Expand the shape of an array.

	ma.squeeze(a[,axis])
	Remove single-dimensional entries from the shape of an array.

	ma.MaskedArray.squeeze([axis])
	Remove single-dimensional entries from the shape of a.

	ma.column_stack(tup)
	Stack 1-D arrays as columns into a 2-D array.

	ma.concatenate(arrays[,axis])
	Concatenate a sequence of arrays along the given axis.

	ma.dstack(tup)
	Stack arrays in sequence depth wise (along third axis).

	ma.hstack(tup)
	Stack arrays in sequence horizontally (column wise).

	ma.hsplit(ary,indices_or_sections)
	Split an array into multiple sub-arrays horizontally (column-wise).

	ma.mr_
	Translate slice objects to concatenation along the first axis.

	ma.row_stack(tup)
	Stack arrays in sequence vertically (row wise).

	ma.vstack(tup)
	Stack arrays in sequence vertically (row wise).

Joining arrays

	ma.column_stack(tup)
	Stack 1-D arrays as columns into a 2-D array.

	ma.concatenate(arrays[,axis])
	Concatenate a sequence of arrays along the given axis.

	ma.append(a,b[,axis])
	Append values to the end of an array.

	ma.dstack(tup)
	Stack arrays in sequence depth wise (along third axis).

	ma.hstack(tup)
	Stack arrays in sequence horizontally (column wise).

	ma.vstack(tup)
	Stack arrays in sequence vertically (row wise).

Operations on masks

Creating a mask

	ma.make_mask(m[,copy,shrink,dtype])
	Create a boolean mask from an array.

	ma.make_mask_none(newshape[,dtype])
	Return a boolean mask of the given shape, filled with False.

	ma.mask_or(m1,m2[,copy,shrink])
	Combine two masks with the logical_or operator.

	ma.make_mask_descr(ndtype)
	Construct a dtype description list from a given dtype.

Accessing a mask

	ma.getmask(a)
	Return the mask of a masked array, or nomask.

	ma.getmaskarray(arr)
	Return the mask of a masked array, or full boolean array of False.

	ma.masked_array.mask
	Mask

Finding masked data

	ma.flatnotmasked_contiguous(a)
	Find contiguous unmasked data in a masked array along the given axis.

	ma.flatnotmasked_edges(a)
	Find the indices of the first and last unmasked values.

	ma.notmasked_contiguous(a[,axis])
	Find contiguous unmasked data in a masked array along the given axis.

	ma.notmasked_edges(a[,axis])
	Find the indices of the first and last unmasked values along an axis.

Modifying a mask

	ma.mask_cols(a[,axis])
	Mask columns of a 2D array that contain masked values.

	ma.mask_or(m1,m2[,copy,shrink])
	Combine two masks with the logical_or operator.

	ma.mask_rowcols(a[,axis])
	Mask rows and/or columns of a 2D array that contain masked values.

	ma.mask_rows(a[,axis])
	Mask rows of a 2D array that contain masked values.

	ma.harden_mask(self)
	Force the mask to hard.

	ma.soften_mask(self)
	Force the mask to soft.

	ma.MaskedArray.harden_mask()
	Force the mask to hard.

	ma.MaskedArray.soften_mask()
	Force the mask to soft.

	ma.MaskedArray.shrink_mask()
	Reduce a mask to nomask when possible.

	ma.MaskedArray.unshare_mask()
	Copy the mask and set the sharedmask flag to False.

Conversion operations

> to a masked array

	ma.asarray(a[,dtype,order])
	Convert the input to a masked array of the given data-type.

	ma.asanyarray(a[,dtype])
	Convert the input to a masked array, conserving subclasses.

	ma.fix_invalid(a[,mask,copy,fill_value])
	Return input with invalid data masked and replaced by a fill value.

	ma.masked_equal(x,value[,copy])
	Mask an array where equal to a given value.

	ma.masked_greater(x,value[,copy])
	Mask an array where greater than a given value.

	ma.masked_greater_equal(x,value[,copy])
	Mask an array where greater than or equal to a given value.

	ma.masked_inside(x,v1,v2[,copy])
	Mask an array inside a given interval.

	ma.masked_invalid(a[,copy])
	Mask an array where invalid values occur (NaNs or infs).

	ma.masked_less(x,value[,copy])
	Mask an array where less than a given value.

	ma.masked_less_equal(x,value[,copy])
	Mask an array where less than or equal to a given value.

	ma.masked_not_equal(x,value[,copy])
	Mask an array where not equal to a given value.

	ma.masked_object(x,value[,copy,shrink])
	Mask the array x where the data are exactly equal to value.

	ma.masked_outside(x,v1,v2[,copy])
	Mask an array outside a given interval.

	ma.masked_values(x,value[,rtol,atol,...])
	Mask using floating point equality.

	ma.masked_where(condition,a[,copy])
	Mask an array where a condition is met.

> to a ndarray

	ma.compress_cols(a)
	Suppress whole columns of a 2-D array that contain masked values.

	ma.compress_rowcols(x[,axis])
	Suppress the rows and/or columns of a 2-D array that contain masked values.

	ma.compress_rows(a)
	Suppress whole rows of a 2-D array that contain masked values.

	ma.compressed(x)
	Return all the non-masked data as a 1-D array.

	ma.filled(a[,fill_value])
	Return input as an array with masked data replaced by a fill value.

	ma.MaskedArray.compressed()
	Return all the non-masked data as a 1-D array.

	ma.MaskedArray.filled([fill_value])
	Return a copy of self, with masked values filled with a given value.

> to another object

	ma.MaskedArray.tofile(fid[,sep,format])
	Save a masked array to a file in binary format.

	ma.MaskedArray.tolist([fill_value])
	Return the data portion of the masked array as a hierarchical Python list.

	ma.MaskedArray.torecords()
	Transforms a masked array into a flexible-type array.

	ma.MaskedArray.tobytes([fill_value,order])
	Return the array data as a string containing the raw bytes in the array.

Pickling and unpickling

	ma.dump(a,F)
	Pickle a masked array to a file.

	ma.dumps(a)
	Return a string corresponding to the pickling of a masked array.

	ma.load(F)
	Wrapper around cPickle.load which accepts either a file-like object or a filename.

	ma.loads(strg)
	Load a pickle from the current string.

Filling a masked array

	ma.common_fill_value(a,b)
	Return the common filling value of two masked arrays, if any.

	ma.default_fill_value(obj)
	Return the default fill value for the argument object.

	ma.maximum_fill_value(obj)
	Return the minimum value that can be represented by the dtype of an object.

	ma.maximum_fill_value(obj)
	Return the minimum value that can be represented by the dtype of an object.

	ma.set_fill_value(a,fill_value)
	Set the filling value of a, if a is a masked array.

	ma.MaskedArray.get_fill_value()
	Return the filling value of the masked array.

	ma.MaskedArray.set_fill_value([value])
	Set the filling value of the masked array.

	ma.MaskedArray.fill_value
	Filling value.

Masked arrays arithmetics

Arithmetics

	ma.anom(self[,axis,dtype])
	Compute the anomalies (deviations from the arithmetic mean) along the given axis.

	ma.anomalies(self[,axis,dtype])
	Compute the anomalies (deviations from the arithmetic mean) along the given axis.

	ma.average(a[,axis,weights,returned])
	Return the weighted average of array over the given axis.

	ma.conjugate(x[,out])
	Return the complex conjugate, element-wise.

	ma.corrcoef(x[,y,rowvar,bias,...])
	Return correlation coefficients of the input array.

	ma.cov(x[,y,rowvar,bias,allow_masked,ddof])
	Estimate the covariance matrix.

	ma.cumsum(self[,axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	ma.cumprod(self[,axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	ma.mean(self[,axis,dtype,out])
	Returns the average of the array elements.

	ma.median(a[,axis,out,overwrite_input])
	Compute the median along the specified axis.

	ma.power(a,b[,third])
	Returns element-wise base array raised to power from second array.

	ma.prod(self[,axis,dtype,out])
	Return the product of the array elements over the given axis.

	ma.std(self[,axis,dtype,out,ddof])
	Compute the standard deviation along the specified axis.

	ma.sum(self[,axis,dtype,out])
	Return the sum of the array elements over the given axis.

	ma.var(self[,axis,dtype,out,ddof])
	Compute the variance along the specified axis.

	ma.MaskedArray.anom([axis,dtype])
	Compute the anomalies (deviations from the arithmetic mean) along the given axis.

	ma.MaskedArray.cumprod([axis,dtype,out])
	Return the cumulative product of the elements along the given axis.

	ma.MaskedArray.cumsum([axis,dtype,out])
	Return the cumulative sum of the elements along the given axis.

	ma.MaskedArray.mean([axis,dtype,out])
	Returns the average of the array elements.

	ma.MaskedArray.prod([axis,dtype,out])
	Return the product of the array elements over the given axis.

	ma.MaskedArray.std([axis,dtype,out,ddof])
	Compute the standard deviation along the specified axis.

	ma.MaskedArray.sum([axis,dtype,out])
	Return the sum of the array elements over the given axis.

	ma.MaskedArray.var([axis,dtype,out,ddof])
	Compute the variance along the specified axis.

Minimum/maximum

	ma.argmax(a[,axis,fill_value])
	Returns array of indices of the maximum values along the given axis.

	ma.argmin(a[,axis,fill_value])
	Return array of indices to the minimum values along the given axis.

	ma.max(obj[,axis,out,fill_value])
	Return the maximum along a given axis.

	ma.min(obj[,axis,out,fill_value])
	Return the minimum along a given axis.

	ma.ptp(obj[,axis,out,fill_value])
	Return (maximum - minimum) along the the given dimension (i.e.

	ma.MaskedArray.argmax([axis,fill_value,out])
	Returns array of indices of the maximum values along the given axis.

	ma.MaskedArray.argmin([axis,fill_value,out])
	Return array of indices to the minimum values along the given axis.

	ma.MaskedArray.max([axis,out,fill_value])
	Return the maximum along a given axis.

	ma.MaskedArray.min([axis,out,fill_value])
	Return the minimum along a given axis.

	ma.MaskedArray.ptp([axis,out,fill_value])
	Return (maximum - minimum) along the the given dimension (i.e.

Sorting

	ma.argsort(a[,axis,kind,order,fill_value])
	Return an ndarray of indices that sort the array along the specified axis.

	ma.sort(a[,axis,kind,order,endwith,...])
	Sort the array, in-place

	ma.MaskedArray.argsort([axis,kind,order,...])
	Return an ndarray of indices that sort the array along the specified axis.

	ma.MaskedArray.sort([axis,kind,order,...])
	Sort the array, in-place

Algebra

	ma.diag(v[,k])
	Extract a diagonal or construct a diagonal array.

	ma.dot(a,b[,strict])
	Return the dot product of two arrays.

	ma.identity(n[,dtype])
	Return the identity array.

	ma.inner(a,b)
	Inner product of two arrays.

	ma.innerproduct(a,b)
	Inner product of two arrays.

	ma.outer(a,b)
	Compute the outer product of two vectors.

	ma.outerproduct(a,b)
	Compute the outer product of two vectors.

	ma.trace(self[,offset,axis1,axis2,...])
	Return the sum along diagonals of the array.

	ma.transpose(a[,axes])
	Permute the dimensions of an array.

	ma.MaskedArray.trace([offset,axis1,axis2,...])
	Return the sum along diagonals of the array.

	ma.MaskedArray.transpose(*axes)
	Returns a view of the array with axes transposed.

Polynomial fit

	ma.vander(x[,n])
	Generate a Vandermonde matrix.

	ma.polyfit(x,y,deg[,rcond,full,w,cov])
	Least squares polynomial fit.

Clipping and rounding

	ma.around
	Round an array to the given number of decimals.

	ma.clip(a,a_min,a_max[,out])
	Clip (limit) the values in an array.

	ma.round(a[,decimals,out])
	Return a copy of a, rounded to ‘decimals’ places.

	ma.MaskedArray.clip(a_min,a_max[,out])
	Return an array whose values are limited to [a_min, a_max].

	ma.MaskedArray.round([decimals,out])
	Return a with each element rounded to the given number of decimals.

Miscellanea

	ma.allequal(a,b[,fill_value])
	Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

	ma.allclose(a,b[,masked_equal,rtol,atol])
	Returns True if two arrays are element-wise equal within a tolerance.

	ma.apply_along_axis(func1d,axis,arr,...)
	Apply a function to 1-D slices along the given axis.

	ma.arange([start,]stop[,step,][,dtype])
	Return evenly spaced values within a given interval.

	ma.choose(indices,choices[,out,mode])
	Use an index array to construct a new array from a set of choices.

	ma.ediff1d(arr[,to_end,to_begin])
	Compute the differences between consecutive elements of an array.

	ma.indices(dimensions[,dtype])
	Return an array representing the indices of a grid.

	ma.where(condition[,x,y])
	Return a masked array with elements from x or y, depending on condition.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskType

	
numpy.ma.MaskType[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/__init__.py]

	alias of bool_

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_array

	
numpy.ma.masked_array[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2581]

	alias of MaskedArray

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.array

	
numpy.ma.array(data, dtype=None, copy=False, order=False, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5863]

	An array class with possibly masked values.

Masked values of True exclude the corresponding element from any
computation.

Construction:

x = MaskedArray(data, mask=nomask, dtype=None,
 copy=False, subok=True, ndmin=0, fill_value=None,
 keep_mask=True, hard_mask=None, shrink=True)

	Parameters:	data : array_like

Input data.

mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same
shape as data. True indicates a masked (i.e. invalid) data.

dtype : dtype, optional

Data type of the output.
If dtype is None, the type of the data argument (data.dtype)
is used. If dtype is not None and different from data.dtype,
a copy is performed.

copy : bool, optional

Whether to copy the input data (True), or to use a reference instead.
Default is False.

subok : bool, optional

Whether to return a subclass of MaskedArray if possible (True) or a
plain MaskedArray. Default is True.

ndmin : int, optional

Minimum number of dimensions. Default is 0.

fill_value : scalar, optional

Value used to fill in the masked values when necessary.
If None, a default based on the data-type is used.

keep_mask : bool, optional

Whether to combine mask with the mask of the input data, if any
(True), or to use only mask for the output (False). Default is True.

hard_mask : bool, optional

Whether to use a hard mask or not. With a hard mask, masked values
cannot be unmasked. Default is False.

shrink : bool, optional

Whether to force compression of an empty mask. Default is True.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.copy

	
numpy.ma.copy = <numpy.ma.core._frommethod instance at 0x0000000004699708>

	copy
a.copy(order=’C’)

Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.frombuffer

	
numpy.ma.frombuffer(buffer, dtype=float, count=-1, offset=0) = <numpy.ma.core._convert2ma instance at 0x00000000046BB148>

	Interpret a buffer as a 1-dimensional array.

	Parameters:	buffer : buffer_like

An object that exposes the buffer interface.

dtype : data-type, optional

Data-type of the returned array; default: float.

count : int, optional

Number of items to read. -1 means all data in the buffer.

offset : int, optional

Start reading the buffer from this offset; default: 0.

Notes

If the buffer has data that is not in machine byte-order, this should
be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be
interpreted correctly.

Examples

>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],
 dtype='|S1')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.fromfunction

	
numpy.ma.fromfunction(function, shape, **kwargs) = <numpy.ma.core._convert2ma instance at 0x00000000046BB188>

	Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at
coordinate (x, y, z).

	Parameters:	function : callable

The function is called with N parameters, where N is the rank of
shape. Each parameter represents the coordinates of the array
varying along a specific axis. For example, if shape
were (2, 2), then the parameters in turn be (0, 0), (0, 1),
(1, 0), (1, 1).

shape : (N,) tuple of ints

Shape of the output array, which also determines the shape of
the coordinate arrays passed to function.

dtype : data-type, optional

Data-type of the coordinate arrays passed to function.
By default, dtype is float.

	Returns:	fromfunction : any

The result of the call to function is passed back directly.
Therefore the shape of fromfunction is completely determined by
function. If function returns a scalar value, the shape of
fromfunction would match the shape parameter.

See also

indices, meshgrid

Notes

Keywords other than dtype are passed to function.

Examples

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[True, False, False],
 [False, True, False],
 [False, False, True]], dtype=bool)

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.copy

	
MaskedArray.copy(order='C')

	Return a copy of the array.

	Parameters:	order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.empty

	
numpy.ma.empty(shape, dtype=float, order='C') = <numpy.ma.core._convert2ma instance at 0x00000000046BB088>

	Return a new array of given shape and type, without initializing entries.

	Parameters:	shape : int or tuple of int

Shape of the empty array

dtype : data-type, optional

Desired output data-type.

order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in C (row-major) or
Fortran (column-major) order in memory.

	Returns:	out : ndarray

Array of uninitialized (arbitrary) data with the given
shape, dtype, and order.

See also

empty_like, zeros, ones

Notes

empty, unlike zeros, does not set the array values to zero,
and may therefore be marginally faster. On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.

Examples

>>> np.empty([2, 2])
array([[-9.74499359e+001, 6.69583040e-309],
 [2.13182611e-314, 3.06959433e-309]]) #random

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
 [496041986, 19249760]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.empty_like

	
numpy.ma.empty_like(a, dtype=None, order='K', subok=True) = <numpy.ma.core._convert2ma instance at 0x00000000046BB108>

	Return a new array with the same shape and type as a given array.

	Parameters:	a : array_like

The shape and data-type of a define these same attributes of the
returned array.

dtype : data-type, optional

New in version 1.6.0.

Overrides the data type of the result.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

New in version 1.6.0.

Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class
type of ‘a’, otherwise it will be a base-class array. Defaults
to True.

	Returns:	out : ndarray

Array of uninitialized (arbitrary) data with the same
shape and type as a.

See also

	ones_like

	Return an array of ones with shape and type of input.

	zeros_like

	Return an array of zeros with shape and type of input.

	empty

	Return a new uninitialized array.

	ones

	Return a new array setting values to one.

	zeros

	Return a new array setting values to zero.

Notes

This function does not initialize the returned array; to do that use
zeros_like or ones_like instead. It may be marginally faster than
the functions that do set the array values.

Examples

>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], #random
 [0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
 [4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_all

	
numpy.ma.masked_all(shape, dtype=<type 'float'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L115]

	Empty masked array with all elements masked.

Return an empty masked array of the given shape and dtype, where all the
data are masked.

	Parameters:	shape : tuple

Shape of the required MaskedArray.

dtype : dtype, optional

Data type of the output.

	Returns:	a : MaskedArray

A masked array with all data masked.

See also

	masked_all_like

	Empty masked array modelled on an existing array.

Examples

>>> import numpy.ma as ma
>>> ma.masked_all((3, 3))
masked_array(data =
 [[-- -- --]
 [-- -- --]
 [-- -- --]],
 mask =
 [[True True True]
 [True True True]
 [True True True]],
 fill_value=1e+20)

The dtype parameter defines the underlying data type.

>>> a = ma.masked_all((3, 3))
>>> a.dtype
dtype('float64')
>>> a = ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype
dtype('int32')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_all_like

	
numpy.ma.masked_all_like(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L166]

	Empty masked array with the properties of an existing array.

Return an empty masked array of the same shape and dtype as
the array arr, where all the data are masked.

	Parameters:	arr : ndarray

An array describing the shape and dtype of the required MaskedArray.

	Returns:	a : MaskedArray

A masked array with all data masked.

	Raises:	AttributeError

If arr doesn’t have a shape attribute (i.e. not an ndarray)

See also

	masked_all

	Empty masked array with all elements masked.

Examples

>>> import numpy.ma as ma
>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr
array([[0., 0., 0.],
 [0., 0., 0.]], dtype=float32)
>>> ma.masked_all_like(arr)
masked_array(data =
 [[-- -- --]
 [-- -- --]],
 mask =
 [[True True True]
 [True True True]],
 fill_value=1e+20)

The dtype of the masked array matches the dtype of arr.

>>> arr.dtype
dtype('float32')
>>> ma.masked_all_like(arr).dtype
dtype('float32')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.ones

	
numpy.ma.ones(shape, dtype=None, order='C') = <numpy.ma.core._convert2ma instance at 0x00000000046BB248>

	Return a new array of given shape and type, filled with ones.

	Parameters:	shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

	Returns:	out : ndarray

Array of ones with the given shape, dtype, and order.

See also

zeros, ones_like

Examples

>>> np.ones(5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[1.],
 [1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],
 [1., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.zeros

	
numpy.ma.zeros(shape, dtype=float, order='C') = <numpy.ma.core._convert2ma instance at 0x00000000046BB308>

	Return a new array of given shape and type, filled with zeros.

	Parameters:	shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

	Returns:	out : ndarray

Array of zeros with the given shape, dtype, and order.

See also

	zeros_like

	Return an array of zeros with shape and type of input.

	ones_like

	Return an array of ones with shape and type of input.

	empty_like

	Return an empty array with shape and type of input.

	ones

	Return a new array setting values to one.

	empty

	Return a new uninitialized array.

Examples

>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=numpy.int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[0.],
 [0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[0., 0.],
 [0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],
 dtype=[('x', '<i4'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.all

	
numpy.ma.all(self, axis=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699348>

	Check if all of the elements of a are true.

Performs a logical_and over the given axis and returns the result.
Masked values are considered as True during computation.
For convenience, the output array is masked where ALL the values along the
current axis are masked: if the output would have been a scalar and that
all the values are masked, then the output is masked.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	all

	equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.any

	
numpy.ma.any(self, axis=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699508>

	Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result.
Masked values are considered as False during computation.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array and return a scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	any

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.count

	
numpy.ma.count(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6332]

	Count the non-masked elements of the array along the given axis.

	Parameters:	axis : int, optional

Axis along which to count the non-masked elements. If axis is
None, all non-masked elements are counted.

	Returns:	result : int or ndarray

If axis is None, an integer count is returned. When axis is
not None, an array with shape determined by the lengths of the
remaining axes, is returned.

See also

	count_masked

	Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- -- --]],
 mask =
 [[False False False]
 [True True True]],
 fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is
returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.count_masked

	
numpy.ma.count_masked(arr, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L61]

	Count the number of masked elements along the given axis.

	Parameters:	arr : array_like

An array with (possibly) masked elements.

axis : int, optional

Axis along which to count. If None (default), a flattened
version of the array is used.

	Returns:	count : int, ndarray

The total number of masked elements (axis=None) or the number
of masked elements along each slice of the given axis.

See also

	MaskedArray.count

	Count non-masked elements.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(9).reshape((3,3))
>>> a = ma.array(a)
>>> a[1, 0] = ma.masked
>>> a[1, 2] = ma.masked
>>> a[2, 1] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- 4 --]
 [6 -- 8]],
 mask =
 [[False False False]
 [True False True]
 [False True False]],
 fill_value=999999)
>>> ma.count_masked(a)
3

When the axis keyword is used an array is returned.

>>> ma.count_masked(a, axis=0)
array([1, 1, 1])
>>> ma.count_masked(a, axis=1)
array([0, 2, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getmask

	
numpy.ma.getmask(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1244]

	Return the mask of a masked array, or nomask.

Return the mask of a as an ndarray if a is a MaskedArray and the
mask is not nomask, else return nomask. To guarantee a full array
of booleans of the same shape as a, use getmaskarray.

	Parameters:	a : array_like

Input MaskedArray for which the mask is required.

See also

	getdata

	Return the data of a masked array as an ndarray.

	getmaskarray

	Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getmask(a)
array([[False, True],
 [False, False]], dtype=bool)

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array([[False, True],
 [False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
 [[1 2]
 [3 4]],
 mask =
 False,
 fill_value=999999)
>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
True
>>> b.mask == ma.nomask
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getmaskarray

	
numpy.ma.getmaskarray(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1305]

	Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and
the mask is not nomask, else return a full boolean array of False of
the same shape as arr.

	Parameters:	arr : array_like

Input MaskedArray for which the mask is required.

See also

	getmask

	Return the mask of a masked array, or nomask.

	getdata

	Return the data of a masked array as an ndarray.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getmaskarray(a)
array([[False, True],
 [False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
 [[1 2]
 [3 4]],
 mask =
 False,
 fill_value=999999)
>>> >ma.getmaskarray(b)
array([[False, False],
 [False, False]], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getdata

	
numpy.ma.getdata(a, subok=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L616]

	Return the data of a masked array as an ndarray.

Return the data of a (if any) as an ndarray if a is a MaskedArray,
else return a as a ndarray or subclass (depending on subok) if not.

	Parameters:	a : array_like

Input MaskedArray, alternatively a ndarray or a subclass thereof.

subok : bool

Whether to force the output to be a pure ndarray (False) or to
return a subclass of ndarray if appropriate (True, default).

See also

	getmask

	Return the mask of a masked array, or nomask.

	getmaskarray

	Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getdata(a)
array([[1, 2],
 [3, 4]])

Equivalently use the MaskedArray data attribute.

>>> a.data
array([[1, 2],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.nonzero

	
numpy.ma.nonzero(self) = <numpy.ma.core._frommethod instance at 0x0000000004699908>

	Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the
indices of the non-zero elements in that dimension. The corresponding
non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use
instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero
element.

	Parameters:	None

	Returns:	tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also

	numpy.nonzero

	Function operating on ndarrays.

	flatnonzero

	Return indices that are non-zero in the flattened version of the input array.

	ndarray.nonzero

	Equivalent ndarray method.

	count_nonzero

	Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
 [[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]],
 mask =
 False,
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
 [[1.0 0.0 0.0]
 [0.0 -- 0.0]
 [0.0 0.0 1.0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],
 [2, 2]])

A common use for nonzero is to find the indices of an array, where
a condition is True. Given an array a, the condition a > 3 is a
boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
yields the indices of the a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
 [[False False False]
 [True True True]
 [True True True]],
 mask =
 False,
 fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.shape

	
numpy.ma.shape(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6631]

	Return the shape of an array.

	Parameters:	a : array_like

Input array.

	Returns:	shape : tuple of ints

The elements of the shape tuple give the lengths of the
corresponding array dimensions.

See also

alen

	ndarray.shape

	Equivalent array method.

Examples

>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(2,)
>>> a.shape
(2,)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.size

	
numpy.ma.size(obj, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6636]

	Return the number of elements along a given axis.

	Parameters:	a : array_like

Input data.

axis : int, optional

Axis along which the elements are counted. By default, give
the total number of elements.

	Returns:	element_count : int

Number of elements along the specified axis.

See also

	shape

	dimensions of array

	ndarray.shape

	dimensions of array

	ndarray.size

	number of elements in array

Examples

>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.is_masked

	
numpy.ma.is_masked(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5881]

	Determine whether input has masked values.

Accepts any object as input, but always returns False unless the
input is a MaskedArray containing masked values.

	Parameters:	x : array_like

Array to check for masked values.

	Returns:	result : bool

True if x is a MaskedArray with masked values, False otherwise.

Examples

>>> import numpy.ma as ma
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> x
masked_array(data = [-- 1 -- 2 3],
 mask = [True False True False False],
 fill_value=999999)
>>> ma.is_masked(x)
True
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
>>> x
masked_array(data = [0 1 0 2 3],
 mask = False,
 fill_value=999999)
>>> ma.is_masked(x)
False

Always returns False if x isn’t a MaskedArray.

>>> x = [False, True, False]
>>> ma.is_masked(x)
False
>>> x = 'a string'
>>> ma.is_masked(x)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.is_mask

	
numpy.ma.is_mask(m)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1359]

	Return True if m is a valid, standard mask.

This function does not check the contents of the input, only that the
type is MaskType. In particular, this function returns False if the
mask has a flexible dtype.

	Parameters:	m : array_like

Array to test.

	Returns:	result : bool

True if m.dtype.type is MaskType, False otherwise.

See also

	isMaskedArray

	Test whether input is an instance of MaskedArray.

Examples

>>> import numpy.ma as ma
>>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> m
masked_array(data = [-- 1 -- 2 3],
 mask = [True False True False False],
 fill_value=999999)
>>> ma.is_mask(m)
False
>>> ma.is_mask(m.mask)
True

Input must be an ndarray (or have similar attributes)
for it to be considered a valid mask.

>>> m = [False, True, False]
>>> ma.is_mask(m)
False
>>> m = np.array([False, True, False])
>>> m
array([False, True, False], dtype=bool)
>>> ma.is_mask(m)
True

Arrays with complex dtypes don’t return True.

>>> dtype = np.dtype({'names':['monty', 'pithon'],
 'formats':[np.bool, np.bool]})
>>> dtype
dtype([('monty', '|b1'), ('pithon', '|b1')])
>>> m = np.array([(True, False), (False, True), (True, False)],
 dtype=dtype)
>>> m
array([(True, False), (False, True), (True, False)],
 dtype=[('monty', '|b1'), ('pithon', '|b1')])
>>> ma.is_mask(m)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.data

	
MaskedArray.data

	Return the current data, as a view of the original
underlying data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.mask

	
MaskedArray.mask

	Mask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.recordmask

	
MaskedArray.recordmask

	Return the mask of the records.
A record is masked when all the fields are masked.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.all

	
MaskedArray.all(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4280]

	Check if all of the elements of a are true.

Performs a logical_and over the given axis and returns the result.
Masked values are considered as True during computation.
For convenience, the output array is masked where ALL the values along the
current axis are masked: if the output would have been a scalar and that
all the values are masked, then the output is masked.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	all

	equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.any

	
MaskedArray.any(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4327]

	Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result.
Masked values are considered as False during computation.

	Parameters:	axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array and return a scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

	any

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.count

	
MaskedArray.count(axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3979]

	Count the non-masked elements of the array along the given axis.

	Parameters:	axis : int, optional

Axis along which to count the non-masked elements. If axis is
None, all non-masked elements are counted.

	Returns:	result : int or ndarray

If axis is None, an integer count is returned. When axis is
not None, an array with shape determined by the lengths of the
remaining axes, is returned.

See also

	count_masked

	Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- -- --]],
 mask =
 [[False False False]
 [True True True]],
 fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is
returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.nonzero

	
MaskedArray.nonzero()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4363]

	Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the
indices of the non-zero elements in that dimension. The corresponding
non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use
instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero
element.

	Parameters:	None

	Returns:	tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also

	numpy.nonzero

	Function operating on ndarrays.

	flatnonzero

	Return indices that are non-zero in the flattened version of the input array.

	ndarray.nonzero

	Equivalent ndarray method.

	count_nonzero

	Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
 [[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]],
 mask =
 False,
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
 [[1.0 0.0 0.0]
 [0.0 -- 0.0]
 [0.0 0.0 1.0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],
 [2, 2]])

A common use for nonzero is to find the indices of an array, where
a condition is True. Given an array a, the condition a > 3 is a
boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
yields the indices of the a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
 [[False False False]
 [True True True]
 [True True True]],
 mask =
 False,
 fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.shape

	
numpy.ma.shape(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6631]

	Return the shape of an array.

	Parameters:	a : array_like

Input array.

	Returns:	shape : tuple of ints

The elements of the shape tuple give the lengths of the
corresponding array dimensions.

See also

alen

	ndarray.shape

	Equivalent array method.

Examples

>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(2,)
>>> a.shape
(2,)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.size

	
numpy.ma.size(obj, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6636]

	Return the number of elements along a given axis.

	Parameters:	a : array_like

Input data.

axis : int, optional

Axis along which the elements are counted. By default, give
the total number of elements.

	Returns:	element_count : int

Number of elements along the specified axis.

See also

	shape

	dimensions of array

	ndarray.shape

	dimensions of array

	ndarray.size

	number of elements in array

Examples

>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.ravel

	
numpy.ma.ravel(self) = <numpy.ma.core._frommethod instance at 0x0000000004699A88>

	Returns a 1D version of self, as a view.

	Returns:	MaskedArray

Output view is of shape (self.size,) (or
(np.ma.product(self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.ravel()
[1 -- 3 -- 5 -- 7 -- 9]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.reshape

	
numpy.ma.reshape(a, new_shape, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6543]

	Returns an array containing the same data with a new shape.

Refer to MaskedArray.reshape for full documentation.

See also

	MaskedArray.reshape

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.resize

	
numpy.ma.resize(x, new_shape)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6561]

	Return a new masked array with the specified size and shape.

This is the masked equivalent of the numpy.resize function. The new
array is filled with repeated copies of x (in the order that the
data are stored in memory). If x is masked, the new array will be
masked, and the new mask will be a repetition of the old one.

See also

	numpy.resize

	Equivalent function in the top level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.array([[1, 2] ,[3, 4]])
>>> a[0, 1] = ma.masked
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value = 999999)
>>> np.resize(a, (3, 3))
array([[1, 2, 3],
 [4, 1, 2],
 [3, 4, 1]])
>>> ma.resize(a, (3, 3))
masked_array(data =
 [[1 -- 3]
 [4 1 --]
 [3 4 1]],
 mask =
 [[False True False]
 [False False True]
 [False False False]],
 fill_value = 999999)

A MaskedArray is always returned, regardless of the input type.

>>> a = np.array([[1, 2] ,[3, 4]])
>>> ma.resize(a, (3, 3))
masked_array(data =
 [[1 2 3]
 [4 1 2]
 [3 4 1]],
 mask =
 False,
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.flatten

	
MaskedArray.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters:	order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

	Returns:	y : ndarray

A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.ravel

	
MaskedArray.ravel()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4044]

	Returns a 1D version of self, as a view.

	Returns:	MaskedArray

Output view is of shape (self.size,) (or
(np.ma.product(self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.ravel()
[1 -- 3 -- 5 -- 7 -- 9]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.reshape

	
MaskedArray.reshape(*s, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4075]

	Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape.
The result is a view on the original array; if this is not possible, a
ValueError is raised.

	Parameters:	shape : int or tuple of ints

The new shape should be compatible with the original shape. If an
integer is supplied, then the result will be a 1-D array of that
length.

order : {‘C’, ‘F’}, optional

Determines whether the array data should be viewed as in C
(row-major) or FORTRAN (column-major) order.

	Returns:	reshaped_array : array

A new view on the array.

See also

	reshape

	Equivalent function in the masked array module.

	numpy.ndarray.reshape

	Equivalent method on ndarray object.

	numpy.reshape

	Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made,
to modify the shape in place, use a.shape = s

Examples

>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> print x
[[-- 2]
 [3 --]]
>>> x = x.reshape((4,1))
>>> print x
[[--]
 [2]
 [3]
 [--]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.resize

	
MaskedArray.resize(newshape, refcheck=True, order=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4131]

	
Warning

This method does nothing, except raise a ValueError exception. A
masked array does not own its data and therefore cannot safely be
resized in place. Use the numpy.ma.resize function instead.

This method is difficult to implement safely and may be deprecated in
future releases of NumPy.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.swapaxes

	
numpy.ma.swapaxes = <numpy.ma.core._frommethod instance at 0x0000000004699D48>

	swapaxes
a.swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.transpose

	
numpy.ma.transpose(a, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6504]

	Permute the dimensions of an array.

This function is exactly equivalent to numpy.transpose.

See also

	numpy.transpose

	Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
>>>> x
masked_array(data =
 [[0 1]
 [2 --]],
 mask =
 [[False False]
 [False True]],
 fill_value = 999999)
>>> ma.transpose(x)
masked_array(data =
 [[0 2]
 [1 --]],
 mask =
 [[False False]
 [False True]],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.swapaxes

	
MaskedArray.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.transpose

	
MaskedArray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.atleast_1d

	
numpy.ma.atleast_1d(*arys) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBA48>

	
Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst
higher-dimensional inputs are preserved.

	Parameters:	arys1, arys2, ... : array_like

One or more input arrays.

	Returns:	ret : ndarray

An array, or sequence of arrays, each with a.ndim >= 1.
Copies are made only if necessary.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_1d(1.0)
array([1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.]])
>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.atleast_2d

	
numpy.ma.atleast_2d(*arys) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBB48>

	
View inputs as arrays with at least two dimensions.

	Parameters:	arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted
to arrays. Arrays that already have two or more dimensions are
preserved.

	Returns:	res, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 2.
Copies are avoided where possible, and views with two or more
dimensions are returned.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_2d(3.0)
array([[3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.atleast_3d

	
numpy.ma.atleast_3d(*arys) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBBC8>

	
View inputs as arrays with at least three dimensions.

	Parameters:	arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to
arrays. Arrays that already have three or more dimensions are
preserved.

	Returns:	res1, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are
returned. For example, a 1-D array of shape (N,) becomes a view
of shape (1, N, 1), and a 2-D array of shape (M, N) becomes a
view of shape (M, N, 1).

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_3d(3.0)
array([[[3.]]])

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print arr, arr.shape
...
[[[1]
 [2]]] (1, 2, 1)
[[[1]
 [2]]] (1, 2, 1)
[[[1 2]]] (1, 1, 2)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.expand_dims

	
numpy.ma.expand_dims(x, axis)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6357]

	Expand the shape of an array.

Expands the shape of the array by including a new axis before the one
specified by the axis parameter. This function behaves the same as
numpy.expand_dims but preserves masked elements.

See also

	numpy.expand_dims

	Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 4])
>>> x[1] = ma.masked
>>> x
masked_array(data = [1 -- 4],
 mask = [False True False],
 fill_value = 999999)
>>> np.expand_dims(x, axis=0)
array([[1, 2, 4]])
>>> ma.expand_dims(x, axis=0)
masked_array(data =
 [[1 -- 4]],
 mask =
 [[False True False]],
 fill_value = 999999)

The same result can be achieved using slicing syntax with np.newaxis.

>>> x[np.newaxis, :]
masked_array(data =
 [[1 -- 4]],
 mask =
 [[False True False]],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.squeeze

	
numpy.ma.squeeze(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1075]

	Remove single-dimensional entries from the shape of an array.

	Parameters:	a : array_like

Input data.

axis : None or int or tuple of ints, optional

New in version 1.7.0.

Selects a subset of the single-dimensional entries in the
shape. If an axis is selected with shape entry greater than
one, an error is raised.

	Returns:	squeezed : ndarray

The input array, but with all or a subset of the
dimensions of length 1 removed. This is always a itself
or a view into a.

Examples

>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=(2,)).shape
(1, 3)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.squeeze

	
MaskedArray.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.column_stack

	
numpy.ma.column_stack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBD48>

	
Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns
first.

	Parameters:	tup : sequence of 1-D or 2-D arrays.

Arrays to stack. All of them must have the same first dimension.

	Returns:	stacked : 2-D array

The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.concatenate

	
numpy.ma.concatenate(arrays, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6270]

	Concatenate a sequence of arrays along the given axis.

	Parameters:	arrays : sequence of array_like

The arrays must have the same shape, except in the dimension
corresponding to axis (the first, by default).

axis : int, optional

The axis along which the arrays will be joined. Default is 0.

	Returns:	result : MaskedArray

The concatenated array with any masked entries preserved.

See also

	numpy.concatenate

	Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(3)
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
 mask = [False True False],
 fill_value = 999999)
>>> b
masked_array(data = [2 3 4],
 mask = False,
 fill_value = 999999)
>>> ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
 mask = [False True False False False False],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dstack

	
numpy.ma.dstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBDC8>

	
Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis
to make a single array. Rebuilds arrays divided by dsplit.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing.

	Parameters:	tup : sequence of arrays

Arrays to stack. All of them must have the same shape along all
but the third axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack along first axis.

	hstack

	Stack along second axis.

	concatenate

	Join arrays.

	dsplit

	Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
 [2, 3],
 [3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
 [[2, 3]],
 [[3, 4]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.hstack

	
numpy.ma.hstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBCC8>

	
Stack arrays in sequence horizontally (column wise).

Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by hsplit.

	Parameters:	tup : sequence of ndarrays

All arrays must have the same shape along all but the second axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack arrays in sequence vertically (row wise).

	dstack

	Stack arrays in sequence depth wise (along third axis).

	concatenate

	Join a sequence of arrays together.

	hsplit

	Split array along second axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.hsplit

	
numpy.ma.hsplit(ary, indices_or_sections) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBE48>

	
Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent
to split with axis=1, the array is always split along the second
axis regardless of the array dimension.

See also

	split

	Split an array into multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])
>>> np.hsplit(x, 2)
[array([[0., 1.],
 [4., 5.],
 [8., 9.],
 [12., 13.]]),
 array([[2., 3.],
 [6., 7.],
 [10., 11.],
 [14., 15.]])]
>>> np.hsplit(x, np.array([3, 6]))
[array([[0., 1., 2.],
 [4., 5., 6.],
 [8., 9., 10.],
 [12., 13., 14.]]),
 array([[3.],
 [7.],
 [11.],
 [15.]]),
 array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],
 [2., 3.]],
 [[4., 5.],
 [6., 7.]]])
>>> np.hsplit(x, 2)
[array([[[0., 1.]],
 [[4., 5.]]]),
 array([[[2., 3.]],
 [[6., 7.]]])]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mr

	
numpy.ma.mr_ = <numpy.ma.extras.mr_class object at 0x00000000046C10B8>

	Translate slice objects to concatenation along the first axis.

This is the masked array version of lib.index_tricks.RClass.

See also

lib.index_tricks.RClass

Examples

>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.row_stack

	
numpy.ma.row_stack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBC48>

	
Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by vsplit.

	Parameters:	tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	hstack

	Stack arrays in sequence horizontally (column wise).

	dstack

	Stack arrays in sequence depth wise (along third dimension).

	concatenate

	Join a sequence of arrays together.

	vsplit

	Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
 [2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
 [2],
 [3],
 [2],
 [3],
 [4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.vstack

	
numpy.ma.vstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBC48>

	
Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by vsplit.

	Parameters:	tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	hstack

	Stack arrays in sequence horizontally (column wise).

	dstack

	Stack arrays in sequence depth wise (along third dimension).

	concatenate

	Join a sequence of arrays together.

	vsplit

	Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
 [2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
 [2],
 [3],
 [2],
 [3],
 [4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.column_stack

	
numpy.ma.column_stack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBD48>

	
Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns
first.

	Parameters:	tup : sequence of 1-D or 2-D arrays.

Arrays to stack. All of them must have the same first dimension.

	Returns:	stacked : 2-D array

The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.concatenate

	
numpy.ma.concatenate(arrays, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6270]

	Concatenate a sequence of arrays along the given axis.

	Parameters:	arrays : sequence of array_like

The arrays must have the same shape, except in the dimension
corresponding to axis (the first, by default).

axis : int, optional

The axis along which the arrays will be joined. Default is 0.

	Returns:	result : MaskedArray

The concatenated array with any masked entries preserved.

See also

	numpy.concatenate

	Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(3)
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
 mask = [False True False],
 fill_value = 999999)
>>> b
masked_array(data = [2 3 4],
 mask = False,
 fill_value = 999999)
>>> ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
 mask = [False True False False False False],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.append

	
numpy.ma.append(a, b, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7332]

	Append values to the end of an array.

New in version 1.9.0.

	Parameters:	arr : array_like

Values are appended to a copy of this array.

values : array_like

These values are appended to a copy of arr. It must be of the
correct shape (the same shape as arr, excluding axis). If axis
is not specified, values can be any shape and will be flattened
before use.

axis : int, optional

The axis along which values are appended. If axis is not given,
both arr and values are flattened before use.

	Returns:	append : MaskedArray

A copy of arr with values appended to axis. Note that append
does not occur in-place: a new array is allocated and filled. If
axis is None, the result is a flattened array.

See also

	numpy.append

	Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_values([1, 2, 3], 2)
>>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
>>> print(ma.append(a, b))
[1 -- 3 4 5 6 -- 8 9]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dstack

	
numpy.ma.dstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBDC8>

	
Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis
to make a single array. Rebuilds arrays divided by dsplit.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing.

	Parameters:	tup : sequence of arrays

Arrays to stack. All of them must have the same shape along all
but the third axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack along first axis.

	hstack

	Stack along second axis.

	concatenate

	Join arrays.

	dsplit

	Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
 [2, 3],
 [3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
 [[2, 3]],
 [[3, 4]]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.hstack

	
numpy.ma.hstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBCC8>

	
Stack arrays in sequence horizontally (column wise).

Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by hsplit.

	Parameters:	tup : sequence of ndarrays

All arrays must have the same shape along all but the second axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	vstack

	Stack arrays in sequence vertically (row wise).

	dstack

	Stack arrays in sequence depth wise (along third axis).

	concatenate

	Join a sequence of arrays together.

	hsplit

	Split array along second axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
 [2, 3],
 [3, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.vstack

	
numpy.ma.vstack(tup) = <numpy.ma.extras._fromnxfunction instance at 0x00000000046BBC48>

	
Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by vsplit.

	Parameters:	tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.

	Returns:	stacked : ndarray

The array formed by stacking the given arrays.

See also

	hstack

	Stack arrays in sequence horizontally (column wise).

	dstack

	Stack arrays in sequence depth wise (along third dimension).

	concatenate

	Join a sequence of arrays together.

	vsplit

	Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
 [2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
 [2],
 [3],
 [2],
 [3],
 [4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.make_mask

	
numpy.ma.make_mask(m, copy=False, shrink=True, dtype=<type 'numpy.bool_'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1426]

	Create a boolean mask from an array.

Return m as a boolean mask, creating a copy if necessary or requested.
The function can accept any sequence that is convertible to integers,
or nomask. Does not require that contents must be 0s and 1s, values
of 0 are interepreted as False, everything else as True.

	Parameters:	m : array_like

Potential mask.

copy : bool, optional

Whether to return a copy of m (True) or m itself (False).

shrink : bool, optional

Whether to shrink m to nomask if all its values are False.

dtype : dtype, optional

Data-type of the output mask. By default, the output mask has
a dtype of MaskType (bool). If the dtype is flexible, each field
has a boolean dtype.

	Returns:	result : ndarray

A boolean mask derived from m.

Examples

>>> import numpy.ma as ma
>>> m = [True, False, True, True]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)
>>> m = [1, 0, 1, 1]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)
>>> m = [1, 0, 2, -3]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)

Effect of the shrink parameter.

>>> m = np.zeros(4)
>>> m
array([0., 0., 0., 0.])
>>> ma.make_mask(m)
False
>>> ma.make_mask(m, shrink=False)
array([False, False, False, False], dtype=bool)

Using a flexible dtype.

>>> m = [1, 0, 1, 1]
>>> n = [0, 1, 0, 0]
>>> arr = []
>>> for man, mouse in zip(m, n):
... arr.append((man, mouse))
>>> arr
[(1, 0), (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype({'names':['man', 'mouse'],
 'formats':[np.int, np.int]})
>>> arr = np.array(arr, dtype=dtype)
>>> arr
array([(1, 0), (0, 1), (1, 0), (1, 0)],
 dtype=[('man', '<i4'), ('mouse', '<i4')])
>>> ma.make_mask(arr, dtype=dtype)
array([(True, False), (False, True), (True, False), (True, False)],
 dtype=[('man', '|b1'), ('mouse', '|b1')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.make_mask_none

	
numpy.ma.make_mask_none(newshape, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1520]

	Return a boolean mask of the given shape, filled with False.

This function returns a boolean ndarray with all entries False, that can
be used in common mask manipulations. If a complex dtype is specified, the
type of each field is converted to a boolean type.

	Parameters:	newshape : tuple

A tuple indicating the shape of the mask.

dtype : {None, dtype}, optional

If None, use a MaskType instance. Otherwise, use a new datatype with
the same fields as dtype, converted to boolean types.

	Returns:	result : ndarray

An ndarray of appropriate shape and dtype, filled with False.

See also

	make_mask

	Create a boolean mask from an array.

	make_mask_descr

	Construct a dtype description list from a given dtype.

Examples

>>> import numpy.ma as ma
>>> ma.make_mask_none((3,))
array([False, False, False], dtype=bool)

Defining a more complex dtype.

>>> dtype = np.dtype({'names':['foo', 'bar'],
 'formats':[np.float32, np.int]})
>>> dtype
dtype([('foo', '<f4'), ('bar', '<i4')])
>>> ma.make_mask_none((3,), dtype=dtype)
array([(False, False), (False, False), (False, False)],
 dtype=[('foo', '|b1'), ('bar', '|b1')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_or

	
numpy.ma.mask_or(m1, m2, copy=False, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1569]

	Combine two masks with the logical_or operator.

The result may be a view on m1 or m2 if the other is nomask
(i.e. False).

	Parameters:	m1, m2 : array_like

Input masks.

copy : bool, optional

If copy is False and one of the inputs is nomask, return a view
of the other input mask. Defaults to False.

shrink : bool, optional

Whether to shrink the output to nomask if all its values are
False. Defaults to True.

	Returns:	mask : output mask

The result masks values that are masked in either m1 or m2.

	Raises:	ValueError

If m1 and m2 have different flexible dtypes.

Examples

>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
array([True, True, True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.make_mask_descr

	
numpy.ma.make_mask_descr(ndtype)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1209]

	Construct a dtype description list from a given dtype.

Returns a new dtype object, with the type of all fields in ndtype to a
boolean type. Field names are not altered.

	Parameters:	ndtype : dtype

The dtype to convert.

	Returns:	result : dtype

A dtype that looks like ndtype, the type of all fields is boolean.

Examples

>>> import numpy.ma as ma
>>> dtype = np.dtype({'names':['foo', 'bar'],
 'formats':[np.float32, np.int]})
>>> dtype
dtype([('foo', '<f4'), ('bar', '<i4')])
>>> ma.make_mask_descr(dtype)
dtype([('foo', '|b1'), ('bar', '|b1')])
>>> ma.make_mask_descr(np.float32)
<type 'numpy.bool_'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getmask

	
numpy.ma.getmask(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1244]

	Return the mask of a masked array, or nomask.

Return the mask of a as an ndarray if a is a MaskedArray and the
mask is not nomask, else return nomask. To guarantee a full array
of booleans of the same shape as a, use getmaskarray.

	Parameters:	a : array_like

Input MaskedArray for which the mask is required.

See also

	getdata

	Return the data of a masked array as an ndarray.

	getmaskarray

	Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getmask(a)
array([[False, True],
 [False, False]], dtype=bool)

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array([[False, True],
 [False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
 [[1 2]
 [3 4]],
 mask =
 False,
 fill_value=999999)
>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
True
>>> b.mask == ma.nomask
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.getmaskarray

	
numpy.ma.getmaskarray(arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1305]

	Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and
the mask is not nomask, else return a full boolean array of False of
the same shape as arr.

	Parameters:	arr : array_like

Input MaskedArray for which the mask is required.

See also

	getmask

	Return the mask of a masked array, or nomask.

	getdata

	Return the data of a masked array as an ndarray.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
 [[1 --]
 [3 4]],
 mask =
 [[False True]
 [False False]],
 fill_value=999999)
>>> ma.getmaskarray(a)
array([[False, True],
 [False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
 [[1 2]
 [3 4]],
 mask =
 False,
 fill_value=999999)
>>> >ma.getmaskarray(b)
array([[False, False],
 [False, False]], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_array.mask

	
masked_array.mask

	Mask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.flatnotmasked_contiguous

	
numpy.ma.flatnotmasked_contiguous(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1661]

	Find contiguous unmasked data in a masked array along the given axis.

	Parameters:	a : narray

The input array.

	Returns:	slice_list : list

A sorted sequence of slices (start index, end index).

See also

flatnotmasked_edges, notmasked_contiguous, notmasked_edges, clump_masked, clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.ma.arange(10)
>>> np.ma.extras.flatnotmasked_contiguous(a)
slice(0, 10, None)

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> np.ma.extras.flatnotmasked_contiguous(a)
[slice(3, 5, None), slice(6, 9, None)]
>>> a[:] = np.ma.masked
>>> print np.ma.extras.flatnotmasked_edges(a)
None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.flatnotmasked_edges

	
numpy.ma.flatnotmasked_edges(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1555]

	Find the indices of the first and last unmasked values.

Expects a 1-D MaskedArray, returns None if all values are masked.

	Parameters:	arr : array_like

Input 1-D MaskedArray

	Returns:	edges : ndarray or None

The indices of first and last non-masked value in the array.
Returns None if all values are masked.

See also

flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges, clump_masked, clump_unmasked

Notes

Only accepts 1-D arrays.

Examples

>>> a = np.ma.arange(10)
>>> flatnotmasked_edges(a)
[0,-1]

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> flatnotmasked_edges(a)
array([3, 8])

>>> a[:] = np.ma.masked
>>> print flatnotmasked_edges(ma)
None

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.notmasked_contiguous

	
numpy.ma.notmasked_contiguous(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1714]

	Find contiguous unmasked data in a masked array along the given axis.

	Parameters:	a : array_like

The input array.

axis : int, optional

Axis along which to perform the operation.
If None (default), applies to a flattened version of the array.

	Returns:	endpoints : list

A list of slices (start and end indexes) of unmasked indexes
in the array.

See also

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges, clump_masked, clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.arange(9).reshape((3, 3))
>>> mask = np.zeros_like(a)
>>> mask[1:, 1:] = 1

>>> ma = np.ma.array(a, mask=mask)
>>> np.array(ma[~ma.mask])
array([0, 1, 2, 3, 6])

>>> np.ma.extras.notmasked_contiguous(ma)
[slice(0, 4, None), slice(6, 7, None)]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.notmasked_edges

	
numpy.ma.notmasked_edges(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1610]

	Find the indices of the first and last unmasked values along an axis.

If all values are masked, return None. Otherwise, return a list
of two tuples, corresponding to the indices of the first and last
unmasked values respectively.

	Parameters:	a : array_like

The input array.

axis : int, optional

Axis along which to perform the operation.
If None (default), applies to a flattened version of the array.

	Returns:	edges : ndarray or list

An array of start and end indexes if there are any masked data in
the array. If there are no masked data in the array, edges is a
list of the first and last index.

See also

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous, clump_masked, clump_unmasked

Examples

>>> a = np.arange(9).reshape((3, 3))
>>> m = np.zeros_like(a)
>>> m[1:, 1:] = 1

>>> am = np.ma.array(a, mask=m)
>>> np.array(am[~am.mask])
array([0, 1, 2, 3, 6])

>>> np.ma.extras.notmasked_edges(ma)
array([0, 6])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_cols

	
numpy.ma.mask_cols(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L950]

	Mask columns of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 1.

See also

	mask_rowcols

	Mask rows and/or columns of a 2D array.

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
 [0, 1, 0],
 [0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
 [[0 0 0]
 [0 -- 0]
 [0 0 0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=999999)
>>> ma.mask_cols(a)
masked_array(data =
 [[0 -- 0]
 [0 -- 0]
 [0 -- 0]],
 mask =
 [[False True False]
 [False True False]
 [False True False]],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_or

	
numpy.ma.mask_or(m1, m2, copy=False, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1569]

	Combine two masks with the logical_or operator.

The result may be a view on m1 or m2 if the other is nomask
(i.e. False).

	Parameters:	m1, m2 : array_like

Input masks.

copy : bool, optional

If copy is False and one of the inputs is nomask, return a view
of the other input mask. Defaults to False.

shrink : bool, optional

Whether to shrink the output to nomask if all its values are
False. Defaults to True.

	Returns:	mask : output mask

The result masks values that are masked in either m1 or m2.

	Raises:	ValueError

If m1 and m2 have different flexible dtypes.

Examples

>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
array([True, True, True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_rowcols

	
numpy.ma.mask_rowcols(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L815]

	Mask rows and/or columns of a 2D array that contain masked values.

Mask whole rows and/or columns of a 2D array that contain
masked values. The masking behavior is selected using the
axis parameter.

	If axis is None, rows and columns are masked.

	If axis is 0, only rows are masked.

	If axis is 1 or -1, only columns are masked.

	Parameters:	a : array_like, MaskedArray

The array to mask. If not a MaskedArray instance (or if no array
elements are masked). The result is a MaskedArray with mask set
to nomask (False). Must be a 2D array.

axis : int, optional

Axis along which to perform the operation. If None, applies to a
flattened version of the array.

	Returns:	a : MaskedArray

A modified version of the input array, masked depending on the value
of the axis parameter.

	Raises:	NotImplementedError

If input array a is not 2D.

See also

	mask_rows

	Mask rows of a 2D array that contain masked values.

	mask_cols

	Mask cols of a 2D array that contain masked values.

	masked_where

	Mask where a condition is met.

Notes

The input array’s mask is modified by this function.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
 [0, 1, 0],
 [0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
 [[0 0 0]
 [0 -- 0]
 [0 0 0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=999999)
>>> ma.mask_rowcols(a)
masked_array(data =
 [[0 -- 0]
 [-- -- --]
 [0 -- 0]],
 mask =
 [[False True False]
 [True True True]
 [False True False]],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mask_rows

	
numpy.ma.mask_rows(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L905]

	Mask rows of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 0.

See also

	mask_rowcols

	Mask rows and/or columns of a 2D array.

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
 [0, 1, 0],
 [0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
 [[0 0 0]
 [0 -- 0]
 [0 0 0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=999999)
>>> ma.mask_rows(a)
masked_array(data =
 [[0 0 0]
 [-- -- --]
 [0 0 0]],
 mask =
 [[False False False]
 [True True True]
 [False False False]],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.harden_mask

	
numpy.ma.harden_mask(self) = <numpy.ma.core._frommethod instance at 0x00000000046997C8>

	Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. harden_mask sets hardmask to True.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.soften_mask

	
numpy.ma.soften_mask(self) = <numpy.ma.core._frommethod instance at 0x0000000004699B88>

	Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. soften_mask sets hardmask to False.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.harden_mask

	
MaskedArray.harden_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3266]

	Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. harden_mask sets hardmask to True.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.soften_mask

	
MaskedArray.soften_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3281]

	Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. soften_mask sets hardmask to False.

See also

hardmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.shrink_mask

	
MaskedArray.shrink_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3321]

	Reduce a mask to nomask when possible.

	Parameters:	None

	Returns:	None

Examples

>>> x = np.ma.array([[1,2], [3, 4]], mask=[0]*4)
>>> x.mask
array([[False, False],
 [False, False]], dtype=bool)
>>> x.shrink_mask()
>>> x.mask
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.unshare_mask

	
MaskedArray.unshare_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3300]

	Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from
the sharedmask property. unshare_mask ensures the mask is not shared.
A copy of the mask is only made if it was shared.

See also

sharedmask

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.asarray

	
numpy.ma.asarray(a, dtype=None, order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7031]

	Convert the input to a masked array of the given data-type.

No copy is performed if the input is already an ndarray. If a is
a subclass of MaskedArray, a base class MaskedArray is returned.

	Parameters:	a : array_like

Input data, in any form that can be converted to a masked array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists, ndarrays and masked arrays.

dtype : dtype, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Default is ‘C’.

	Returns:	out : MaskedArray

Masked array interpretation of a.

See also

	asanyarray

	Similar to asarray, but conserves subclasses.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],
 [5., 6., 7., 8., 9.]])
>>> np.ma.asarray(x)
masked_array(data =
 [[0. 1. 2. 3. 4.]
 [5. 6. 7. 8. 9.]],
 mask =
 False,
 fill_value = 1e+20)
>>> type(np.ma.asarray(x))
<class 'numpy.ma.core.MaskedArray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.asanyarray

	
numpy.ma.asanyarray(a, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7078]

	Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray, its class is conserved.
No copy is performed if the input is already an ndarray.

	Parameters:	a : array_like

Input data, in any form that can be converted to an array.

dtype : dtype, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Default is ‘C’.

	Returns:	out : MaskedArray

MaskedArray interpretation of a.

See also

	asarray

	Similar to asanyarray, but does not conserve subclass.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],
 [5., 6., 7., 8., 9.]])
>>> np.ma.asanyarray(x)
masked_array(data =
 [[0. 1. 2. 3. 4.]
 [5. 6. 7. 8. 9.]],
 mask =
 False,
 fill_value = 1e+20)
>>> type(np.ma.asanyarray(x))
<class 'numpy.ma.core.MaskedArray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.fix_invalid

	
numpy.ma.fix_invalid(a, mask=False, copy=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L669]

	Return input with invalid data masked and replaced by a fill value.

Invalid data means values of nan, inf, etc.

	Parameters:	a : array_like

Input array, a (subclass of) ndarray.

copy : bool, optional

Whether to use a copy of a (True) or to fix a in place (False).
Default is True.

fill_value : scalar, optional

Value used for fixing invalid data. Default is None, in which case
the a.fill_value is used.

	Returns:	b : MaskedArray

The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x
masked_array(data = [-- -1.0 nan inf],
 mask = [True False False False],
 fill_value = 1e+20)
>>> np.ma.fix_invalid(x)
masked_array(data = [-- -1.0 -- --],
 mask = [True False True True],
 fill_value = 1e+20)

>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
array([1.00000000e+00, -1.00000000e+00, 1.00000000e+20,
 1.00000000e+20])
>>> x.data
array([1., -1., NaN, Inf])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_equal

	
numpy.ma.masked_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1947]

	Mask an array where equal to a given value.

This function is a shortcut to masked_where, with
condition = (x == value). For floating point arrays,
consider using masked_values(x, value).

See also

	masked_where

	Mask where a condition is met.

	masked_values

	Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2)
masked_array(data = [0 1 -- 3],
 mask = [False False True False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_greater

	
numpy.ma.masked_greater(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1817]

	Mask an array where greater than a given value.

This function is a shortcut to masked_where, with
condition = (x > value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
masked_array(data = [0 1 2 --],
 mask = [False False False True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_greater_equal

	
numpy.ma.masked_greater_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1843]

	Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with
condition = (x >= value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
masked_array(data = [0 1 -- --],
 mask = [False False True True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_inside

	
numpy.ma.masked_inside(x, v1, v2, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1982]

	Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside
the interval [v1,v2] (v1 <= x <= v2). The boundaries v1 and v2
can be given in either order.

See also

	masked_where

	Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
 mask = [False False True True False False],
 fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
 mask = [False False True True False False],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_invalid

	
numpy.ma.masked_invalid(a, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2204]

	Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with
condition = ~(np.isfinite(a)). Any pre-existing mask is conserved.
Only applies to arrays with a dtype where NaNs or infs make sense
(i.e. floating point types), but accepts any array_like object.

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5, dtype=np.float)
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array([0., 1., NaN, Inf, 4.])
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 -- -- 4.0],
 mask = [False False True True False],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_less

	
numpy.ma.masked_less(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1869]

	Mask an array where less than a given value.

This function is a shortcut to masked_where, with
condition = (x < value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
masked_array(data = [-- -- 2 3],
 mask = [True True False False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_less_equal

	
numpy.ma.masked_less_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1895]

	Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with
condition = (x <= value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_not_equal

	
numpy.ma.masked_not_equal(x, value, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1921]

	Mask an array where not equal to a given value.

This function is a shortcut to masked_where, with
condition = (x != value).

See also

	masked_where

	Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
masked_array(data = [-- -- 2 --],
 mask = [True True False True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_object

	
numpy.ma.masked_object(x, value, copy=True, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2062]

	Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable
for object arrays: for floating point, use masked_values instead.

	Parameters:	x : array_like

Array to mask

value : object

Comparison value

copy : {True, False}, optional

Whether to return a copy of x.

shrink : {True, False}, optional

Whether to collapse a mask full of False to nomask

	Returns:	result : MaskedArray

The result of masking x where equal to value.

See also

	masked_where

	Mask where a condition is met.

	masked_equal

	Mask where equal to a given value (integers).

	masked_values

	Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
>>> print eat
[-- ham]
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
>>> print eat
[cheese ham pineapple]

Note that mask is set to nomask if possible.

>>> eat
masked_array(data = [cheese ham pineapple],
 mask = False,
 fill_value=?)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_outside

	
numpy.ma.masked_outside(x, v1, v2, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2022]

	Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside
the interval [v1,v2] (x < v1)|(x > v2).
The boundaries v1 and v2 can be given in either order.

See also

	masked_where

	Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],
 mask = [True True False False True True],
 fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],
 mask = [True True False False True True],
 fill_value=1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_values

	
numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2123]

	Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately
equal to value, i.e. where the following condition is True

(abs(x - value) <= atol+rtol*abs(value))

The fill_value is set to value and the mask is set to nomask if
possible. For integers, consider using masked_equal.

	Parameters:	x : array_like

Array to mask.

value : float

Masking value.

rtol : float, optional

Tolerance parameter.

atol : float, optional

Tolerance parameter (1e-8).

copy : bool, optional

Whether to return a copy of x.

shrink : bool, optional

Whether to collapse a mask full of False to nomask.

	Returns:	result : MaskedArray

The result of masking x where approximately equal to value.

See also

	masked_where

	Mask where a condition is met.

	masked_equal

	Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
masked_array(data = [1.0 -- 2.0 -- 3.0],
 mask = [False True False True False],
 fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values(x, 1.5)
masked_array(data = [1. 1.1 2. 1.1 3.],
 mask = False,
 fill_value=1.5)

For integers, the fill value will be different in general to the
result of masked_equal.

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
masked_array(data = [0 1 -- 3 4],
 mask = [False False True False False],
 fill_value=2)
>>> ma.masked_equal(x, 2)
masked_array(data = [0 1 -- 3 4],
 mask = [False False True False False],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.masked_where

	
numpy.ma.masked_where(condition, a, copy=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L1701]

	Mask an array where a condition is met.

Return a as an array masked where condition is True.
Any masked values of a or condition are also masked in the output.

	Parameters:	condition : array_like

Masking condition. When condition tests floating point values for
equality, consider using masked_values instead.

a : array_like

Array to mask.

copy : bool

If True (default) make a copy of a in the result. If False modify
a in place and return a view.

	Returns:	result : MaskedArray

The result of masking a where condition is True.

See also

	masked_values

	Mask using floating point equality.

	masked_equal

	Mask where equal to a given value.

	masked_not_equal

	Mask where not equal to a given value.

	masked_less_equal

	Mask where less than or equal to a given value.

	masked_greater_equal

	Mask where greater than or equal to a given value.

	masked_less

	Mask where less than a given value.

	masked_greater

	Mask where greater than a given value.

	masked_inside

	Mask inside a given interval.

	masked_outside

	Mask outside a given interval.

	masked_invalid

	Mask invalid values (NaNs or infs).

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)

Mask array b conditional on a.

>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
masked_array(data = [a b -- d],
 mask = [False False True False],
 fill_value=N/A)

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a)
>>> c
masked_array(data = [-- -- -- 3],
 mask = [True True True False],
 fill_value=999999)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],
 mask = [False True True False],
 fill_value=999999)
>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],
 mask = [False True True False],
 fill_value=999999)
>>> a
array([99, 1, 2, 3])

When condition or a contain masked values.

>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data = [0 1 -- 3],
 mask = [False False True False],
 fill_value=999999)
>>> b = np.arange(4)
>>> b = ma.masked_where(b == 0, b)
>>> b
masked_array(data = [-- 1 2 3],
 mask = [True False False False],
 fill_value=999999)
>>> ma.masked_where(a == 3, b)
masked_array(data = [-- 1 -- --],
 mask = [True False True True],
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.compress_cols

	
numpy.ma.compress_cols(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L801]

	Suppress whole columns of a 2-D array that contain masked values.

This is equivalent to np.ma.extras.compress_rowcols(a, 1), see
extras.compress_rowcols for details.

See also

extras.compress_rowcols

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.compress_rowcols

	
numpy.ma.compress_rowcols(x, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L719]

	Suppress the rows and/or columns of a 2-D array that contain
masked values.

The suppression behavior is selected with the axis parameter.

	If axis is None, both rows and columns are suppressed.

	If axis is 0, only rows are suppressed.

	If axis is 1 or -1, only columns are suppressed.

	Parameters:	axis : int, optional

Axis along which to perform the operation. Default is None.

	Returns:	compressed_array : ndarray

The compressed array.

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x
masked_array(data =
 [[-- 1 2]
 [-- 4 5]
 [6 7 8]],
 mask =
 [[True False False]
 [True False False]
 [False False False]],
 fill_value = 999999)

>>> np.ma.extras.compress_rowcols(x)
array([[7, 8]])
>>> np.ma.extras.compress_rowcols(x, 0)
array([[6, 7, 8]])
>>> np.ma.extras.compress_rowcols(x, 1)
array([[1, 2],
 [4, 5],
 [7, 8]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.compress_rows

	
numpy.ma.compress_rows(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L787]

	Suppress whole rows of a 2-D array that contain masked values.

This is equivalent to np.ma.extras.compress_rowcols(a, 0), see
extras.compress_rowcols for details.

See also

extras.compress_rowcols

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.compressed

	
numpy.ma.compressed(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6252]

	Return all the non-masked data as a 1-D array.

This function is equivalent to calling the “compressed” method of a
MaskedArray, see MaskedArray.compressed for details.

See also

	MaskedArray.compressed

	Equivalent method.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.filled

	
numpy.ma.filled(a, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L544]

	Return input as an array with masked data replaced by a fill value.

If a is not a MaskedArray, a itself is returned.
If a is a MaskedArray and fill_value is None, fill_value is set to
a.fill_value.

	Parameters:	a : MaskedArray or array_like

An input object.

fill_value : scalar, optional

Filling value. Default is None.

	Returns:	a : ndarray

The filled array.

See also

compressed

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x.filled()
array([[999999, 1, 2],
 [999999, 4, 5],
 [6, 7, 8]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.compressed

	
MaskedArray.compressed()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3519]

	Return all the non-masked data as a 1-D array.

	Returns:	data : ndarray

A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
<type 'numpy.ndarray'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.filled

	
MaskedArray.filled(fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3447]

	Return a copy of self, with masked values filled with a given value.

	Parameters:	fill_value : scalar, optional

The value to use for invalid entries (None by default).
If None, the fill_value attribute of the array is used instead.

	Returns:	filled_array : ndarray

A copy of self with invalid entries replaced by fill_value
(be it the function argument or the attribute of self.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> type(x.filled())
<type 'numpy.ndarray'>

Subclassing is preserved. This means that if the data part of the masked
array is a matrix, filled returns a matrix:

>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.filled()
matrix([[1, 999999],
 [999999, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tofile

	
MaskedArray.tofile(fid, sep='', format='%s')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5493]

	Save a masked array to a file in binary format.

Warning

This function is not implemented yet.

	Raises:	NotImplementedError

When tofile is called.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tolist

	
MaskedArray.tolist(fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5369]

	Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type.
Masked values are converted to fill_value. If fill_value is None,
the corresponding entries in the output list will be None.

	Parameters:	fill_value : scalar, optional

The value to use for invalid entries. Default is None.

	Returns:	result : list

The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
>>> x.tolist()
[[1, None, 3], [None, 5, None], [7, None, 9]]
>>> x.tolist(-999)
[[1, -999, 3], [-999, 5, -999], [7, -999, 9]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.torecords

	
MaskedArray.torecords()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5508]

	Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

	the _data field stores the _data part of the array.

	the _mask field stores the _mask part of the array.

	Parameters:	None

	Returns:	record : ndarray

A new flexible-type ndarray with two fields: the first element
containing a value, the second element containing the corresponding
mask boolean. The returned record shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is
that meta information (fill_value, ...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.toflex()
[[(1, False) (2, True) (3, False)]
 [(4, True) (5, False) (6, True)]
 [(7, False) (8, True) (9, False)]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.tobytes

	
MaskedArray.tobytes(fill_value=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5453]

	Return the array data as a string containing the raw bytes in the array.

The array is filled with a fill value before the string conversion.

New in version 1.9.0.

	Parameters:	fill_value : scalar, optional

Value used to fill in the masked values. Deafult is None, in which
case MaskedArray.fill_value is used.

order : {‘C’,’F’,’A’}, optional

Order of the data item in the copy. Default is ‘C’.

	‘C’ – C order (row major).

	‘F’ – Fortran order (column major).

	‘A’ – Any, current order of array.

	None – Same as ‘A’.

See also

ndarray.tobytes, tolist, tofile

Notes

As for ndarray.tobytes, information about the shape, dtype, etc.,
but also about fill_value, will be lost.

Examples

>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
'\x01\x00\x00\x00?B\x0f\x00?B\x0f\x00\x04\x00\x00\x00'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dump

	
numpy.ma.dump(a, F)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7127]

	Pickle a masked array to a file.

This is a wrapper around cPickle.dump.

	Parameters:	a : MaskedArray

The array to be pickled.

F : str or file-like object

The file to pickle a to. If a string, the full path to the file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dumps

	
numpy.ma.dumps(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7145]

	Return a string corresponding to the pickling of a masked array.

This is a wrapper around cPickle.dumps.

	Parameters:	a : MaskedArray

The array for which the string representation of the pickle is
returned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.load

	
numpy.ma.load(F)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7160]

	Wrapper around cPickle.load which accepts either a file-like object
or a filename.

	Parameters:	F : str or file

The file or file name to load.

See also

	dump

	Pickle an array

Notes

This is different from numpy.load, which does not use cPickle but loads
the NumPy binary .npy format.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.loads

	
numpy.ma.loads(strg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L7184]

	Load a pickle from the current string.

The result of cPickle.loads(strg) is returned.

	Parameters:	strg : str

The string to load.

See also

	dumps

	Return a string corresponding to the pickling of a masked array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.common_fill_value

	
numpy.ma.common_fill_value(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L511]

	Return the common filling value of two masked arrays, if any.

If a.fill_value == b.fill_value, return the fill value,
otherwise return None.

	Parameters:	a, b : MaskedArray

The masked arrays for which to compare fill values.

	Returns:	fill_value : scalar or None

The common fill value, or None.

Examples

>>> x = np.ma.array([0, 1.], fill_value=3)
>>> y = np.ma.array([0, 1.], fill_value=3)
>>> np.ma.common_fill_value(x, y)
3.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.default_fill_value

	
numpy.ma.default_fill_value(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L161]

	Return the default fill value for the argument object.

The default filling value depends on the datatype of the input
array or the type of the input scalar:

	datatype
	default

	bool
	True

	int
	999999

	float
	1.e20

	complex
	1.e20+0j

	object
	‘?’

	string
	‘N/A’

	Parameters:	obj : ndarray, dtype or scalar

The array data-type or scalar for which the default fill value
is returned.

	Returns:	fill_value : scalar

The default fill value.

Examples

>>> np.ma.default_fill_value(1)
999999
>>> np.ma.default_fill_value(np.array([1.1, 2., np.pi]))
1e+20
>>> np.ma.default_fill_value(np.dtype(complex))
(1e+20+0j)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.maximum_fill_value

	
numpy.ma.maximum_fill_value(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L299]

	Return the minimum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for
taking the maximum of an array with a given dtype.

	Parameters:	obj : {ndarray, dtype}

An object that can be queried for it’s numeric type.

	Returns:	val : scalar

The minimum representable value.

	Raises:	TypeError

If obj isn’t a suitable numeric type.

See also

	minimum_fill_value

	The inverse function.

	set_fill_value

	Set the filling value of a masked array.

	MaskedArray.fill_value

	Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()
>>> ma.maximum_fill_value(a)
-128
>>> a = np.int32()
>>> ma.maximum_fill_value(a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_value(a)
-128
>>> a = np.array([1, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_value(a)
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.maximum_fill_value

	
numpy.ma.maximum_fill_value(obj)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L299]

	Return the minimum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for
taking the maximum of an array with a given dtype.

	Parameters:	obj : {ndarray, dtype}

An object that can be queried for it’s numeric type.

	Returns:	val : scalar

The minimum representable value.

	Raises:	TypeError

If obj isn’t a suitable numeric type.

See also

	minimum_fill_value

	The inverse function.

	set_fill_value

	Set the filling value of a masked array.

	MaskedArray.fill_value

	Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()
>>> ma.maximum_fill_value(a)
-128
>>> a = np.int32()
>>> ma.maximum_fill_value(a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_value(a)
-128
>>> a = np.array([1, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_value(a)
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.set_fill_value

	
numpy.ma.set_fill_value(a, fill_value)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L435]

	Set the filling value of a, if a is a masked array.

This function changes the fill value of the masked array a in place.
If a is not a masked array, the function returns silently, without
doing anything.

	Parameters:	a : array_like

Input array.

fill_value : dtype

Filling value. A consistency test is performed to make sure
the value is compatible with the dtype of a.

	Returns:	None

Nothing returned by this function.

See also

	maximum_fill_value

	Return the default fill value for a dtype.

	MaskedArray.fill_value

	Return current fill value.

	MaskedArray.set_fill_value

	Equivalent method.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a = ma.masked_where(a < 3, a)
>>> a
masked_array(data = [-- -- -- 3 4],
 mask = [True True True False False],
 fill_value=999999)
>>> ma.set_fill_value(a, -999)
>>> a
masked_array(data = [-- -- -- 3 4],
 mask = [True True True False False],
 fill_value=-999)

Nothing happens if a is not a masked array.

>>> a = range(5)
>>> a
[0, 1, 2, 3, 4]
>>> ma.set_fill_value(a, 100)
>>> a
[0, 1, 2, 3, 4]
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> ma.set_fill_value(a, 100)
>>> a
array([0, 1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.get_fill_value

	
MaskedArray.get_fill_value()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3376]

	Return the filling value of the masked array.

	Returns:	fill_value : scalar

The filling value.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
... np.ma.array([0, 1], dtype=dt).get_fill_value()
...
999999
999999
1e+20
(1e+20+0j)

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.get_fill_value()
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.set_fill_value

	
MaskedArray.set_fill_value(value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3404]

	Set the filling value of the masked array.

	Parameters:	value : scalar, optional

The new filling value. Default is None, in which case a default
based on the data type is used.

See also

	ma.set_fill_value

	Equivalent function.

Examples

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
-inf
>>> x.set_fill_value(np.pi)
>>> x.fill_value
3.1415926535897931

Reset to default:

>>> x.set_fill_value()
>>> x.fill_value
1e+20

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.fill_value

	
MaskedArray.fill_value

	Filling value.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.anom

	
numpy.ma.anom(self, axis=None, dtype=None) = <numpy.ma.core._frommethod instance at 0x0000000004699448>

	Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Returns an array of anomalies, with the same shape as the input and
where the arithmetic mean is computed along the given axis.

	Parameters:	axis : int, optional

Axis over which the anomalies are taken.
The default is to use the mean of the flattened array as reference.

dtype : dtype, optional

	Type to use in computing the variance. For arrays of integer type

	the default is float32; for arrays of float types it is the same as
the array type.

See also

	mean

	Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.anomalies

	
numpy.ma.anomalies(self, axis=None, dtype=None) = <numpy.ma.core._frommethod instance at 0x0000000004699448>

	Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Returns an array of anomalies, with the same shape as the input and
where the arithmetic mean is computed along the given axis.

	Parameters:	axis : int, optional

Axis over which the anomalies are taken.
The default is to use the mean of the flattened array as reference.

dtype : dtype, optional

	Type to use in computing the variance. For arrays of integer type

	the default is float32; for arrays of float types it is the same as
the array type.

See also

	mean

	Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.average

	
numpy.ma.average(a, axis=None, weights=None, returned=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L470]

	Return the weighted average of array over the given axis.

	Parameters:	a : array_like

Data to be averaged.
Masked entries are not taken into account in the computation.

axis : int, optional

Axis along which the average is computed. The default is to compute
the average of the flattened array.

weights : array_like, optional

The importance that each element has in the computation of the average.
The weights array can either be 1-D (in which case its length must be
the size of a along the given axis) or of the same shape as a.
If weights=None, then all data in a are assumed to have a
weight equal to one. If weights is complex, the imaginary parts
are ignored.

returned : bool, optional

Flag indicating whether a tuple (result, sum of weights)
should be returned as output (True), or just the result (False).
Default is False.

	Returns:	average, [sum_of_weights] : (tuple of) scalar or MaskedArray

The average along the specified axis. When returned is True,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is np.float64
if a is of integer type, otherwise it is of the same type as a.
If returned, sum_of_weights is of the same type as average.

Examples

>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average(a, weights=[3, 1, 0, 0])
1.25

>>> x = np.ma.arange(6.).reshape(3, 2)
>>> print x
[[0. 1.]
 [2. 3.]
 [4. 5.]]
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
... returned=True)
>>> print avg
[2.66666666667 3.66666666667]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.conjugate

	
numpy.ma.conjugate(x[, out]) = <numpy.ma.core._MaskedUnaryOperation instance at 0x000000000467F808>

	Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.

	Parameters:	x : array_like

Input value.

	Returns:	y : ndarray

The complex conjugate of x, with same dtype as y.

Examples

>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[1.-1.j, 0.-0.j],
 [0.-0.j, 1.-1.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.corrcoef

	
numpy.ma.corrcoef(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1375]

	Return correlation coefficients of the input array.

Except for the handling of missing data this function does the same as
numpy.corrcoef. For more details and examples, see numpy.corrcoef.

	Parameters:	x : array_like

A 1-D or 2-D array containing multiple variables and observations.
Each row of x represents a variable, and each column a single
observation of all those variables. Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same
shape as x.

rowvar : bool, optional

If rowvar is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.

bias : bool, optional

Default normalization (False) is by (N-1), where N is the
number of observations given (unbiased estimate). If bias is 1,
then normalization is by N. This keyword can be overridden by
the keyword ddof in numpy versions >= 1.5.

allow_masked : bool, optional

If True, masked values are propagated pair-wise: if a value is masked
in x, the corresponding value is masked in y.
If False, raises an exception.

ddof : {None, int}, optional

New in version 1.5.

If not None normalization is by (N - ddof), where N is
the number of observations; this overrides the value implied by
bias. The default value is None.

See also

	numpy.corrcoef

	Equivalent function in top-level NumPy module.

	cov

	Estimate the covariance matrix.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.cov

	
numpy.ma.cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1302]

	Estimate the covariance matrix.

Except for the handling of missing data this function does the same as
numpy.cov. For more details and examples, see numpy.cov.

By default, masked values are recognized as such. If x and y have the
same shape, a common mask is allocated: if x[i,j] is masked, then
y[i,j] will also be masked.
Setting allow_masked to False will raise an exception if values are
missing in either of the input arrays.

	Parameters:	x : array_like

A 1-D or 2-D array containing multiple variables and observations.
Each row of x represents a variable, and each column a single
observation of all those variables. Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same
form as x.

rowvar : bool, optional

If rowvar is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.

bias : bool, optional

Default normalization (False) is by (N-1), where N is the
number of observations given (unbiased estimate). If bias is True,
then normalization is by N. This keyword can be overridden by
the keyword ddof in numpy versions >= 1.5.

allow_masked : bool, optional

If True, masked values are propagated pair-wise: if a value is masked
in x, the corresponding value is masked in y.
If False, raises a ValueError exception when some values are missing.

ddof : {None, int}, optional

New in version 1.5.

If not None normalization is by (N - ddof), where N is
the number of observations; this overrides the value implied by
bias. The default value is None.

	Raises:	ValueError

Raised if some values are missing and allow_masked is False.

See also

numpy.cov

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.cumsum

	
numpy.ma.cumsum(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699688>

	Return the cumulative sum of the elements along the given axis.
The cumulative sum is calculated over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 0 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to
compute over the flattened array. axis may be negative, in which case
it counts from the last to the first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumsum : ndarray.

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print marr.cumsum()
[0 1 3 -- -- -- 9 16 24 33]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.cumprod

	
numpy.ma.cumprod(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699608>

	Return the cumulative product of the elements along the given axis.
The cumulative product is taken over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the product is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the
default platform integer, then the default platform integer precision
is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumprod : ndarray

A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.mean

	
numpy.ma.mean(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699888>

	Returns the average of the array elements.

Masked entries are ignored.
The average is taken over the flattened array by default, otherwise over
the specified axis. Refer to numpy.mean for the full documentation.

	Parameters:	a : array_like

Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute
the mean of the flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default
is float64; for floating point, inputs it is the same as the input
dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

See also

	numpy.ma.mean

	Equivalent function.

	numpy.mean

	Equivalent function on non-masked arrays.

	numpy.ma.average

	Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.mean()
1.5

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.median

	
numpy.ma.median(a, axis=None, out=None, overwrite_input=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L613]

	Compute the median along the specified axis.

Returns the median of the array elements.

	Parameters:	a : array_like

Input array or object that can be converted to an array.

axis : int, optional

Axis along which the medians are computed. The default (None) is
to compute the median along a flattened version of the array.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array (a) for
calculations. The input array will be modified by the call to
median. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted. Default is
False. Note that, if overwrite_input is True, and the input
is not already an ndarray, an error will be raised.

	Returns:	median : ndarray

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
Return data-type is float64 for integers and floats smaller than
float64, or the input data-type, otherwise.

See also

mean

Notes

Given a vector V with N non masked values, the median of V
is the middle value of a sorted copy of V (Vs) - i.e.
Vs[(N-1)/2], when N is odd, or {Vs[N/2 - 1] + Vs[N/2]}/2
when N is even.

Examples

>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
>>> np.ma.extras.median(x)
1.5

>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
>>> np.ma.extras.median(x)
2.5
>>> np.ma.extras.median(x, axis=-1, overwrite_input=True)
masked_array(data = [2. 5.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.power

	
numpy.ma.power(a, b, third=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6126]

	Returns element-wise base array raised to power from second array.

This is the masked array version of numpy.power. For details see
numpy.power.

See also

numpy.power

Notes

The out argument to numpy.power is not supported, third has to be
None.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.prod

	
numpy.ma.prod(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699988>

	Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.

	Parameters:	axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the
product is over all the array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.

See also

	prod

	equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised
on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.std

	
numpy.ma.std(self, axis=None, dtype=None, out=None, ddof=0) = <numpy.ma.core._frommethod instance at 0x0000000004699C48>

	Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.

	Parameters:	a : array_like

Calculate the standard deviation of these values.

axis : int, optional

Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it is
the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements.
By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation,
otherwise return a reference to the output array.

See also

var, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is specified,
the divisor N - ddof is used instead. In standard statistical
practice, ddof=1 provides an unbiased estimator of the variance
of the infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables. The
standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dtype keyword can
alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.sum

	
numpy.ma.sum(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699CC8>

	Return the sum of the array elements over the given axis.
Masked elements are set to 0 internally.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified
axis removed. If self is a 0-d array, or if axis is None, a scalar
is returned. If an output array is specified, a reference to
out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.sum()
25
>>> print x.sum(axis=1)
[4 5 16]
>>> print x.sum(axis=0)
[8 5 12]
>>> print type(x.sum(axis=0, dtype=np.int64)[0])
<type 'numpy.int64'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.var

	
numpy.ma.var(self, axis=None, dtype=None, out=None, ddof=0) = <numpy.ma.core._frommethod instance at 0x0000000004699DC8>

	Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.

	Parameters:	a : array_like

Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance;
otherwise, a reference to the output array is returned.

See also

std, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.var(a)
0.20405951142311096

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932997387
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.20250000000000001

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.anom

	
MaskedArray.anom(axis=None, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4794]

	Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Returns an array of anomalies, with the same shape as the input and
where the arithmetic mean is computed along the given axis.

	Parameters:	axis : int, optional

Axis over which the anomalies are taken.
The default is to use the mean of the flattened array as reference.

dtype : dtype, optional

	Type to use in computing the variance. For arrays of integer type

	the default is float32; for arrays of float types it is the same as
the array type.

See also

	mean

	Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],
 mask = False,
 fill_value = 1e+20)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.cumprod

	
MaskedArray.cumprod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4677]

	Return the cumulative product of the elements along the given axis.
The cumulative product is taken over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the product is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the
default platform integer, then the default platform integer precision
is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumprod : ndarray

A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.cumsum

	
MaskedArray.cumsum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4548]

	Return the cumulative sum of the elements along the given axis.
The cumulative sum is calculated over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 0 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to
compute over the flattened array. axis may be negative, in which case
it counts from the last to the first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	cumsum : ndarray.

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print marr.cumsum()
[0 1 3 -- -- -- 9 16 24 33]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.mean

	
MaskedArray.mean(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4727]

	Returns the average of the array elements.

Masked entries are ignored.
The average is taken over the flattened array by default, otherwise over
the specified axis. Refer to numpy.mean for the full documentation.

	Parameters:	a : array_like

Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute
the mean of the flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default
is float64; for floating point, inputs it is the same as the input
dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

See also

	numpy.ma.mean

	Equivalent function.

	numpy.mean

	Equivalent function on non-masked arrays.

	numpy.ma.average

	Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.mean()
1.5

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.prod

	
MaskedArray.prod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4605]

	Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.

	Parameters:	axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the
product is over all the array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

	Returns:	product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.

See also

	prod

	equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised
on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.std

	
MaskedArray.std(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4874]

	Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.

	Parameters:	a : array_like

Calculate the standard deviation of these values.

axis : int, optional

Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it is
the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements.
By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation,
otherwise return a reference to the output array.

See also

var, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is specified,
the divisor N - ddof is used instead. In standard statistical
practice, ddof=1 provides an unbiased estimator of the variance
of the infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables. The
standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dtype keyword can
alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.sum

	
MaskedArray.sum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4480]

	Return the sum of the array elements over the given axis.
Masked elements are set to 0 internally.

	Parameters:	axis : {None, -1, int}, optional

Axis along which the sum is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

	Returns:	sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified
axis removed. If self is a 0-d array, or if axis is None, a scalar
is returned. If an output array is specified, a reference to
out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.sum()
25
>>> print x.sum(axis=1)
[4 5 16]
>>> print x.sum(axis=0)
[8 5 12]
>>> print type(x.sum(axis=0, dtype=np.int64)[0])
<type 'numpy.int64'>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.var

	
MaskedArray.var(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4831]

	Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.

	Parameters:	a : array_like

Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance;
otherwise, a reference to the output array is returned.

See also

std, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.var(a)
0.20405951142311096

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932997387
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.20250000000000001

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.argmax

	
numpy.ma.argmax(a, axis=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6209]

	Returns array of indices of the maximum values along the given axis.
Masked values are treated as if they had the value fill_value.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	index_array : {integer_array}

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.argmin

	
numpy.ma.argmin(a, axis=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6201]

	Return array of indices to the minimum values along the given axis.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	{ndarray, scalar}

If multi-dimension input, returns a new ndarray of indices to the
minimum values along the given axis. Otherwise, returns a scalar
of index to the minimum values along the given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print x
[[-- --]
 [2 3]]
>>> print x.argmin(axis=0, fill_value=-1)
[0 0]
>>> print x.argmin(axis=0, fill_value=9)
[1 1]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.max

	
numpy.ma.max(obj, axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6025]

	Return the maximum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of maximum_fill_value().

	Returns:	amax : array_like

New array holding the result.
If out was specified, out is returned.

See also

	maximum_fill_value

	Returns the maximum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.min

	
numpy.ma.min(obj, axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6016]

	Return the minimum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of
the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of minimum_fill_value.

	Returns:	amin : array_like

New array holding the result.
If out was specified, out is returned.

See also

	minimum_fill_value

	Returns the minimum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.ptp

	
numpy.ma.ptp(obj, axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6034]

	Return (maximum - minimum) along the the given dimension
(i.e. peak-to-peak value).

	Parameters:	axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the
flattened array is used.

out : {None, array_like}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

	Returns:	ptp : ndarray.

A new array holding the result, unless out was
specified, in which case a reference to out is returned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argmax

	
MaskedArray.argmax(axis=None, fill_value=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5005]

	Returns array of indices of the maximum values along the given axis.
Masked values are treated as if they had the value fill_value.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	index_array : {integer_array}

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argmin

	
MaskedArray.argmin(axis=None, fill_value=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4963]

	Return array of indices to the minimum values along the given axis.

	Parameters:	axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

	Returns:	{ndarray, scalar}

If multi-dimension input, returns a new ndarray of indices to the
minimum values along the given axis. Otherwise, returns a scalar
of index to the minimum values along the given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print x
[[-- --]
 [2 3]]
>>> print x.argmin(axis=0, fill_value=-1)
[0 0]
>>> print x.argmin(axis=0, fill_value=9)
[1 1]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.max

	
MaskedArray.max(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5241]

	Return the maximum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of maximum_fill_value().

	Returns:	amax : array_like

New array holding the result.
If out was specified, out is returned.

See also

	maximum_fill_value

	Returns the maximum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.min

	
MaskedArray.min(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5142]

	Return the minimum along a given axis.

	Parameters:	axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of
the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of minimum_fill_value.

	Returns:	amin : array_like

New array holding the result.
If out was specified, out is returned.

See also

	minimum_fill_value

	Returns the minimum filling value for a given datatype.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.ptp

	
MaskedArray.ptp(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5301]

	Return (maximum - minimum) along the the given dimension
(i.e. peak-to-peak value).

	Parameters:	axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the
flattened array is used.

out : {None, array_like}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

	Returns:	ptp : ndarray.

A new array holding the result, unless out was
specified, in which case a reference to out is returned.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.argsort

	
numpy.ma.argsort(a, axis=None, kind='quicksort', order=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6191]

	Return an ndarray of indices that sort the array along the
specified axis. Masked values are filled beforehand to
fill_value.

	Parameters:	axis : int, optional

Axis along which to sort. The default is -1 (last axis).
If None, the flattened array is used.

fill_value : var, optional

Value used to fill the array before sorting.
The default is the fill_value attribute of the input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

	Returns:	index_array : ndarray, int

Array of indices that sort a along the specified axis.
In other words, a[index_array] yields a sorted a.

See also

	sort

	Describes sorting algorithms used.

	lexsort

	Indirect stable sort with multiple keys.

	ndarray.sort

	Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.argsort()
array([1, 0, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.sort

	
numpy.ma.sort(a, axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6221]

	Sort the array, in-place

	Parameters:	a : array_like

Array to be sorted.

axis : int, optional

Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices
(at the end of the array) (True) or lower indices (at the beginning).
When the array contains unmasked values of the largest (or smallest if
False) representable value of the datatype the ordering of these values
and the masked values is undefined. To enforce the masked values are
at the end (beginning) in this case one must sort the mask.

fill_value : {var}, optional

Value used internally for the masked values.
If fill_value is not None, it supersedes endwith.

	Returns:	sorted_array : ndarray

Array of the same type and shape as a.

See also

	ndarray.sort

	Method to sort an array in-place.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print a
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print a
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print a
[1 -- -- 3 5]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.argsort

	
MaskedArray.argsort(axis=None, kind='quicksort', order=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4909]

	Return an ndarray of indices that sort the array along the
specified axis. Masked values are filled beforehand to
fill_value.

	Parameters:	axis : int, optional

Axis along which to sort. The default is -1 (last axis).
If None, the flattened array is used.

fill_value : var, optional

Value used to fill the array before sorting.
The default is the fill_value attribute of the input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

	Returns:	index_array : ndarray, int

Array of indices that sort a along the specified axis.
In other words, a[index_array] yields a sorted a.

See also

	sort

	Describes sorting algorithms used.

	lexsort

	Indirect stable sort with multiple keys.

	ndarray.sort

	Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.argsort()
array([1, 0, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.sort

	
MaskedArray.sort(axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5043]

	Sort the array, in-place

	Parameters:	a : array_like

Array to be sorted.

axis : int, optional

Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices
(at the end of the array) (True) or lower indices (at the beginning).
When the array contains unmasked values of the largest (or smallest if
False) representable value of the datatype the ordering of these values
and the masked values is undefined. To enforce the masked values are
at the end (beginning) in this case one must sort the mask.

fill_value : {var}, optional

Value used internally for the masked values.
If fill_value is not None, it supersedes endwith.

	Returns:	sorted_array : ndarray

Array of the same type and shape as a.

See also

	ndarray.sort

	Method to sort an array in-place.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print a
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print a
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print a
[1 -- -- 3 5]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.diag

	
numpy.ma.diag(v, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6339]

	Extract a diagonal or construct a diagonal array.

This function is the equivalent of numpy.diag that takes masked
values into account, see numpy.diag for details.

See also

	numpy.diag

	Equivalent function for ndarrays.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.dot

	
numpy.ma.dot(a, b, strict=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L996]

	Return the dot product of two arrays.

Note

Works only with 2-D arrays at the moment.

This function is the equivalent of numpy.dot that takes masked values
into account, see numpy.dot for details.

	Parameters:	a, b : ndarray

Inputs arrays.

strict : bool, optional

Whether masked data are propagated (True) or set to 0 (False) for the
computation. Default is False.
Propagating the mask means that if a masked value appears in a row or
column, the whole row or column is considered masked.

See also

	numpy.dot

	Equivalent function for ndarrays.

Examples

>>> a = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
>>> b = ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
>>> np.ma.dot(a, b)
masked_array(data =
 [[21 26]
 [45 64]],
 mask =
 [[False False]
 [False False]],
 fill_value = 999999)
>>> np.ma.dot(a, b, strict=True)
masked_array(data =
 [[-- --]
 [-- 64]],
 mask =
 [[True True]
 [True False]],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.identity

	
numpy.ma.identity(n, dtype=None) = <numpy.ma.core._convert2ma instance at 0x00000000046BB208>

	Return the identity array.

The identity array is a square array with ones on
the main diagonal.

	Parameters:	n : int

Number of rows (and columns) in n x n output.

dtype : data-type, optional

Data-type of the output. Defaults to float.

	Returns:	out : ndarray

n x n array with its main diagonal set to one,
and all other elements 0.

Examples

>>> np.identity(3)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.inner

	
numpy.ma.inner(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6829]

	Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex
conjugation), in higher dimensions a sum product over the last axes.

	Parameters:	a, b : array_like

If a and b are nonscalar, their last dimensions of must match.

	Returns:	out : ndarray

out.shape = a.shape[:-1] + b.shape[:-1]

	Raises:	ValueError

If the last dimension of a and b has different size.

See also

	tensordot

	Sum products over arbitrary axes.

	dot

	Generalised matrix product, using second last dimension of b.

	einsum

	Einstein summation convention.

Notes

Masked values are replaced by 0.

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[14, 38, 62],
 [86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],
 [0., 7.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.innerproduct

	
numpy.ma.innerproduct(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6829]

	Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex
conjugation), in higher dimensions a sum product over the last axes.

	Parameters:	a, b : array_like

If a and b are nonscalar, their last dimensions of must match.

	Returns:	out : ndarray

out.shape = a.shape[:-1] + b.shape[:-1]

	Raises:	ValueError

If the last dimension of a and b has different size.

See also

	tensordot

	Sum products over arbitrary axes.

	dot

	Generalised matrix product, using second last dimension of b.

	einsum

	Einstein summation convention.

Notes

Masked values are replaced by 0.

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[14, 38, 62],
 [86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],
 [0., 7.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.outer

	
numpy.ma.outer(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6852]

	Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and
b = [b0, b1, ..., bN],
the outer product [R50] is:

[[a0*b0 a0*b1 ... a0*bN]
 [a1*b0 .
 [... .
 [aM*b0 aM*bN]]

	Parameters:	a : (M,) array_like

First input vector. Input is flattened if
not already 1-dimensional.

b : (N,) array_like

Second input vector. Input is flattened if
not already 1-dimensional.

out : (M, N) ndarray, optional

A location where the result is stored

New in version 1.9.0.

	Returns:	out : (M, N) ndarray

out[i, j] = a[i] * b[j]

See also

inner, einsum

Notes

Masked values are replaced by 0.

References

	[R50]	(1, 2) : G. H. Golub and C. F. van Loan, Matrix Computations, 3rd
ed., Baltimore, MD, Johns Hopkins University Press, 1996,
pg. 8.

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
 [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
 [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
 [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
 [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
 [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
 [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],
 [b, bb, bbb],
 [c, cc, ccc]], dtype=object)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.outerproduct

	
numpy.ma.outerproduct(a, b)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6852]

	Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and
b = [b0, b1, ..., bN],
the outer product [R51] is:

[[a0*b0 a0*b1 ... a0*bN]
 [a1*b0 .
 [... .
 [aM*b0 aM*bN]]

	Parameters:	a : (M,) array_like

First input vector. Input is flattened if
not already 1-dimensional.

b : (N,) array_like

Second input vector. Input is flattened if
not already 1-dimensional.

out : (M, N) ndarray, optional

A location where the result is stored

New in version 1.9.0.

	Returns:	out : (M, N) ndarray

out[i, j] = a[i] * b[j]

See also

inner, einsum

Notes

Masked values are replaced by 0.

References

	[R51]	(1, 2) : G. H. Golub and C. F. van Loan, Matrix Computations, 3rd
ed., Baltimore, MD, Johns Hopkins University Press, 1996,
pg. 8.

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.],
 [-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
 [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
 [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
 [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
 [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
 [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
 [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],
 [b, bb, bbb],
 [c, cc, ccc]], dtype=object)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.trace

	
numpy.ma.trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None) a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) = <numpy.ma.core._frommethod instance at 0x0000000004699D88>

	
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.transpose

	
numpy.ma.transpose(a, axes=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6504]

	Permute the dimensions of an array.

This function is exactly equivalent to numpy.transpose.

See also

	numpy.transpose

	Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
>>>> x
masked_array(data =
 [[0 1]
 [2 --]],
 mask =
 [[False False]
 [False True]],
 fill_value = 999999)
>>> ma.transpose(x)
masked_array(data =
 [[0 2]
 [1 --]],
 mask =
 [[False False]
 [False True]],
 fill_value = 999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.trace

	
MaskedArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4465]

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.transpose

	
MaskedArray.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters:	axes : None, tuple of ints, or n ints

	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns:	out : ndarray

View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.vander

	
numpy.ma.vander(x, n=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1885]

	Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The
order of the powers is determined by the increasing boolean argument.
Specifically, when increasing is False, the i-th output column is
the input vector raised element-wise to the power of N - i - 1. Such
a matrix with a geometric progression in each row is named for Alexandre-
Theophile Vandermonde.

	Parameters:	x : array_like

1-D input array.

N : int, optional

Number of columns in the output. If N is not specified, a square
array is returned (N = len(x)).

increasing : bool, optional

Order of the powers of the columns. If True, the powers increase
from left to right, if False (the default) they are reversed.

New in version 1.9.0.

	Returns:	out : ndarray

Vandermonde matrix. If increasing is False, the first column is
x^(N-1), the second x^(N-2) and so forth. If increasing is
True, the columns are x^0, x^1, ..., x^(N-1).

See also

polynomial.polynomial.polyvander

Notes

Masked values in the input array result in rows of zeros.

Examples

>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[1, 1, 1],
 [4, 2, 1],
 [9, 3, 1],
 [25, 5, 1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[1, 1, 1],
 [4, 2, 1],
 [9, 3, 1],
 [25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[1, 1, 1, 1],
 [8, 4, 2, 1],
 [27, 9, 3, 1],
 [125, 25, 5, 1]])
>>> np.vander(x, increasing=True)
array([[1, 1, 1, 1],
 [1, 2, 4, 8],
 [1, 3, 9, 27],
 [1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product
of the differences between the values of the input vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.polyfit

	
numpy.ma.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1897]

	Least squares polynomial fit.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg
to points (x, y). Returns a vector of coefficients p that minimises
the squared error.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.

w : array_like, shape (M,), optional

weights to apply to the y-coordinates of the sample points.

cov : bool, optional

Return the estimate and the covariance matrix of the estimate
If full is True, then cov is not returned.

	Returns:	p : ndarray, shape (M,) or (M, K)

Polynomial coefficients, highest power first. If y was 2-D, the
coefficients for k-th data set are in p[:,k].

residuals, rank, singular_values, rcond :

Present only if full = True. Residuals of the least-squares fit,
the effective rank of the scaled Vandermonde coefficient matrix,
its singular values, and the specified value of rcond. For more
details, see linalg.lstsq.

V : ndarray, shape (M,M) or (M,M,K)

Present only if full = False and cov`=True. The covariance
matrix of the polynomial coefficient estimates. The diagonal of
this matrix are the variance estimates for each coefficient. If y
is a 2-D array, then the covariance matrix for the `k-th data set
are in V[:,:,k]

	Warns:	RankWarning

The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)

See also

	polyval

	Computes polynomial values.

	linalg.lstsq

	Computes a least-squares fit.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

Any masked values in x is propagated in y, and vice-versa.

References

	[R52]	Wikipedia, “Curve fitting”,
http://en.wikipedia.org/wiki/Curve_fitting

	[R53]	Wikipedia, “Polynomial interpolation”,
http://en.wikipedia.org/wiki/Polynomial_interpolation

Examples

>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([0.08703704, -0.81349206, 1.69312169, -0.03968254])

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

>>> p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
-0.80000000000000204
>>> p30(5)
-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-ma-polyfit-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.around

	
numpy.ma.around = <numpy.ma.core._MaskedUnaryOperation instance at 0x000000000467FBC8>

	Round an array to the given number of decimals.

Refer to around for full documentation.

See also

	around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.clip

	
numpy.ma.clip(a, a_min, a_max, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1566]

	Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to
the interval edges. For example, if an interval of [0, 1]
is specified, values smaller than 0 become 0, and values larger
than 1 become 1.

	Parameters:	a : array_like

Array containing elements to clip.

a_min : scalar or array_like

Minimum value.

a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will
be broadcasted to the shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input
array for in-place clipping. out must be of the right shape
to hold the output. Its type is preserved.

	Returns:	clipped_array : ndarray

An array with the elements of a, but where values
< a_min are replaced with a_min, and those > a_max
with a_max.

See also

	numpy.doc.ufuncs

	Section “Output arguments”

Examples

>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.round

	
numpy.ma.round(a, decimals=0, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6796]

	Return a copy of a, rounded to ‘decimals’ places.

When ‘decimals’ is negative, it specifies the number of positions
to the left of the decimal point. The real and imaginary parts of
complex numbers are rounded separately. Nothing is done if the
array is not of float type and ‘decimals’ is greater than or equal
to 0.

	Parameters:	decimals : int

Number of decimals to round to. May be negative.

out : array_like

Existing array to use for output.
If not given, returns a default copy of a.

Notes

If out is given and does not have a mask attribute, the mask of a
is lost!

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.clip

	
MaskedArray.clip(a_min, a_max, out=None)

	Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

	numpy.clip

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.MaskedArray.round

	
MaskedArray.round(decimals=0, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4886]

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

	numpy.around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.allequal

	
numpy.ma.allequal(a, b, fill_value=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6869]

	Return True if all entries of a and b are equal, using
fill_value as a truth value where either or both are masked.

	Parameters:	a, b : array_like

Input arrays to compare.

fill_value : bool, optional

Whether masked values in a or b are considered equal (True) or not
(False).

	Returns:	y : bool

Returns True if the two arrays are equal within the given
tolerance, False otherwise. If either array contains NaN,
then False is returned.

See also

all, any, numpy.ma.allclose

Examples

>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data = [10000000000.0 1e-07 --],
 mask = [False False True],
 fill_value=1e+20)

>>> b = array([1e10, 1e-7, -42.0])
>>> b
array([1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
>>> ma.allequal(a, b, fill_value=False)
False
>>> ma.allequal(a, b)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.allclose

	
numpy.ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6926]

	Returns True if two arrays are element-wise equal within a tolerance.

This function is equivalent to allclose except that masked values
are treated as equal (default) or unequal, depending on the masked_equal
argument.

	Parameters:	a, b : array_like

Input arrays to compare.

masked_equal : bool, optional

Whether masked values in a and b are considered equal (True) or not
(False). They are considered equal by default.

rtol : float, optional

Relative tolerance. The relative difference is equal to rtol * b.
Default is 1e-5.

atol : float, optional

Absolute tolerance. The absolute difference is equal to atol.
Default is 1e-8.

	Returns:	y : bool

Returns True if the two arrays are equal within the given
tolerance, False otherwise. If either array contains NaN, then
False is returned.

See also

all, any

	numpy.allclose

	the non-masked allclose.

Notes

If the following equation is element-wise True, then allclose returns
True:

absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))

Return True if all elements of a and b are equal subject to
given tolerances.

Examples

>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data = [10000000000.0 1e-07 --],
 mask = [False False True],
 fill_value = 1e+20)
>>> b = ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
False

>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
True
>>> ma.allclose(a, b, masked_equal=False)
False

Masked values are not compared directly.

>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
True
>>> ma.allclose(a, b, masked_equal=False)
False

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.apply_along_axis

	
numpy.ma.apply_along_axis(func1d, axis, arr, *args, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L327]

	Apply a function to 1-D slices along the given axis.

Execute func1d(a, *args) where func1d operates on 1-D arrays and a
is a 1-D slice of arr along axis.

	Parameters:	func1d : function

This function should accept 1-D arrays. It is applied to 1-D
slices of arr along the specified axis.

axis : integer

Axis along which arr is sliced.

arr : ndarray

Input array.

args : any

Additional arguments to func1d.

kwargs: any

Additional named arguments to func1d.

New in version 1.9.0.

	Returns:	apply_along_axis : ndarray

The output array. The shape of outarr is identical to the shape of
arr, except along the axis dimension, where the length of outarr
is equal to the size of the return value of func1d. If func1d
returns a scalar outarr will have one fewer dimensions than arr.

See also

	apply_over_axes

	Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])

For a function that doesn’t return a scalar, the number of dimensions in
outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
 [3, 4, 9],
 [2, 5, 6]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.arange

	
numpy.ma.arange([start,]stop, [step,]dtype=None) = <numpy.ma.core._convert2ma instance at 0x0000000004699F48>

	Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop)
(in other words, the interval including start but excluding stop).
For integer arguments the function is equivalent to the Python built-in
range [http://docs.python.org/lib/built-in-funcs.html] function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use linspace for these cases.

	Parameters:	start : number, optional

Start of interval. The interval includes this value. The default
start value is 0.

stop : number

End of interval. The interval does not include this value, except
in some cases where step is not an integer and floating point
round-off affects the length of out.

step : number, optional

Spacing between values. For any output out, this is the distance
between two adjacent values, out[i+1] - out[i]. The default
step size is 1. If step is specified, start must also be given.

dtype : dtype

The type of the output array. If dtype is not given, infer the data
type from the other input arguments.

	Returns:	arange : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is
ceil((stop - start)/step). Because of floating point overflow,
this rule may result in the last element of out being greater
than stop.

See also

	linspace

	Evenly spaced numbers with careful handling of endpoints.

	ogrid

	Arrays of evenly spaced numbers in N-dimensions.

	mgrid

	Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.choose

	
numpy.ma.choose(indices, choices, out=None, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6722]

	Use an index array to construct a new array from a set of choices.

Given an array of integers and a set of n choice arrays, this method
will create a new array that merges each of the choice arrays. Where a
value in a is i, the new array will have the value that choices[i]
contains in the same place.

	Parameters:	a : ndarray of ints

This array must contain integers in [0, n-1], where n is the
number of choices.

choices : sequence of arrays

Choice arrays. The index array and all of the choices should be
broadcastable to the same shape.

out : array, optional

If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave.

	‘raise’ : raise an error

	‘wrap’ : wrap around

	‘clip’ : clip to the range

	Returns:	merged_array : array

See also

	choose

	equivalent function

Examples

>>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
>>> a = np.array([2, 1, 0])
>>> np.ma.choose(a, choice)
masked_array(data = [3 2 1],
 mask = False,
 fill_value=999999)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.ediff1d

	
numpy.ma.ediff1d(arr, to_end=None, to_begin=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\extras.py#L1058]

	Compute the differences between consecutive elements of an array.

This function is the equivalent of numpy.ediff1d that takes masked
values into account, see numpy.ediff1d for details.

See also

	numpy.ediff1d

	Equivalent function for ndarrays.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.indices

	
numpy.ma.indices(dimensions, dtype=<type 'int'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1782]

	Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,...
varying only along the corresponding axis.

	Parameters:	dimensions : sequence of ints

The shape of the grid.

dtype : dtype, optional

Data type of the result.

	Returns:	grid : ndarray

The array of grid indices,
grid.shape = (len(dimensions),) + tuple(dimensions).

See also

mgrid, meshgrid

Notes

The output shape is obtained by prepending the number of dimensions
in front of the tuple of dimensions, i.e. if dimensions is a tuple
(r0, ..., rN-1) of length N, the output shape is
(N,r0,...,rN-1).

The subarrays grid[k] contains the N-D array of indices along the
k-th axis. Explicitly:

grid[k,i0,i1,...,iN-1] = ik

Examples

>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],
 [1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],
 [0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],
 [4, 5, 6]])

Note that it would be more straightforward in the above example to
extract the required elements directly with x[:2, :3].

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Masked array operations

numpy.ma.where

	
numpy.ma.where(condition, x=None, y=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L6645]

	Return a masked array with elements from x or y, depending on condition.

Returns a masked array, shaped like condition, where the elements
are from x when condition is True, and from y otherwise.
If neither x nor y are given, the function returns a tuple of
indices where condition is True (the result of
condition.nonzero()).

	Parameters:	condition : array_like, bool

The condition to meet. For each True element, yield the corresponding
element from x, otherwise from y.

x, y : array_like, optional

Values from which to choose. x and y need to have the same shape
as condition, or be broadcast-able to that shape.

	Returns:	out : MaskedArray or tuple of ndarrays

The resulting masked array if x and y were given, otherwise
the result of condition.nonzero().

See also

	numpy.where

	Equivalent function in the top-level NumPy module.

Examples

>>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
... [1, 0, 1],
... [0, 1, 0]])
>>> print x
[[0.0 -- 2.0]
 [-- 4.0 --]
 [6.0 -- 8.0]]
>>> np.ma.where(x > 5) # return the indices where x > 5
(array([2, 2]), array([0, 2]))

>>> print np.ma.where(x > 5, x, -3.1416)
[[-3.1416 -- -3.1416]
 [-- -3.1416 --]
 [6.0 -- 8.0]]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Mathematical functions

Trigonometric functions

	sin(x[,out])
	Trigonometric sine, element-wise.

	cos(x[,out])
	Cosine element-wise.

	tan(x[,out])
	Compute tangent element-wise.

	arcsin(x[,out])
	Inverse sine, element-wise.

	arccos(x[,out])
	Trigonometric inverse cosine, element-wise.

	arctan(x[,out])
	Trigonometric inverse tangent, element-wise.

	hypot(x1,x2[,out])
	Given the “legs” of a right triangle, return its hypotenuse.

	arctan2(x1,x2[,out])
	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

	degrees(x[,out])
	Convert angles from radians to degrees.

	radians(x[,out])
	Convert angles from degrees to radians.

	unwrap(p[,discont,axis])
	Unwrap by changing deltas between values to 2*pi complement.

	deg2rad(x[,out])
	Convert angles from degrees to radians.

	rad2deg(x[,out])
	Convert angles from radians to degrees.

Hyperbolic functions

	sinh(x[,out])
	Hyperbolic sine, element-wise.

	cosh(x[,out])
	Hyperbolic cosine, element-wise.

	tanh(x[,out])
	Compute hyperbolic tangent element-wise.

	arcsinh(x[,out])
	Inverse hyperbolic sine element-wise.

	arccosh(x[,out])
	Inverse hyperbolic cosine, element-wise.

	arctanh(x[,out])
	Inverse hyperbolic tangent element-wise.

Rounding

	around(a[,decimals,out])
	Evenly round to the given number of decimals.

	round_(a[,decimals,out])
	Round an array to the given number of decimals.

	rint(x[,out])
	Round elements of the array to the nearest integer.

	fix(x[,y])
	Round to nearest integer towards zero.

	floor(x[,out])
	Return the floor of the input, element-wise.

	ceil(x[,out])
	Return the ceiling of the input, element-wise.

	trunc(x[,out])
	Return the truncated value of the input, element-wise.

Sums, products, differences

	prod(a[,axis,dtype,out,keepdims])
	Return the product of array elements over a given axis.

	sum(a[,axis,dtype,out,keepdims])
	Sum of array elements over a given axis.

	nansum(a[,axis,dtype,out,keepdims])
	Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero.

	cumprod(a[,axis,dtype,out])
	Return the cumulative product of elements along a given axis.

	cumsum(a[,axis,dtype,out])
	Return the cumulative sum of the elements along a given axis.

	diff(a[,n,axis])
	Calculate the n-th order discrete difference along given axis.

	ediff1d(ary[,to_end,to_begin])
	The differences between consecutive elements of an array.

	gradient(f,*varargs,**kwargs)
	Return the gradient of an N-dimensional array.

	cross(a,b[,axisa,axisb,axisc,axis])
	Return the cross product of two (arrays of) vectors.

	trapz(y[,x,dx,axis])
	Integrate along the given axis using the composite trapezoidal rule.

Exponents and logarithms

	exp(x[,out])
	Calculate the exponential of all elements in the input array.

	expm1(x[,out])
	Calculate exp(x) - 1 for all elements in the array.

	exp2(x[,out])
	Calculate 2**p for all p in the input array.

	log(x[,out])
	Natural logarithm, element-wise.

	log10(x[,out])
	Return the base 10 logarithm of the input array, element-wise.

	log2(x[,out])
	Base-2 logarithm of x.

	log1p(x[,out])
	Return the natural logarithm of one plus the input array, element-wise.

	logaddexp(x1,x2[,out])
	Logarithm of the sum of exponentiations of the inputs.

	logaddexp2(x1,x2[,out])
	Logarithm of the sum of exponentiations of the inputs in base-2.

Other special functions

	i0(x)
	Modified Bessel function of the first kind, order 0.

	sinc(x)
	Return the sinc function.

Floating point routines

	signbit(x[,out])
	Returns element-wise True where signbit is set (less than zero).

	copysign(x1,x2[,out])
	Change the sign of x1 to that of x2, element-wise.

	frexp(x[,out1,out2])
	Decompose the elements of x into mantissa and twos exponent.

	ldexp(x1,x2[,out])
	Returns x1 * 2**x2, element-wise.

Arithmetic operations

	add(x1,x2[,out])
	Add arguments element-wise.

	reciprocal(x[,out])
	Return the reciprocal of the argument, element-wise.

	negative(x[,out])
	Numerical negative, element-wise.

	multiply(x1,x2[,out])
	Multiply arguments element-wise.

	divide(x1,x2[,out])
	Divide arguments element-wise.

	power(x1,x2[,out])
	First array elements raised to powers from second array, element-wise.

	subtract(x1,x2[,out])
	Subtract arguments, element-wise.

	true_divide(x1,x2[,out])
	Returns a true division of the inputs, element-wise.

	floor_divide(x1,x2[,out])
	Return the largest integer smaller or equal to the division of the inputs.

	fmod(x1,x2[,out])
	Return the element-wise remainder of division.

	mod(x1,x2[,out])
	Return element-wise remainder of division.

	modf(x[,out1,out2])
	Return the fractional and integral parts of an array, element-wise.

	remainder(x1,x2[,out])
	Return element-wise remainder of division.

Handling complex numbers

	angle(z[,deg])
	Return the angle of the complex argument.

	real(val)
	Return the real part of the elements of the array.

	imag(val)
	Return the imaginary part of the elements of the array.

	conj(x[,out])
	Return the complex conjugate, element-wise.

Miscellaneous

	convolve(a,v[,mode])
	Returns the discrete, linear convolution of two one-dimensional sequences.

	clip(a,a_min,a_max[,out])
	Clip (limit) the values in an array.

	sqrt(x[,out])
	Return the positive square-root of an array, element-wise.

	square(x[,out])
	Return the element-wise square of the input.

	absolute(x[,out])
	Calculate the absolute value element-wise.

	fabs(x[,out])
	Compute the absolute values element-wise.

	sign(x[,out])
	Returns an element-wise indication of the sign of a number.

	maximum(x1,x2[,out])
	Element-wise maximum of array elements.

	minimum(x1,x2[,out])
	Element-wise minimum of array elements.

	fmax(x1,x2[,out])
	Element-wise maximum of array elements.

	fmin(x1,x2[,out])
	Element-wise minimum of array elements.

	nan_to_num(x)
	Replace nan with zero and inf with finite numbers.

	real_if_close(a[,tol])
	If complex input returns a real array if complex parts are close to zero.

	interp(x,xp,fp[,left,right])
	One-dimensional linear interpolation.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.sin

	
numpy.sin(x[, out]) = <ufunc 'sin'>

	Trigonometric sine, element-wise.

	Parameters:	x : array_like

Angle, in radians ([image: 2 \pi] rad equals 360 degrees).

	Returns:	y : array_like

The sine of each element of x.

See also

arcsin, sinh, cos

Notes

The sine is one of the fundamental functions of trigonometry (the
mathematical study of triangles). Consider a circle of radius 1
centered on the origin. A ray comes in from the [image: +x] axis, makes
an angle at the origin (measured counter-clockwise from that axis), and
departs from the origin. The [image: y] coordinate of the outgoing
ray’s intersection with the unit circle is the sine of that angle. It
ranges from -1 for [image: x=3\pi / 2] to +1 for [image: \pi / 2.] The
function has zeroes where the angle is a multiple of [image: \pi].
Sines of angles between [image: \pi] and [image: 2\pi] are negative.
The numerous properties of the sine and related functions are included
in any standard trigonometry text.

Examples

Print sine of one angle:

>>> np.sin(np.pi/2.)
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.)
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-sin-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.cos

	
numpy.cos(x[, out]) = <ufunc 'cos'>

	Cosine element-wise.

	Parameters:	x : array_like

Input array in radians.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding cosine values.

	Raises:	ValueError: invalid return array shape

if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

Examples

>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.tan

	
numpy.tan(x[, out]) = <ufunc 'tan'>

	Compute tangent element-wise.

Equivalent to np.sin(x)/np.cos(x) element-wise.

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding tangent values.

	Raises:	ValueError: invalid return array shape

if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

Examples

>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.arcsin

	
numpy.arcsin(x[, out]) = <ufunc 'arcsin'>

	Inverse sine, element-wise.

	Parameters:	x : array_like

y-coordinate on the unit circle.

out : ndarray, optional

Array of the same shape as x, in which to store the results.
See doc.ufuncs (Section “Output arguments”) for more details.

	Returns:	angle : ndarray

The inverse sine of each element in x, in radians and in the
closed interval [-pi/2, pi/2]. If x is a scalar, a scalar
is returned, otherwise an array.

See also

sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

Notes

arcsin is a multivalued function: for each x there are infinitely
many numbers z such that [image: sin(z) = x]. The convention is to
return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arcsin always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arcsin is a complex analytic function that
has, by convention, the branch cuts [-inf, -1] and [1, inf] and is
continuous from above on the former and from below on the latter.

The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
10th printing, New York: Dover, 1964, pp. 79ff.
http://www.math.sfu.ca/~cbm/aands/

Examples

>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.arccos

	
numpy.arccos(x[, out]) = <ufunc 'arccos'>

	Trigonometric inverse cosine, element-wise.

The inverse of cos so that, if y = cos(x), then x = arccos(y).

	Parameters:	x : array_like

x-coordinate on the unit circle.
For real arguments, the domain is [-1, 1].

out : ndarray, optional

Array of the same shape as a, to store results in. See
doc.ufuncs (Section “Output arguments”) for more details.

	Returns:	angle : ndarray

The angle of the ray intersecting the unit circle at the given
x-coordinate in radians [0, pi]. If x is a scalar then a
scalar is returned, otherwise an array of the same shape as x
is returned.

See also

cos, arctan, arcsin, emath.arccos

Notes

arccos is a multivalued function: for each x there are infinitely
many numbers z such that cos(z) = x. The convention is to return
the angle z whose real part lies in [0, pi].

For real-valued input data types, arccos always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytic function that
has branch cuts [-inf, -1] and [1, inf] and is continuous from
above on the former and from below on the latter.

The inverse cos is also known as acos or cos^-1.

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-arccos-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.arctan

	
numpy.arctan(x[, out]) = <ufunc 'arctan'>

	Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if y = tan(x) then x = arctan(y).

	Parameters:	x : array_like

Input values. arctan is applied to each element of x.

	Returns:	out : ndarray

Out has the same shape as x. Its real part is in
[-pi/2, pi/2] (arctan(+/-inf) returns +/-pi/2).
It is a scalar if x is a scalar.

See also

	arctan2

	The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.

	angle

	Argument of complex values.

Notes

arctan is a multi-valued function: for each x there are infinitely
many numbers z such that tan(z) = x. The convention is to return
the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arctan always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctan is a complex analytic function that
has [1j, infj] and [-1j, -infj] as branch cuts, and is continuous
from the left on the former and from the right on the latter.

The inverse tangent is also known as atan or tan^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
10th printing, New York: Dover, 1964, pp. 79.
http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> np.arctan([0, 1])
array([0. , 0.78539816])

>>> np.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-arctan-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.hypot

	
numpy.hypot(x1, x2[, out]) = <ufunc 'hypot'>

	Given the “legs” of a right triangle, return its hypotenuse.

Equivalent to sqrt(x1**2 + x2**2), element-wise. If x1 or
x2 is scalar_like (i.e., unambiguously cast-able to a scalar type),
it is broadcast for use with each element of the other argument.
(See Examples)

	Parameters:	x1, x2 : array_like

Leg of the triangle(s).

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	z : ndarray

The hypotenuse of the triangle(s).

Examples

>>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3)))
array([[5., 5., 5.],
 [5., 5., 5.],
 [5., 5., 5.]])

Example showing broadcast of scalar_like argument:

>>> np.hypot(3*np.ones((3, 3)), [4])
array([[5., 5., 5.],
 [5., 5., 5.],
 [5., 5., 5.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.arctan2

	
numpy.arctan2(x1, x2[, out]) = <ufunc 'arctan2'>

	Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is
the signed angle in radians between the ray ending at the origin and
passing through the point (1,0), and the ray ending at the origin and
passing through the point (x2, x1). (Note the role reversal: the
“y-coordinate” is the first function parameter, the “x-coordinate”
is the second.) By IEEE convention, this function is defined for
x2 = +/-0 and for either or both of x1 and x2 = +/-inf (see
Notes for specific values).

This function is not defined for complex-valued arguments; for the
so-called argument of complex values, use angle.

	Parameters:	x1 : array_like, real-valued

y-coordinates.

x2 : array_like, real-valued

x-coordinates. x2 must be broadcastable to match the shape of
x1 or vice versa.

	Returns:	angle : ndarray

Array of angles in radians, in the range [-pi, pi].

See also

arctan, tan, angle

Notes

arctan2 is identical to the atan2 function of the underlying
C library. The following special values are defined in the C
standard: [R6]

	x1
	x2
	arctan2(x1,x2)

	+/- 0
	+0
	+/- 0

	+/- 0
	-0
	+/- pi

	> 0
	+/-inf
	+0 / +pi

	< 0
	+/-inf
	-0 / -pi

	+/-inf
	+inf
	+/- (pi/4)

	+/-inf
	-inf
	+/- (3*pi/4)

Note that +0 and -0 are distinct floating point numbers, as are +inf
and -inf.

References

	[R6]	(1, 2) ISO/IEC standard 9899:1999, “Programming language C.”

Examples

Consider four points in different quadrants:

>>> x = np.array([-1, +1, +1, -1])
>>> y = np.array([-1, -1, +1, +1])
>>> np.arctan2(y, x) * 180 / np.pi
array([-135., -45., 45., 135.])

Note the order of the parameters. arctan2 is defined also when x2 = 0
and at several other special points, obtaining values in
the range [-pi, pi]:

>>> np.arctan2([1., -1.], [0., 0.])
array([1.57079633, -1.57079633])
>>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
array([0. , 3.14159265, 0.78539816])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.degrees

	
numpy.degrees(x[, out]) = <ufunc 'degrees'>

	Convert angles from radians to degrees.

	Parameters:	x : array_like

Input array in radians.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray of floats

The corresponding degree values; if out was supplied this is a
reference to it.

See also

	rad2deg

	equivalent function

Examples

Convert a radian array to degrees

>>> rad = np.arange(12.)*np.pi/6
>>> np.degrees(rad)
array([0., 30., 60., 90., 120., 150., 180., 210., 240.,
 270., 300., 330.])

>>> out = np.zeros((rad.shape))
>>> r = degrees(rad, out)
>>> np.all(r == out)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.radians

	
numpy.radians(x[, out]) = <ufunc 'radians'>

	Convert angles from degrees to radians.

	Parameters:	x : array_like

Input array in degrees.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding radian values.

See also

	deg2rad

	equivalent function

Examples

Convert a degree array to radians

>>> deg = np.arange(12.) * 30.
>>> np.radians(deg)
array([0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,
 2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
 5.23598776, 5.75958653])

>>> out = np.zeros((deg.shape))
>>> ret = np.radians(deg, out)
>>> ret is out
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.unwrap

	
numpy.unwrap(p, discont=3.141592653589793, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1240]

	Unwrap by changing deltas between values to 2*pi complement.

Unwrap radian phase p by changing absolute jumps greater than
discont to their 2*pi complement along the given axis.

	Parameters:	p : array_like

Input array.

discont : float, optional

Maximum discontinuity between values, default is pi.

axis : int, optional

Axis along which unwrap will operate, default is the last axis.

	Returns:	out : ndarray

Output array.

See also

rad2deg, deg2rad

Notes

If the discontinuity in p is smaller than pi, but larger than
discont, no unwrapping is done because taking the 2*pi complement
would only make the discontinuity larger.

Examples

>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
>>> np.unwrap(phase)
array([0. , 0.78539816, 1.57079633, -0.78539816, 0.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.deg2rad

	
numpy.deg2rad(x[, out]) = <ufunc 'deg2rad'>

	Convert angles from degrees to radians.

	Parameters:	x : array_like

Angles in degrees.

	Returns:	y : ndarray

The corresponding angle in radians.

See also

	rad2deg

	Convert angles from radians to degrees.

	unwrap

	Remove large jumps in angle by wrapping.

Notes

New in version 1.3.0.

deg2rad(x) is x * pi / 180.

Examples

>>> np.deg2rad(180)
3.1415926535897931

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.rad2deg

	
numpy.rad2deg(x[, out]) = <ufunc 'rad2deg'>

	Convert angles from radians to degrees.

	Parameters:	x : array_like

Angle in radians.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	y : ndarray

The corresponding angle in degrees.

See also

	deg2rad

	Convert angles from degrees to radians.

	unwrap

	Remove large jumps in angle by wrapping.

Notes

New in version 1.3.0.

rad2deg(x) is 180 * x / pi.

Examples

>>> np.rad2deg(np.pi/2)
90.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.sinh

	
numpy.sinh(x[, out]) = <ufunc 'sinh'>

	Hyperbolic sine, element-wise.

Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or
-1j * np.sin(1j*x).

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding hyperbolic sine values.

	Raises:	ValueError: invalid return array shape

if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.

Examples

>>> np.sinh(0)
0.0
>>> np.sinh(np.pi*1j/2)
1j
>>> np.sinh(np.pi*1j) # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out2 = np.sinh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.cosh

	
numpy.cosh(x[, out]) = <ufunc 'cosh'>

	Hyperbolic cosine, element-wise.

Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np.cos(1j*x).

	Parameters:	x : array_like

Input array.

	Returns:	out : ndarray

Output array of same shape as x.

Examples

>>> np.cosh(0)
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-cosh-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.tanh

	
numpy.tanh(x[, out]) = <ufunc 'tanh'>

	Compute hyperbolic tangent element-wise.

Equivalent to np.sinh(x)/np.cosh(x) or -1j * np.tan(1j*x).

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

	Returns:	y : ndarray

The corresponding hyperbolic tangent values.

	Raises:	ValueError: invalid return array shape

if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it,
and returns a reference to out. (See Examples)

References

	[R248]	M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.
http://www.math.sfu.ca/~cbm/aands/

	[R249]	Wikipedia, “Hyperbolic function”,
http://en.wikipedia.org/wiki/Hyperbolic_function

Examples

>>> np.tanh((0, np.pi*1j, np.pi*1j/2))
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid return array shape

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.arcsinh

	
numpy.arcsinh(x[, out]) = <ufunc 'arcsinh'>

	Inverse hyperbolic sine element-wise.

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	out : ndarray

Array of of the same shape as x.

Notes

arcsinh is a multivalued function: for each x there are infinitely
many numbers z such that sinh(z) = x. The convention is to return the
z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh always returns real output.
For each value that cannot be expressed as a real number or infinity, it
returns nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytical function that
has branch cuts [1j, infj] and [-1j, -infj] and is continuous from
the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

	[R4]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	[R5]	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arcsinh

Examples

>>> np.arcsinh(np.array([np.e, 10.0]))
array([1.72538256, 2.99822295])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.arccosh

	
numpy.arccosh(x[, out]) = <ufunc 'arccosh'>

	Inverse hyperbolic cosine, element-wise.

	Parameters:	x : array_like

Input array.

out : ndarray, optional

Array of the same shape as x, to store results in.
See doc.ufuncs (Section “Output arguments”) for details.

	Returns:	arccosh : ndarray

Array of the same shape as x.

See also

cosh, arcsinh, sinh, arctanh, tanh

Notes

arccosh is a multivalued function: for each x there are infinitely
many numbers z such that cosh(z) = x. The convention is to return the
z whose imaginary part lies in [-pi, pi] and the real part in
[0, inf].

For real-valued input data types, arccosh always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields nan and sets the invalid floating point error flag.

For complex-valued input, arccosh is a complex analytical function that
has a branch cut [-inf, 1] and is continuous from above on it.

References

	[R2]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	[R3]	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arccosh

Examples

>>> np.arccosh([np.e, 10.0])
array([1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.arctanh

	
numpy.arctanh(x[, out]) = <ufunc 'arctanh'>

	Inverse hyperbolic tangent element-wise.

	Parameters:	x : array_like

Input array.

	Returns:	out : ndarray

Array of the same shape as x.

See also

emath.arctanh

Notes

arctanh is a multivalued function: for each x there are infinitely
many numbers z such that tanh(z) = x. The convention is to return
the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arctanh always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctanh is a complex analytical function
that has branch cuts [-1, -inf] and [1, inf] and is continuous from
above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as atanh or tanh^-1.

References

	[R7]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/

	[R8]	Wikipedia, “Inverse hyperbolic function”,
http://en.wikipedia.org/wiki/Arctanh

Examples

>>> np.arctanh([0, -0.5])
array([0. , -0.54930614])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.around

	
numpy.around(a, decimals=0, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2552]

	Evenly round to the given number of decimals.

	Parameters:	a : array_like

Input data.

decimals : int, optional

Number of decimal places to round to (default: 0). If
decimals is negative, it specifies the number of positions to
the left of the decimal point.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output, but the type of the output
values will be cast if necessary. See doc.ufuncs (Section
“Output arguments”) for details.

	Returns:	rounded_array : ndarray

An array of the same type as a, containing the rounded values.
Unless out was specified, a new array is created. A reference to
the result is returned.

The real and imaginary parts of complex numbers are rounded
separately. The result of rounding a float is a float.

See also

	ndarray.round

	equivalent method

ceil, fix, floor, rint, trunc

Notes

For values exactly halfway between rounded decimal values, Numpy
rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
-0.5 and 0.5 round to 0.0, etc. Results may also be surprising due
to the inexact representation of decimal fractions in the IEEE
floating point standard [R9] and errors introduced when scaling
by powers of ten.

References

	[R9]	(1, 2) “Lecture Notes on the Status of IEEE 754”, William Kahan,
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

	[R10]	“How Futile are Mindless Assessments of
Roundoff in Floating-Point Computation?”, William Kahan,
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

Examples

>>> np.around([0.37, 1.64])
array([0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
array([0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([0, 0, 0, 10])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.round

	
numpy.round_(a, decimals=0, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2625]

	Round an array to the given number of decimals.

Refer to around for full documentation.

See also

	around

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.rint

	
numpy.rint(x[, out]) = <ufunc 'rint'>

	Round elements of the array to the nearest integer.

	Parameters:	x : array_like

Input array.

	Returns:	out : {ndarray, scalar}

Output array is same shape and type as x.

See also

ceil, floor, trunc

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.rint(a)
array([-2., -2., -0., 0., 2., 2., 2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.fix

	
numpy.fix(x, y=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\ufunclike.py#L12]

	Round to nearest integer towards zero.

Round an array of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.

	Parameters:	x : array_like

An array of floats to be rounded

y : ndarray, optional

Output array

	Returns:	out : ndarray of floats

The array of rounded numbers

See also

trunc, floor, ceil

	around

	Round to given number of decimals

Examples

>>> np.fix(3.14)
3.0
>>> np.fix(3)
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([2., 2., -2., -2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.floor

	
numpy.floor(x[, out]) = <ufunc 'floor'>

	Return the floor of the input, element-wise.

The floor of the scalar x is the largest integer i, such that
i <= x. It is often denoted as [image: \lfloor x \rfloor].

	Parameters:	x : array_like

Input data.

	Returns:	y : {ndarray, scalar}

The floor of each element in x.

See also

ceil, trunc, rint

Notes

Some spreadsheet programs calculate the “floor-towards-zero”, in other
words floor(-2.5) == -2. NumPy instead uses the definition of
floor where floor(-2.5) == -3.

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.floor(a)
array([-2., -2., -1., 0., 1., 1., 2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.ceil

	
numpy.ceil(x[, out]) = <ufunc 'ceil'>

	Return the ceiling of the input, element-wise.

The ceil of the scalar x is the smallest integer i, such that
i >= x. It is often denoted as [image: \lceil x \rceil].

	Parameters:	x : array_like

Input data.

	Returns:	y : {ndarray, scalar}

The ceiling of each element in x, with float [http://docs.python.org/dev/library/functions.html#float] dtype.

See also

floor, trunc, rint

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.ceil(a)
array([-1., -1., -0., 1., 2., 2., 2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.trunc

	
numpy.trunc(x[, out]) = <ufunc 'trunc'>

	Return the truncated value of the input, element-wise.

The truncated value of the scalar x is the nearest integer i which
is closer to zero than x is. In short, the fractional part of the
signed number x is discarded.

	Parameters:	x : array_like

Input data.

	Returns:	y : {ndarray, scalar}

The truncated value of each element in x.

See also

ceil, floor, rint

Notes

New in version 1.3.0.

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.trunc(a)
array([-1., -1., -0., 0., 1., 1., 2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.prod

	
numpy.prod(a, axis=None, dtype=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2251]

	Return the product of array elements over a given axis.

	Parameters:	a : array_like

Input data.

axis : None or int or tuple of ints, optional

Axis or axes along which a product is performed.
The default (axis = None) is perform a product over all
the dimensions of the input array. axis may be negative, in
which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a product is performed on multiple
axes, instead of a single axis or all the axes as before.

dtype : data-type, optional

The data-type of the returned array, as well as of the accumulator
in which the elements are multiplied. By default, if a is of
integer type, dtype is the default platform integer. (Note: if
the type of a is unsigned, then so is dtype.) Otherwise,
the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output, but the type of the
output values will be cast if necessary.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	product_along_axis : ndarray, see dtype parameter above.

An array shaped as a but with the specified axis removed.
Returns a reference to out if specified.

See also

	ndarray.prod

	equivalent method

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is
raised on overflow. That means that, on a 32-bit platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16

Examples

By default, calculate the product of all elements:

>>> np.prod([1.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.],[3.,4.]])
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

If the type of x is unsigned, then the output type is
the unsigned platform integer:

>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> np.prod(x).dtype == np.uint
True

If x is of a signed integer type, then the output type
is the default platform integer:

>>> x = np.array([1, 2, 3], dtype=np.int8)
>>> np.prod(x).dtype == np.int
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.sum

	
numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1623]

	Sum of array elements over a given axis.

	Parameters:	a : array_like

Elements to sum.

axis : None or int or tuple of ints, optional

Axis or axes along which a sum is performed.
The default (axis = None) is perform a sum over all
the dimensions of the input array. axis may be negative, in
which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a sum is performed on multiple
axes, instead of a single axis or all the axes as before.

dtype : dtype, optional

The type of the returned array and of the accumulator in which
the elements are summed. By default, the dtype of a is used.
An exception is when a has an integer type with less precision
than the default platform integer. In that case, the default
platform integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is
created. If out is given, it must be of the appropriate shape
(the shape of a with axis removed, i.e.,
numpy.delete(a.shape, axis)). Its type is preserved. See
doc.ufuncs (Section “Output arguments”) for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	sum_along_axis : ndarray

An array with the same shape as a, with the specified
axis removed. If a is a 0-d array, or if axis is None, a scalar
is returned. If an output array is specified, a reference to
out is returned.

See also

	ndarray.sum

	Equivalent method.

	cumsum

	Cumulative sum of array elements.

	trapz

	Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])

If the accumulator is too small, overflow occurs:

>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
-128

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.nansum

	
numpy.nansum(a, axis=None, dtype=None, out=None, keepdims=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\nanfunctions.py#L424]

	Return the sum of array elements over a given axis treating Not a
Numbers (NaNs) as zero.

In Numpy versions <= 1.8 Nan is returned for slices that are all-NaN or
empty. In later versions zero is returned.

	Parameters:	a : array_like

Array containing numbers whose sum is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the sum is computed. The default is to compute the
sum of the flattened array.

dtype : data-type, optional

The type of the returned array and of the accumulator in which the
elements are summed. By default, the dtype of a is used. An
exception is when a has an integer type with less precision than
the platform (u)intp. In that case, the default will be either
(u)int32 or (u)int64 depending on whether the platform is 32 or 64
bits. For inexact inputs, dtype must be inexact.

New in version 1.8.0.

out : ndarray, optional

Alternate output array in which to place the result. The default
is None. If provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details. The casting of NaN to integer can yield
unexpected results.

New in version 1.8.0.

keepdims : bool, optional

If True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will
broadcast correctly against the original arr.

New in version 1.8.0.

	Returns:	y : ndarray or numpy scalar

See also

	numpy.sum

	Sum across array propagating NaNs.

	isnan

	Show which elements are NaN.

	isfinite

	Show which elements are not NaN or +/-inf.

Notes

If both positive and negative infinity are present, the sum will be Not
A Number (NaN).

Numpy integer arithmetic is modular. If the size of a sum exceeds the
size of an integer accumulator, its value will wrap around and the
result will be incorrect. Specifying dtype=double can alleviate
that problem.

Examples

>>> np.nansum(1)
1
>>> np.nansum([1])
1
>>> np.nansum([1, np.nan])
1.0
>>> a = np.array([[1, 1], [1, np.nan]])
>>> np.nansum(a)
3.0
>>> np.nansum(a, axis=0)
array([2., 1.])
>>> np.nansum([1, np.nan, np.inf])
inf
>>> np.nansum([1, np.nan, np.NINF])
-inf
>>> np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
nan

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.cumprod

	
numpy.cumprod(a, axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2347]

	Return the cumulative product of elements along a given axis.

	Parameters:	a : array_like

Input array.

axis : int, optional

Axis along which the cumulative product is computed. By default
the input is flattened.

dtype : dtype, optional

Type of the returned array, as well as of the accumulator in which
the elements are multiplied. If dtype is not specified, it
defaults to the dtype of a, unless a has an integer dtype with
a precision less than that of the default platform integer. In
that case, the default platform integer is used instead.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type of the resulting values will be cast if necessary.

	Returns:	cumprod : ndarray

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.

See also

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> a = np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumprod(a, dtype=float) # specify type of output
array([1., 2., 6., 24., 120., 720.])

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array([[1, 2, 3],
 [4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod(a,axis=1)
array([[1, 2, 6],
 [4, 20, 120]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.cumsum

	
numpy.cumsum(a, axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1917]

	Return the cumulative sum of the elements along a given axis.

	Parameters:	a : array_like

Input array.

axis : int, optional

Axis along which the cumulative sum is computed. The default
(None) is to compute the cumsum over the flattened array.

dtype : dtype, optional

Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary. See doc.ufuncs
(Section “Output arguments”) for more details.

	Returns:	cumsum_along_axis : ndarray.

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned. The
result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d array.

See also

	sum

	Sum array elements.

	trapz

	Integration of array values using the composite trapezoidal rule.

	diff

	Calculate the n-th order discrete difference along given axis.

Notes

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> a
array([[1, 2, 3],
 [4, 5, 6]])
>>> np.cumsum(a)
array([1, 3, 6, 10, 15, 21])
>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array([1., 3., 6., 10., 15., 21.])

>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],
 [5, 7, 9]])
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array([[1, 3, 6],
 [4, 9, 15]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.diff

	
numpy.diff(a, n=1, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1055]

	Calculate the n-th order discrete difference along given axis.

The first order difference is given by out[n] = a[n+1] - a[n] along
the given axis, higher order differences are calculated by using diff
recursively.

	Parameters:	a : array_like

Input array

n : int, optional

The number of times values are differenced.

axis : int, optional

The axis along which the difference is taken, default is the last axis.

	Returns:	diff : ndarray

The n order differences. The shape of the output is the same as a
except along axis where the dimension is smaller by n.

See also

gradient, ediff1d, cumsum

Examples

>>> x = np.array([1, 2, 4, 7, 0])
>>> np.diff(x)
array([1, 2, 3, -7])
>>> np.diff(x, n=2)
array([1, 1, -10])

>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> np.diff(x)
array([[2, 3, 4],
 [5, 1, 2]])
>>> np.diff(x, axis=0)
array([[-1, 2, 0, -2]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.ediff1d

	
numpy.ediff1d(ary, to_end=None, to_begin=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraysetops.py#L38]

	The differences between consecutive elements of an array.

	Parameters:	ary : array_like

If necessary, will be flattened before the differences are taken.

to_end : array_like, optional

Number(s) to append at the end of the returned differences.

to_begin : array_like, optional

Number(s) to prepend at the beginning of the returned differences.

	Returns:	ediff1d : ndarray

The differences. Loosely, this is ary.flat[1:] - ary.flat[:-1].

See also

diff, gradient

Notes

When applied to masked arrays, this function drops the mask information
if the to_begin and/or to_end parameters are used.

Examples

>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([1, 2, 3, -7])

>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99, 1, 2, 3, -7, 88, 99])

The returned array is always 1D.

>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([1, 2, -3, 5, 18])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.gradient

	
numpy.gradient(f, *varargs, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L886]

	Return the gradient of an N-dimensional array.

The gradient is computed using second order accurate central differences
in the interior and either first differences or second order accurate
one-sides (forward or backwards) differences at the boundaries. The
returned gradient hence has the same shape as the input array.

	Parameters:	f : array_like

An N-dimensional array containing samples of a scalar function.

varargs : list of scalar, optional

N scalars specifying the sample distances for each dimension,
i.e. dx, dy, dz, ... Default distance: 1.

edge_order : {1, 2}, optional

Gradient is calculated using Nth order accurate differences
at the boundaries. Default: 1.

New in version 1.9.1.

	Returns:	gradient : ndarray

N arrays of the same shape as f giving the derivative of f with
respect to each dimension.

Examples

>>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float)
>>> np.gradient(x)
array([1. , 1.5, 2.5, 3.5, 4.5, 5.])
>>> np.gradient(x, 2)
array([0.5 , 0.75, 1.25, 1.75, 2.25, 2.5])

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float))
[array([[2., 2., -1.],
 [2., 2., -1.]]), array([[1. , 2.5, 4.],
 [1. , 1. , 1.]])]

>>> x = np.array([0, 1, 2, 3, 4])
>>> dx = np.gradient(x)
>>> y = x**2
>>> np.gradient(y, dx, edge_order=2)
array([-0., 2., 4., 6., 8.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.cross

	
numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L1406]

	Return the cross product of two (arrays of) vectors.

The cross product of a and b in [image: R^3] is a vector perpendicular
to both a and b. If a and b are arrays of vectors, the vectors
are defined by the last axis of a and b by default, and these axes
can have dimensions 2 or 3. Where the dimension of either a or b is
2, the third component of the input vector is assumed to be zero and the
cross product calculated accordingly. In cases where both input vectors
have dimension 2, the z-component of the cross product is returned.

	Parameters:	a : array_like

Components of the first vector(s).

b : array_like

Components of the second vector(s).

axisa : int, optional

Axis of a that defines the vector(s). By default, the last axis.

axisb : int, optional

Axis of b that defines the vector(s). By default, the last axis.

axisc : int, optional

Axis of c containing the cross product vector(s). By default, the
last axis.

axis : int, optional

If defined, the axis of a, b and c that defines the vector(s)
and cross product(s). Overrides axisa, axisb and axisc.

	Returns:	c : ndarray

Vector cross product(s).

	Raises:	ValueError

When the dimension of the vector(s) in a and/or b does not
equal 2 or 3.

See also

	inner

	Inner product

	outer

	Outer product.

	ix_

	Construct index arrays.

Notes

New in version 1.9.0.

Supports full broadcasting of the inputs.

Examples

Vector cross-product.

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([-3, 6, -3])

One vector with dimension 2.

>>> x = [1, 2]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])

Equivalently:

>>> x = [1, 2, 0]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])

Both vectors with dimension 2.

>>> x = [1,2]
>>> y = [4,5]
>>> np.cross(x, y)
-3

Multiple vector cross-products. Note that the direction of the cross
product vector is defined by the right-hand rule.

>>> x = np.array([[1,2,3], [4,5,6]])
>>> y = np.array([[4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[-3, 6, -3],
 [3, -6, 3]])

The orientation of c can be changed using the axisc keyword.

>>> np.cross(x, y, axisc=0)
array([[-3, 3],
 [6, -6],
 [-3, 3]])

Change the vector definition of x and y using axisa and axisb.

>>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
>>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[-6, 12, -6],
 [0, 0, 0],
 [6, -12, 6]])
>>> np.cross(x, y, axisa=0, axisb=0)
array([[-24, 48, -24],
 [-30, 60, -30],
 [-36, 72, -36]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.trapz

	
numpy.trapz(y, x=None, dx=1.0, axis=-1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L3162]

	Integrate along the given axis using the composite trapezoidal rule.

Integrate y (x) along given axis.

	Parameters:	y : array_like

Input array to integrate.

x : array_like, optional

If x is None, then spacing between all y elements is dx.

dx : scalar, optional

If x is None, spacing given by dx is assumed. Default is 1.

axis : int, optional

Specify the axis.

	Returns:	trapz : float

Definite integral as approximated by trapezoidal rule.

See also

sum, cumsum

Notes

Image [R251] illustrates trapezoidal rule – y-axis locations of points
will be taken from y array, by default x-axis distances between
points will be 1.0, alternatively they can be provided with x array
or with dx scalar. Return value will be equal to combined area under
the red lines.

References

	[R250]	Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule

	[R251]	(1, 2) Illustration image:
http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

Examples

>>> np.trapz([1,2,3])
4.0
>>> np.trapz([1,2,3], x=[4,6,8])
8.0
>>> np.trapz([1,2,3], dx=2)
8.0
>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.trapz(a, axis=0)
array([1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array([2., 8.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.exp

	
numpy.exp(x[, out]) = <ufunc 'exp'>

	Calculate the exponential of all elements in the input array.

	Parameters:	x : array_like

Input values.

	Returns:	out : ndarray

Output array, element-wise exponential of x.

See also

	expm1

	Calculate exp(x) - 1 for all elements in the array.

	exp2

	Calculate 2**x for all elements in the array.

Notes

The irrational number e is also known as Euler’s number. It is
approximately 2.718281, and is the base of the natural logarithm,
ln (this means that, if [image: x = \ln y = \log_e y],
then [image: e^x = y]. For real input, exp(x) is always positive.

For complex arguments, x = a + ib, we can write
[image: e^x = e^a e^{ib}]. The first term, [image: e^a], is already
known (it is the real argument, described above). The second term,
[image: e^{ib}], is [image: \cos b + i \sin b], a function with
magnitude 1 and a periodic phase.

References

	[R18]	Wikipedia, “Exponential function”,
http://en.wikipedia.org/wiki/Exponential_function

	[R19]	M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables,” Dover, 1964, p. 69,
http://www.math.sfu.ca/~cbm/aands/page_69.htm

Examples

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-exp-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.expm1

	
numpy.expm1(x[, out]) = <ufunc 'expm1'>

	Calculate exp(x) - 1 for all elements in the array.

	Parameters:	x : array_like

Input values.

	Returns:	out : ndarray

Element-wise exponential minus one: out = exp(x) - 1.

See also

	log1p

	log(1 + x), the inverse of expm1.

Notes

This function provides greater precision than exp(x) - 1
for small values of x.

Examples

The true value of exp(1e-10) - 1 is 1.00000000005e-10 to
about 32 significant digits. This example shows the superiority of
expm1 in this case.

>>> np.expm1(1e-10)
1.00000000005e-10
>>> np.exp(1e-10) - 1
1.000000082740371e-10

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.exp2

	
numpy.exp2(x[, out]) = <ufunc 'exp2'>

	Calculate 2**p for all p in the input array.

	Parameters:	x : array_like

Input values.

out : ndarray, optional

Array to insert results into.

	Returns:	out : ndarray

Element-wise 2 to the power x.

See also

power

Notes

New in version 1.3.0.

Examples

>>> np.exp2([2, 3])
array([4., 8.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.log

	
numpy.log(x[, out]) = <ufunc 'log'>

	Natural logarithm, element-wise.

The natural logarithm log is the inverse of the exponential function,
so that log(exp(x)) = x. The natural logarithm is logarithm in base
e.

	Parameters:	x : array_like

Input value.

	Returns:	y : ndarray

The natural logarithm of x, element-wise.

See also

log10, log2, log1p, emath.log

Notes

Logarithm is a multivalued function: for each x there is an infinite
number of z such that exp(z) = x. The convention is to return the
z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log always returns real output. For
each value that cannot be expressed as a real number or infinity, it
yields nan and sets the invalid floating point error flag.

For complex-valued input, log is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it. log
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

References

	[R44]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	[R45]	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

Examples

>>> np.log([1, np.e, np.e**2, 0])
array([0., 1., 2., -Inf])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.log10

	
numpy.log10(x[, out]) = <ufunc 'log10'>

	Return the base 10 logarithm of the input array, element-wise.

	Parameters:	x : array_like

Input values.

	Returns:	y : ndarray

The logarithm to the base 10 of x, element-wise. NaNs are
returned where x is negative.

See also

emath.log10

Notes

Logarithm is a multivalued function: for each x there is an infinite
number of z such that 10**z = x. The convention is to return the
z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log10 always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log10 is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it.
log10 handles the floating-point negative zero as an infinitesimal
negative number, conforming to the C99 standard.

References

	[R46]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	[R47]	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

Examples

>>> np.log10([1e-15, -3.])
array([-15., NaN])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.log2

	
numpy.log2(x[, out]) = <ufunc 'log2'>

	Base-2 logarithm of x.

	Parameters:	x : array_like

Input values.

	Returns:	y : ndarray

Base-2 logarithm of x.

See also

log, log10, log1p, emath.log2

Notes

New in version 1.3.0.

Logarithm is a multivalued function: for each x there is an infinite
number of z such that 2**z = x. The convention is to return the z
whose imaginary part lies in [-pi, pi].

For real-valued input data types, log2 always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log2 is a complex analytical function that
has a branch cut [-inf, 0] and is continuous from above on it. log2
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

Examples

>>> x = np.array([0, 1, 2, 2**4])
>>> np.log2(x)
array([-Inf, 0., 1., 4.])

>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j])
>>> np.log2(xi)
array([0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.log1p

	
numpy.log1p(x[, out]) = <ufunc 'log1p'>

	Return the natural logarithm of one plus the input array, element-wise.

Calculates log(1 + x).

	Parameters:	x : array_like

Input values.

	Returns:	y : ndarray

Natural logarithm of 1 + x, element-wise.

See also

	expm1

	exp(x) - 1, the inverse of log1p.

Notes

For real-valued input, log1p is accurate also for x so small
that 1 + x == 1 in floating-point accuracy.

Logarithm is a multivalued function: for each x there is an infinite
number of z such that exp(z) = 1 + x. The convention is to return
the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log1p always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields nan and sets the invalid floating point error flag.

For complex-valued input, log1p is a complex analytical function that
has a branch cut [-inf, -1] and is continuous from above on it.
log1p handles the floating-point negative zero as an infinitesimal
negative number, conforming to the C99 standard.

References

	[R48]	M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”,
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/

	[R49]	Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

Examples

>>> np.log1p(1e-99)
1e-99
>>> np.log(1 + 1e-99)
0.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.logaddexp

	
numpy.logaddexp(x1, x2[, out]) = <ufunc 'logaddexp'>

	Logarithm of the sum of exponentiations of the inputs.

Calculates log(exp(x1) + exp(x2)). This function is useful in
statistics where the calculated probabilities of events may be so small
as to exceed the range of normal floating point numbers. In such cases
the logarithm of the calculated probability is stored. This function
allows adding probabilities stored in such a fashion.

	Parameters:	x1, x2 : array_like

Input values.

	Returns:	result : ndarray

Logarithm of exp(x1) + exp(x2).

See also

	logaddexp2

	Logarithm of the sum of exponentiations of inputs in base 2.

Notes

New in version 1.3.0.

Examples

>>> prob1 = np.log(1e-50)
>>> prob2 = np.log(2.5e-50)
>>> prob12 = np.logaddexp(prob1, prob2)
>>> prob12
-113.87649168120691
>>> np.exp(prob12)
3.5000000000000057e-50

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.logaddexp2

	
numpy.logaddexp2(x1, x2[, out]) = <ufunc 'logaddexp2'>

	Logarithm of the sum of exponentiations of the inputs in base-2.

Calculates log2(2**x1 + 2**x2). This function is useful in machine
learning when the calculated probabilities of events may be so small as
to exceed the range of normal floating point numbers. In such cases
the base-2 logarithm of the calculated probability can be used instead.
This function allows adding probabilities stored in such a fashion.

	Parameters:	x1, x2 : array_like

Input values.

out : ndarray, optional

Array to store results in.

	Returns:	result : ndarray

Base-2 logarithm of 2**x1 + 2**x2.

See also

	logaddexp

	Logarithm of the sum of exponentiations of the inputs.

Notes

New in version 1.3.0.

Examples

>>> prob1 = np.log2(1e-50)
>>> prob2 = np.log2(2.5e-50)
>>> prob12 = np.logaddexp2(prob1, prob2)
>>> prob1, prob2, prob12
(-166.09640474436813, -164.77447664948076, -164.28904982231052)
>>> 2**prob12
3.4999999999999914e-50

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.i0

	
numpy.i0(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2446]

	Modified Bessel function of the first kind, order 0.

Usually denoted [image: I_0]. This function does broadcast, but will not
“up-cast” int dtype arguments unless accompanied by at least one float or
complex dtype argument (see Raises below).

	Parameters:	x : array_like, dtype float or complex

Argument of the Bessel function.

	Returns:	out : ndarray, shape = x.shape, dtype = x.dtype

The modified Bessel function evaluated at each of the elements of x.

	Raises:	TypeError: array cannot be safely cast to required type

If argument consists exclusively of int dtypes.

See also

scipy.special.iv, scipy.special.ive

Notes

We use the algorithm published by Clenshaw [R29] and referenced by
Abramowitz and Stegun [R30], for which the function domain is
partitioned into the two intervals [0,8] and (8,inf), and Chebyshev
polynomial expansions are employed in each interval. Relative error on
the domain [0,30] using IEEE arithmetic is documented [R31] as having a
peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).

References

	[R29]	(1, 2) C. W. Clenshaw, “Chebyshev series for mathematical functions”, in
National Physical Laboratory Mathematical Tables, vol. 5, London:
Her Majesty’s Stationery Office, 1962.

	[R30]	(1, 2) M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, 10th printing, New York: Dover, 1964, pp. 379.
http://www.math.sfu.ca/~cbm/aands/page_379.htm

	[R31]	(1, 2) http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html

Examples

>>> np.i0([0.])
array(1.0)
>>> np.i0([0., 1. + 2j])
array([1.00000000+0.j , 0.18785373+0.64616944j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.sinc

	
numpy.sinc(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2640]

	Return the sinc function.

The sinc function is [image: \sin(\pi x)/(\pi x)].

	Parameters:	x : ndarray

Array (possibly multi-dimensional) of values for which to to
calculate sinc(x).

	Returns:	out : ndarray

sinc(x), which has the same shape as the input.

Notes

sinc(0) is the limit value 1.

The name sinc is short for “sine cardinal” or “sinus cardinalis”.

The sinc function is used in various signal processing applications,
including in anti-aliasing, in the construction of a Lanczos resampling
filter, and in interpolation.

For bandlimited interpolation of discrete-time signals, the ideal
interpolation kernel is proportional to the sinc function.

References

	[R246]	Weisstein, Eric W. “Sinc Function.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/SincFunction.html

	[R247]	Wikipedia, “Sinc function”,
http://en.wikipedia.org/wiki/Sinc_function

Examples

>>> x = np.linspace(-4, 4, 41)
>>> np.sinc(x)
array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02,
 -8.90384387e-02, -5.84680802e-02, 3.89804309e-17,
 6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
 8.50444803e-02, -3.89804309e-17, -1.03943254e-01,
 -1.89206682e-01, -2.16236208e-01, -1.55914881e-01,
 3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
 7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
 9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
 2.33872321e-01, 3.89804309e-17, -1.55914881e-01,
 -2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
 -3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
 1.16434881e-01, 6.68206631e-02, 3.89804309e-17,
 -5.84680802e-02, -8.90384387e-02, -8.40918587e-02,
 -4.92362781e-02, -3.89804309e-17])

>>> plt.plot(x, np.sinc(x))
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("X")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

It works in 2-D as well:

>>> x = np.linspace(-4, 4, 401)
>>> xx = np.outer(x, x)
>>> plt.imshow(np.sinc(xx))
<matplotlib.image.AxesImage object at 0x...>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.signbit

	
numpy.signbit(x[, out]) = <ufunc 'signbit'>

	Returns element-wise True where signbit is set (less than zero).

	Parameters:	x : array_like

The input value(s).

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	result : ndarray of bool

Output array, or reference to out if that was supplied.

Examples

>>> np.signbit(-1.2)
True
>>> np.signbit(np.array([1, -2.3, 2.1]))
array([False, True, False], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.copysign

	
numpy.copysign(x1, x2[, out]) = <ufunc 'copysign'>

	Change the sign of x1 to that of x2, element-wise.

If both arguments are arrays or sequences, they have to be of the same
length. If x2 is a scalar, its sign will be copied to all elements of
x1.

	Parameters:	x1 : array_like

Values to change the sign of.

x2 : array_like

The sign of x2 is copied to x1.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	out : array_like

The values of x1 with the sign of x2.

Examples

>>> np.copysign(1.3, -1)
-1.3
>>> 1/np.copysign(0, 1)
inf
>>> 1/np.copysign(0, -1)
-inf

>>> np.copysign([-1, 0, 1], -1.1)
array([-1., -0., -1.])
>>> np.copysign([-1, 0, 1], np.arange(3)-1)
array([-1., 0., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.frexp

	
numpy.frexp(x[, out1, out2]) = <ufunc 'frexp'>

	Decompose the elements of x into mantissa and twos exponent.

Returns (mantissa, exponent), where x = mantissa * 2**exponent`.
The mantissa is lies in the open interval(-1, 1), while the twos
exponent is a signed integer.

	Parameters:	x : array_like

Array of numbers to be decomposed.

out1: ndarray, optional

Output array for the mantissa. Must have the same shape as x.

out2: ndarray, optional

Output array for the exponent. Must have the same shape as x.

	Returns:	(mantissa, exponent) : tuple of ndarrays, (float, int)

mantissa is a float array with values between -1 and 1.
exponent is an int array which represents the exponent of 2.

See also

	ldexp

	Compute y = x1 * 2**x2, the inverse of frexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

Examples

>>> x = np.arange(9)
>>> y1, y2 = np.frexp(x)
>>> y1
array([0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,
 0.5])
>>> y2
array([0, 1, 2, 2, 3, 3, 3, 3, 4])
>>> y1 * 2**y2
array([0., 1., 2., 3., 4., 5., 6., 7., 8.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.ldexp

	
numpy.ldexp(x1, x2[, out]) = <ufunc 'ldexp'>

	Returns x1 * 2**x2, element-wise.

The mantissas x1 and twos exponents x2 are used to construct
floating point numbers x1 * 2**x2.

	Parameters:	x1 : array_like

Array of multipliers.

x2 : array_like, int

Array of twos exponents.

out : ndarray, optional

Output array for the result.

	Returns:	y : ndarray or scalar

The result of x1 * 2**x2.

See also

	frexp

	Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

ldexp is useful as the inverse of frexp, if used by itself it is
more clear to simply use the expression x1 * 2**x2.

Examples

>>> np.ldexp(5, np.arange(4))
array([5., 10., 20., 40.], dtype=float32)

>>> x = np.arange(6)
>>> np.ldexp(*np.frexp(x))
array([0., 1., 2., 3., 4., 5.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.add

	
numpy.add(x1, x2[, out]) = <ufunc 'add'>

	Add arguments element-wise.

	Parameters:	x1, x2 : array_like

The arrays to be added. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which may be the shape of one or
the other).

	Returns:	add : ndarray or scalar

The sum of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Notes

Equivalent to x1 + x2 in terms of array broadcasting.

Examples

>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[0., 2., 4.],
 [3., 5., 7.],
 [6., 8., 10.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.reciprocal

	
numpy.reciprocal(x[, out]) = <ufunc 'reciprocal'>

	Return the reciprocal of the argument, element-wise.

Calculates 1/x.

	Parameters:	x : array_like

Input array.

	Returns:	y : ndarray

Return array.

Notes

Note

This function is not designed to work with integers.

For integer arguments with absolute value larger than 1 the result is
always zero because of the way Python handles integer division. For
integer zero the result is an overflow.

Examples

>>> np.reciprocal(2.)
0.5
>>> np.reciprocal([1, 2., 3.33])
array([1. , 0.5 , 0.3003003])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.negative

	
numpy.negative(x[, out]) = <ufunc 'negative'>

	Numerical negative, element-wise.

	Parameters:	x : array_like or scalar

Input array.

	Returns:	y : ndarray or scalar

Returned array or scalar: y = -x.

Examples

>>> np.negative([1.,-1.])
array([-1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.multiply

	
numpy.multiply(x1, x2[, out]) = <ufunc 'multiply'>

	Multiply arguments element-wise.

	Parameters:	x1, x2 : array_like

Input arrays to be multiplied.

	Returns:	y : ndarray

The product of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Notes

Equivalent to x1 * x2 in terms of array broadcasting.

Examples

>>> np.multiply(2.0, 4.0)
8.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[0., 1., 4.],
 [0., 4., 10.],
 [0., 7., 16.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.divide

	
numpy.divide(x1, x2[, out]) = <ufunc 'divide'>

	Divide arguments element-wise.

	Parameters:	x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	y : {ndarray, scalar}

The quotient x1/x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

See also

	seterr

	Set whether to raise or warn on overflow, underflow and division by zero.

Notes

Equivalent to x1 / x2 in terms of array-broadcasting.

Behavior on division by zero can be changed using seterr.

When both x1 and x2 are of an integer type, divide will return
integers and throw away the fractional part. Moreover, division by zero
always yields zero in integer arithmetic.

Examples

>>> np.divide(2.0, 4.0)
0.5
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.divide(x1, x2)
array([[NaN, 1. , 1.],
 [Inf, 4. , 2.5],
 [Inf, 7. , 4.]])

Note the behavior with integer types:

>>> np.divide(2, 4)
0
>>> np.divide(2, 4.)
0.5

Division by zero always yields zero in integer arithmetic, and does not
raise an exception or a warning:

>>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int))
array([0, 0])

Division by zero can, however, be caught using seterr:

>>> old_err_state = np.seterr(divide='raise')
>>> np.divide(1, 0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FloatingPointError: divide by zero encountered in divide

>>> ignored_states = np.seterr(**old_err_state)
>>> np.divide(1, 0)
0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.power

	
numpy.power(x1, x2[, out]) = <ufunc 'power'>

	First array elements raised to powers from second array, element-wise.

Raise each base in x1 to the positionally-corresponding power in
x2. x1 and x2 must be broadcastable to the same shape.

	Parameters:	x1 : array_like

The bases.

x2 : array_like

The exponents.

	Returns:	y : ndarray

The bases in x1 raised to the exponents in x2.

Examples

Cube each element in a list.

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([0, 1, 8, 27, 64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.power(x1, x2)
array([0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],
 [1, 2, 3, 3, 2, 1]])
>>> np.power(x1, x2)
array([[0, 1, 8, 27, 16, 5],
 [0, 1, 8, 27, 16, 5]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.subtract

	
numpy.subtract(x1, x2[, out]) = <ufunc 'subtract'>

	Subtract arguments, element-wise.

	Parameters:	x1, x2 : array_like

The arrays to be subtracted from each other.

	Returns:	y : ndarray

The difference of x1 and x2, element-wise. Returns a scalar if
both x1 and x2 are scalars.

Notes

Equivalent to x1 - x2 in terms of array broadcasting.

Examples

>>> np.subtract(1.0, 4.0)
-3.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.subtract(x1, x2)
array([[0., 0., 0.],
 [3., 3., 3.],
 [6., 6., 6.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.true_divide

	
numpy.true_divide(x1, x2[, out]) = <ufunc 'true_divide'>

	Returns a true division of the inputs, element-wise.

Instead of the Python traditional ‘floor division’, this returns a true
division. True division adjusts the output type to present the best
answer, regardless of input types.

	Parameters:	x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

	Returns:	out : ndarray

Result is scalar if both inputs are scalar, ndarray otherwise.

Notes

The floor division operator // was added in Python 2.2 making
// and / equivalent operators. The default floor division
operation of / can be replaced by true division with from
__future__ import division.

In Python 3.0, // is the floor division operator and / the
true division operator. The true_divide(x1, x2) function is
equivalent to true division in Python.

Examples

>>> x = np.arange(5)
>>> np.true_divide(x, 4)
array([0. , 0.25, 0.5 , 0.75, 1.])

>>> x/4
array([0, 0, 0, 0, 1])
>>> x//4
array([0, 0, 0, 0, 1])

>>> from __future__ import division
>>> x/4
array([0. , 0.25, 0.5 , 0.75, 1.])
>>> x//4
array([0, 0, 0, 0, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.floor_divide

	
numpy.floor_divide(x1, x2[, out]) = <ufunc 'floor_divide'>

	Return the largest integer smaller or equal to the division of the
inputs.

	Parameters:	x1 : array_like

Numerator.

x2 : array_like

Denominator.

	Returns:	y : ndarray

y = floor(x1/x2)

See also

	divide

	Standard division.

	floor

	Round a number to the nearest integer toward minus infinity.

	ceil

	Round a number to the nearest integer toward infinity.

Examples

>>> np.floor_divide(7,3)
2
>>> np.floor_divide([1., 2., 3., 4.], 2.5)
array([0., 0., 1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.fmod

	
numpy.fmod(x1, x2[, out]) = <ufunc 'fmod'>

	Return the element-wise remainder of division.

This is the NumPy implementation of the C library function fmod, the
remainder has the same sign as the dividend x1. It is equivalent to
the Matlab(TM) rem function and should not be confused with the
Python modulus operator x1 % x2.

	Parameters:	x1 : array_like

Dividend.

x2 : array_like

Divisor.

	Returns:	y : array_like

The remainder of the division of x1 by x2.

See also

	remainder

	Equivalent to the Python % operator.

divide

Notes

The result of the modulo operation for negative dividend and divisors
is bound by conventions. For fmod, the sign of result is the sign of
the dividend, while for remainder the sign of the result is the sign
of the divisor. The fmod function is equivalent to the Matlab(TM)
rem function.

Examples

>>> np.fmod([-3, -2, -1, 1, 2, 3], 2)
array([-1, 0, -1, 1, 0, 1])
>>> np.remainder([-3, -2, -1, 1, 2, 3], 2)
array([1, 0, 1, 1, 0, 1])

>>> np.fmod([5, 3], [2, 2.])
array([1., 1.])
>>> a = np.arange(-3, 3).reshape(3, 2)
>>> a
array([[-3, -2],
 [-1, 0],
 [1, 2]])
>>> np.fmod(a, [2,2])
array([[-1, 0],
 [-1, 0],
 [1, 0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.mod

	
numpy.mod(x1, x2[, out]) = <ufunc 'remainder'>

	Return element-wise remainder of division.

Computes x1 - floor(x1 / x2) * x2, the result has the same sign as
the divisor x2. It is equivalent to the Python modulus operator
x1 % x2 and should not be confused with the Matlab(TM) rem
function.

	Parameters:	x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	y : ndarray

The remainder of the quotient x1/x2, element-wise. Returns a
scalar if both x1 and x2 are scalars.

See also

	fmod

	Equivalent of the Matlab(TM) rem function.

divide, floor

Notes

Returns 0 when x2 is 0 and both x1 and x2 are (arrays of)
integers.

Examples

>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.modf

	
numpy.modf(x[, out1, out2]) = <ufunc 'modf'>

	Return the fractional and integral parts of an array, element-wise.

The fractional and integral parts are negative if the given number is
negative.

	Parameters:	x : array_like

Input array.

	Returns:	y1 : ndarray

Fractional part of x.

y2 : ndarray

Integral part of x.

Notes

For integer input the return values are floats.

Examples

>>> np.modf([0, 3.5])
(array([0. , 0.5]), array([0., 3.]))
>>> np.modf(-0.5)
(-0.5, -0)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.remainder

	
numpy.remainder(x1, x2[, out]) = <ufunc 'remainder'>

	Return element-wise remainder of division.

Computes x1 - floor(x1 / x2) * x2, the result has the same sign as
the divisor x2. It is equivalent to the Python modulus operator
x1 % x2 and should not be confused with the Matlab(TM) rem
function.

	Parameters:	x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	y : ndarray

The remainder of the quotient x1/x2, element-wise. Returns a
scalar if both x1 and x2 are scalars.

See also

	fmod

	Equivalent of the Matlab(TM) rem function.

divide, floor

Notes

Returns 0 when x2 is 0 and both x1 and x2 are (arrays of)
integers.

Examples

>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.angle

	
numpy.angle(z, deg=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1194]

	Return the angle of the complex argument.

	Parameters:	z : array_like

A complex number or sequence of complex numbers.

deg : bool, optional

Return angle in degrees if True, radians if False (default).

	Returns:	angle : {ndarray, scalar}

The counterclockwise angle from the positive real axis on
the complex plane, with dtype as numpy.float64.

See also

arctan2, absolute

Examples

>>> np.angle([1.0, 1.0j, 1+1j]) # in radians
array([0. , 1.57079633, 0.78539816])
>>> np.angle(1+1j, deg=True) # in degrees
45.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.real

	
numpy.real(val)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L107]

	Return the real part of the elements of the array.

	Parameters:	val : array_like

Input array.

	Returns:	out : ndarray

Output array. If val is real, the type of val is used for the
output. If val has complex elements, the returned type is float.

See also

real_if_close, imag, angle

Examples

>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.real
array([1., 3., 5.])
>>> a.real = 9
>>> a
array([9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = np.array([9, 8, 7])
>>> a
array([9.+2.j, 8.+4.j, 7.+6.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.imag

	
numpy.imag(val)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L141]

	Return the imaginary part of the elements of the array.

	Parameters:	val : array_like

Input array.

	Returns:	out : ndarray

Output array. If val is real, the type of val is used for the
output. If val has complex elements, the returned type is float.

See also

real, angle, real_if_close

Examples

>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.imag
array([2., 4., 6.])
>>> a.imag = np.array([8, 10, 12])
>>> a
array([1. +8.j, 3.+10.j, 5.+12.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.conj

	
numpy.conj(x[, out]) = <ufunc 'conjugate'>

	Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.

	Parameters:	x : array_like

Input value.

	Returns:	y : ndarray

The complex conjugate of x, with same dtype as y.

Examples

>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[1.-1.j, 0.-0.j],
 [0.-0.j, 1.-1.j]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.convolve

	
numpy.convolve(a, v, mode='full')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L901]

	Returns the discrete, linear convolution of two one-dimensional sequences.

The convolution operator is often seen in signal processing, where it
models the effect of a linear time-invariant system on a signal [R17]. In
probability theory, the sum of two independent random variables is
distributed according to the convolution of their individual
distributions.

If v is longer than a, the arrays are swapped before computation.

	Parameters:	a : (N,) array_like

First one-dimensional input array.

v : (M,) array_like

Second one-dimensional input array.

mode : {‘full’, ‘valid’, ‘same’}, optional

	‘full’:

	By default, mode is ‘full’. This returns the convolution
at each point of overlap, with an output shape of (N+M-1,). At
the end-points of the convolution, the signals do not overlap
completely, and boundary effects may be seen.

	‘same’:

	Mode same returns output of length max(M, N). Boundary
effects are still visible.

	‘valid’:

	Mode valid returns output of length
max(M, N) - min(M, N) + 1. The convolution product is only given
for points where the signals overlap completely. Values outside
the signal boundary have no effect.

	Returns:	out : ndarray

Discrete, linear convolution of a and v.

See also

	scipy.signal.fftconvolve

	Convolve two arrays using the Fast Fourier Transform.

	scipy.linalg.toeplitz

	Used to construct the convolution operator.

	polymul

	Polynomial multiplication. Same output as convolve, but also accepts poly1d objects as input.

Notes

The discrete convolution operation is defined as

[image: (a * v)[n] = \sum_{m = -\infty}^{\infty} a[m] v[n - m]]

It can be shown that a convolution [image: x(t) * y(t)] in time/space
is equivalent to the multiplication [image: X(f) Y(f)] in the Fourier
domain, after appropriate padding (padding is necessary to prevent
circular convolution). Since multiplication is more efficient (faster)
than convolution, the function scipy.signal.fftconvolve exploits the
FFT to calculate the convolution of large data-sets.

References

	[R17]	(1, 2) Wikipedia, “Convolution”, http://en.wikipedia.org/wiki/Convolution.

Examples

Note how the convolution operator flips the second array
before “sliding” the two across one another:

>>> np.convolve([1, 2, 3], [0, 1, 0.5])
array([0. , 1. , 2.5, 4. , 1.5])

Only return the middle values of the convolution.
Contains boundary effects, where zeros are taken
into account:

>>> np.convolve([1,2,3],[0,1,0.5], 'same')
array([1. , 2.5, 4.])

The two arrays are of the same length, so there
is only one position where they completely overlap:

>>> np.convolve([1,2,3],[0,1,0.5], 'valid')
array([2.5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.clip

	
numpy.clip(a, a_min, a_max, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1566]

	Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to
the interval edges. For example, if an interval of [0, 1]
is specified, values smaller than 0 become 0, and values larger
than 1 become 1.

	Parameters:	a : array_like

Array containing elements to clip.

a_min : scalar or array_like

Minimum value.

a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will
be broadcasted to the shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input
array for in-place clipping. out must be of the right shape
to hold the output. Its type is preserved.

	Returns:	clipped_array : ndarray

An array with the elements of a, but where values
< a_min are replaced with a_min, and those > a_max
with a_max.

See also

	numpy.doc.ufuncs

	Section “Output arguments”

Examples

>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.sqrt

	
numpy.sqrt(x[, out]) = <ufunc 'sqrt'>

	Return the positive square-root of an array, element-wise.

	Parameters:	x : array_like

The values whose square-roots are required.

out : ndarray, optional

Alternate array object in which to put the result; if provided, it
must have the same shape as x

	Returns:	y : ndarray

An array of the same shape as x, containing the positive
square-root of each element in x. If any element in x is
complex, a complex array is returned (and the square-roots of
negative reals are calculated). If all of the elements in x
are real, so is y, with negative elements returning nan.
If out was provided, y is a reference to it.

See also

	lib.scimath.sqrt

	A version which returns complex numbers when given negative reals.

Notes

sqrt has–consistent with common convention–as its branch cut the
real “interval” [-inf, 0), and is continuous from above on it.
A branch cut is a curve in the complex plane across which a given
complex function fails to be continuous.

Examples

>>> np.sqrt([1,4,9])
array([1., 2., 3.])

>>> np.sqrt([4, -1, -3+4J])
array([2.+0.j, 0.+1.j, 1.+2.j])

>>> np.sqrt([4, -1, numpy.inf])
array([2., NaN, Inf])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.square

	
numpy.square(x[, out]) = <ufunc 'square'>

	Return the element-wise square of the input.

	Parameters:	x : array_like

Input data.

	Returns:	out : ndarray

Element-wise x*x, of the same shape and dtype as x.
Returns scalar if x is a scalar.

See also

numpy.linalg.matrix_power, sqrt, power

Examples

>>> np.square([-1j, 1])
array([-1.-0.j, 1.+0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.absolute

	
numpy.absolute(x[, out]) = <ufunc 'absolute'>

	Calculate the absolute value element-wise.

	Parameters:	x : array_like

Input array.

	Returns:	absolute : ndarray

An ndarray containing the absolute value of
each element in x. For complex input, a + ib, the
absolute value is [image: \sqrt{ a^2 + b^2 }].

Examples

>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([1.2, 1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308

Plot the function over [-10, 10]:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(start=-10, stop=10, num=101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-absolute-1_00_00.png]

Plot the function over the complex plane:

>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10])
>>> plt.show()

(png, pdf)

[image: ../../_images/numpy-absolute-1_01_00.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.fabs

	
numpy.fabs(x[, out]) = <ufunc 'fabs'>

	Compute the absolute values element-wise.

This function returns the absolute values (positive magnitude) of the
data in x. Complex values are not handled, use absolute to find the
absolute values of complex data.

	Parameters:	x : array_like

The array of numbers for which the absolute values are required. If
x is a scalar, the result y will also be a scalar.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.

	Returns:	y : {ndarray, scalar}

The absolute values of x, the returned values are always floats.

See also

	absolute

	Absolute values including complex [http://docs.python.org/dev/library/functions.html#complex] types.

Examples

>>> np.fabs(-1)
1.0
>>> np.fabs([-1.2, 1.2])
array([1.2, 1.2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.sign

	
numpy.sign(x[, out]) = <ufunc 'sign'>

	Returns an element-wise indication of the sign of a number.

The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0.

	Parameters:	x : array_like

Input values.

	Returns:	y : ndarray

The sign of x.

Examples

>>> np.sign([-5., 4.5])
array([-1., 1.])
>>> np.sign(0)
0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.maximum

	
numpy.maximum(x1, x2[, out]) = <ufunc 'maximum'>

	Element-wise maximum of array elements.

Compare two arrays and returns a new array containing the element-wise
maxima. If one of the elements being compared is a NaN, then that
element is returned. If both elements are NaNs then the first is
returned. The latter distinction is important for complex NaNs, which
are defined as at least one of the real or imaginary parts being a NaN.
The net effect is that NaNs are propagated.

	Parameters:	x1, x2 : array_like

The arrays holding the elements to be compared. They must have
the same shape, or shapes that can be broadcast to a single shape.

	Returns:	y : {ndarray, scalar}

The maximum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

See also

	minimum

	Element-wise minimum of two arrays, propagates NaNs.

	fmax

	Element-wise maximum of two arrays, ignores NaNs.

	amax

	The maximum value of an array along a given axis, propagates NaNs.

	nanmax

	The maximum value of an array along a given axis, ignores NaNs.

fmin, amin, nanmin

Notes

The maximum is equivalent to np.where(x1 >= x2, x1, x2) when
neither x1 nor x2 are nans, but it is faster and does proper
broadcasting.

Examples

>>> np.maximum([2, 3, 4], [1, 5, 2])
array([2, 5, 4])

>>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting
array([[1. , 2.],
 [0.5, 2.]])

>>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
array([NaN, NaN, NaN])
>>> np.maximum(np.Inf, 1)
inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.minimum

	
numpy.minimum(x1, x2[, out]) = <ufunc 'minimum'>

	Element-wise minimum of array elements.

Compare two arrays and returns a new array containing the element-wise
minima. If one of the elements being compared is a NaN, then that
element is returned. If both elements are NaNs then the first is
returned. The latter distinction is important for complex NaNs, which
are defined as at least one of the real or imaginary parts being a NaN.
The net effect is that NaNs are propagated.

	Parameters:	x1, x2 : array_like

The arrays holding the elements to be compared. They must have
the same shape, or shapes that can be broadcast to a single shape.

	Returns:	y : {ndarray, scalar}

The minimum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

See also

	maximum

	Element-wise maximum of two arrays, propagates NaNs.

	fmin

	Element-wise minimum of two arrays, ignores NaNs.

	amin

	The minimum value of an array along a given axis, propagates NaNs.

	nanmin

	The minimum value of an array along a given axis, ignores NaNs.

fmax, amax, nanmax

Notes

The minimum is equivalent to np.where(x1 <= x2, x1, x2) when
neither x1 nor x2 are NaNs, but it is faster and does proper
broadcasting.

Examples

>>> np.minimum([2, 3, 4], [1, 5, 2])
array([1, 3, 2])

>>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting
array([[0.5, 0.],
 [0. , 1.]])

>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([NaN, NaN, NaN])
>>> np.minimum(-np.Inf, 1)
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.fmax

	
numpy.fmax(x1, x2[, out]) = <ufunc 'fmax'>

	Element-wise maximum of array elements.

Compare two arrays and returns a new array containing the element-wise
maxima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.

	Parameters:	x1, x2 : array_like

The arrays holding the elements to be compared. They must have
the same shape.

	Returns:	y : {ndarray, scalar}

The minimum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

See also

	fmin

	Element-wise minimum of two arrays, ignores NaNs.

	maximum

	Element-wise maximum of two arrays, propagates NaNs.

	amax

	The maximum value of an array along a given axis, propagates NaNs.

	nanmax

	The maximum value of an array along a given axis, ignores NaNs.

minimum, amin, nanmin

Notes

New in version 1.3.0.

The fmax is equivalent to np.where(x1 >= x2, x1, x2) when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.

Examples

>>> np.fmax([2, 3, 4], [1, 5, 2])
array([2., 5., 4.])

>>> np.fmax(np.eye(2), [0.5, 2])
array([[1. , 2.],
 [0.5, 2.]])

>>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([0., 0., NaN])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.fmin

	
numpy.fmin(x1, x2[, out]) = <ufunc 'fmin'>

	Element-wise minimum of array elements.

Compare two arrays and returns a new array containing the element-wise
minima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.

	Parameters:	x1, x2 : array_like

The arrays holding the elements to be compared. They must have
the same shape.

	Returns:	y : {ndarray, scalar}

The minimum of x1 and x2, element-wise. Returns scalar if
both x1 and x2 are scalars.

See also

	fmax

	Element-wise maximum of two arrays, ignores NaNs.

	minimum

	Element-wise minimum of two arrays, propagates NaNs.

	amin

	The minimum value of an array along a given axis, propagates NaNs.

	nanmin

	The minimum value of an array along a given axis, ignores NaNs.

maximum, amax, nanmax

Notes

New in version 1.3.0.

The fmin is equivalent to np.where(x1 <= x2, x1, x2) when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.

Examples

>>> np.fmin([2, 3, 4], [1, 5, 2])
array([2, 5, 4])

>>> np.fmin(np.eye(2), [0.5, 2])
array([[1. , 2.],
 [0.5, 2.]])

>>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([0., 0., NaN])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.nan_to_num

	
numpy.nan_to_num(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L312]

	Replace nan with zero and inf with finite numbers.

Returns an array or scalar replacing Not a Number (NaN) with zero,
(positive) infinity with a very large number and negative infinity
with a very small (or negative) number.

	Parameters:	x : array_like

Input data.

	Returns:	out : ndarray, float

Array with the same shape as x and dtype of the element in x with
the greatest precision. NaN is replaced by zero, and infinity
(-infinity) is replaced by the largest (smallest or most negative)
floating point value that fits in the output dtype. All finite numbers
are upcast to the output dtype (default float64).

See also

	isinf

	Shows which elements are negative or negative infinity.

	isneginf

	Shows which elements are negative infinity.

	isposinf

	Shows which elements are positive infinity.

	isnan

	Shows which elements are Not a Number (NaN).

	isfinite

	Shows which elements are finite (not NaN, not infinity)

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.

Examples

>>> np.set_printoptions(precision=8)
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
array([1.79769313e+308, -1.79769313e+308, 0.00000000e+000,
 -1.28000000e+002, 1.28000000e+002])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.real_if_close

	
numpy.real_if_close(a, tol=100)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\type_check.py#L387]

	If complex input returns a real array if complex parts are close to zero.

“Close to zero” is defined as tol * (machine epsilon of the type for
a).

	Parameters:	a : array_like

Input array.

tol : float

Tolerance in machine epsilons for the complex part of the elements
in the array.

	Returns:	out : ndarray

If a is real, the type of a is used for the output. If a
has complex elements, the returned type is float.

See also

real, imag, angle

Notes

Machine epsilon varies from machine to machine and between data types
but Python floats on most platforms have a machine epsilon equal to
2.2204460492503131e-16. You can use ‘np.finfo(np.float).eps’ to print
out the machine epsilon for floats.

Examples

>>> np.finfo(np.float).eps
2.2204460492503131e-16

>>> np.real_if_close([2.1 + 4e-14j], tol=1000)
array([2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol=1000)
array([2.1 +4.00000000e-13j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Mathematical functions

numpy.interp

	
numpy.interp(x, xp, fp, left=None, right=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1117]

	One-dimensional linear interpolation.

Returns the one-dimensional piecewise linear interpolant to a function
with given values at discrete data-points.

	Parameters:	x : array_like

The x-coordinates of the interpolated values.

xp : 1-D sequence of floats

The x-coordinates of the data points, must be increasing.

fp : 1-D sequence of floats

The y-coordinates of the data points, same length as xp.

left : float, optional

Value to return for x < xp[0], default is fp[0].

right : float, optional

Value to return for x > xp[-1], default is fp[-1].

	Returns:	y : {float, ndarray}

The interpolated values, same shape as x.

	Raises:	ValueError

If xp and fp have different length

Notes

Does not check that the x-coordinate sequence xp is increasing.
If xp is not increasing, the results are nonsense.
A simple check for increasing is:

np.all(np.diff(xp) > 0)

Examples

>>> xp = [1, 2, 3]
>>> fp = [3, 2, 0]
>>> np.interp(2.5, xp, fp)
1.0
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
array([3. , 3. , 2.5 , 0.56, 0.])
>>> UNDEF = -99.0
>>> np.interp(3.14, xp, fp, right=UNDEF)
-99.0

Plot an interpolant to the sine function:

>>> x = np.linspace(0, 2*np.pi, 10)
>>> y = np.sin(x)
>>> xvals = np.linspace(0, 2*np.pi, 50)
>>> yinterp = np.interp(xvals, x, y)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(xvals, yinterp, '-x')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-interp-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Matrix library (numpy.matlib)

This module contains all functions in the numpy namespace, with
the following replacement functions that return matrices instead of ndarrays.

Functions that are also in the numpy namespace and return matrices

	mat(data[,dtype])
	Interpret the input as a matrix.

	matrix
	Returns a matrix from an array-like object, or from a string of data.

	asmatrix(data[,dtype])
	Interpret the input as a matrix.

	bmat(obj[,ldict,gdict])
	Build a matrix object from a string, nested sequence, or array.

Replacement functions in matlib

	empty(shape[,dtype,order])
	Return a new matrix of given shape and type, without initializing entries.

	zeros(shape[,dtype,order])
	Return a matrix of given shape and type, filled with zeros.

	ones(shape[,dtype,order])
	Matrix of ones.

	eye(n[,M,k,dtype])
	Return a matrix with ones on the diagonal and zeros elsewhere.

	identity(n[,dtype])
	Returns the square identity matrix of given size.

	repmat(a,m,n)
	Repeat a 0-D to 2-D array or matrix MxN times.

	rand(*args)
	Return a matrix of random values with given shape.

	randn(*args)
	Return a random matrix with data from the “standard normal” distribution.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Matrix library (numpy.matlib)

numpy.matlib.empty

	
numpy.matlib.empty(shape, dtype=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matlib.py#L13]

	Return a new matrix of given shape and type, without initializing entries.

	Parameters:	shape : int or tuple of int

Shape of the empty matrix.

dtype : data-type, optional

Desired output data-type.

order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in C (row-major) or
Fortran (column-major) order in memory.

See also

empty_like, zeros

Notes

empty, unlike zeros, does not set the matrix values to zero,
and may therefore be marginally faster. On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.

Examples

>>> import numpy.matlib
>>> np.matlib.empty((2, 2)) # filled with random data
matrix([[6.76425276e-320, 9.79033856e-307],
 [7.39337286e-309, 3.22135945e-309]]) #random
>>> np.matlib.empty((2, 2), dtype=int)
matrix([[6600475, 0],
 [6586976, 22740995]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Matrix library (numpy.matlib)

numpy.matlib.zeros

	
numpy.matlib.zeros(shape, dtype=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matlib.py#L96]

	Return a matrix of given shape and type, filled with zeros.

	Parameters:	shape : int or sequence of ints

Shape of the matrix

dtype : data-type, optional

The desired data-type for the matrix, default is float.

order : {‘C’, ‘F’}, optional

Whether to store the result in C- or Fortran-contiguous order,
default is ‘C’.

	Returns:	out : matrix

Zero matrix of given shape, dtype, and order.

See also

	numpy.zeros

	Equivalent array function.

	matlib.ones

	Return a matrix of ones.

Notes

If shape has length one i.e. (N,), or is a scalar N,
out becomes a single row matrix of shape (1,N).

Examples

>>> import numpy.matlib
>>> np.matlib.zeros((2, 3))
matrix([[0., 0., 0.],
 [0., 0., 0.]])

>>> np.matlib.zeros(2)
matrix([[0., 0.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Matrix library (numpy.matlib)

numpy.matlib.ones

	
numpy.matlib.ones(shape, dtype=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matlib.py#L51]

	Matrix of ones.

Return a matrix of given shape and type, filled with ones.

	Parameters:	shape : {sequence of ints, int}

Shape of the matrix

dtype : data-type, optional

The desired data-type for the matrix, default is np.float64.

order : {‘C’, ‘F’}, optional

Whether to store matrix in C- or Fortran-contiguous order,
default is ‘C’.

	Returns:	out : matrix

Matrix of ones of given shape, dtype, and order.

See also

	ones

	Array of ones.

	matlib.zeros

	Zero matrix.

Notes

If shape has length one i.e. (N,), or is a scalar N,
out becomes a single row matrix of shape (1,N).

Examples

>>> np.matlib.ones((2,3))
matrix([[1., 1., 1.],
 [1., 1., 1.]])

>>> np.matlib.ones(2)
matrix([[1., 1.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Matrix library (numpy.matlib)

numpy.matlib.eye

	
numpy.matlib.eye(n, M=None, k=0, dtype=<type 'float'>)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matlib.py#L176]

	Return a matrix with ones on the diagonal and zeros elsewhere.

	Parameters:	n : int

Number of rows in the output.

M : int, optional

Number of columns in the output, defaults to n.

k : int, optional

Index of the diagonal: 0 refers to the main diagonal,
a positive value refers to an upper diagonal,
and a negative value to a lower diagonal.

dtype : dtype, optional

Data-type of the returned matrix.

	Returns:	I : matrix

A n x M matrix where all elements are equal to zero,
except for the k-th diagonal, whose values are equal to one.

See also

	numpy.eye

	Equivalent array function.

	identity

	Square identity matrix.

Examples

>>> import numpy.matlib
>>> np.matlib.eye(3, k=1, dtype=float)
matrix([[0., 1., 0.],
 [0., 0., 1.],
 [0., 0., 0.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Matrix library (numpy.matlib)

numpy.matlib.identity

	
numpy.matlib.identity(n, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matlib.py#L140]

	Returns the square identity matrix of given size.

	Parameters:	n : int

Size of the returned identity matrix.

dtype : data-type, optional

Data-type of the output. Defaults to float.

	Returns:	out : matrix

n x n matrix with its main diagonal set to one,
and all other elements zero.

See also

	numpy.identity

	Equivalent array function.

	matlib.eye

	More general matrix identity function.

Examples

>>> import numpy.matlib
>>> np.matlib.identity(3, dtype=int)
matrix([[1, 0, 0],
 [0, 1, 0],
 [0, 0, 1]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Matrix library (numpy.matlib)

numpy.matlib.repmat

	
numpy.matlib.repmat(a, m, n)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matlib.py#L310]

	Repeat a 0-D to 2-D array or matrix MxN times.

	Parameters:	a : array_like

The array or matrix to be repeated.

m, n : int

The number of times a is repeated along the first and second axes.

	Returns:	out : ndarray

The result of repeating a.

Examples

>>> import numpy.matlib
>>> a0 = np.array(1)
>>> np.matlib.repmat(a0, 2, 3)
array([[1, 1, 1],
 [1, 1, 1]])

>>> a1 = np.arange(4)
>>> np.matlib.repmat(a1, 2, 2)
array([[0, 1, 2, 3, 0, 1, 2, 3],
 [0, 1, 2, 3, 0, 1, 2, 3]])

>>> a2 = np.asmatrix(np.arange(6).reshape(2, 3))
>>> np.matlib.repmat(a2, 2, 3)
matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2],
 [3, 4, 5, 3, 4, 5, 3, 4, 5],
 [0, 1, 2, 0, 1, 2, 0, 1, 2],
 [3, 4, 5, 3, 4, 5, 3, 4, 5]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Matrix library (numpy.matlib)

numpy.matlib.rand

	
numpy.matlib.rand(*args)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matlib.py#L215]

	Return a matrix of random values with given shape.

Create a matrix of the given shape and propagate it with
random samples from a uniform distribution over [0, 1).

	Parameters:	*args : Arguments

Shape of the output.
If given as N integers, each integer specifies the size of one
dimension.
If given as a tuple, this tuple gives the complete shape.

	Returns:	out : ndarray

The matrix of random values with shape given by *args.

See also

randn, numpy.random.rand

Examples

>>> import numpy.matlib
>>> np.matlib.rand(2, 3)
matrix([[0.68340382, 0.67926887, 0.83271405],
 [0.00793551, 0.20468222, 0.95253525]]) #random
>>> np.matlib.rand((2, 3))
matrix([[0.84682055, 0.73626594, 0.11308016],
 [0.85429008, 0.3294825 , 0.89139555]]) #random

If the first argument is a tuple, other arguments are ignored:

>>> np.matlib.rand((2, 3), 4)
matrix([[0.46898646, 0.15163588, 0.95188261],
 [0.59208621, 0.09561818, 0.00583606]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Matrix library (numpy.matlib)

numpy.matlib.randn

	
numpy.matlib.randn(*args)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/matlib.py#L260]

	Return a random matrix with data from the “standard normal” distribution.

randn generates a matrix filled with random floats sampled from a
univariate “normal” (Gaussian) distribution of mean 0 and variance 1.

	Parameters:	*args : Arguments

Shape of the output.
If given as N integers, each integer specifies the size of one
dimension. If given as a tuple, this tuple gives the complete shape.

	Returns:	Z : matrix of floats

A matrix of floating-point samples drawn from the standard normal
distribution.

See also

rand, random.randn

Notes

For random samples from [image: N(\mu, \sigma^2)], use:

sigma * np.matlib.randn(...) + mu

Examples

>>> import numpy.matlib
>>> np.matlib.randn(1)
matrix([[-0.09542833]]) #random
>>> np.matlib.randn(1, 2, 3)
matrix([[0.16198284, 0.0194571 , 0.18312985],
 [-0.7509172 , 1.61055 , 0.45298599]]) #random

Two-by-four matrix of samples from [image: N(3, 6.25)]:

>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[4.74085004, 8.89381862, 4.09042411, 4.83721922],
 [7.52373709, 5.07933944, -2.64043543, 0.45610557]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Miscellaneous routines

Buffer objects

	getbuffer(obj[,offset[,size]])
	Create a buffer object from the given object referencing a slice of length size starting at offset.

	newbuffer(size)
	Return a new uninitialized buffer object.

Performance tuning

	alterdot
	Change dot, vdot, and inner to use accelerated BLAS functions.

	restoredot
	Restore dot, vdot, and innerproduct to the default non-BLAS implementations.

	setbufsize(size)
	Set the size of the buffer used in ufuncs.

	getbufsize()
	Return the size of the buffer used in ufuncs.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Miscellaneous routines

numpy.getbuffer

	
numpy.getbuffer(obj[, offset[, size]])

	Create a buffer object from the given object referencing a slice of
length size starting at offset.

Default is the entire buffer. A read-write buffer is attempted followed
by a read-only buffer.

	Parameters:	obj : object

offset : int, optional

size : int, optional

	Returns:	buffer_obj : buffer

Examples

>>> buf = np.getbuffer(np.ones(5), 1, 3)
>>> len(buf)
3
>>> buf[0]
'\x00'
>>> buf
<read-write buffer for 0x8af1e70, size 3, offset 1 at 0x8ba4ec0>

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Miscellaneous routines

numpy.newbuffer

	
numpy.newbuffer(size)

	Return a new uninitialized buffer object.

	Parameters:	size : int

Size in bytes of returned buffer object.

	Returns:	newbuffer : buffer object

Returned, uninitialized buffer object of size bytes.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Miscellaneous routines

numpy.alterdot

	
numpy.alterdot()

	Change dot, vdot, and inner to use accelerated BLAS functions.

Typically, as a user of Numpy, you do not explicitly call this function. If
Numpy is built with an accelerated BLAS, this function is automatically
called when Numpy is imported.

When Numpy is built with an accelerated BLAS like ATLAS, these functions
are replaced to make use of the faster implementations. The faster
implementations only affect float32, float64, complex64, and complex128
arrays. Furthermore, the BLAS API only includes matrix-matrix,
matrix-vector, and vector-vector products. Products of arrays with larger
dimensionalities use the built in functions and are not accelerated.

See also

	restoredot

	restoredot undoes the effects of alterdot.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Miscellaneous routines

numpy.restoredot

	
numpy.restoredot()

	Restore dot, vdot, and innerproduct to the default non-BLAS
implementations.

Typically, the user will only need to call this when troubleshooting and
installation problem, reproducing the conditions of a build without an
accelerated BLAS, or when being very careful about benchmarking linear
algebra operations.

See also

	alterdot

	restoredot undoes the effects of alterdot.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Miscellaneous routines

numpy.setbufsize

	
numpy.setbufsize(size)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2574]

	Set the size of the buffer used in ufuncs.

	Parameters:	size : int

Size of buffer.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Miscellaneous routines

numpy.getbufsize

	
numpy.getbufsize()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L2597]

	Return the size of the buffer used in ufuncs.

	Returns:	getbufsize : int

Size of ufunc buffer in bytes.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Padding Arrays

	pad(array,pad_width[,mode])
	Pads an array.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Padding Arrays

numpy.pad

	
numpy.pad(array, pad_width, mode=None, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraypad.py#L1093]

	Pads an array.

	Parameters:	array : array_like of rank N

Input array

pad_width : {sequence, int}

Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis.
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.

mode : {str, function}

One of the following string values or a user supplied function.

	‘constant’

	Pads with a constant value.

	‘edge’

	Pads with the edge values of array.

	‘linear_ramp’

	Pads with the linear ramp between end_value and the
array edge value.

	‘maximum’

	Pads with the maximum value of all or part of the
vector along each axis.

	‘mean’

	Pads with the mean value of all or part of the
vector along each axis.

	‘median’

	Pads with the median value of all or part of the
vector along each axis.

	‘minimum’

	Pads with the minimum value of all or part of the
vector along each axis.

	‘reflect’

	Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.

	‘symmetric’

	Pads with the reflection of the vector mirrored
along the edge of the array.

	‘wrap’

	Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.

	<function>

	Padding function, see Notes.

stat_length : {sequence, int}, optional

Used in ‘maximum’, ‘mean’, ‘median’, and ‘minimum’. Number of
values at edge of each axis used to calculate the statistic value.

((before_1, after_1), ... (before_N, after_N)) unique statistic
lengths for each axis.

((before, after),) yields same before and after statistic lengths
for each axis.

(stat_length,) or int is a shortcut for before = after = statistic
length for all axes.

Default is None, to use the entire axis.

constant_values : {sequence, int}, optional

Used in ‘constant’. The values to set the padded values for each
axis.

((before_1, after_1), ... (before_N, after_N)) unique pad constants
for each axis.

((before, after),) yields same before and after constants for each
axis.

(constant,) or int is a shortcut for before = after = constant for
all axes.

Default is 0.

end_values : {sequence, int}, optional

Used in ‘linear_ramp’. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.

((before_1, after_1), ... (before_N, after_N)) unique end values
for each axis.

((before, after),) yields same before and after end values for each
axis.

(constant,) or int is a shortcut for before = after = end value for
all axes.

Default is 0.

reflect_type : str {‘even’, ‘odd’}, optional

Used in ‘reflect’, and ‘symmetric’. The ‘even’ style is the
default with an unaltered reflection around the edge value. For
the ‘odd’ style, the extented part of the array is created by
subtracting the reflected values from two times the edge value.

	Returns:	pad : ndarray

Padded array of rank equal to array with shape increased
according to pad_width.

Notes

New in version 1.7.0.

For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.

The padding function, if used, should return a rank 1 array equal in
length to the vector argument with padded values replaced. It has the
following signature:

padding_func(vector, iaxis_pad_width, iaxis, **kwargs)

where

	vector : ndarray

	A rank 1 array already padded with zeros. Padded values are
vector[:pad_tuple[0]] and vector[-pad_tuple[1]:].

	iaxis_pad_width : tuple

	A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.

	iaxis : int

	The axis currently being calculated.

	kwargs : misc

	Any keyword arguments the function requires.

Examples

>>> a = [1, 2, 3, 4, 5]
>>> np.lib.pad(a, (2,3), 'constant', constant_values=(4,6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])

>>> np.lib.pad(a, (2,3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])

>>> np.lib.pad(a, (2,3), 'linear_ramp', end_values=(5,-4))
array([5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> np.lib.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> np.lib.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.lib.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = [[1,2], [3,4]]
>>> np.lib.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [3, 3, 3, 4, 3, 3, 3],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1]])

>>> a = [1, 2, 3, 4, 5]
>>> np.lib.pad(a, (2,3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.lib.pad(a, (2,3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> np.lib.pad(a, (2,3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.lib.pad(a, (2,3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.lib.pad(a, (2,3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def padwithtens(vector, pad_width, iaxis, kwargs):
... vector[:pad_width[0]] = 10
... vector[-pad_width[1]:] = 10
... return vector

>>> a = np.arange(6)
>>> a = a.reshape((2,3))

>>> np.lib.pad(a, 2, padwithtens)
array([[10, 10, 10, 10, 10, 10, 10],
 [10, 10, 10, 10, 10, 10, 10],
 [10, 10, 0, 1, 2, 10, 10],
 [10, 10, 3, 4, 5, 10, 10],
 [10, 10, 10, 10, 10, 10, 10],
 [10, 10, 10, 10, 10, 10, 10]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Polynomials

Polynomials in NumPy can be created, manipulated, and even fitted using
the Using the Convenience Classes
of the numpy.polynomial package, introduced in NumPy 1.4.

Prior to NumPy 1.4, numpy.poly1d was the class of choice and it is still
available in order to maintain backward compatibility.
However, the newer Polynomial package is more complete than numpy.poly1d
and its convenience classes are better behaved in the numpy environment.
Therefore Polynomial is recommended for new coding.

Transition notice

The various routines in the Polynomial package all deal with
series whose coefficients go from degree zero upward,
which is the reverse order of the Poly1d convention.
The easy way to remember this is that indexes
correspond to degree, i.e., coef[i] is the coefficient of the term of
degree i.

	Polynomial Package
	Using the Convenience Classes

	Polynomial Module (numpy.polynomial.polynomial)

	Chebyshev Module (numpy.polynomial.chebyshev)

	Legendre Module (numpy.polynomial.legendre)

	Laguerre Module (numpy.polynomial.laguerre)

	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

	Poly1d
	Basics

	Fitting

	Calculus

	Arithmetic

	Warnings

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

Polynomial Package

New in version 1.4.0.

	Using the Convenience Classes
	Basics

	Calculus

	Other Polynomial Constructors

	Fitting

	Polynomial Module (numpy.polynomial.polynomial)
	Polynomial Class

	Basics

	Fitting

	Calculus

	Algebra

	Miscellaneous

	Chebyshev Module (numpy.polynomial.chebyshev)
	Chebyshev Class

	Basics

	Fitting

	Calculus

	Algebra

	Quadrature

	Miscellaneous

	Legendre Module (numpy.polynomial.legendre)
	Legendre Class

	Basics

	Fitting

	Calculus

	Algebra

	Quadrature

	Miscellaneous

	Laguerre Module (numpy.polynomial.laguerre)
	Laguerre Class

	Basics

	Fitting

	Calculus

	Algebra

	Quadrature

	Miscellaneous

	Hermite Module, “Physicists’” (numpy.polynomial.hermite)
	Hermite Class

	Basics

	Fitting

	Calculus

	Algebra

	Quadrature

	Miscellaneous

	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)
	HermiteE Class

	Basics

	Fitting

	Calculus

	Algebra

	Quadrature

	Miscellaneous

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

Using the Convenience Classes

The convenience classes provided by the polynomial package are:

	Name
	Provides

	Polynomial
	Power series

	Chebyshev
	Chebyshev series

	Legendre
	Legendre series

	Laguerre
	Laguerre series

	Hermite
	Hermite series

	HermiteE
	HermiteE series

The series in this context are finite sums of the corresponding polynomial
basis functions multiplied by coefficients. For instance, a power series
looks like

[image: p(x) = 1 + 2x + 3x^2]

and has coefficients [image: [1, 2, 3]]. The Chebyshev series with the
same coefficients looks like

[image: p(x) = 1 T_0(x) + 2 T_1(x) + 3 T_2(x)]

and more generally

[image: p(x) = \sum_{i=0}^n c_i T_i(x)]

where in this case the [image: T_n] are the Chebyshev functions of
degree [image: n], but could just as easily be the basis functions of
any of the other classes. The convention for all the classes is that
the coefficient [image: c[i]] goes with the basis function of degree i.

All of the classes have the same methods, and especially they implement the
Python numeric operators +, -, *, //, %, divmod, **, ==,
and !=. The last two can be a bit problematic due to floating point
roundoff errors. We now give a quick demonstration of the various
operations using Numpy version 1.7.0.

Basics

First we need a polynomial class and a polynomial instance to play with.
The classes can be imported directly from the polynomial package or from
the module of the relevant type. Here we import from the package and use
the conventional Polynomial class because of its familiarity:

>>> from numpy.polynomial import Polynomial as P
>>> p = P([1,2,3])
>>> p
Polynomial([1., 2., 3.], [-1., 1.], [-1., 1.])

Note that there are three parts to the long version of the printout. The
first is the coefficients, the second is the domain, and the third is the
window:

>>> p.coef
array([1., 2., 3.])
>>> p.domain
array([-1., 1.])
>>> p.window
array([-1., 1.])

Printing a polynomial yields a shorter form without the domain
and window:

>>> print p
poly([1. 2. 3.])

We will deal with the domain and window when we get to fitting, for the moment
we ignore them and run through the basic algebraic and arithmetic operations.

Addition and Subtraction:

>>> p + p
Polynomial([2., 4., 6.], [-1., 1.], [-1., 1.])
>>> p - p
Polynomial([0.], [-1., 1.], [-1., 1.])

Multiplication:

>>> p * p
Polynomial([1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])

Powers:

>>> p**2
Polynomial([1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])

Division:

Floor division, ‘//’, is the division operator for the polynomial classes,
polynomials are treated like integers in this regard. For Python versions <
3.x the ‘/’ operator maps to ‘//’, as it does for Python, for later
versions the ‘/’ will only work for division by scalars. At some point it
will be deprecated:

>>> p // P([-1, 1])
Polynomial([5., 3.], [-1., 1.], [-1., 1.])

Remainder:

>>> p % P([-1, 1])
Polynomial([6.], [-1., 1.], [-1., 1.])

Divmod:

>>> quo, rem = divmod(p, P([-1, 1]))
>>> quo
Polynomial([5., 3.], [-1., 1.], [-1., 1.])
>>> rem
Polynomial([6.], [-1., 1.], [-1., 1.])

Evaluation:

>>> x = np.arange(5)
>>> p(x)
array([1., 6., 17., 34., 57.])
>>> x = np.arange(6).reshape(3,2)
>>> p(x)
array([[1., 6.],
 [17., 34.],
 [57., 86.]])

Substitution:

Substitute a polynomial for x and expand the result. Here we substitute
p in itself leading to a new polynomial of degree 4 after expansion. If
the polynomials are regarded as functions this is composition of
functions:

>>> p(p)
Polynomial([6., 16., 36., 36., 27.], [-1., 1.], [-1., 1.])

Roots:

>>> p.roots()
array([-0.33333333-0.47140452j, -0.33333333+0.47140452j])

It isn’t always convenient to explicitly use Polynomial instances, so
tuples, lists, arrays, and scalars are automatically cast in the arithmetic
operations:

>>> p + [1, 2, 3]
Polynomial([2., 4., 6.], [-1., 1.], [-1., 1.])
>>> [1, 2, 3] * p
Polynomial([1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])
>>> p / 2
Polynomial([0.5, 1. , 1.5], [-1., 1.], [-1., 1.])

Polynomials that differ in domain, window, or class can’t be mixed in
arithmetic:

>>> from numpy.polynomial import Chebyshev as T
>>> p + P([1], domain=[0,1])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 213, in __add__
TypeError: Domains differ
>>> p + P([1], window=[0,1])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 215, in __add__
TypeError: Windows differ
>>> p + T([1])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 211, in __add__
TypeError: Polynomial types differ

But different types can be used for substitution. In fact, this is how
conversion of Polynomial classes among themselves is done for type, domain,
and window casting:

>>> p(T([0, 1]))
Chebyshev([2.5, 2. , 1.5], [-1., 1.], [-1., 1.])

Which gives the polynomial p in Chebyshev form. This works because
[image: T_1(x) = x] and substituting [image: x] for [image: x] doesn’t change
the original polynomial. However, all the multiplications and divisions
will be done using Chebyshev series, hence the type of the result.

Calculus

Polynomial instances can be integrated and differentiated.:

>>> from numpy.polynomial import Polynomial as P
>>> p = P([2, 6])
>>> p.integ()
Polynomial([0., 2., 3.], [-1., 1.], [-1., 1.])
>>> p.integ(2)
Polynomial([0., 0., 1., 1.], [-1., 1.], [-1., 1.])

The first example integrates p once, the second example integrates it
twice. By default, the lower bound of the integration and the integration
constant are 0, but both can be specified.:

>>> p.integ(lbnd=-1)
Polynomial([-1., 2., 3.], [-1., 1.], [-1., 1.])
>>> p.integ(lbnd=-1, k=1)
Polynomial([0., 2., 3.], [-1., 1.], [-1., 1.])

In the first case the lower bound of the integration is set to -1 and the
integration constant is 0. In the second the constant of integration is set
to 1 as well. Differentiation is simpler since the only option is the
number of times the polynomial is differentiated:

>>> p = P([1, 2, 3])
>>> p.deriv(1)
Polynomial([2., 6.], [-1., 1.], [-1., 1.])
>>> p.deriv(2)
Polynomial([6.], [-1., 1.], [-1., 1.])

Other Polynomial Constructors

Constructing polynomials by specifying coefficients is just one way of
obtaining a polynomial instance, they may also be created by specifying
their roots, by conversion from other polynomial types, and by least
squares fits. Fitting is discussed in its own section, the other methods
are demonstrated below:

>>> from numpy.polynomial import Polynomial as P
>>> from numpy.polynomial import Chebyshev as T
>>> p = P.fromroots([1, 2, 3])
>>> p
Polynomial([-6., 11., -6., 1.], [-1., 1.], [-1., 1.])
>>> p.convert(kind=T)
Chebyshev([-9. , 11.75, -3. , 0.25], [-1., 1.], [-1., 1.])

The convert method can also convert domain and window:

>>> p.convert(kind=T, domain=[0, 1])
Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], [0., 1.], [-1., 1.])
>>> p.convert(kind=P, domain=[0, 1])
Polynomial([-1.875, 2.875, -1.125, 0.125], [0., 1.], [-1., 1.])

In numpy versions >= 1.7.0 the basis and cast class methods are also
available. The cast method works like the convert method while the basis
method returns the basis polynomial of given degree:

>>> P.basis(3)
Polynomial([0., 0., 0., 1.], [-1., 1.], [-1., 1.])
>>> T.cast(p)
Chebyshev([-9. , 11.75, -3. , 0.25], [-1., 1.], [-1., 1.])

Conversions between types can be useful, but it is not recommended
for routine use. The loss of numerical precision in passing from a
Chebyshev series of degree 50 to a Polynomial series of the same degree
can make the results of numerical evaluation essentially random.

Fitting

Fitting is the reason that the domain and window attributes are part of
the convenience classes. To illustrate the problem, the values of the Chebyshev
polynomials up to degree 5 are plotted below.

>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-1, 1, 100)
>>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
...
>>> plt.legend(loc="upper left")
<matplotlib.legend.Legend object at 0x3b3ee10>
>>> plt.show()

(Source code, png, pdf)

[image: ../_images/routines-polynomials-classes-1.png]

In the range -1 <= x <= 1 they are nice, equiripple functions lying between +/- 1.
The same plots over the range -2 <= x <= 2 look very different:

>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-2, 2, 100)
>>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
...
>>> plt.legend(loc="lower right")
<matplotlib.legend.Legend object at 0x3b3ee10>
>>> plt.show()

(Source code, png, pdf)

[image: ../_images/routines-polynomials-classes-2.png]

As can be seen, the “good” parts have shrunk to insignificance. In using
Chebyshev polynomials for fitting we want to use the region where x is
between -1 and 1 and that is what the window specifies. However, it is
unlikely that the data to be fit has all its data points in that interval,
so we use domain to specify the interval where the data points lie. When
the fit is done, the domain is first mapped to the window by a linear
transformation and the usual least squares fit is done using the mapped
data points. The window and domain of the fit are part of the returned series
and are automatically used when computing values, derivatives, and such. If
they aren’t specified in the call the fitting routine will use the default
window and the smallest domain that holds all the data points. This is
illustrated below for a fit to a noisy sine curve.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> np.random.seed(11)
>>> x = np.linspace(0, 2*np.pi, 20)
>>> y = np.sin(x) + np.random.normal(scale=.1, size=x.shape)
>>> p = T.fit(x, y, 5)
>>> plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x2136c10>]
>>> xx, yy = p.linspace()
>>> plt.plot(xx, yy, lw=2)
[<matplotlib.lines.Line2D object at 0x1cf2890>]
>>> p.domain
array([0. , 6.28318531])
>>> p.window
array([-1., 1.])
>>> plt.show()

(Source code, png, pdf)

[image: ../_images/routines-polynomials-classes-3.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

Polynomial Module (numpy.polynomial.polynomial)

New in version 1.4.0.

This module provides a number of objects (mostly functions) useful for
dealing with Polynomial series, including a Polynomial class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).

Polynomial Class

	Polynomial(coef[,domain,window])
	A power series class.

Basics

	polyval(x,c[,tensor])
	Evaluate a polynomial at points x.

	polyval2d(x,y,c)
	Evaluate a 2-D polynomial at points (x, y).

	polyval3d(x,y,z,c)
	Evaluate a 3-D polynomial at points (x, y, z).

	polygrid2d(x,y,c)
	Evaluate a 2-D polynomial on the Cartesian product of x and y.

	polygrid3d(x,y,z,c)
	Evaluate a 3-D polynomial on the Cartesian product of x, y and z.

	polyroots(c)
	Compute the roots of a polynomial.

	polyfromroots(roots)
	Generate a monic polynomial with given roots.

Fitting

	polyfit(x,y,deg[,rcond,full,w])
	Least-squares fit of a polynomial to data.

	polyvander(x,deg)
	Vandermonde matrix of given degree.

	polyvander2d(x,y,deg)
	Pseudo-Vandermonde matrix of given degrees.

	polyvander3d(x,y,z,deg)
	Pseudo-Vandermonde matrix of given degrees.

Calculus

	polyder(c[,m,scl,axis])
	Differentiate a polynomial.

	polyint(c[,m,k,lbnd,scl,axis])
	Integrate a polynomial.

Algebra

	polyadd(c1,c2)
	Add one polynomial to another.

	polysub(c1,c2)
	Subtract one polynomial from another.

	polymul(c1,c2)
	Multiply one polynomial by another.

	polymulx(c)
	Multiply a polynomial by x.

	polydiv(c1,c2)
	Divide one polynomial by another.

	polypow(c,pow[,maxpower])
	Raise a polynomial to a power.

Miscellaneous

	polycompanion(c)
	Return the companion matrix of c.

	polydomain
	

	polyzero
	

	polyone
	

	polyx
	

	polytrim(c[,tol])
	Remove “small” “trailing” coefficients from a polynomial.

	polyline(off,scl)
	Returns an array representing a linear polynomial.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.Polynomial

	
class numpy.polynomial.polynomial.Polynomial(coef, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L1493]

	A power series class.

The Polynomial class provides the standard Python numerical methods
‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as well as the
attributes and methods listed in the ABCPolyBase documentation.

	Parameters:	coef : array_like

Polynomial coefficients in order of increasing degree, i.e.,
(1, 2, 3) give 1 + 2*x + 3*x**2.

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped
to the interval [window[0], window[1]] by shifting and scaling.
The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

	__call__(arg)
	

	basis(deg[,domain,window])
	Series basis polynomial of degree deg.

	cast(series[,domain,window])
	Convert series to series of this class.

	convert([domain,kind,window])
	Convert series to a different kind and/or domain and/or window.

	copy()
	Return a copy.

	cutdeg(deg)
	Truncate series to the given degree.

	degree()
	The degree of the series.

	deriv([m])
	Differentiate.

	fit(x,y,deg[,domain,rcond,full,w,window])
	Least squares fit to data.

	fromroots(roots[,domain,window])
	Return series instance that has the specified roots.

	has_samecoef(other)
	Check if coefficients match.

	has_samedomain(other)
	Check if domains match.

	has_sametype(other)
	Check if types match.

	has_samewindow(other)
	Check if windows match.

	identity([domain,window])
	Identity function.

	integ([m,k,lbnd])
	Integrate.

	linspace([n,domain])
	Return x, y values at equally spaced points in domain.

	mapparms()
	Return the mapping parameters.

	roots()
	Return the roots of the series polynomial.

	trim([tol])
	Remove trailing coefficients

	truncate(size)
	Truncate series to length size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyval

	
numpy.polynomial.polynomial.polyval(x, c, tensor=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L687]

	Evaluate a polynomial at points x.

If c is of length n + 1, this function returns the value

[image: p(x) = c_0 + c_1 * x + ... + c_n * x^n]

The parameter x is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with
themselves and with the elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If
c is multidimensional, then the shape of the result depends on the
value of tensor. If tensor is true the shape will be c.shape[1:] +
x.shape. If tensor is false the shape will be c.shape[1:]. Note that
scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.

	Parameters:	x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x
or its elements must support addition and multiplication with
with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If c is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of x. Scalars have dimension 0
for this action. The result is that every column of coefficients in
c is evaluated for every element of x. If False, x is broadcast
over the columns of c for the evaluation. This keyword is useful
when c is multidimensional. The default value is True.

New in version 1.7.0.

	Returns:	values : ndarray, compatible object

The shape of the returned array is described above.

See also

polyval2d, polygrid2d, polyval3d, polygrid3d

Notes

The evaluation uses Horner’s method.

Examples

>>> from numpy.polynomial.polynomial import polyval
>>> polyval(1, [1,2,3])
6.0
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
 [2, 3]])
>>> polyval(a, [1,2,3])
array([[1., 6.],
 [17., 34.]])
>>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
>>> coef
array([[0, 1],
 [2, 3]])
>>> polyval([1,2], coef, tensor=True)
array([[2., 4.],
 [4., 7.]])
>>> polyval([1,2], coef, tensor=False)
array([2., 7.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyval2d

	
numpy.polynomial.polynomial.polyval2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L783]

	Evaluate a 2-D polynomial at points (x, y).

This function returns the value

[image: p(x,y) = \sum_{i,j} c_{i,j} * x^i * y^j]

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either x
and y or their elements must support multiplication and addition both
with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list
or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term
of multi-degree i,j is contained in c[i,j]. If c has
dimension greater than two the remaining indices enumerate multiple
sets of coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points formed with
pairs of corresponding values from x and y.

See also

polyval, polygrid2d, polyval3d, polygrid3d

Notes

New in version 1.7.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyval3d

	
numpy.polynomial.polynomial.polyval3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L895]

	Evaluate a 3-D polynomial at points (x, y, z).

This function returns the values:

[image: p(x,y,z) = \sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k]

The parameters x, y, and z are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
x, y, and z or their elements must support multiplication and
addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.

	Parameters:	x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points
(x, y, z), where x, y, and z must have the same shape. If
any of x, y, or z is a list or tuple, it is first converted
to an ndarray, otherwise it is left unchanged and if it isn’t an
ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j,k is contained in c[i,j,k]. If c has dimension
greater than 3 the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with
triples of corresponding values from x, y, and z.

See also

polyval, polyval2d, polygrid2d, polygrid3d

Notes

New in version 1.7.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polygrid2d

	
numpy.polynomial.polynomial.polygrid2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L840]

	Evaluate a 2-D polynomial on the Cartesian product of x and y.

This function returns the values:

[image: p(a,b) = \sum_{i,j} c_{i,j} * a^i * b^j]

where the points (a, b) consist of all pairs formed by taking
a from x and b from y. The resulting points form a grid with
x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either x and y or their elements must support multiplication
and addition both with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape + y.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or
tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

polyval, polyval2d, polyval3d, polygrid3d

Notes

New in version 1.7.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polygrid3d

	
numpy.polynomial.polynomial.polygrid3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L954]

	Evaluate a 3-D polynomial on the Cartesian product of x, y and z.

This function returns the values:

[image: p(a,b,c) = \sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k]

where the points (a, b, c) consist of all triples formed by taking
a from x, b from y, and c from z. The resulting points form
a grid with x in the first dimension, y in the second, and z in
the third.

The parameters x, y, and z are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either x, y, and z or their elements must support
multiplication and addition both with themselves and with the elements
of c.

If c has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.

	Parameters:	x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x,`y`, or z is a
list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn’t an ndarray, it is treated as a
scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

polyval, polyval2d, polygrid2d, polyval3d

Notes

New in version 1.7.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyroots

	
numpy.polynomial.polynomial.polyroots(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L1431]

	Compute the roots of a polynomial.

Return the roots (a.k.a. “zeros”) of the polynomial

[image: p(x) = \sum_i c[i] * x^i.]

	Parameters:	c : 1-D array_like

1-D array of polynomial coefficients.

	Returns:	out : ndarray

Array of the roots of the polynomial. If all the roots are real,
then out is also real, otherwise it is complex.

See also

chebroots

Notes

The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the power series for such
values. Roots with multiplicity greater than 1 will also show larger
errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can
be improved by a few iterations of Newton’s method.

Examples

>>> import numpy.polynomial.polynomial as poly
>>> poly.polyroots(poly.polyfromroots((-1,0,1)))
array([-1., 0., 1.])
>>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
dtype('float64')
>>> j = complex(0,1)
>>> poly.polyroots(poly.polyfromroots((-j,0,j)))
array([0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyfromroots

	
numpy.polynomial.polynomial.polyfromroots(roots)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L130]

	Generate a monic polynomial with given roots.

Return the coefficients of the polynomial

[image: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),]

where the r_n are the roots specified in roots. If a zero has
multiplicity n, then it must appear in roots n times. For instance,
if 2 is a root of multiplicity three and 3 is a root of multiplicity 2,
then roots looks something like [2, 2, 2, 3, 3]. The roots can appear
in any order.

If the returned coefficients are c, then

[image: p(x) = c_0 + c_1 * x + ... + x^n]

The coefficient of the last term is 1 for monic polynomials in this
form.

	Parameters:	roots : array_like

Sequence containing the roots.

	Returns:	out : ndarray

1-D array of the polynomial’s coefficients If all the roots are
real, then out is also real, otherwise it is complex. (see
Examples below).

See also

chebfromroots, legfromroots, lagfromroots, hermfromroots, hermefromroots

Notes

The coefficients are determined by multiplying together linear factors
of the form (x - r_i), i.e.

[image: p(x) = (x - r_0) (x - r_1) ... (x - r_n)]

where n == len(roots) - 1; note that this implies that 1 is always
returned for [image: a_n].

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
array([0., -1., 0., 1.])
>>> j = complex(0,1)
>>> P.polyfromroots((-j,j)) # complex returned, though values are real
array([1.+0.j, 0.+0.j, 1.+0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyfit

	
numpy.polynomial.polynomial.polyfit(x, y, deg, rcond=None, full=False, w=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L1196]

	Least-squares fit of a polynomial to data.

Return the coefficients of a polynomial of degree deg that is the
least squares fit to the data values y given at points x. If y is
1-D the returned coefficients will also be 1-D. If y is 2-D multiple
fits are done, one for each column of y, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form

[image: p(x) = c_0 + c_1 * x + ... + c_n * x^n,]

where n is deg.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample (data) points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several sets of sample points
sharing the same x-coordinates can be (independently) fit with one
call to polyfit by passing in for y a 2-D array that contains
one data set per column.

deg : int

Degree of the polynomial(s) to be fit.

rcond : float, optional

Relative condition number of the fit. Singular values smaller
than rcond, relative to the largest singular value, will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the platform’s float type, about 2e-16 in
most cases.

full : bool, optional

Switch determining the nature of the return value. When False
(the default) just the coefficients are returned; when True,
diagnostic information from the singular value decomposition (used
to solve the fit’s matrix equation) is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products w[i]*y[i]
all have the same variance. The default value is None.

New in version 1.5.0.

	Returns:	coef : ndarray, shape (deg + 1,) or (deg + 1, K)

Polynomial coefficients ordered from low to high. If y was 2-D,
the coefficients in column k of coef represent the polynomial
fit to the data in y‘s k-th column.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

	Raises:	RankWarning

Raised if the matrix in the least-squares fit is rank deficient.
The warning is only raised if full == False. The warnings can
be turned off by:

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also

chebfit, legfit, lagfit, hermfit, hermefit

	polyval

	Evaluates a polynomial.

	polyvander

	Vandermonde matrix for powers.

	linalg.lstsq

	Computes a least-squares fit from the matrix.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

The solution is the coefficients of the polynomial p that minimizes
the sum of the weighted squared errors

[image: E = \sum_j w_j^2 * |y_j - p(x_j)|^2,]

where the [image: w_j] are the weights. This problem is solved by
setting up the (typically) over-determined matrix equation:

[image: V(x) * c = w * y,]

where V is the weighted pseudo Vandermonde matrix of x, c are the
coefficients to be solved for, w are the weights, and y are the
observed values. This equation is then solved using the singular value
decomposition of V.

If some of the singular values of V are so small that they are
neglected (and full == False), a RankWarning will be raised.
This means that the coefficient values may be poorly determined.
Fitting to a lower order polynomial will usually get rid of the warning
(but may not be what you want, of course; if you have independent
reason(s) for choosing the degree which isn’t working, you may have to:
a) reconsider those reasons, and/or b) reconsider the quality of your
data). The rcond parameter can also be set to a value smaller than
its default, but the resulting fit may be spurious and have large
contributions from roundoff error.

Polynomial fits using double precision tend to “fail” at about
(polynomial) degree 20. Fits using Chebyshev or Legendre series are
generally better conditioned, but much can still depend on the
distribution of the sample points and the smoothness of the data. If
the quality of the fit is inadequate, splines may be a good
alternative.

Examples

>>> from numpy.polynomial import polynomial as P
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
>>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
array([0.01909725, -1.30598256, -0.00577963, 1.02644286])
>>> stats # note the large SSR, explaining the rather poor results
[array([38.06116253]), 4, array([1.38446749, 1.32119158, 0.50443316,
0.28853036]), 1.1324274851176597e-014]

Same thing without the added noise

>>> y = x**3 - x
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
array([-1.73362882e-17, -1.00000000e+00, -2.67471909e-16,
 1.00000000e+00])
>>> stats # note the minuscule SSR
[array([7.46346754e-31]), 4, array([1.38446749, 1.32119158,
0.50443316, 0.28853036]), 1.1324274851176597e-014]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyvander

	
numpy.polynomial.polynomial.polyvander(x, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L1013]

	Vandermonde matrix of given degree.

Returns the Vandermonde matrix of degree deg and sample points
x. The Vandermonde matrix is defined by

[image: V[..., i] = x^i,]

where 0 <= i <= deg. The leading indices of V index the elements of
x and the last index is the power of x.

If c is a 1-D array of coefficients of length n + 1 and V is the
matrix V = polyvander(x, n), then np.dot(V, c) and
polyval(x, c) are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of polynomials of the same degree and sample points.

	Parameters:	x : array_like

Array of points. The dtype is converted to float64 or complex128
depending on whether any of the elements are complex. If x is
scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

	Returns:	vander : ndarray.

The Vandermonde matrix. The shape of the returned matrix is
x.shape + (deg + 1,), where the last index is the power of x.
The dtype will be the same as the converted x.

See also

polyvander2d, polyvander3d

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyvander2d

	
numpy.polynomial.polynomial.polyvander2d(x, y, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L1069]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y). The pseudo-Vandermonde matrix is defined by

[image: V[..., deg[1]*i + j] = x^i * y^j,]

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of
V index the points (x, y) and the last index encodes the powers of
x and y.

If V = polyvander2d(x, y, [xdeg, ydeg]), then the columns of V
correspond to the elements of a 2-D coefficient array c of shape
(xdeg + 1, ydeg + 1) in the order

[image: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...]

and np.dot(V, c.flat) and polyval2d(x, y, c) will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D polynomials
of the same degrees and sample points.

	Parameters:	x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to
1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

	Returns:	vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)]. The dtype will be the same
as the converted x and y.

See also

polyvander, polyvander3d., polyval3d

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyvander3d

	
numpy.polynomial.polynomial.polyvander3d(x, y, z, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L1129]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y, z). If l, m, n are the given degrees in x, y, z,
then The pseudo-Vandermonde matrix is defined by

[image: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k,]

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading
indices of V index the points (x, y, z) and the last index encodes
the powers of x, y, and z.

If V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns
of V correspond to the elements of a 3-D coefficient array c of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

[image: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...]

and np.dot(V, c.flat) and polyval3d(x, y, z, c) will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D polynomials
of the same degrees and sample points.

	Parameters:	x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will
be converted to either float64 or complex128 depending on whether
any of the elements are complex. Scalars are converted to 1-D
arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

	Returns:	vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)]. The dtype will
be the same as the converted x, y, and z.

See also

polyvander, polyvander3d., polyval3d

Notes

New in version 1.7.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyder

	
numpy.polynomial.polynomial.polyder(c, m=1, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L477]

	Differentiate a polynomial.

Returns the polynomial coefficients c differentiated m times along
axis. At each iteration the result is multiplied by scl (the
scaling factor is for use in a linear change of variable). The
argument c is an array of coefficients from low to high degree along
each axis, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2
while [[1,2],[1,2]] represents 1 + 1*x + 2*y + 2*x*y if axis=0 is
x and axis=1 is y.

	Parameters:	c : array_like

Array of polynomial coefficients. If c is multidimensional the
different axis correspond to different variables with the degree
in each axis given by the corresponding index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is
multiplication by scl**m. This is for use in a linear change
of variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

	Returns:	der : ndarray

Polynomial coefficients of the derivative.

See also

polyint

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
>>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
array([2., 6., 12.])
>>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
array([24.])
>>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
array([-2., -6., -12.])
>>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
array([6., 24.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyint

	
numpy.polynomial.polynomial.polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L566]

	Integrate a polynomial.

Returns the polynomial coefficients c integrated m times from
lbnd along axis. At each iteration the resulting series is
multiplied by scl and an integration constant, k, is added.
The scaling factor is for use in a linear change of variable. (“Buyer
beware”: note that, depending on what one is doing, one may want scl
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument c is an array of
coefficients, from low to high degree along each axis, e.g., [1,2,3]
represents the polynomial 1 + 2*x + 3*x**2 while [[1,2],[1,2]]
represents 1 + 1*x + 2*y + 2*x*y if axis=0 is x and axis=1 is
y.

	Parameters:	c : array_like

1-D array of polynomial coefficients, ordered from low to high.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at zero
is the first value in the list, the value of the second integral
at zero is the second value, etc. If k == [] (the default),
all constants are set to zero. If m == 1, a single scalar can
be given instead of a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl
before the integration constant is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

	Returns:	S : ndarray

Coefficient array of the integral.

	Raises:	ValueError

If m < 1, len(k) > m.

See also

polyder

Notes

Note that the result of each integration is multiplied by scl. Why
is this important to note? Say one is making a linear change of
variable [image: u = ax + b] in an integral relative to x. Then
.. math::dx = du/a, so one will need to set scl equal to
[image: 1/a] - perhaps not what one would have first thought.

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3)
>>> P.polyint(c) # should return array([0, 1, 1, 1])
array([0., 1., 1., 1.])
>>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
array([0. , 0. , 0. , 0.16666667, 0.08333333,
 0.05])
>>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
array([3., 1., 1., 1.])
>>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
array([6., 1., 1., 1.])
>>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
array([0., -2., -2., -2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyadd

	
numpy.polynomial.polynomial.polyadd(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L205]

	Add one polynomial to another.

Returns the sum of two polynomials c1 + c2. The arguments are
sequences of coefficients from lowest order term to highest, i.e.,
[1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

	Parameters:	c1, c2 : array_like

1-D arrays of polynomial coefficients ordered from low to high.

	Returns:	out : ndarray

The coefficient array representing their sum.

See also

polysub, polymul, polydiv, polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> sum = P.polyadd(c1,c2); sum
array([4., 4., 4.])
>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
28.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polysub

	
numpy.polynomial.polynomial.polysub(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L249]

	Subtract one polynomial from another.

Returns the difference of two polynomials c1 - c2. The arguments
are sequences of coefficients from lowest order term to highest, i.e.,
[1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

	Parameters:	c1, c2 : array_like

1-D arrays of polynomial coefficients ordered from low to
high.

	Returns:	out : ndarray

Of coefficients representing their difference.

See also

polyadd, polymul, polydiv, polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polysub(c1,c2)
array([-2., 0., 2.])
>>> P.polysub(c2,c1) # -P.polysub(c1,c2)
array([2., 0., -2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polymul

	
numpy.polynomial.polynomial.polymul(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L331]

	Multiply one polynomial by another.

Returns the product of two polynomials c1 * c2. The arguments are
sequences of coefficients, from lowest order term to highest, e.g.,
[1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

	Parameters:	c1, c2 : array_like

1-D arrays of coefficients representing a polynomial, relative to the
“standard” basis, and ordered from lowest order term to highest.

	Returns:	out : ndarray

Of the coefficients of their product.

See also

polyadd, polysub, polydiv, polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polymul(c1,c2)
array([3., 8., 14., 8., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polymulx

	
numpy.polynomial.polynomial.polymulx(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L295]

	Multiply a polynomial by x.

Multiply the polynomial c by x, where x is the independent
variable.

	Parameters:	c : array_like

1-D array of polynomial coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the result of the multiplication.

Notes

New in version 1.5.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polydiv

	
numpy.polynomial.polynomial.polydiv(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L369]

	Divide one polynomial by another.

Returns the quotient-with-remainder of two polynomials c1 / c2.
The arguments are sequences of coefficients, from lowest order term
to highest, e.g., [1,2,3] represents 1 + 2*x + 3*x**2.

	Parameters:	c1, c2 : array_like

1-D arrays of polynomial coefficients ordered from low to high.

	Returns:	[quo, rem] : ndarrays

Of coefficient series representing the quotient and remainder.

See also

polyadd, polysub, polymul, polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polydiv(c1,c2)
(array([3.]), array([-8., -4.]))
>>> P.polydiv(c2,c1)
(array([0.33333333]), array([2.66666667, 1.33333333]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polypow

	
numpy.polynomial.polynomial.polypow(c, pow, maxpower=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L426]

	Raise a polynomial to a power.

Returns the polynomial c raised to the power pow. The argument
c is a sequence of coefficients ordered from low to high. i.e.,
[1,2,3] is the series 1 + 2*x + 3*x**2.

	Parameters:	c : array_like

1-D array of array of series coefficients ordered from low to
high degree.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series
to unmanageable size. Default is 16

	Returns:	coef : ndarray

Power series of power.

See also

polyadd, polysub, polymul, polydiv

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polycompanion

	
numpy.polynomial.polynomial.polycompanion(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L1391]

	Return the companion matrix of c.

The companion matrix for power series cannot be made symmetric by
scaling the basis, so this function differs from those for the
orthogonal polynomials.

	Parameters:	c : array_like

1-D array of polynomial coefficients ordered from low to high
degree.

	Returns:	mat : ndarray

Companion matrix of dimensions (deg, deg).

Notes

New in version 1.7.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polydomain

	
numpy.polynomial.polynomial.polydomain = array([-1, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyzero

	
numpy.polynomial.polynomial.polyzero = array([0])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyone

	
numpy.polynomial.polynomial.polyone = array([1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyx

	
numpy.polynomial.polynomial.polyx = array([0, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polytrim

	
numpy.polynomial.polynomial.polytrim(c, tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polyutils.py#L191]

	Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the
parameter tol; “trailing” means highest order coefficient(s), e.g., in
[0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

	Parameters:	c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less
than or equal to tol (default value is zero) are removed.

	Returns:	trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series
would be empty, a series containing a single zero is returned.

	Raises:	ValueError

If tol < 0

See also

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Polynomial Module (numpy.polynomial.polynomial)

numpy.polynomial.polynomial.polyline

	
numpy.polynomial.polynomial.polyline(off, scl)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polynomial.py#L96]

	Returns an array representing a linear polynomial.

	Parameters:	off, scl : scalars

The “y-intercept” and “slope” of the line, respectively.

	Returns:	y : ndarray

This module’s representation of the linear polynomial off +
scl*x.

See also

chebline

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polyline(1,-1)
array([1, -1])
>>> P.polyval(1, P.polyline(1,-1)) # should be 0
0.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

Chebyshev Module (numpy.polynomial.chebyshev)

New in version 1.4.0.

This module provides a number of objects (mostly functions) useful for
dealing with Chebyshev series, including a Chebyshev class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).

Chebyshev Class

	Chebyshev(coef[,domain,window])
	A Chebyshev series class.

Basics

	chebval(x,c[,tensor])
	Evaluate a Chebyshev series at points x.

	chebval2d(x,y,c)
	Evaluate a 2-D Chebyshev series at points (x, y).

	chebval3d(x,y,z,c)
	Evaluate a 3-D Chebyshev series at points (x, y, z).

	chebgrid2d(x,y,c)
	Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.

	chebgrid3d(x,y,z,c)
	Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.

	chebroots(c)
	Compute the roots of a Chebyshev series.

	chebfromroots(roots)
	Generate a Chebyshev series with given roots.

Fitting

	chebfit(x,y,deg[,rcond,full,w])
	Least squares fit of Chebyshev series to data.

	chebvander(x,deg)
	Pseudo-Vandermonde matrix of given degree.

	chebvander2d(x,y,deg)
	Pseudo-Vandermonde matrix of given degrees.

	chebvander3d(x,y,z,deg)
	Pseudo-Vandermonde matrix of given degrees.

Calculus

	chebder(c[,m,scl,axis])
	Differentiate a Chebyshev series.

	chebint(c[,m,k,lbnd,scl,axis])
	Integrate a Chebyshev series.

Algebra

	chebadd(c1,c2)
	Add one Chebyshev series to another.

	chebsub(c1,c2)
	Subtract one Chebyshev series from another.

	chebmul(c1,c2)
	Multiply one Chebyshev series by another.

	chebmulx(c)
	Multiply a Chebyshev series by x.

	chebdiv(c1,c2)
	Divide one Chebyshev series by another.

	chebpow(c,pow[,maxpower])
	Raise a Chebyshev series to a power.

Quadrature

	chebgauss(deg)
	Gauss-Chebyshev quadrature.

	chebweight(x)
	The weight function of the Chebyshev polynomials.

Miscellaneous

	chebcompanion(c)
	Return the scaled companion matrix of c.

	chebdomain
	

	chebzero
	

	chebone
	

	chebx
	

	chebtrim(c[,tol])
	Remove “small” “trailing” coefficients from a polynomial.

	chebline(off,scl)
	Chebyshev series whose graph is a straight line.

	cheb2poly(c)
	Convert a Chebyshev series to a polynomial.

	poly2cheb(pol)
	Convert a polynomial to a Chebyshev series.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.Chebyshev

	
class numpy.polynomial.chebyshev.Chebyshev(coef, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L2017]

	A Chebyshev series class.

The Chebyshev class provides the standard Python numerical methods
‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as well as the
methods listed below.

	Parameters:	coef : array_like

Chebyshev coefficients in order of increasing degree, i.e.,
(1, 2, 3) gives 1*T_0(x) + 2*T_1(x) + 3*T_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped
to the interval [window[0], window[1]] by shifting and scaling.
The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

	__call__(arg)
	

	basis(deg[,domain,window])
	Series basis polynomial of degree deg.

	cast(series[,domain,window])
	Convert series to series of this class.

	convert([domain,kind,window])
	Convert series to a different kind and/or domain and/or window.

	copy()
	Return a copy.

	cutdeg(deg)
	Truncate series to the given degree.

	degree()
	The degree of the series.

	deriv([m])
	Differentiate.

	fit(x,y,deg[,domain,rcond,full,w,window])
	Least squares fit to data.

	fromroots(roots[,domain,window])
	Return series instance that has the specified roots.

	has_samecoef(other)
	Check if coefficients match.

	has_samedomain(other)
	Check if domains match.

	has_sametype(other)
	Check if types match.

	has_samewindow(other)
	Check if windows match.

	identity([domain,window])
	Identity function.

	integ([m,k,lbnd])
	Integrate.

	linspace([n,domain])
	Return x, y values at equally spaced points in domain.

	mapparms()
	Return the mapping parameters.

	roots()
	Return the roots of the series polynomial.

	trim([tol])
	Remove trailing coefficients

	truncate(size)
	Truncate series to length size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebval

	
numpy.polynomial.chebyshev.chebval(x, c, tensor=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1098]

	Evaluate a Chebyshev series at points x.

If c is of length n + 1, this function returns the value:

[image: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x)]

The parameter x is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with
themselves and with the elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If
c is multidimensional, then the shape of the result depends on the
value of tensor. If tensor is true the shape will be c.shape[1:] +
x.shape. If tensor is false the shape will be c.shape[1:]. Note that
scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.

	Parameters:	x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x
or its elements must support addition and multiplication with
with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If c is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of x. Scalars have dimension 0
for this action. The result is that every column of coefficients in
c is evaluated for every element of x. If False, x is broadcast
over the columns of c for the evaluation. This keyword is useful
when c is multidimensional. The default value is True.

New in version 1.7.0.

	Returns:	values : ndarray, algebra_like

The shape of the return value is described above.

See also

chebval2d, chebgrid2d, chebval3d, chebgrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebval2d

	
numpy.polynomial.chebyshev.chebval2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1185]

	Evaluate a 2-D Chebyshev series at points (x, y).

This function returns the values:

[image: p(x,y) = \sum_{i,j} c_{i,j} * T_i(x) * T_j(y)]

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either x
and y or their elements must support multiplication and addition both
with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make
it 2-D. The shape of the result will be c.shape[2:] + x.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list
or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term
of multi-degree i,j is contained in c[i,j]. If c has
dimension greater than 2 the remaining indices enumerate multiple
sets of coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional Chebyshev series at points formed
from pairs of corresponding values from x and y.

See also

chebval, chebgrid2d, chebval3d, chebgrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebval3d

	
numpy.polynomial.chebyshev.chebval3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1296]

	Evaluate a 3-D Chebyshev series at points (x, y, z).

This function returns the values:

[image: p(x,y,z) = \sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z)]

The parameters x, y, and z are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
x, y, and z or their elements must support multiplication and
addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.

	Parameters:	x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points
(x, y, z), where x, y, and z must have the same shape. If
any of x, y, or z is a list or tuple, it is first converted
to an ndarray, otherwise it is left unchanged and if it isn’t an
ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j,k is contained in c[i,j,k]. If c has dimension
greater than 3 the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with
triples of corresponding values from x, y, and z.

See also

chebval, chebval2d, chebgrid2d, chebgrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebgrid2d

	
numpy.polynomial.chebyshev.chebgrid2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1241]

	Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.

This function returns the values:

[image: p(a,b) = \sum_{i,j} c_{i,j} * T_i(a) * T_j(b),]

where the points (a, b) consist of all pairs formed by taking
a from x and b from y. The resulting points form a grid with
x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either x and y or their elements must support multiplication
and addition both with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape + y.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or
tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j is contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional Chebyshev series at points in the
Cartesian product of x and y.

See also

chebval, chebval2d, chebval3d, chebgrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebgrid3d

	
numpy.polynomial.chebyshev.chebgrid3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1355]

	Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.

This function returns the values:

[image: p(a,b,c) = \sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c)]

where the points (a, b, c) consist of all triples formed by taking
a from x, b from y, and c from z. The resulting points form
a grid with x in the first dimension, y in the second, and z in
the third.

The parameters x, y, and z are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either x, y, and z or their elements must support
multiplication and addition both with themselves and with the elements
of c.

If c has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.

	Parameters:	x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x,`y`, or z is a
list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn’t an ndarray, it is treated as a
scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

chebval, chebval2d, chebgrid2d, chebval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebroots

	
numpy.polynomial.chebyshev.chebroots(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1814]

	Compute the roots of a Chebyshev series.

Return the roots (a.k.a. “zeros”) of the polynomial

[image: p(x) = \sum_i c[i] * T_i(x).]

	Parameters:	c : 1-D array_like

1-D array of coefficients.

	Returns:	out : ndarray

Array of the roots of the series. If all the roots are real,
then out is also real, otherwise it is complex.

See also

polyroots, legroots, lagroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the series for such
values. Roots with multiplicity greater than 1 will also show larger
errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can
be improved by a few iterations of Newton’s method.

The Chebyshev series basis polynomials aren’t powers of x so the
results of this function may seem unintuitive.

Examples

>>> import numpy.polynomial.chebyshev as cheb
>>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
array([-5.00000000e-01, 2.60860684e-17, 1.00000000e+00])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebfromroots

	
numpy.polynomial.chebyshev.chebfromroots(roots)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L492]

	Generate a Chebyshev series with given roots.

The function returns the coefficients of the polynomial

[image: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),]

in Chebyshev form, where the r_n are the roots specified in roots.
If a zero has multiplicity n, then it must appear in roots n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of
multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The
roots can appear in any order.

If the returned coefficients are c, then

[image: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x)]

The coefficient of the last term is not generally 1 for monic
polynomials in Chebyshev form.

	Parameters:	roots : array_like

Sequence containing the roots.

	Returns:	out : ndarray

1-D array of coefficients. If all roots are real then out is a
real array, if some of the roots are complex, then out is complex
even if all the coefficients in the result are real (see Examples
below).

See also

polyfromroots, legfromroots, lagfromroots, hermfromroots, hermefromroots.

Examples

>>> import numpy.polynomial.chebyshev as C
>>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([0. , -0.25, 0. , 0.25])
>>> j = complex(0,1)
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([1.5+0.j, 0.0+0.j, 0.5+0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebfit

	
numpy.polynomial.chebyshev.chebfit(x, y, deg, rcond=None, full=False, w=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1597]

	Least squares fit of Chebyshev series to data.

Return the coefficients of a Legendre series of degree deg that is the
least squares fit to the data values y given at points x. If y is
1-D the returned coefficients will also be 1-D. If y is 2-D multiple
fits are done, one for each column of y, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form

[image: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x),]

where n is deg.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting series

rcond : float, optional

Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products w[i]*y[i]
all have the same variance. The default value is None.

New in version 1.5.0.

	Returns:	coef : ndarray, shape (M,) or (M, K)

Chebyshev coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column
k.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

	Warns:	RankWarning

The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False. The
warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also

polyfit, legfit, lagfit, hermfit, hermefit

	chebval

	Evaluates a Chebyshev series.

	chebvander

	Vandermonde matrix of Chebyshev series.

	chebweight

	Chebyshev weight function.

	linalg.lstsq

	Computes a least-squares fit from the matrix.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

The solution is the coefficients of the Chebyshev series p that
minimizes the sum of the weighted squared errors

[image: E = \sum_j w_j^2 * |y_j - p(x_j)|^2,]

where [image: w_j] are the weights. This problem is solved by setting up
as the (typically) overdetermined matrix equation

[image: V(x) * c = w * y,]

where V is the weighted pseudo Vandermonde matrix of x, c are the
coefficients to be solved for, w are the weights, and y are the
observed values. This equation is then solved using the singular value
decomposition of V.

If some of the singular values of V are so small that they are
neglected, then a RankWarning will be issued. This means that the
coefficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning. The rcond parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Chebyshev series are usually better conditioned than fits
using power series, but much can depend on the distribution of the
sample points and the smoothness of the data. If the quality of the fit
is inadequate splines may be a good alternative.

References

	[R60]	Wikipedia, “Curve fitting”,
http://en.wikipedia.org/wiki/Curve_fitting

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebvander

	
numpy.polynomial.chebyshev.chebvander(x, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1414]

	Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points
x. The pseudo-Vandermonde matrix is defined by

[image: V[..., i] = T_i(x),]

where 0 <= i <= deg. The leading indices of V index the elements of
x and the last index is the degree of the Chebyshev polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the
matrix V = chebvander(x, n), then np.dot(V, c) and
chebval(x, c) are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of Chebyshev series of the same degree and sample points.

	Parameters:	x : array_like

Array of points. The dtype is converted to float64 or complex128
depending on whether any of the elements are complex. If x is
scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

	Returns:	vander : ndarray

The pseudo Vandermonde matrix. The shape of the returned matrix is
x.shape + (deg + 1,), where The last index is the degree of the
corresponding Chebyshev polynomial. The dtype will be the same as
the converted x.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebvander2d

	
numpy.polynomial.chebyshev.chebvander2d(x, y, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1469]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y). The pseudo-Vandermonde matrix is defined by

[image: V[..., deg[1]*i + j] = T_i(x) * T_j(y),]

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of
V index the points (x, y) and the last index encodes the degrees of
the Chebyshev polynomials.

If V = chebvander2d(x, y, [xdeg, ydeg]), then the columns of V
correspond to the elements of a 2-D coefficient array c of shape
(xdeg + 1, ydeg + 1) in the order

[image: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...]

and np.dot(V, c.flat) and chebval2d(x, y, c) will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D Chebyshev
series of the same degrees and sample points.

	Parameters:	x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to
1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

	Returns:	vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)]. The dtype will be the same
as the converted x and y.

See also

chebvander, chebvander3d., chebval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebvander3d

	
numpy.polynomial.chebyshev.chebvander3d(x, y, z, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1532]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y, z). If l, m, n are the given degrees in x, y, z,
then The pseudo-Vandermonde matrix is defined by

[image: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z),]

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading
indices of V index the points (x, y, z) and the last index encodes
the degrees of the Chebyshev polynomials.

If V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns
of V correspond to the elements of a 3-D coefficient array c of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

[image: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...]

and np.dot(V, c.flat) and chebval3d(x, y, z, c) will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D Chebyshev
series of the same degrees and sample points.

	Parameters:	x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will
be converted to either float64 or complex128 depending on whether
any of the elements are complex. Scalars are converted to 1-D
arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

	Returns:	vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)]. The dtype will
be the same as the converted x, y, and z.

See also

chebvander, chebvander3d., chebval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebder

	
numpy.polynomial.chebyshev.chebder(c, m=1, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L868]

	Differentiate a Chebyshev series.

Returns the Chebyshev series coefficients c differentiated m times
along axis. At each iteration the result is multiplied by scl (the
scaling factor is for use in a linear change of variable). The argument
c is an array of coefficients from low to high degree along each
axis, e.g., [1,2,3] represents the series 1*T_0 + 2*T_1 + 3*T_2
while [[1,2],[1,2]] represents 1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y) if axis=0 is x and axis=1 is
y.

	Parameters:	c : array_like

Array of Chebyshev series coefficients. If c is multidimensional
the different axis correspond to different variables with the
degree in each axis given by the corresponding index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is
multiplication by scl**m. This is for use in a linear change of
variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

	Returns:	der : ndarray

Chebyshev series of the derivative.

See also

chebint

Notes

In general, the result of differentiating a C-series needs to be
“reprojected” onto the C-series basis set. Thus, typically, the
result of this function is “unintuitive,” albeit correct; see Examples
section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3,4)
>>> C.chebder(c)
array([14., 12., 24.])
>>> C.chebder(c,3)
array([96.])
>>> C.chebder(c,scl=-1)
array([-14., -12., -24.])
>>> C.chebder(c,2,-1)
array([12., 96.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebint

	
numpy.polynomial.chebyshev.chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L967]

	Integrate a Chebyshev series.

Returns the Chebyshev series coefficients c integrated m times from
lbnd along axis. At each iteration the resulting series is
multiplied by scl and an integration constant, k, is added.
The scaling factor is for use in a linear change of variable. (“Buyer
beware”: note that, depending on what one is doing, one may want scl
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3]
represents the series T_0 + 2*T_1 + 3*T_2 while [[1,2],[1,2]]
represents 1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
2*T_1(x)*T_1(y) if axis=0 is x and axis=1 is y.

	Parameters:	c : array_like

Array of Chebyshev series coefficients. If c is multidimensional
the different axis correspond to different variables with the
degree in each axis given by the corresponding index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at zero
is the first value in the list, the value of the second integral
at zero is the second value, etc. If k == [] (the default),
all constants are set to zero. If m == 1, a single scalar can
be given instead of a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl
before the integration constant is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

	Returns:	S : ndarray

C-series coefficients of the integral.

	Raises:	ValueError

If m < 1, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also

chebder

Notes

Note that the result of each integration is multiplied by scl.
Why is this important to note? Say one is making a linear change of
variable [image: u = ax + b] in an integral relative to x. Then
.. math::dx = du/a, so one will need to set scl equal to
[image: 1/a]- perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs
to be “reprojected” onto the C-series basis set. Thus, typically,
the result of this function is “unintuitive,” albeit correct; see
Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3)
>>> C.chebint(c)
array([0.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,3)
array([0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667,
 0.00625])
>>> C.chebint(c, k=3)
array([3.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,lbnd=-2)
array([8.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,scl=-2)
array([-1., 1., -1., -1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebadd

	
numpy.polynomial.chebyshev.chebadd(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L558]

	Add one Chebyshev series to another.

Returns the sum of two Chebyshev series c1 + c2. The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Chebyshev series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the Chebyshev series of their sum.

See also

chebsub, chebmul, chebdiv, chebpow

Notes

Unlike multiplication, division, etc., the sum of two Chebyshev series
is a Chebyshev series (without having to “reproject” the result onto
the basis set) so addition, just like that of “standard” polynomials,
is simply “component-wise.”

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebadd(c1,c2)
array([4., 4., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebsub

	
numpy.polynomial.chebyshev.chebsub(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L608]

	Subtract one Chebyshev series from another.

Returns the difference of two Chebyshev series c1 - c2. The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Chebyshev series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Chebyshev series coefficients representing their difference.

See also

chebadd, chebmul, chebdiv, chebpow

Notes

Unlike multiplication, division, etc., the difference of two Chebyshev
series is a Chebyshev series (without having to “reproject” the result
onto the basis set) so subtraction, just like that of “standard”
polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebsub(c1,c2)
array([-2., 0., 2.])
>>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
array([2., 0., -2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebmul

	
numpy.polynomial.chebyshev.chebmul(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L701]

	Multiply one Chebyshev series by another.

Returns the product of two Chebyshev series c1 * c2. The arguments
are sequences of coefficients, from lowest order “term” to highest,
e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Chebyshev series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Chebyshev series coefficients representing their product.

See also

chebadd, chebsub, chebdiv, chebpow

Notes

In general, the (polynomial) product of two C-series results in terms
that are not in the Chebyshev polynomial basis set. Thus, to express
the product as a C-series, it is typically necessary to “reproject”
the product onto said basis set, which typically produces
“unintuitive live” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebmul(c1,c2) # multiplication requires "reprojection"
array([6.5, 12. , 12. , 4. , 1.5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebmulx

	
numpy.polynomial.chebyshev.chebmulx(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L661]

	Multiply a Chebyshev series by x.

Multiply the polynomial c by x, where x is the independent
variable.

	Parameters:	c : array_like

1-D array of Chebyshev series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the result of the multiplication.

Notes

New in version 1.5.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebdiv

	
numpy.polynomial.chebyshev.chebdiv(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L750]

	Divide one Chebyshev series by another.

Returns the quotient-with-remainder of two Chebyshev series
c1 / c2. The arguments are sequences of coefficients from lowest
order “term” to highest, e.g., [1,2,3] represents the series
T_0 + 2*T_1 + 3*T_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Chebyshev series coefficients ordered from low to
high.

	Returns:	[quo, rem] : ndarrays

Of Chebyshev series coefficients representing the quotient and
remainder.

See also

chebadd, chebsub, chebmul, chebpow

Notes

In general, the (polynomial) division of one C-series by another
results in quotient and remainder terms that are not in the Chebyshev
polynomial basis set. Thus, to express these results as C-series, it
is typically necessary to “reproject” the results onto said basis
set, which typically produces “unintuitive” (but correct) results;
see Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
(array([3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> C.chebdiv(c2,c1) # neither "intuitive"
(array([0., 2.]), array([-2., -4.]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebpow

	
numpy.polynomial.chebyshev.chebpow(c, pow, maxpower=16)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L816]

	Raise a Chebyshev series to a power.

Returns the Chebyshev series c raised to the power pow. The
argument c is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series T_0 + 2*T_1 + 3*T_2.

	Parameters:	c : array_like

1-D array of Chebyshev series coefficients ordered from low to
high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series
to unmanageable size. Default is 16

	Returns:	coef : ndarray

Chebyshev series of power.

See also

chebadd, chebsub, chebmul, chebdiv

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebgauss

	
numpy.polynomial.chebyshev.chebgauss(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1870]

	Gauss-Chebyshev quadrature.

Computes the sample points and weights for Gauss-Chebyshev quadrature.
These sample points and weights will correctly integrate polynomials of
degree [image: 2*deg - 1] or less over the interval [image: [-1, 1]] with
the weight function [image: f(x) = 1/\sqrt{1 - x^2}].

	Parameters:	deg : int

Number of sample points and weights. It must be >= 1.

	Returns:	x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

New in version 1.7.0.

The results have only been tested up to degree 100, higher degrees may
be problematic. For Gauss-Chebyshev there are closed form solutions for
the sample points and weights. If n = deg, then

[image: x_i = \cos(\pi (2 i - 1) / (2 n))]

[image: w_i = \pi / n]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebweight

	
numpy.polynomial.chebyshev.chebweight(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1915]

	The weight function of the Chebyshev polynomials.

The weight function is [image: 1/\sqrt{1 - x^2}] and the interval of
integration is [image: [-1, 1]]. The Chebyshev polynomials are
orthogonal, but not normalized, with respect to this weight function.

	Parameters:	x : array_like

Values at which the weight function will be computed.

	Returns:	w : ndarray

The weight function at x.

Notes

New in version 1.7.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebcompanion

	
numpy.polynomial.chebyshev.chebcompanion(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L1769]

	Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is
symmetric when c is aa Chebyshev basis polynomial. This provides
better eigenvalue estimates than the unscaled case and for basis
polynomials the eigenvalues are guaranteed to be real if
numpy.linalg.eigvalsh is used to obtain them.

	Parameters:	c : array_like

1-D array of Chebyshev series coefficients ordered from low to high
degree.

	Returns:	mat : ndarray

Scaled companion matrix of dimensions (deg, deg).

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebdomain

	
numpy.polynomial.chebyshev.chebdomain = array([-1, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebzero

	
numpy.polynomial.chebyshev.chebzero = array([0])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebone

	
numpy.polynomial.chebyshev.chebone = array([1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebx

	
numpy.polynomial.chebyshev.chebx = array([0, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebtrim

	
numpy.polynomial.chebyshev.chebtrim(c, tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polyutils.py#L191]

	Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the
parameter tol; “trailing” means highest order coefficient(s), e.g., in
[0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

	Parameters:	c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less
than or equal to tol (default value is zero) are removed.

	Returns:	trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series
would be empty, a series containing a single zero is returned.

	Raises:	ValueError

If tol < 0

See also

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.chebline

	
numpy.polynomial.chebyshev.chebline(off, scl)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L456]

	Chebyshev series whose graph is a straight line.

	Parameters:	off, scl : scalars

The specified line is given by off + scl*x.

	Returns:	y : ndarray

This module’s representation of the Chebyshev series for
off + scl*x.

See also

polyline

Examples

>>> import numpy.polynomial.chebyshev as C
>>> C.chebline(3,2)
array([3, 2])
>>> C.chebval(-3, C.chebline(3,2)) # should be -3
-3.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.cheb2poly

	
numpy.polynomial.chebyshev.cheb2poly(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L377]

	Convert a Chebyshev series to a polynomial.

Convert an array representing the coefficients of a Chebyshev series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the “standard” basis) ordered
from lowest to highest degree.

	Parameters:	c : array_like

1-D array containing the Chebyshev series coefficients, ordered
from lowest order term to highest.

	Returns:	pol : ndarray

1-D array containing the coefficients of the equivalent polynomial
(relative to the “standard” basis) ordered from lowest order term
to highest.

See also

poly2cheb

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> c = P.Chebyshev(range(4))
>>> c
Chebyshev([0., 1., 2., 3.], [-1., 1.])
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([-2., -8., 4., 12.], [-1., 1.])
>>> P.cheb2poly(range(4))
array([-2., -8., 4., 12.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Chebyshev Module (numpy.polynomial.chebyshev)

numpy.polynomial.chebyshev.poly2cheb

	
numpy.polynomial.chebyshev.poly2cheb(pol)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\chebyshev.py#L327]

	Convert a polynomial to a Chebyshev series.

Convert an array representing the coefficients of a polynomial (relative
to the “standard” basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Chebyshev series, ordered
from lowest to highest degree.

	Parameters:	pol : array_like

1-D array containing the polynomial coefficients

	Returns:	c : ndarray

1-D array containing the coefficients of the equivalent Chebyshev
series.

See also

cheb2poly

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> p = P.Polynomial(range(4))
>>> p
Polynomial([0., 1., 2., 3.], [-1., 1.])
>>> c = p.convert(kind=P.Chebyshev)
>>> c
Chebyshev([1. , 3.25, 1. , 0.75], [-1., 1.])
>>> P.poly2cheb(range(4))
array([1. , 3.25, 1. , 0.75])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

Legendre Module (numpy.polynomial.legendre)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for
dealing with Legendre series, including a Legendre class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).

Legendre Class

	Legendre(coef[,domain,window])
	A Legendre series class.

Basics

	legval(x,c[,tensor])
	Evaluate a Legendre series at points x.

	legval2d(x,y,c)
	Evaluate a 2-D Legendre series at points (x, y).

	legval3d(x,y,z,c)
	Evaluate a 3-D Legendre series at points (x, y, z).

	leggrid2d(x,y,c)
	Evaluate a 2-D Legendre series on the Cartesian product of x and y.

	leggrid3d(x,y,z,c)
	Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.

	legroots(c)
	Compute the roots of a Legendre series.

	legfromroots(roots)
	Generate a Legendre series with given roots.

Fitting

	legfit(x,y,deg[,rcond,full,w])
	Least squares fit of Legendre series to data.

	legvander(x,deg)
	Pseudo-Vandermonde matrix of given degree.

	legvander2d(x,y,deg)
	Pseudo-Vandermonde matrix of given degrees.

	legvander3d(x,y,z,deg)
	Pseudo-Vandermonde matrix of given degrees.

Calculus

	legder(c[,m,scl,axis])
	Differentiate a Legendre series.

	legint(c[,m,k,lbnd,scl,axis])
	Integrate a Legendre series.

Algebra

	legadd(c1,c2)
	Add one Legendre series to another.

	legsub(c1,c2)
	Subtract one Legendre series from another.

	legmul(c1,c2)
	Multiply one Legendre series by another.

	legmulx(c)
	Multiply a Legendre series by x.

	legdiv(c1,c2)
	Divide one Legendre series by another.

	legpow(c,pow[,maxpower])
	Raise a Legendre series to a power.

Quadrature

	leggauss(deg)
	Gauss-Legendre quadrature.

	legweight(x)
	Weight function of the Legendre polynomials.

Miscellaneous

	legcompanion(c)
	Return the scaled companion matrix of c.

	legdomain
	

	legzero
	

	legone
	

	legx
	

	legtrim(c[,tol])
	Remove “small” “trailing” coefficients from a polynomial.

	legline(off,scl)
	Legendre series whose graph is a straight line.

	leg2poly(c)
	Convert a Legendre series to a polynomial.

	poly2leg(pol)
	Convert a polynomial to a Legendre series.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.Legendre

	
class numpy.polynomial.legendre.Legendre(coef, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1770]

	A Legendre series class.

The Legendre class provides the standard Python numerical methods
‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as well as the
attributes and methods listed in the ABCPolyBase documentation.

	Parameters:	coef : array_like

Legendre coefficients in order of increasing degree, i.e.,
(1, 2, 3) gives 1*P_0(x) + 2*P_1(x) + 3*P_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped
to the interval [window[0], window[1]] by shifting and scaling.
The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

	__call__(arg)
	

	basis(deg[,domain,window])
	Series basis polynomial of degree deg.

	cast(series[,domain,window])
	Convert series to series of this class.

	convert([domain,kind,window])
	Convert series to a different kind and/or domain and/or window.

	copy()
	Return a copy.

	cutdeg(deg)
	Truncate series to the given degree.

	degree()
	The degree of the series.

	deriv([m])
	Differentiate.

	fit(x,y,deg[,domain,rcond,full,w,window])
	Least squares fit to data.

	fromroots(roots[,domain,window])
	Return series instance that has the specified roots.

	has_samecoef(other)
	Check if coefficients match.

	has_samedomain(other)
	Check if domains match.

	has_sametype(other)
	Check if types match.

	has_samewindow(other)
	Check if windows match.

	identity([domain,window])
	Identity function.

	integ([m,k,lbnd])
	Integrate.

	linspace([n,domain])
	Return x, y values at equally spaced points in domain.

	mapparms()
	Return the mapping parameters.

	roots()
	Return the roots of the series polynomial.

	trim([tol])
	Remove trailing coefficients

	truncate(size)
	Truncate series to length size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legval

	
numpy.polynomial.legendre.legval(x, c, tensor=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L898]

	Evaluate a Legendre series at points x.

If c is of length n + 1, this function returns the value:

[image: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)]

The parameter x is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with
themselves and with the elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If
c is multidimensional, then the shape of the result depends on the
value of tensor. If tensor is true the shape will be c.shape[1:] +
x.shape. If tensor is false the shape will be c.shape[1:]. Note that
scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.

	Parameters:	x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x
or its elements must support addition and multiplication with
with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If c is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of x. Scalars have dimension 0
for this action. The result is that every column of coefficients in
c is evaluated for every element of x. If False, x is broadcast
over the columns of c for the evaluation. This keyword is useful
when c is multidimensional. The default value is True.

New in version 1.7.0.

	Returns:	values : ndarray, algebra_like

The shape of the return value is described above.

See also

legval2d, leggrid2d, legval3d, leggrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legval2d

	
numpy.polynomial.legendre.legval2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L986]

	Evaluate a 2-D Legendre series at points (x, y).

This function returns the values:

[image: p(x,y) = \sum_{i,j} c_{i,j} * L_i(x) * L_j(y)]

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either x
and y or their elements must support multiplication and addition both
with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make
it 2-D. The shape of the result will be c.shape[2:] + x.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list
or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term
of multi-degree i,j is contained in c[i,j]. If c has
dimension greater than two the remaining indices enumerate multiple
sets of coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional Legendre series at points formed
from pairs of corresponding values from x and y.

See also

legval, leggrid2d, legval3d, leggrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legval3d

	
numpy.polynomial.legendre.legval3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1097]

	Evaluate a 3-D Legendre series at points (x, y, z).

This function returns the values:

[image: p(x,y,z) = \sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)]

The parameters x, y, and z are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
x, y, and z or their elements must support multiplication and
addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.

	Parameters:	x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points
(x, y, z), where x, y, and z must have the same shape. If
any of x, y, or z is a list or tuple, it is first converted
to an ndarray, otherwise it is left unchanged and if it isn’t an
ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j,k is contained in c[i,j,k]. If c has dimension
greater than 3 the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with
triples of corresponding values from x, y, and z.

See also

legval, legval2d, leggrid2d, leggrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.leggrid2d

	
numpy.polynomial.legendre.leggrid2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1042]

	Evaluate a 2-D Legendre series on the Cartesian product of x and y.

This function returns the values:

[image: p(a,b) = \sum_{i,j} c_{i,j} * L_i(a) * L_j(b)]

where the points (a, b) consist of all pairs formed by taking
a from x and b from y. The resulting points form a grid with
x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either x and y or their elements must support multiplication
and addition both with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape + y.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or
tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j is contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional Chebyshev series at points in the
Cartesian product of x and y.

See also

legval, legval2d, legval3d, leggrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.leggrid3d

	
numpy.polynomial.legendre.leggrid3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1156]

	Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.

This function returns the values:

[image: p(a,b,c) = \sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)]

where the points (a, b, c) consist of all triples formed by taking
a from x, b from y, and c from z. The resulting points form
a grid with x in the first dimension, y in the second, and z in
the third.

The parameters x, y, and z are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either x, y, and z or their elements must support
multiplication and addition both with themselves and with the elements
of c.

If c has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.

	Parameters:	x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x,`y`, or z is a
list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn’t an ndarray, it is treated as a
scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

legval, legval2d, leggrid2d, legval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legroots

	
numpy.polynomial.legendre.legroots(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1614]

	Compute the roots of a Legendre series.

Return the roots (a.k.a. “zeros”) of the polynomial

[image: p(x) = \sum_i c[i] * L_i(x).]

	Parameters:	c : 1-D array_like

1-D array of coefficients.

	Returns:	out : ndarray

Array of the roots of the series. If all the roots are real,
then out is also real, otherwise it is complex.

See also

polyroots, chebroots, lagroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the series for such values.
Roots with multiplicity greater than 1 will also show larger errors as
the value of the series near such points is relatively insensitive to
errors in the roots. Isolated roots near the origin can be improved by
a few iterations of Newton’s method.

The Legendre series basis polynomials aren’t powers of x so the
results of this function may seem unintuitive.

Examples

>>> import numpy.polynomial.legendre as leg
>>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
array([-0.85099543, -0.11407192, 0.51506735])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legfromroots

	
numpy.polynomial.legendre.legfromroots(roots)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L266]

	Generate a Legendre series with given roots.

The function returns the coefficients of the polynomial

[image: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),]

in Legendre form, where the r_n are the roots specified in roots.
If a zero has multiplicity n, then it must appear in roots n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of
multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The
roots can appear in any order.

If the returned coefficients are c, then

[image: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x)]

The coefficient of the last term is not generally 1 for monic
polynomials in Legendre form.

	Parameters:	roots : array_like

Sequence containing the roots.

	Returns:	out : ndarray

1-D array of coefficients. If all roots are real then out is a
real array, if some of the roots are complex, then out is complex
even if all the coefficients in the result are real (see Examples
below).

See also

polyfromroots, chebfromroots, lagfromroots, hermfromroots, hermefromroots.

Examples

>>> import numpy.polynomial.legendre as L
>>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([0. , -0.4, 0. , 0.4])
>>> j = complex(0,1)
>>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legfit

	
numpy.polynomial.legendre.legfit(x, y, deg, rcond=None, full=False, w=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1398]

	Least squares fit of Legendre series to data.

Return the coefficients of a Legendre series of degree deg that is the
least squares fit to the data values y given at points x. If y is
1-D the returned coefficients will also be 1-D. If y is 2-D multiple
fits are done, one for each column of y, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form

[image: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),]

where n is deg.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products w[i]*y[i]
all have the same variance. The default value is None.

New in version 1.5.0.

	Returns:	coef : ndarray, shape (M,) or (M, K)

Legendre coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column
k.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

	Warns:	RankWarning

The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False. The
warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also

chebfit, polyfit, lagfit, hermfit, hermefit

	legval

	Evaluates a Legendre series.

	legvander

	Vandermonde matrix of Legendre series.

	legweight

	Legendre weight function (= 1).

	linalg.lstsq

	Computes a least-squares fit from the matrix.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

The solution is the coefficients of the Legendre series p that
minimizes the sum of the weighted squared errors

[image: E = \sum_j w_j^2 * |y_j - p(x_j)|^2,]

where [image: w_j] are the weights. This problem is solved by setting up
as the (typically) overdetermined matrix equation

[image: V(x) * c = w * y,]

where V is the weighted pseudo Vandermonde matrix of x, c are the
coefficients to be solved for, w are the weights, and y are the
observed values. This equation is then solved using the singular value
decomposition of V.

If some of the singular values of V are so small that they are
neglected, then a RankWarning will be issued. This means that the
coefficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning. The rcond parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Legendre series are usually better conditioned than fits
using power series, but much can depend on the distribution of the
sample points and the smoothness of the data. If the quality of the fit
is inadequate splines may be a good alternative.

References

	[R64]	Wikipedia, “Curve fitting”,
http://en.wikipedia.org/wiki/Curve_fitting

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legvander

	
numpy.polynomial.legendre.legvander(x, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1215]

	Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points
x. The pseudo-Vandermonde matrix is defined by

[image: V[..., i] = L_i(x)]

where 0 <= i <= deg. The leading indices of V index the elements of
x and the last index is the degree of the Legendre polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the
array V = legvander(x, n), then np.dot(V, c) and
legval(x, c) are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of Legendre series of the same degree and sample points.

	Parameters:	x : array_like

Array of points. The dtype is converted to float64 or complex128
depending on whether any of the elements are complex. If x is
scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

	Returns:	vander : ndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is
x.shape + (deg + 1,), where The last index is the degree of the
corresponding Legendre polynomial. The dtype will be the same as
the converted x.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legvander2d

	
numpy.polynomial.legendre.legvander2d(x, y, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1270]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y). The pseudo-Vandermonde matrix is defined by

[image: V[..., deg[1]*i + j] = L_i(x) * L_j(y),]

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of
V index the points (x, y) and the last index encodes the degrees of
the Legendre polynomials.

If V = legvander2d(x, y, [xdeg, ydeg]), then the columns of V
correspond to the elements of a 2-D coefficient array c of shape
(xdeg + 1, ydeg + 1) in the order

[image: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...]

and np.dot(V, c.flat) and legval2d(x, y, c) will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D Legendre
series of the same degrees and sample points.

	Parameters:	x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to
1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

	Returns:	vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)]. The dtype will be the same
as the converted x and y.

See also

legvander, legvander3d., legval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legvander3d

	
numpy.polynomial.legendre.legvander3d(x, y, z, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1333]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y, z). If l, m, n are the given degrees in x, y, z,
then The pseudo-Vandermonde matrix is defined by

[image: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),]

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading
indices of V index the points (x, y, z) and the last index encodes
the degrees of the Legendre polynomials.

If V = legvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns
of V correspond to the elements of a 3-D coefficient array c of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

[image: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...]

and np.dot(V, c.flat) and legval3d(x, y, z, c) will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D Legendre
series of the same degrees and sample points.

	Parameters:	x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will
be converted to either float64 or complex128 depending on whether
any of the elements are complex. Scalars are converted to 1-D
arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

	Returns:	vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)]. The dtype will
be the same as the converted x, y, and z.

See also

legvander, legvander3d., legval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legder

	
numpy.polynomial.legendre.legder(c, m=1, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L668]

	Differentiate a Legendre series.

Returns the Legendre series coefficients c differentiated m times
along axis. At each iteration the result is multiplied by scl (the
scaling factor is for use in a linear change of variable). The argument
c is an array of coefficients from low to high degree along each
axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is
y.

	Parameters:	c : array_like

Array of Legendre series coefficients. If c is multidimensional the
different axis correspond to different variables with the degree in
each axis given by the corresponding index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is
multiplication by scl**m. This is for use in a linear change of
variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

	Returns:	der : ndarray

Legendre series of the derivative.

See also

legint

Notes

In general, the result of differentiating a Legendre series does not
resemble the same operation on a power series. Thus the result of this
function may be “unintuitive,” albeit correct; see Examples section
below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3,4)
>>> L.legder(c)
array([6., 9., 20.])
>>> L.legder(c, 3)
array([60.])
>>> L.legder(c, scl=-1)
array([-6., -9., -20.])
>>> L.legder(c, 2,-1)
array([9., 60.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legint

	
numpy.polynomial.legendre.legint(c, m=1, k=[], lbnd=0, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L767]

	Integrate a Legendre series.

Returns the Legendre series coefficients c integrated m times from
lbnd along axis. At each iteration the resulting series is
multiplied by scl and an integration constant, k, is added.
The scaling factor is for use in a linear change of variable. (“Buyer
beware”: note that, depending on what one is doing, one may want scl
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3]
represents the series L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]]
represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

	Parameters:	c : array_like

Array of Legendre series coefficients. If c is multidimensional the
different axis correspond to different variables with the degree in
each axis given by the corresponding index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at
lbnd is the first value in the list, the value of the second
integral at lbnd is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single
scalar can be given instead of a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl
before the integration constant is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

	Returns:	S : ndarray

Legendre series coefficient array of the integral.

	Raises:	ValueError

If m < 0, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also

legder

Notes

Note that the result of each integration is multiplied by scl.
Why is this important to note? Say one is making a linear change of
variable [image: u = ax + b] in an integral relative to x. Then
.. math::dx = du/a, so one will need to set scl equal to
[image: 1/a] - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs
to be “reprojected” onto the C-series basis set. Thus, typically,
the result of this function is “unintuitive,” albeit correct; see
Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3)
>>> L.legint(c)
array([0.33333333, 0.4 , 0.66666667, 0.6])
>>> L.legint(c, 3)
array([1.66666667e-02, -1.78571429e-02, 4.76190476e-02,
 -1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
>>> L.legint(c, k=3)
array([3.33333333, 0.4 , 0.66666667, 0.6])
>>> L.legint(c, lbnd=-2)
array([7.33333333, 0.4 , 0.66666667, 0.6])
>>> L.legint(c, scl=2)
array([0.66666667, 0.8 , 1.33333333, 1.2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legadd

	
numpy.polynomial.legendre.legadd(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L332]

	Add one Legendre series to another.

Returns the sum of two Legendre series c1 + c2. The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Legendre series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the Legendre series of their sum.

See also

legsub, legmul, legdiv, legpow

Notes

Unlike multiplication, division, etc., the sum of two Legendre series
is a Legendre series (without having to “reproject” the result onto
the basis set) so addition, just like that of “standard” polynomials,
is simply “component-wise.”

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legadd(c1,c2)
array([4., 4., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legsub

	
numpy.polynomial.legendre.legsub(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L382]

	Subtract one Legendre series from another.

Returns the difference of two Legendre series c1 - c2. The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Legendre series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Legendre series coefficients representing their difference.

See also

legadd, legmul, legdiv, legpow

Notes

Unlike multiplication, division, etc., the difference of two Legendre
series is a Legendre series (without having to “reproject” the result
onto the basis set) so subtraction, just like that of “standard”
polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legsub(c1,c2)
array([-2., 0., 2.])
>>> L.legsub(c2,c1) # -C.legsub(c1,c2)
array([2., 0., -2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legmul

	
numpy.polynomial.legendre.legmul(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L481]

	Multiply one Legendre series by another.

Returns the product of two Legendre series c1 * c2. The arguments
are sequences of coefficients, from lowest order “term” to highest,
e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Legendre series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Legendre series coefficients representing their product.

See also

legadd, legsub, legdiv, legpow

Notes

In general, the (polynomial) product of two C-series results in terms
that are not in the Legendre polynomial basis set. Thus, to express
the product as a Legendre series, it is necessary to “reproject” the
product onto said basis set, which may produce “unintuitive” (but
correct) results; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2)
>>> P.legmul(c1,c2) # multiplication requires "reprojection"
array([4.33333333, 10.4 , 11.66666667, 3.6])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legmulx

	
numpy.polynomial.legendre.legmulx(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L435]

	Multiply a Legendre series by x.

Multiply the Legendre series c by x, where x is the independent
variable.

	Parameters:	c : array_like

1-D array of Legendre series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Legendre
polynomials in the form

[image: xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legdiv

	
numpy.polynomial.legendre.legdiv(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L549]

	Divide one Legendre series by another.

Returns the quotient-with-remainder of two Legendre series
c1 / c2. The arguments are sequences of coefficients from lowest
order “term” to highest, e.g., [1,2,3] represents the series
P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Legendre series coefficients ordered from low to
high.

	Returns:	quo, rem : ndarrays

Of Legendre series coefficients representing the quotient and
remainder.

See also

legadd, legsub, legmul, legpow

Notes

In general, the (polynomial) division of one Legendre series by another
results in quotient and remainder terms that are not in the Legendre
polynomial basis set. Thus, to express these results as a Legendre
series, it is necessary to “reproject” the results onto the Legendre
basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legdiv(c1,c2) # quotient "intuitive," remainder not
(array([3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> L.legdiv(c2,c1) # neither "intuitive"
(array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legpow

	
numpy.polynomial.legendre.legpow(c, pow, maxpower=16)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L617]

	Raise a Legendre series to a power.

Returns the Legendre series c raised to the power pow. The
arguement c is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c : array_like

1-D array of Legendre series coefficients ordered from low to
high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series
to unmanageable size. Default is 16

	Returns:	coef : ndarray

Legendre series of power.

See also

legadd, legsub, legmul, legdiv

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.leggauss

	
numpy.polynomial.legendre.leggauss(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1670]

	Gauss-Legendre quadrature.

Computes the sample points and weights for Gauss-Legendre quadrature.
These sample points and weights will correctly integrate polynomials of
degree [image: 2*deg - 1] or less over the interval [image: [-1, 1]] with
the weight function [image: f(x) = 1].

	Parameters:	deg : int

Number of sample points and weights. It must be >= 1.

	Returns:	x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may
be problematic. The weights are determined by using the fact that

[image: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))]

where [image: c] is a constant independent of [image: k] and [image: x_k]
is the k’th root of [image: L_n], and then scaling the results to get
the right value when integrating 1.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legweight

	
numpy.polynomial.legendre.legweight(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1739]

	Weight function of the Legendre polynomials.

The weight function is [image: 1] and the interval of integration is
[image: [-1, 1]]. The Legendre polynomials are orthogonal, but not
normalized, with respect to this weight function.

	Parameters:	x : array_like

Values at which the weight function will be computed.

	Returns:	w : ndarray

The weight function at x.

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legcompanion

	
numpy.polynomial.legendre.legcompanion(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L1570]

	Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is
symmetric when c is an Legendre basis polynomial. This provides
better eigenvalue estimates than the unscaled case and for basis
polynomials the eigenvalues are guaranteed to be real if
numpy.linalg.eigvalsh is used to obtain them.

	Parameters:	c : array_like

1-D array of Legendre series coefficients ordered from low to high
degree.

	Returns:	mat : ndarray

Scaled companion matrix of dimensions (deg, deg).

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legdomain

	
numpy.polynomial.legendre.legdomain = array([-1, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legzero

	
numpy.polynomial.legendre.legzero = array([0])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legone

	
numpy.polynomial.legendre.legone = array([1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legx

	
numpy.polynomial.legendre.legx = array([0, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legtrim

	
numpy.polynomial.legendre.legtrim(c, tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polyutils.py#L191]

	Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the
parameter tol; “trailing” means highest order coefficient(s), e.g., in
[0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

	Parameters:	c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less
than or equal to tol (default value is zero) are removed.

	Returns:	trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series
would be empty, a series containing a single zero is returned.

	Raises:	ValueError

If tol < 0

See also

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.legline

	
numpy.polynomial.legendre.legline(off, scl)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L230]

	Legendre series whose graph is a straight line.

	Parameters:	off, scl : scalars

The specified line is given by off + scl*x.

	Returns:	y : ndarray

This module’s representation of the Legendre series for
off + scl*x.

See also

polyline, chebline

Examples

>>> import numpy.polynomial.legendre as L
>>> L.legline(3,2)
array([3, 2])
>>> L.legval(-3, L.legline(3,2)) # should be -3
-3.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.leg2poly

	
numpy.polynomial.legendre.leg2poly(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L152]

	Convert a Legendre series to a polynomial.

Convert an array representing the coefficients of a Legendre series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the “standard” basis) ordered
from lowest to highest degree.

	Parameters:	c : array_like

1-D array containing the Legendre series coefficients, ordered
from lowest order term to highest.

	Returns:	pol : ndarray

1-D array containing the coefficients of the equivalent polynomial
(relative to the “standard” basis) ordered from lowest order term
to highest.

See also

poly2leg

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> c = P.Legendre(range(4))
>>> c
Legendre([0., 1., 2., 3.], [-1., 1.])
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([-1. , -3.5, 3. , 7.5], [-1., 1.])
>>> P.leg2poly(range(4))
array([-1. , -3.5, 3. , 7.5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Legendre Module (numpy.polynomial.legendre)

numpy.polynomial.legendre.poly2leg

	
numpy.polynomial.legendre.poly2leg(pol)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\legendre.py#L104]

	Convert a polynomial to a Legendre series.

Convert an array representing the coefficients of a polynomial (relative
to the “standard” basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Legendre series, ordered
from lowest to highest degree.

	Parameters:	pol : array_like

1-D array containing the polynomial coefficients

	Returns:	c : ndarray

1-D array containing the coefficients of the equivalent Legendre
series.

See also

leg2poly

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> p = P.Polynomial(np.arange(4))
>>> p
Polynomial([0., 1., 2., 3.], [-1., 1.])
>>> c = P.Legendre(P.poly2leg(p.coef))
>>> c
Legendre([1. , 3.25, 1. , 0.75], [-1., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

Laguerre Module (numpy.polynomial.laguerre)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for
dealing with Laguerre series, including a Laguerre class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).

Laguerre Class

	Laguerre(coef[,domain,window])
	A Laguerre series class.

Basics

	lagval(x,c[,tensor])
	Evaluate a Laguerre series at points x.

	lagval2d(x,y,c)
	Evaluate a 2-D Laguerre series at points (x, y).

	lagval3d(x,y,z,c)
	Evaluate a 3-D Laguerre series at points (x, y, z).

	laggrid2d(x,y,c)
	Evaluate a 2-D Laguerre series on the Cartesian product of x and y.

	laggrid3d(x,y,z,c)
	Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.

	lagroots(c)
	Compute the roots of a Laguerre series.

	lagfromroots(roots)
	Generate a Laguerre series with given roots.

Fitting

	lagfit(x,y,deg[,rcond,full,w])
	Least squares fit of Laguerre series to data.

	lagvander(x,deg)
	Pseudo-Vandermonde matrix of given degree.

	lagvander2d(x,y,deg)
	Pseudo-Vandermonde matrix of given degrees.

	lagvander3d(x,y,z,deg)
	Pseudo-Vandermonde matrix of given degrees.

Calculus

	lagder(c[,m,scl,axis])
	Differentiate a Laguerre series.

	lagint(c[,m,k,lbnd,scl,axis])
	Integrate a Laguerre series.

Algebra

	lagadd(c1,c2)
	Add one Laguerre series to another.

	lagsub(c1,c2)
	Subtract one Laguerre series from another.

	lagmul(c1,c2)
	Multiply one Laguerre series by another.

	lagmulx(c)
	Multiply a Laguerre series by x.

	lagdiv(c1,c2)
	Divide one Laguerre series by another.

	lagpow(c,pow[,maxpower])
	Raise a Laguerre series to a power.

Quadrature

	laggauss(deg)
	Gauss-Laguerre quadrature.

	lagweight(x)
	Weight function of the Laguerre polynomials.

Miscellaneous

	lagcompanion(c)
	Return the companion matrix of c.

	lagdomain
	

	lagzero
	

	lagone
	

	lagx
	

	lagtrim(c[,tol])
	Remove “small” “trailing” coefficients from a polynomial.

	lagline(off,scl)
	Laguerre series whose graph is a straight line.

	lag2poly(c)
	Convert a Laguerre series to a polynomial.

	poly2lag(pol)
	Convert a polynomial to a Laguerre series.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.Laguerre

	
class numpy.polynomial.laguerre.Laguerre(coef, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1742]

	A Laguerre series class.

The Laguerre class provides the standard Python numerical methods
‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as well as the
attributes and methods listed in the ABCPolyBase documentation.

	Parameters:	coef : array_like

Laguerre coefficients in order of increasing degree, i.e,
(1, 2, 3) gives 1*L_0(x) + 2*L_1(X) + 3*L_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped
to the interval [window[0], window[1]] by shifting and scaling.
The default value is [0, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [0, 1].

New in version 1.6.0.

Methods

	__call__(arg)
	

	basis(deg[,domain,window])
	Series basis polynomial of degree deg.

	cast(series[,domain,window])
	Convert series to series of this class.

	convert([domain,kind,window])
	Convert series to a different kind and/or domain and/or window.

	copy()
	Return a copy.

	cutdeg(deg)
	Truncate series to the given degree.

	degree()
	The degree of the series.

	deriv([m])
	Differentiate.

	fit(x,y,deg[,domain,rcond,full,w,window])
	Least squares fit to data.

	fromroots(roots[,domain,window])
	Return series instance that has the specified roots.

	has_samecoef(other)
	Check if coefficients match.

	has_samedomain(other)
	Check if domains match.

	has_sametype(other)
	Check if types match.

	has_samewindow(other)
	Check if windows match.

	identity([domain,window])
	Identity function.

	integ([m,k,lbnd])
	Integrate.

	linspace([n,domain])
	Return x, y values at equally spaced points in domain.

	mapparms()
	Return the mapping parameters.

	roots()
	Return the roots of the series polynomial.

	trim([tol])
	Remove trailing coefficients

	truncate(size)
	Truncate series to length size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagval

	
numpy.polynomial.laguerre.lagval(x, c, tensor=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L853]

	Evaluate a Laguerre series at points x.

If c is of length n + 1, this function returns the value:

[image: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)]

The parameter x is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with
themselves and with the elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If
c is multidimensional, then the shape of the result depends on the
value of tensor. If tensor is true the shape will be c.shape[1:] +
x.shape. If tensor is false the shape will be c.shape[1:]. Note that
scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.

	Parameters:	x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x
or its elements must support addition and multiplication with
with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If c is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of x. Scalars have dimension 0
for this action. The result is that every column of coefficients in
c is evaluated for every element of x. If False, x is broadcast
over the columns of c for the evaluation. This keyword is useful
when c is multidimensional. The default value is True.

New in version 1.7.0.

	Returns:	values : ndarray, algebra_like

The shape of the return value is described above.

See also

lagval2d, laggrid2d, lagval3d, laggrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.laguerre import lagval
>>> coef = [1,2,3]
>>> lagval(1, coef)
-0.5
>>> lagval([[1,2],[3,4]], coef)
array([[-0.5, -4.],
 [-4.5, -2.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagval2d

	
numpy.polynomial.laguerre.lagval2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L948]

	Evaluate a 2-D Laguerre series at points (x, y).

This function returns the values:

[image: p(x,y) = \sum_{i,j} c_{i,j} * L_i(x) * L_j(y)]

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either x
and y or their elements must support multiplication and addition both
with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make
it 2-D. The shape of the result will be c.shape[2:] + x.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list
or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term
of multi-degree i,j is contained in c[i,j]. If c has
dimension greater than two the remaining indices enumerate multiple
sets of coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points formed with
pairs of corresponding values from x and y.

See also

lagval, laggrid2d, lagval3d, laggrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagval3d

	
numpy.polynomial.laguerre.lagval3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1059]

	Evaluate a 3-D Laguerre series at points (x, y, z).

This function returns the values:

[image: p(x,y,z) = \sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)]

The parameters x, y, and z are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
x, y, and z or their elements must support multiplication and
addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.

	Parameters:	x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points
(x, y, z), where x, y, and z must have the same shape. If
any of x, y, or z is a list or tuple, it is first converted
to an ndarray, otherwise it is left unchanged and if it isn’t an
ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j,k is contained in c[i,j,k]. If c has dimension
greater than 3 the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the multidimension polynomial on points formed with
triples of corresponding values from x, y, and z.

See also

lagval, lagval2d, laggrid2d, laggrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.laggrid2d

	
numpy.polynomial.laguerre.laggrid2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1004]

	Evaluate a 2-D Laguerre series on the Cartesian product of x and y.

This function returns the values:

[image: p(a,b) = \sum_{i,j} c_{i,j} * L_i(a) * L_j(b)]

where the points (a, b) consist of all pairs formed by taking
a from x and b from y. The resulting points form a grid with
x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either x and y or their elements must support multiplication
and addition both with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape + y.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or
tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j is contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional Chebyshev series at points in the
Cartesian product of x and y.

See also

lagval, lagval2d, lagval3d, laggrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.laggrid3d

	
numpy.polynomial.laguerre.laggrid3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1118]

	Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.

This function returns the values:

[image: p(a,b,c) = \sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)]

where the points (a, b, c) consist of all triples formed by taking
a from x, b from y, and c from z. The resulting points form
a grid with x in the first dimension, y in the second, and z in
the third.

The parameters x, y, and z are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either x, y, and z or their elements must support
multiplication and addition both with themselves and with the elements
of c.

If c has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.

	Parameters:	x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x,`y`, or z is a
list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn’t an ndarray, it is treated as a
scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

lagval, lagval2d, laggrid2d, lagval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagroots

	
numpy.polynomial.laguerre.lagroots(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1588]

	Compute the roots of a Laguerre series.

Return the roots (a.k.a. “zeros”) of the polynomial

[image: p(x) = \sum_i c[i] * L_i(x).]

	Parameters:	c : 1-D array_like

1-D array of coefficients.

	Returns:	out : ndarray

Array of the roots of the series. If all the roots are real,
then out is also real, otherwise it is complex.

See also

polyroots, legroots, chebroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the series for such
values. Roots with multiplicity greater than 1 will also show larger
errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can
be improved by a few iterations of Newton’s method.

The Laguerre series basis polynomials aren’t powers of x so the
results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.laguerre import lagroots, lagfromroots
>>> coef = lagfromroots([0, 1, 2])
>>> coef
array([2., -8., 12., -6.])
>>> lagroots(coef)
array([-4.44089210e-16, 1.00000000e+00, 2.00000000e+00])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagfromroots

	
numpy.polynomial.laguerre.lagfromroots(roots)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L234]

	Generate a Laguerre series with given roots.

The function returns the coefficients of the polynomial

[image: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),]

in Laguerre form, where the r_n are the roots specified in roots.
If a zero has multiplicity n, then it must appear in roots n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of
multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The
roots can appear in any order.

If the returned coefficients are c, then

[image: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x)]

The coefficient of the last term is not generally 1 for monic
polynomials in Laguerre form.

	Parameters:	roots : array_like

Sequence containing the roots.

	Returns:	out : ndarray

1-D array of coefficients. If all roots are real then out is a
real array, if some of the roots are complex, then out is complex
even if all the coefficients in the result are real (see Examples
below).

See also

polyfromroots, legfromroots, chebfromroots, hermfromroots, hermefromroots.

Examples

>>> from numpy.polynomial.laguerre import lagfromroots, lagval
>>> coef = lagfromroots((-1, 0, 1))
>>> lagval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = lagfromroots((-1j, 1j))
>>> lagval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagfit

	
numpy.polynomial.laguerre.lagfit(x, y, deg, rcond=None, full=False, w=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1367]

	Least squares fit of Laguerre series to data.

Return the coefficients of a Laguerre series of degree deg that is the
least squares fit to the data values y given at points x. If y is
1-D the returned coefficients will also be 1-D. If y is 2-D multiple
fits are done, one for each column of y, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form

[image: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),]

where n is deg.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products w[i]*y[i]
all have the same variance. The default value is None.

	Returns:	coef : ndarray, shape (M,) or (M, K)

Laguerre coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column
k.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

	Warns:	RankWarning

The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False. The
warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also

chebfit, legfit, polyfit, hermfit, hermefit

	lagval

	Evaluates a Laguerre series.

	lagvander

	pseudo Vandermonde matrix of Laguerre series.

	lagweight

	Laguerre weight function.

	linalg.lstsq

	Computes a least-squares fit from the matrix.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

The solution is the coefficients of the Laguerre series p that
minimizes the sum of the weighted squared errors

[image: E = \sum_j w_j^2 * |y_j - p(x_j)|^2,]

where the [image: w_j] are the weights. This problem is solved by
setting up as the (typically) overdetermined matrix equation

[image: V(x) * c = w * y,]

where V is the weighted pseudo Vandermonde matrix of x, c are the
coefficients to be solved for, w are the weights, and y are the
observed values. This equation is then solved using the singular value
decomposition of V.

If some of the singular values of V are so small that they are
neglected, then a RankWarning will be issued. This means that the
coefficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning. The rcond parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Laguerre series are probably most useful when the data can
be approximated by sqrt(w(x)) * p(x), where w(x) is the Laguerre
weight. In that case the weight sqrt(w(x[i]) should be used
together with data values y[i]/sqrt(w(x[i]). The weight function is
available as lagweight.

References

	[R63]	Wikipedia, “Curve fitting”,
http://en.wikipedia.org/wiki/Curve_fitting

Examples

>>> from numpy.polynomial.laguerre import lagfit, lagval
>>> x = np.linspace(0, 10)
>>> err = np.random.randn(len(x))/10
>>> y = lagval(x, [1, 2, 3]) + err
>>> lagfit(x, y, 2)
array([0.96971004, 2.00193749, 3.00288744])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagvander

	
numpy.polynomial.laguerre.lagvander(x, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1177]

	Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points
x. The pseudo-Vandermonde matrix is defined by

[image: V[..., i] = L_i(x)]

where 0 <= i <= deg. The leading indices of V index the elements of
x and the last index is the degree of the Laguerre polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the
array V = lagvander(x, n), then np.dot(V, c) and
lagval(x, c) are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of Laguerre series of the same degree and sample points.

	Parameters:	x : array_like

Array of points. The dtype is converted to float64 or complex128
depending on whether any of the elements are complex. If x is
scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

	Returns:	vander : ndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is
x.shape + (deg + 1,), where The last index is the degree of the
corresponding Laguerre polynomial. The dtype will be the same as
the converted x.

Examples

>>> from numpy.polynomial.laguerre import lagvander
>>> x = np.array([0, 1, 2])
>>> lagvander(x, 3)
array([[1. , 1. , 1. , 1.],
 [1. , 0. , -0.5 , -0.66666667],
 [1. , -1. , -1. , -0.33333333]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagvander2d

	
numpy.polynomial.laguerre.lagvander2d(x, y, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1239]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y). The pseudo-Vandermonde matrix is defined by

[image: V[..., deg[1]*i + j] = L_i(x) * L_j(y),]

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of
V index the points (x, y) and the last index encodes the degrees of
the Laguerre polynomials.

If V = lagvander2d(x, y, [xdeg, ydeg]), then the columns of V
correspond to the elements of a 2-D coefficient array c of shape
(xdeg + 1, ydeg + 1) in the order

[image: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...]

and np.dot(V, c.flat) and lagval2d(x, y, c) will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D Laguerre
series of the same degrees and sample points.

	Parameters:	x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to
1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

	Returns:	vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)]. The dtype will be the same
as the converted x and y.

See also

lagvander, lagvander3d., lagval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagvander3d

	
numpy.polynomial.laguerre.lagvander3d(x, y, z, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1302]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y, z). If l, m, n are the given degrees in x, y, z,
then The pseudo-Vandermonde matrix is defined by

[image: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),]

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading
indices of V index the points (x, y, z) and the last index encodes
the degrees of the Laguerre polynomials.

If V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns
of V correspond to the elements of a 3-D coefficient array c of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

[image: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...]

and np.dot(V, c.flat) and lagval3d(x, y, z, c) will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D Laguerre
series of the same degrees and sample points.

	Parameters:	x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will
be converted to either float64 or complex128 depending on whether
any of the elements are complex. Scalars are converted to 1-D
arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

	Returns:	vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)]. The dtype will
be the same as the converted x, y, and z.

See also

lagvander, lagvander3d., lagval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagder

	
numpy.polynomial.laguerre.lagder(c, m=1, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L634]

	Differentiate a Laguerre series.

Returns the Laguerre series coefficients c differentiated m times
along axis. At each iteration the result is multiplied by scl (the
scaling factor is for use in a linear change of variable). The argument
c is an array of coefficients from low to high degree along each
axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is
y.

	Parameters:	c : array_like

Array of Laguerre series coefficients. If c is multidimensional
the different axis correspond to different variables with the
degree in each axis given by the corresponding index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is
multiplication by scl**m. This is for use in a linear change of
variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

	Returns:	der : ndarray

Laguerre series of the derivative.

See also

lagint

Notes

In general, the result of differentiating a Laguerre series does not
resemble the same operation on a power series. Thus the result of this
function may be “unintuitive,” albeit correct; see Examples section
below.

Examples

>>> from numpy.polynomial.laguerre import lagder
>>> lagder([1., 1., 1., -3.])
array([1., 2., 3.])
>>> lagder([1., 0., 0., -4., 3.], m=2)
array([1., 2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagint

	
numpy.polynomial.laguerre.lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L726]

	Integrate a Laguerre series.

Returns the Laguerre series coefficients c integrated m times from
lbnd along axis. At each iteration the resulting series is
multiplied by scl and an integration constant, k, is added.
The scaling factor is for use in a linear change of variable. (“Buyer
beware”: note that, depending on what one is doing, one may want scl
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3]
represents the series L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]]
represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

	Parameters:	c : array_like

Array of Laguerre series coefficients. If c is multidimensional
the different axis correspond to different variables with the
degree in each axis given by the corresponding index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at
lbnd is the first value in the list, the value of the second
integral at lbnd is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single
scalar can be given instead of a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl
before the integration constant is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

	Returns:	S : ndarray

Laguerre series coefficients of the integral.

	Raises:	ValueError

If m < 0, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also

lagder

Notes

Note that the result of each integration is multiplied by scl.
Why is this important to note? Say one is making a linear change of
variable [image: u = ax + b] in an integral relative to x. Then
.. math::dx = du/a, so one will need to set scl equal to
[image: 1/a] - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs
to be “reprojected” onto the C-series basis set. Thus, typically,
the result of this function is “unintuitive,” albeit correct; see
Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagint
>>> lagint([1,2,3])
array([1., 1., 1., -3.])
>>> lagint([1,2,3], m=2)
array([1., 0., 0., -4., 3.])
>>> lagint([1,2,3], k=1)
array([2., 1., 1., -3.])
>>> lagint([1,2,3], lbnd=-1)
array([11.5, 1. , 1. , -3.])
>>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
array([11.16666667, -5. , -3. , 2.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagadd

	
numpy.polynomial.laguerre.lagadd(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L301]

	Add one Laguerre series to another.

Returns the sum of two Laguerre series c1 + c2. The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Laguerre series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the Laguerre series of their sum.

See also

lagsub, lagmul, lagdiv, lagpow

Notes

Unlike multiplication, division, etc., the sum of two Laguerre series
is a Laguerre series (without having to “reproject” the result onto
the basis set) so addition, just like that of “standard” polynomials,
is simply “component-wise.”

Examples

>>> from numpy.polynomial.laguerre import lagadd
>>> lagadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagsub

	
numpy.polynomial.laguerre.lagsub(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L350]

	Subtract one Laguerre series from another.

Returns the difference of two Laguerre series c1 - c2. The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Laguerre series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Laguerre series coefficients representing their difference.

See also

lagadd, lagmul, lagdiv, lagpow

Notes

Unlike multiplication, division, etc., the difference of two Laguerre
series is a Laguerre series (without having to “reproject” the result
onto the basis set) so subtraction, just like that of “standard”
polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial.laguerre import lagsub
>>> lagsub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagmul

	
numpy.polynomial.laguerre.lagmul(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L449]

	Multiply one Laguerre series by another.

Returns the product of two Laguerre series c1 * c2. The arguments
are sequences of coefficients, from lowest order “term” to highest,
e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Laguerre series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Laguerre series coefficients representing their product.

See also

lagadd, lagsub, lagdiv, lagpow

Notes

In general, the (polynomial) product of two C-series results in terms
that are not in the Laguerre polynomial basis set. Thus, to express
the product as a Laguerre series, it is necessary to “reproject” the
product onto said basis set, which may produce “unintuitive” (but
correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagmul
>>> lagmul([1, 2, 3], [0, 1, 2])
array([8., -13., 38., -51., 36.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagmulx

	
numpy.polynomial.laguerre.lagmulx(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L399]

	Multiply a Laguerre series by x.

Multiply the Laguerre series c by x, where x is the independent
variable.

	Parameters:	c : array_like

1-D array of Laguerre series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Laguerre
polynomials in the form

[image:]

xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))

Examples

>>> from numpy.polynomial.laguerre import lagmulx
>>> lagmulx([1, 2, 3])
array([-1., -1., 11., -9.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagdiv

	
numpy.polynomial.laguerre.lagdiv(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L515]

	Divide one Laguerre series by another.

Returns the quotient-with-remainder of two Laguerre series
c1 / c2. The arguments are sequences of coefficients from lowest
order “term” to highest, e.g., [1,2,3] represents the series
P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Laguerre series coefficients ordered from low to
high.

	Returns:	[quo, rem] : ndarrays

Of Laguerre series coefficients representing the quotient and
remainder.

See also

lagadd, lagsub, lagmul, lagpow

Notes

In general, the (polynomial) division of one Laguerre series by another
results in quotient and remainder terms that are not in the Laguerre
polynomial basis set. Thus, to express these results as a Laguerre
series, it is necessary to “reproject” the results onto the Laguerre
basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagdiv
>>> lagdiv([8., -13., 38., -51., 36.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> lagdiv([9., -12., 38., -51., 36.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 1.]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagpow

	
numpy.polynomial.laguerre.lagpow(c, pow, maxpower=16)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L580]

	Raise a Laguerre series to a power.

Returns the Laguerre series c raised to the power pow. The
argument c is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c : array_like

1-D array of Laguerre series coefficients ordered from low to
high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series
to unmanageable size. Default is 16

	Returns:	coef : ndarray

Laguerre series of power.

See also

lagadd, lagsub, lagmul, lagdiv

Examples

>>> from numpy.polynomial.laguerre import lagpow
>>> lagpow([1, 2, 3], 2)
array([14., -16., 56., -72., 54.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.laggauss

	
numpy.polynomial.laguerre.laggauss(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1647]

	Gauss-Laguerre quadrature.

Computes the sample points and weights for Gauss-Laguerre quadrature.
These sample points and weights will correctly integrate polynomials of
degree [image: 2*deg - 1] or less over the interval [image: [0, \inf]]
with the weight function [image: f(x) = \exp(-x)].

	Parameters:	deg : int

Number of sample points and weights. It must be >= 1.

	Returns:	x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100 higher degrees may
be problematic. The weights are determined by using the fact that

[image: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))]

where [image: c] is a constant independent of [image: k] and [image: x_k]
is the k’th root of [image: L_n], and then scaling the results to get
the right value when integrating 1.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagweight

	
numpy.polynomial.laguerre.lagweight(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1712]

	Weight function of the Laguerre polynomials.

The weight function is [image: exp(-x)] and the interval of integration
is [image: [0, \inf]]. The Laguerre polynomials are orthogonal, but not
normalized, with respect to this weight function.

	Parameters:	x : array_like

Values at which the weight function will be computed.

	Returns:	w : ndarray

The weight function at x.

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagcompanion

	
numpy.polynomial.laguerre.lagcompanion(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L1544]

	Return the companion matrix of c.

The usual companion matrix of the Laguerre polynomials is already
symmetric when c is a basis Laguerre polynomial, so no scaling is
applied.

	Parameters:	c : array_like

1-D array of Laguerre series coefficients ordered from low to high
degree.

	Returns:	mat : ndarray

Companion matrix of dimensions (deg, deg).

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagdomain

	
numpy.polynomial.laguerre.lagdomain = array([0, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagzero

	
numpy.polynomial.laguerre.lagzero = array([0])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagone

	
numpy.polynomial.laguerre.lagone = array([1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagx

	
numpy.polynomial.laguerre.lagx = array([1, -1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagtrim

	
numpy.polynomial.laguerre.lagtrim(c, tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polyutils.py#L191]

	Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the
parameter tol; “trailing” means highest order coefficient(s), e.g., in
[0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

	Parameters:	c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less
than or equal to tol (default value is zero) are removed.

	Returns:	trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series
would be empty, a series containing a single zero is returned.

	Raises:	ValueError

If tol < 0

See also

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lagline

	
numpy.polynomial.laguerre.lagline(off, scl)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L198]

	Laguerre series whose graph is a straight line.

	Parameters:	off, scl : scalars

The specified line is given by off + scl*x.

	Returns:	y : ndarray

This module’s representation of the Laguerre series for
off + scl*x.

See also

polyline, chebline

Examples

>>> from numpy.polynomial.laguerre import lagline, lagval
>>> lagval(0,lagline(3, 2))
3.0
>>> lagval(1,lagline(3, 2))
5.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.lag2poly

	
numpy.polynomial.laguerre.lag2poly(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L126]

	Convert a Laguerre series to a polynomial.

Convert an array representing the coefficients of a Laguerre series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the “standard” basis) ordered
from lowest to highest degree.

	Parameters:	c : array_like

1-D array containing the Laguerre series coefficients, ordered
from lowest order term to highest.

	Returns:	pol : ndarray

1-D array containing the coefficients of the equivalent polynomial
(relative to the “standard” basis) ordered from lowest order term
to highest.

See also

poly2lag

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.laguerre import lag2poly
>>> lag2poly([23., -63., 58., -18.])
array([0., 1., 2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Laguerre Module (numpy.polynomial.laguerre)

numpy.polynomial.laguerre.poly2lag

	
numpy.polynomial.laguerre.poly2lag(pol)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\laguerre.py#L80]

	Convert a polynomial to a Laguerre series.

Convert an array representing the coefficients of a polynomial (relative
to the “standard” basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Laguerre series, ordered
from lowest to highest degree.

	Parameters:	pol : array_like

1-D array containing the polynomial coefficients

	Returns:	c : ndarray

1-D array containing the coefficients of the equivalent Laguerre
series.

See also

lag2poly

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.laguerre import poly2lag
>>> poly2lag(np.arange(4))
array([23., -63., 58., -18.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

Hermite Module, “Physicists’” (numpy.polynomial.hermite)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for
dealing with Hermite series, including a Hermite class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).

Hermite Class

	Hermite(coef[,domain,window])
	An Hermite series class.

Basics

	hermval(x,c[,tensor])
	Evaluate an Hermite series at points x.

	hermval2d(x,y,c)
	Evaluate a 2-D Hermite series at points (x, y).

	hermval3d(x,y,z,c)
	Evaluate a 3-D Hermite series at points (x, y, z).

	hermgrid2d(x,y,c)
	Evaluate a 2-D Hermite series on the Cartesian product of x and y.

	hermgrid3d(x,y,z,c)
	Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.

	hermroots(c)
	Compute the roots of a Hermite series.

	hermfromroots(roots)
	Generate a Hermite series with given roots.

Fitting

	hermfit(x,y,deg[,rcond,full,w])
	Least squares fit of Hermite series to data.

	hermvander(x,deg)
	Pseudo-Vandermonde matrix of given degree.

	hermvander2d(x,y,deg)
	Pseudo-Vandermonde matrix of given degrees.

	hermvander3d(x,y,z,deg)
	Pseudo-Vandermonde matrix of given degrees.

Calculus

	hermder(c[,m,scl,axis])
	Differentiate a Hermite series.

	hermint(c[,m,k,lbnd,scl,axis])
	Integrate a Hermite series.

Algebra

	hermadd(c1,c2)
	Add one Hermite series to another.

	hermsub(c1,c2)
	Subtract one Hermite series from another.

	hermmul(c1,c2)
	Multiply one Hermite series by another.

	hermmulx(c)
	Multiply a Hermite series by x.

	hermdiv(c1,c2)
	Divide one Hermite series by another.

	hermpow(c,pow[,maxpower])
	Raise a Hermite series to a power.

Quadrature

	hermgauss(deg)
	Gauss-Hermite quadrature.

	hermweight(x)
	Weight function of the Hermite polynomials.

Miscellaneous

	hermcompanion(c)
	Return the scaled companion matrix of c.

	hermdomain
	

	hermzero
	

	hermone
	

	hermx
	

	hermtrim(c[,tol])
	Remove “small” “trailing” coefficients from a polynomial.

	hermline(off,scl)
	Hermite series whose graph is a straight line.

	herm2poly(c)
	Convert a Hermite series to a polynomial.

	poly2herm(pol)
	Convert a polynomial to a Hermite series.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.Hermite

	
class numpy.polynomial.hermite.Hermite(coef, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1750]

	An Hermite series class.

The Hermite class provides the standard Python numerical methods
‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as well as the
attributes and methods listed in the ABCPolyBase documentation.

	Parameters:	coef : array_like

Laguerre coefficients in order of increasing degree, i.e,
(1, 2, 3) gives 1*H_0(x) + 2*H_1(X) + 3*H_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped
to the interval [window[0], window[1]] by shifting and scaling.
The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

	__call__(arg)
	

	basis(deg[,domain,window])
	Series basis polynomial of degree deg.

	cast(series[,domain,window])
	Convert series to series of this class.

	convert([domain,kind,window])
	Convert series to a different kind and/or domain and/or window.

	copy()
	Return a copy.

	cutdeg(deg)
	Truncate series to the given degree.

	degree()
	The degree of the series.

	deriv([m])
	Differentiate.

	fit(x,y,deg[,domain,rcond,full,w,window])
	Least squares fit to data.

	fromroots(roots[,domain,window])
	Return series instance that has the specified roots.

	has_samecoef(other)
	Check if coefficients match.

	has_samedomain(other)
	Check if domains match.

	has_sametype(other)
	Check if types match.

	has_samewindow(other)
	Check if windows match.

	identity([domain,window])
	Identity function.

	integ([m,k,lbnd])
	Integrate.

	linspace([n,domain])
	Return x, y values at equally spaced points in domain.

	mapparms()
	Return the mapping parameters.

	roots()
	Return the roots of the series polynomial.

	trim([tol])
	Remove trailing coefficients

	truncate(size)
	Truncate series to length size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermval

	
numpy.polynomial.hermite.hermval(x, c, tensor=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L852]

	Evaluate an Hermite series at points x.

If c is of length n + 1, this function returns the value:

[image: p(x) = c_0 * H_0(x) + c_1 * H_1(x) + ... + c_n * H_n(x)]

The parameter x is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with
themselves and with the elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If
c is multidimensional, then the shape of the result depends on the
value of tensor. If tensor is true the shape will be c.shape[1:] +
x.shape. If tensor is false the shape will be c.shape[1:]. Note that
scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.

	Parameters:	x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x
or its elements must support addition and multiplication with
with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If c is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of x. Scalars have dimension 0
for this action. The result is that every column of coefficients in
c is evaluated for every element of x. If False, x is broadcast
over the columns of c for the evaluation. This keyword is useful
when c is multidimensional. The default value is True.

New in version 1.7.0.

	Returns:	values : ndarray, algebra_like

The shape of the return value is described above.

See also

hermval2d, hermgrid2d, hermval3d, hermgrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.hermite import hermval
>>> coef = [1,2,3]
>>> hermval(1, coef)
11.0
>>> hermval([[1,2],[3,4]], coef)
array([[11., 51.],
 [115., 203.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermval2d

	
numpy.polynomial.hermite.hermval2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L948]

	Evaluate a 2-D Hermite series at points (x, y).

This function returns the values:

[image: p(x,y) = \sum_{i,j} c_{i,j} * H_i(x) * H_j(y)]

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either x
and y or their elements must support multiplication and addition both
with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make
it 2-D. The shape of the result will be c.shape[2:] + x.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list
or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term
of multi-degree i,j is contained in c[i,j]. If c has
dimension greater than two the remaining indices enumerate multiple
sets of coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points formed with
pairs of corresponding values from x and y.

See also

hermval, hermgrid2d, hermval3d, hermgrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermval3d

	
numpy.polynomial.hermite.hermval3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1059]

	Evaluate a 3-D Hermite series at points (x, y, z).

This function returns the values:

[image: p(x,y,z) = \sum_{i,j,k} c_{i,j,k} * H_i(x) * H_j(y) * H_k(z)]

The parameters x, y, and z are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
x, y, and z or their elements must support multiplication and
addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.

	Parameters:	x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points
(x, y, z), where x, y, and z must have the same shape. If
any of x, y, or z is a list or tuple, it is first converted
to an ndarray, otherwise it is left unchanged and if it isn’t an
ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j,k is contained in c[i,j,k]. If c has dimension
greater than 3 the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with
triples of corresponding values from x, y, and z.

See also

hermval, hermval2d, hermgrid2d, hermgrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermgrid2d

	
numpy.polynomial.hermite.hermgrid2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1004]

	Evaluate a 2-D Hermite series on the Cartesian product of x and y.

This function returns the values:

[image: p(a,b) = \sum_{i,j} c_{i,j} * H_i(a) * H_j(b)]

where the points (a, b) consist of all pairs formed by taking
a from x and b from y. The resulting points form a grid with
x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either x and y or their elements must support multiplication
and addition both with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or
tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

hermval, hermval2d, hermval3d, hermgrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermgrid3d

	
numpy.polynomial.hermite.hermgrid3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1118]

	Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.

This function returns the values:

[image: p(a,b,c) = \sum_{i,j,k} c_{i,j,k} * H_i(a) * H_j(b) * H_k(c)]

where the points (a, b, c) consist of all triples formed by taking
a from x, b from y, and c from z. The resulting points form
a grid with x in the first dimension, y in the second, and z in
the third.

The parameters x, y, and z are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either x, y, and z or their elements must support
multiplication and addition both with themselves and with the elements
of c.

If c has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.

	Parameters:	x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x,`y`, or z is a
list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn’t an ndarray, it is treated as a
scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

hermval, hermval2d, hermgrid2d, hermval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermroots

	
numpy.polynomial.hermite.hermroots(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1590]

	Compute the roots of a Hermite series.

Return the roots (a.k.a. “zeros”) of the polynomial

[image: p(x) = \sum_i c[i] * H_i(x).]

	Parameters:	c : 1-D array_like

1-D array of coefficients.

	Returns:	out : ndarray

Array of the roots of the series. If all the roots are real,
then out is also real, otherwise it is complex.

See also

polyroots, legroots, lagroots, chebroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the series for such
values. Roots with multiplicity greater than 1 will also show larger
errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can
be improved by a few iterations of Newton’s method.

The Hermite series basis polynomials aren’t powers of x so the
results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.hermite import hermroots, hermfromroots
>>> coef = hermfromroots([-1, 0, 1])
>>> coef
array([0. , 0.25 , 0. , 0.125])
>>> hermroots(coef)
array([-1.00000000e+00, -1.38777878e-17, 1.00000000e+00])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermfromroots

	
numpy.polynomial.hermite.hermfromroots(roots)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L237]

	Generate a Hermite series with given roots.

The function returns the coefficients of the polynomial

[image: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),]

in Hermite form, where the r_n are the roots specified in roots.
If a zero has multiplicity n, then it must appear in roots n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of
multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The
roots can appear in any order.

If the returned coefficients are c, then

[image: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x)]

The coefficient of the last term is not generally 1 for monic
polynomials in Hermite form.

	Parameters:	roots : array_like

Sequence containing the roots.

	Returns:	out : ndarray

1-D array of coefficients. If all roots are real then out is a
real array, if some of the roots are complex, then out is complex
even if all the coefficients in the result are real (see Examples
below).

See also

polyfromroots, legfromroots, lagfromroots, chebfromroots, hermefromroots.

Examples

>>> from numpy.polynomial.hermite import hermfromroots, hermval
>>> coef = hermfromroots((-1, 0, 1))
>>> hermval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = hermfromroots((-1j, 1j))
>>> hermval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermfit

	
numpy.polynomial.hermite.hermfit(x, y, deg, rcond=None, full=False, w=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1368]

	Least squares fit of Hermite series to data.

Return the coefficients of a Hermite series of degree deg that is the
least squares fit to the data values y given at points x. If y is
1-D the returned coefficients will also be 1-D. If y is 2-D multiple
fits are done, one for each column of y, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form

[image: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x),]

where n is deg.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products w[i]*y[i]
all have the same variance. The default value is None.

	Returns:	coef : ndarray, shape (M,) or (M, K)

Hermite coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column
k.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

	Warns:	RankWarning

The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False. The
warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also

chebfit, legfit, lagfit, polyfit, hermefit

	hermval

	Evaluates a Hermite series.

	hermvander

	Vandermonde matrix of Hermite series.

	hermweight

	Hermite weight function

	linalg.lstsq

	Computes a least-squares fit from the matrix.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

The solution is the coefficients of the Hermite series p that
minimizes the sum of the weighted squared errors

[image: E = \sum_j w_j^2 * |y_j - p(x_j)|^2,]

where the [image: w_j] are the weights. This problem is solved by
setting up the (typically) overdetermined matrix equation

[image: V(x) * c = w * y,]

where V is the weighted pseudo Vandermonde matrix of x, c are the
coefficients to be solved for, w are the weights, y are the
observed values. This equation is then solved using the singular value
decomposition of V.

If some of the singular values of V are so small that they are
neglected, then a RankWarning will be issued. This means that the
coefficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning. The rcond parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Hermite series are probably most useful when the data can be
approximated by sqrt(w(x)) * p(x), where w(x) is the Hermite
weight. In that case the weight sqrt(w(x[i]) should be used
together with data values y[i]/sqrt(w(x[i]). The weight function is
available as hermweight.

References

	[R61]	Wikipedia, “Curve fitting”,
http://en.wikipedia.org/wiki/Curve_fitting

Examples

>>> from numpy.polynomial.hermite import hermfit, hermval
>>> x = np.linspace(-10, 10)
>>> err = np.random.randn(len(x))/10
>>> y = hermval(x, [1, 2, 3]) + err
>>> hermfit(x, y, 2)
array([0.97902637, 1.99849131, 3.00006])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermvander

	
numpy.polynomial.hermite.hermvander(x, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1177]

	Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points
x. The pseudo-Vandermonde matrix is defined by

[image: V[..., i] = H_i(x),]

where 0 <= i <= deg. The leading indices of V index the elements of
x and the last index is the degree of the Hermite polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the
array V = hermvander(x, n), then np.dot(V, c) and
hermval(x, c) are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of Hermite series of the same degree and sample points.

	Parameters:	x : array_like

Array of points. The dtype is converted to float64 or complex128
depending on whether any of the elements are complex. If x is
scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

	Returns:	vander : ndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is
x.shape + (deg + 1,), where The last index is the degree of the
corresponding Hermite polynomial. The dtype will be the same as
the converted x.

Examples

>>> from numpy.polynomial.hermite import hermvander
>>> x = np.array([-1, 0, 1])
>>> hermvander(x, 3)
array([[1., -2., 2., 4.],
 [1., 0., -2., -0.],
 [1., 2., 2., -4.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermvander2d

	
numpy.polynomial.hermite.hermvander2d(x, y, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1240]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y). The pseudo-Vandermonde matrix is defined by

[image: V[..., deg[1]*i + j] = H_i(x) * H_j(y),]

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of
V index the points (x, y) and the last index encodes the degrees of
the Hermite polynomials.

If V = hermvander2d(x, y, [xdeg, ydeg]), then the columns of V
correspond to the elements of a 2-D coefficient array c of shape
(xdeg + 1, ydeg + 1) in the order

[image: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...]

and np.dot(V, c.flat) and hermval2d(x, y, c) will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D Hermite
series of the same degrees and sample points.

	Parameters:	x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to 1-D
arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

	Returns:	vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)]. The dtype will be the same
as the converted x and y.

See also

hermvander, hermvander3d., hermval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermvander3d

	
numpy.polynomial.hermite.hermvander3d(x, y, z, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1303]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y, z). If l, m, n are the given degrees in x, y, z,
then The pseudo-Vandermonde matrix is defined by

[image: V[..., (m+1)(n+1)i + (n+1)j + k] = H_i(x)*H_j(y)*H_k(z),]

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading
indices of V index the points (x, y, z) and the last index encodes
the degrees of the Hermite polynomials.

If V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns
of V correspond to the elements of a 3-D coefficient array c of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

[image: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...]

and np.dot(V, c.flat) and hermval3d(x, y, z, c) will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D Hermite
series of the same degrees and sample points.

	Parameters:	x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will
be converted to either float64 or complex128 depending on whether
any of the elements are complex. Scalars are converted to 1-D
arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

	Returns:	vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)]. The dtype will
be the same as the converted x, y, and z.

See also

hermvander, hermvander3d., hermval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermder

	
numpy.polynomial.hermite.hermder(c, m=1, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L637]

	Differentiate a Hermite series.

Returns the Hermite series coefficients c differentiated m times
along axis. At each iteration the result is multiplied by scl (the
scaling factor is for use in a linear change of variable). The argument
c is an array of coefficients from low to high degree along each
axis, e.g., [1,2,3] represents the series 1*H_0 + 2*H_1 + 3*H_2
while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is
y.

	Parameters:	c : array_like

Array of Hermite series coefficients. If c is multidimensional the
different axis correspond to different variables with the degree in
each axis given by the corresponding index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is
multiplication by scl**m. This is for use in a linear change of
variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

	Returns:	der : ndarray

Hermite series of the derivative.

See also

hermint

Notes

In general, the result of differentiating a Hermite series does not
resemble the same operation on a power series. Thus the result of this
function may be “unintuitive,” albeit correct; see Examples section
below.

Examples

>>> from numpy.polynomial.hermite import hermder
>>> hermder([1. , 0.5, 0.5, 0.5])
array([1., 2., 3.])
>>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2)
array([1., 2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermint

	
numpy.polynomial.hermite.hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L727]

	Integrate a Hermite series.

Returns the Hermite series coefficients c integrated m times from
lbnd along axis. At each iteration the resulting series is
multiplied by scl and an integration constant, k, is added.
The scaling factor is for use in a linear change of variable. (“Buyer
beware”: note that, depending on what one is doing, one may want scl
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3]
represents the series H_0 + 2*H_1 + 3*H_2 while [[1,2],[1,2]]
represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

	Parameters:	c : array_like

Array of Hermite series coefficients. If c is multidimensional the
different axis correspond to different variables with the degree in
each axis given by the corresponding index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at
lbnd is the first value in the list, the value of the second
integral at lbnd is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single
scalar can be given instead of a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl
before the integration constant is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

	Returns:	S : ndarray

Hermite series coefficients of the integral.

	Raises:	ValueError

If m < 0, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also

hermder

Notes

Note that the result of each integration is multiplied by scl.
Why is this important to note? Say one is making a linear change of
variable [image: u = ax + b] in an integral relative to x. Then
.. math::dx = du/a, so one will need to set scl equal to
[image: 1/a] - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs
to be “reprojected” onto the C-series basis set. Thus, typically,
the result of this function is “unintuitive,” albeit correct; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermint
>>> hermint([1,2,3]) # integrate once, value 0 at 0.
array([1. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625])
>>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
array([2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
array([-2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
array([1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermadd

	
numpy.polynomial.hermite.hermadd(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L304]

	Add one Hermite series to another.

Returns the sum of two Hermite series c1 + c2. The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the Hermite series of their sum.

See also

hermsub, hermmul, hermdiv, hermpow

Notes

Unlike multiplication, division, etc., the sum of two Hermite series
is a Hermite series (without having to “reproject” the result onto
the basis set) so addition, just like that of “standard” polynomials,
is simply “component-wise.”

Examples

>>> from numpy.polynomial.hermite import hermadd
>>> hermadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermsub

	
numpy.polynomial.hermite.hermsub(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L352]

	Subtract one Hermite series from another.

Returns the difference of two Hermite series c1 - c2. The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Hermite series coefficients representing their difference.

See also

hermadd, hermmul, hermdiv, hermpow

Notes

Unlike multiplication, division, etc., the difference of two Hermite
series is a Hermite series (without having to “reproject” the result
onto the basis set) so subtraction, just like that of “standard”
polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial.hermite import hermsub
>>> hermsub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermmul

	
numpy.polynomial.hermite.hermmul(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L450]

	Multiply one Hermite series by another.

Returns the product of two Hermite series c1 * c2. The arguments
are sequences of coefficients, from lowest order “term” to highest,
e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Hermite series coefficients representing their product.

See also

hermadd, hermsub, hermdiv, hermpow

Notes

In general, the (polynomial) product of two C-series results in terms
that are not in the Hermite polynomial basis set. Thus, to express
the product as a Hermite series, it is necessary to “reproject” the
product onto said basis set, which may produce “unintuitive” (but
correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermmul
>>> hermmul([1, 2, 3], [0, 1, 2])
array([52., 29., 52., 7., 6.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermmulx

	
numpy.polynomial.hermite.hermmulx(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L401]

	Multiply a Hermite series by x.

Multiply the Hermite series c by x, where x is the independent
variable.

	Parameters:	c : array_like

1-D array of Hermite series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Hermite
polynomials in the form

[image:]

xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))

Examples

>>> from numpy.polynomial.hermite import hermmulx
>>> hermmulx([1, 2, 3])
array([2. , 6.5, 1. , 1.5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermdiv

	
numpy.polynomial.hermite.hermdiv(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L516]

	Divide one Hermite series by another.

Returns the quotient-with-remainder of two Hermite series
c1 / c2. The arguments are sequences of coefficients from lowest
order “term” to highest, e.g., [1,2,3] represents the series
P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to
high.

	Returns:	[quo, rem] : ndarrays

Of Hermite series coefficients representing the quotient and
remainder.

See also

hermadd, hermsub, hermmul, hermpow

Notes

In general, the (polynomial) division of one Hermite series by another
results in quotient and remainder terms that are not in the Hermite
polynomial basis set. Thus, to express these results as a Hermite
series, it is necessary to “reproject” the results onto the Hermite
basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermdiv
>>> hermdiv([52., 29., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> hermdiv([54., 31., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([2., 2.]))
>>> hermdiv([53., 30., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 1.]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermpow

	
numpy.polynomial.hermite.hermpow(c, pow, maxpower=16)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L583]

	Raise a Hermite series to a power.

Returns the Hermite series c raised to the power pow. The
argument c is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c : array_like

1-D array of Hermite series coefficients ordered from low to
high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series
to unmanageable size. Default is 16

	Returns:	coef : ndarray

Hermite series of power.

See also

hermadd, hermsub, hermmul, hermdiv

Examples

>>> from numpy.polynomial.hermite import hermpow
>>> hermpow([1, 2, 3], 2)
array([81., 52., 82., 12., 9.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermgauss

	
numpy.polynomial.hermite.hermgauss(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1649]

	Gauss-Hermite quadrature.

Computes the sample points and weights for Gauss-Hermite quadrature.
These sample points and weights will correctly integrate polynomials of
degree [image: 2*deg - 1] or less over the interval [image: [-\inf, \inf]]
with the weight function [image: f(x) = \exp(-x^2)].

	Parameters:	deg : int

Number of sample points and weights. It must be >= 1.

	Returns:	x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may
be problematic. The weights are determined by using the fact that

[image: w_k = c / (H'_n(x_k) * H_{n-1}(x_k))]

where [image: c] is a constant independent of [image: k] and [image: x_k]
is the k’th root of [image: H_n], and then scaling the results to get
the right value when integrating 1.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermweight

	
numpy.polynomial.hermite.hermweight(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1718]

	Weight function of the Hermite polynomials.

The weight function is [image: \exp(-x^2)] and the interval of
integration is [image: [-\inf, \inf]]. the Hermite polynomials are
orthogonal, but not normalized, with respect to this weight function.

	Parameters:	x : array_like

Values at which the weight function will be computed.

	Returns:	w : ndarray

The weight function at x.

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermcompanion

	
numpy.polynomial.hermite.hermcompanion(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L1545]

	Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is
symmetric when c is an Hermite basis polynomial. This provides
better eigenvalue estimates than the unscaled case and for basis
polynomials the eigenvalues are guaranteed to be real if
numpy.linalg.eigvalsh is used to obtain them.

	Parameters:	c : array_like

1-D array of Hermite series coefficients ordered from low to high
degree.

	Returns:	mat : ndarray

Scaled companion matrix of dimensions (deg, deg).

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermdomain

	
numpy.polynomial.hermite.hermdomain = array([-1, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermzero

	
numpy.polynomial.hermite.hermzero = array([0])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermone

	
numpy.polynomial.hermite.hermone = array([1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermx

	
numpy.polynomial.hermite.hermx = array([0. , 0.5])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermtrim

	
numpy.polynomial.hermite.hermtrim(c, tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polyutils.py#L191]

	Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the
parameter tol; “trailing” means highest order coefficient(s), e.g., in
[0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

	Parameters:	c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less
than or equal to tol (default value is zero) are removed.

	Returns:	trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series
would be empty, a series containing a single zero is returned.

	Raises:	ValueError

If tol < 0

See also

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.hermline

	
numpy.polynomial.hermite.hermline(off, scl)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L201]

	Hermite series whose graph is a straight line.

	Parameters:	off, scl : scalars

The specified line is given by off + scl*x.

	Returns:	y : ndarray

This module’s representation of the Hermite series for
off + scl*x.

See also

polyline, chebline

Examples

>>> from numpy.polynomial.hermite import hermline, hermval
>>> hermval(0,hermline(3, 2))
3.0
>>> hermval(1,hermline(3, 2))
5.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.herm2poly

	
numpy.polynomial.hermite.herm2poly(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L126]

	Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the “standard” basis) ordered
from lowest to highest degree.

	Parameters:	c : array_like

1-D array containing the Hermite series coefficients, ordered
from lowest order term to highest.

	Returns:	pol : ndarray

1-D array containing the coefficients of the equivalent polynomial
(relative to the “standard” basis) ordered from lowest order term
to highest.

See also

poly2herm

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite import herm2poly
>>> herm2poly([1. , 2.75 , 0.5 , 0.375])
array([0., 1., 2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	Hermite Module, “Physicists’” (numpy.polynomial.hermite)

numpy.polynomial.hermite.poly2herm

	
numpy.polynomial.hermite.poly2herm(pol)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite.py#L80]

	Convert a polynomial to a Hermite series.

Convert an array representing the coefficients of a polynomial (relative
to the “standard” basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Hermite series, ordered
from lowest to highest degree.

	Parameters:	pol : array_like

1-D array containing the polynomial coefficients

	Returns:	c : ndarray

1-D array containing the coefficients of the equivalent Hermite
series.

See also

herm2poly

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite import poly2herm
>>> poly2herm(np.arange(4))
array([1. , 2.75 , 0.5 , 0.375])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for
dealing with HermiteE series, including a HermiteE class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).

HermiteE Class

	HermiteE(coef[,domain,window])
	An HermiteE series class.

Basics

	hermeval(x,c[,tensor])
	Evaluate an HermiteE series at points x.

	hermeval2d(x,y,c)
	Evaluate a 2-D HermiteE series at points (x, y).

	hermeval3d(x,y,z,c)
	Evaluate a 3-D Hermite_e series at points (x, y, z).

	hermegrid2d(x,y,c)
	Evaluate a 2-D HermiteE series on the Cartesian product of x and y.

	hermegrid3d(x,y,z,c)
	Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z.

	hermeroots(c)
	Compute the roots of a HermiteE series.

	hermefromroots(roots)
	Generate a HermiteE series with given roots.

Fitting

	hermefit(x,y,deg[,rcond,full,w])
	Least squares fit of Hermite series to data.

	hermevander(x,deg)
	Pseudo-Vandermonde matrix of given degree.

	hermevander2d(x,y,deg)
	Pseudo-Vandermonde matrix of given degrees.

	hermevander3d(x,y,z,deg)
	Pseudo-Vandermonde matrix of given degrees.

Calculus

	hermeder(c[,m,scl,axis])
	Differentiate a Hermite_e series.

	hermeint(c[,m,k,lbnd,scl,axis])
	Integrate a Hermite_e series.

Algebra

	hermeadd(c1,c2)
	Add one Hermite series to another.

	hermesub(c1,c2)
	Subtract one Hermite series from another.

	hermemul(c1,c2)
	Multiply one Hermite series by another.

	hermemulx(c)
	Multiply a Hermite series by x.

	hermediv(c1,c2)
	Divide one Hermite series by another.

	hermepow(c,pow[,maxpower])
	Raise a Hermite series to a power.

Quadrature

	hermegauss(deg)
	Gauss-HermiteE quadrature.

	hermeweight(x)
	Weight function of the Hermite_e polynomials.

Miscellaneous

	hermecompanion(c)
	Return the scaled companion matrix of c.

	hermedomain
	

	hermezero
	

	hermeone
	

	hermex
	

	hermetrim(c[,tol])
	Remove “small” “trailing” coefficients from a polynomial.

	hermeline(off,scl)
	Hermite series whose graph is a straight line.

	herme2poly(c)
	Convert a Hermite series to a polynomial.

	poly2herme(pol)
	Convert a polynomial to a Hermite series.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.HermiteE

	
class numpy.polynomial.hermite_e.HermiteE(coef, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1747]

	An HermiteE series class.

The HermiteE class provides the standard Python numerical methods
‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as well as the
attributes and methods listed in the ABCPolyBase documentation.

	Parameters:	coef : array_like

Laguerre coefficients in order of increasing degree, i.e,
(1, 2, 3) gives 1*He_0(x) + 2*He_1(X) + 3*He_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped
to the interval [window[0], window[1]] by shifting and scaling.
The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

	__call__(arg)
	

	basis(deg[,domain,window])
	Series basis polynomial of degree deg.

	cast(series[,domain,window])
	Convert series to series of this class.

	convert([domain,kind,window])
	Convert series to a different kind and/or domain and/or window.

	copy()
	Return a copy.

	cutdeg(deg)
	Truncate series to the given degree.

	degree()
	The degree of the series.

	deriv([m])
	Differentiate.

	fit(x,y,deg[,domain,rcond,full,w,window])
	Least squares fit to data.

	fromroots(roots[,domain,window])
	Return series instance that has the specified roots.

	has_samecoef(other)
	Check if coefficients match.

	has_samedomain(other)
	Check if domains match.

	has_sametype(other)
	Check if types match.

	has_samewindow(other)
	Check if windows match.

	identity([domain,window])
	Identity function.

	integ([m,k,lbnd])
	Integrate.

	linspace([n,domain])
	Return x, y values at equally spaced points in domain.

	mapparms()
	Return the mapping parameters.

	roots()
	Return the roots of the series polynomial.

	trim([tol])
	Remove trailing coefficients

	truncate(size)
	Truncate series to length size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeval

	
numpy.polynomial.hermite_e.hermeval(x, c, tensor=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L851]

	Evaluate an HermiteE series at points x.

If c is of length n + 1, this function returns the value:

[image: p(x) = c_0 * He_0(x) + c_1 * He_1(x) + ... + c_n * He_n(x)]

The parameter x is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either x
or its elements must support multiplication and addition both with
themselves and with the elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If
c is multidimensional, then the shape of the result depends on the
value of tensor. If tensor is true the shape will be c.shape[1:] +
x.shape. If tensor is false the shape will be c.shape[1:]. Note that
scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.

	Parameters:	x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, x
or its elements must support addition and multiplication with
with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If c is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of x. Scalars have dimension 0
for this action. The result is that every column of coefficients in
c is evaluated for every element of x. If False, x is broadcast
over the columns of c for the evaluation. This keyword is useful
when c is multidimensional. The default value is True.

New in version 1.7.0.

	Returns:	values : ndarray, algebra_like

The shape of the return value is described above.

See also

hermeval2d, hermegrid2d, hermeval3d, hermegrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.hermite_e import hermeval
>>> coef = [1,2,3]
>>> hermeval(1, coef)
3.0
>>> hermeval([[1,2],[3,4]], coef)
array([[3., 14.],
 [31., 54.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeval2d

	
numpy.polynomial.hermite_e.hermeval2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L946]

	Evaluate a 2-D HermiteE series at points (x, y).

This function returns the values:

[image: p(x,y) = \sum_{i,j} c_{i,j} * He_i(x) * He_j(y)]

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either x
and y or their elements must support multiplication and addition both
with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make
it 2-D. The shape of the result will be c.shape[2:] + x.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list
or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term
of multi-degree i,j is contained in c[i,j]. If c has
dimension greater than two the remaining indices enumerate multiple
sets of coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points formed with
pairs of corresponding values from x and y.

See also

hermeval, hermegrid2d, hermeval3d, hermegrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeval3d

	
numpy.polynomial.hermite_e.hermeval3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1057]

	Evaluate a 3-D Hermite_e series at points (x, y, z).

This function returns the values:

[image: p(x,y,z) = \sum_{i,j,k} c_{i,j,k} * He_i(x) * He_j(y) * He_k(z)]

The parameters x, y, and z are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
x, y, and z or their elements must support multiplication and
addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.

	Parameters:	x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points
(x, y, z), where x, y, and z must have the same shape. If
any of x, y, or z is a list or tuple, it is first converted
to an ndarray, otherwise it is left unchanged and if it isn’t an
ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j,k is contained in c[i,j,k]. If c has dimension
greater than 3 the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with
triples of corresponding values from x, y, and z.

See also

hermeval, hermeval2d, hermegrid2d, hermegrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermegrid2d

	
numpy.polynomial.hermite_e.hermegrid2d(x, y, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1002]

	Evaluate a 2-D HermiteE series on the Cartesian product of x and y.

This function returns the values:

[image: p(a,b) = \sum_{i,j} c_{i,j} * H_i(a) * H_j(b)]

where the points (a, b) consist of all pairs formed by taking
a from x and b from y. The resulting points form a grid with
x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either x and y or their elements must support multiplication
and addition both with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape.

	Parameters:	x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or
tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

hermeval, hermeval2d, hermeval3d, hermegrid3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermegrid3d

	
numpy.polynomial.hermite_e.hermegrid3d(x, y, z, c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1116]

	Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z.

This function returns the values:

[image: p(a,b,c) = \sum_{i,j,k} c_{i,j,k} * He_i(a) * He_j(b) * He_k(c)]

where the points (a, b, c) consist of all triples formed by taking
a from x, b from y, and c from z. The resulting points form
a grid with x in the first dimension, y in the second, and z in
the third.

The parameters x, y, and z are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either x, y, and z or their elements must support
multiplication and addition both with themselves and with the elements
of c.

If c has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.

	Parameters:	x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x,`y`, or z is a
list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn’t an ndarray, it is treated as a
scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in c[i,j]. If c has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.

	Returns:	values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian
product of x and y.

See also

hermeval, hermeval2d, hermegrid2d, hermeval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeroots

	
numpy.polynomial.hermite_e.hermeroots(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1588]

	Compute the roots of a HermiteE series.

Return the roots (a.k.a. “zeros”) of the polynomial

[image: p(x) = \sum_i c[i] * He_i(x).]

	Parameters:	c : 1-D array_like

1-D array of coefficients.

	Returns:	out : ndarray

Array of the roots of the series. If all the roots are real,
then out is also real, otherwise it is complex.

See also

polyroots, legroots, lagroots, hermroots, chebroots

Notes

The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the series for such
values. Roots with multiplicity greater than 1 will also show larger
errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can
be improved by a few iterations of Newton’s method.

The HermiteE series basis polynomials aren’t powers of x so the
results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots
>>> coef = hermefromroots([-1, 0, 1])
>>> coef
array([0., 2., 0., 1.])
>>> hermeroots(coef)
array([-1., 0., 1.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermefromroots

	
numpy.polynomial.hermite_e.hermefromroots(roots)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L238]

	Generate a HermiteE series with given roots.

The function returns the coefficients of the polynomial

[image: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),]

in HermiteE form, where the r_n are the roots specified in roots.
If a zero has multiplicity n, then it must appear in roots n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of
multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The
roots can appear in any order.

If the returned coefficients are c, then

[image: p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x)]

The coefficient of the last term is not generally 1 for monic
polynomials in HermiteE form.

	Parameters:	roots : array_like

Sequence containing the roots.

	Returns:	out : ndarray

1-D array of coefficients. If all roots are real then out is a
real array, if some of the roots are complex, then out is complex
even if all the coefficients in the result are real (see Examples
below).

See also

polyfromroots, legfromroots, lagfromroots, hermfromroots, chebfromroots.

Examples

>>> from numpy.polynomial.hermite_e import hermefromroots, hermeval
>>> coef = hermefromroots((-1, 0, 1))
>>> hermeval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = hermefromroots((-1j, 1j))
>>> hermeval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermefit

	
numpy.polynomial.hermite_e.hermefit(x, y, deg, rcond=None, full=False, w=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1365]

	Least squares fit of Hermite series to data.

Return the coefficients of a HermiteE series of degree deg that is
the least squares fit to the data values y given at points x. If
y is 1-D the returned coefficients will also be 1-D. If y is 2-D
multiple fits are done, one for each column of y, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form

[image: p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x),]

where n is deg.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products w[i]*y[i]
all have the same variance. The default value is None.

	Returns:	coef : ndarray, shape (M,) or (M, K)

Hermite coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column
k.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

	Warns:	RankWarning

The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False. The
warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also

chebfit, legfit, polyfit, hermfit, polyfit

	hermeval

	Evaluates a Hermite series.

	hermevander

	pseudo Vandermonde matrix of Hermite series.

	hermeweight

	HermiteE weight function.

	linalg.lstsq

	Computes a least-squares fit from the matrix.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

The solution is the coefficients of the HermiteE series p that
minimizes the sum of the weighted squared errors

[image: E = \sum_j w_j^2 * |y_j - p(x_j)|^2,]

where the [image: w_j] are the weights. This problem is solved by
setting up the (typically) overdetermined matrix equation

[image: V(x) * c = w * y,]

where V is the pseudo Vandermonde matrix of x, the elements of c
are the coefficients to be solved for, and the elements of y are the
observed values. This equation is then solved using the singular value
decomposition of V.

If some of the singular values of V are so small that they are
neglected, then a RankWarning will be issued. This means that the
coefficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning. The rcond parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using HermiteE series are probably most useful when the data can
be approximated by sqrt(w(x)) * p(x), where w(x) is the HermiteE
weight. In that case the weight sqrt(w(x[i]) should be used
together with data values y[i]/sqrt(w(x[i]). The weight function is
available as hermeweight.

References

	[R62]	Wikipedia, “Curve fitting”,
http://en.wikipedia.org/wiki/Curve_fitting

Examples

>>> from numpy.polynomial.hermite_e import hermefik, hermeval
>>> x = np.linspace(-10, 10)
>>> err = np.random.randn(len(x))/10
>>> y = hermeval(x, [1, 2, 3]) + err
>>> hermefit(x, y, 2)
array([1.01690445, 1.99951418, 2.99948696])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermevander

	
numpy.polynomial.hermite_e.hermevander(x, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1175]

	Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points
x. The pseudo-Vandermonde matrix is defined by

[image: V[..., i] = He_i(x),]

where 0 <= i <= deg. The leading indices of V index the elements of
x and the last index is the degree of the HermiteE polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the
array V = hermevander(x, n), then np.dot(V, c) and
hermeval(x, c) are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of HermiteE series of the same degree and sample points.

	Parameters:	x : array_like

Array of points. The dtype is converted to float64 or complex128
depending on whether any of the elements are complex. If x is
scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

	Returns:	vander : ndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is
x.shape + (deg + 1,), where The last index is the degree of the
corresponding HermiteE polynomial. The dtype will be the same as
the converted x.

Examples

>>> from numpy.polynomial.hermite_e import hermevander
>>> x = np.array([-1, 0, 1])
>>> hermevander(x, 3)
array([[1., -1., 0., 2.],
 [1., 0., -1., -0.],
 [1., 1., 0., -2.]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermevander2d

	
numpy.polynomial.hermite_e.hermevander2d(x, y, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1237]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y). The pseudo-Vandermonde matrix is defined by

[image: V[..., deg[1]*i + j] = He_i(x) * He_j(y),]

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of
V index the points (x, y) and the last index encodes the degrees of
the HermiteE polynomials.

If V = hermevander2d(x, y, [xdeg, ydeg]), then the columns of V
correspond to the elements of a 2-D coefficient array c of shape
(xdeg + 1, ydeg + 1) in the order

[image: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...]

and np.dot(V, c.flat) and hermeval2d(x, y, c) will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D HermiteE
series of the same degrees and sample points.

	Parameters:	x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to
1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

	Returns:	vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)]. The dtype will be the same
as the converted x and y.

See also

hermevander, hermevander3d., hermeval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermevander3d

	
numpy.polynomial.hermite_e.hermevander3d(x, y, z, deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1300]

	Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample
points (x, y, z). If l, m, n are the given degrees in x, y, z,
then Hehe pseudo-Vandermonde matrix is defined by

[image: V[..., (m+1)(n+1)i + (n+1)j + k] = He_i(x)*He_j(y)*He_k(z),]

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading
indices of V index the points (x, y, z) and the last index encodes
the degrees of the HermiteE polynomials.

If V = hermevander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns
of V correspond to the elements of a 3-D coefficient array c of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

[image: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...]

and np.dot(V, c.flat) and hermeval3d(x, y, z, c) will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D HermiteE
series of the same degrees and sample points.

	Parameters:	x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will
be converted to either float64 or complex128 depending on whether
any of the elements are complex. Scalars are converted to 1-D
arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

	Returns:	vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where
[image: order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)]. The dtype will
be the same as the converted x, y, and z.

See also

hermevander, hermevander3d., hermeval3d

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeder

	
numpy.polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L636]

	Differentiate a Hermite_e series.

Returns the series coefficients c differentiated m times along
axis. At each iteration the result is multiplied by scl (the
scaling factor is for use in a linear change of variable). The argument
c is an array of coefficients from low to high degree along each
axis, e.g., [1,2,3] represents the series 1*He_0 + 2*He_1 + 3*He_2
while [[1,2],[1,2]] represents 1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y)
+ 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y) if axis=0 is x and axis=1
is y.

	Parameters:	c : array_like

Array of Hermite_e series coefficients. If c is multidimensional
the different axis correspond to different variables with the
degree in each axis given by the corresponding index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is
multiplication by scl**m. This is for use in a linear change of
variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

	Returns:	der : ndarray

Hermite series of the derivative.

See also

hermeint

Notes

In general, the result of differentiating a Hermite series does not
resemble the same operation on a power series. Thus the result of this
function may be “unintuitive,” albeit correct; see Examples section
below.

Examples

>>> from numpy.polynomial.hermite_e import hermeder
>>> hermeder([1., 1., 1., 1.])
array([1., 2., 3.])
>>> hermeder([-0.25, 1., 1./2., 1./3., 1./4], m=2)
array([1., 2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeint

	
numpy.polynomial.hermite_e.hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L726]

	Integrate a Hermite_e series.

Returns the Hermite_e series coefficients c integrated m times from
lbnd along axis. At each iteration the resulting series is
multiplied by scl and an integration constant, k, is added.
The scaling factor is for use in a linear change of variable. (“Buyer
beware”: note that, depending on what one is doing, one may want scl
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3]
represents the series H_0 + 2*H_1 + 3*H_2 while [[1,2],[1,2]]
represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

	Parameters:	c : array_like

Array of Hermite_e series coefficients. If c is multidimensional
the different axis correspond to different variables with the
degree in each axis given by the corresponding index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at
lbnd is the first value in the list, the value of the second
integral at lbnd is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single
scalar can be given instead of a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl
before the integration constant is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

	Returns:	S : ndarray

Hermite_e series coefficients of the integral.

	Raises:	ValueError

If m < 0, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also

hermeder

Notes

Note that the result of each integration is multiplied by scl.
Why is this important to note? Say one is making a linear change of
variable [image: u = ax + b] in an integral relative to x. Then
.. math::dx = du/a, so one will need to set scl equal to
[image: 1/a] - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs
to be “reprojected” onto the C-series basis set. Thus, typically,
the result of this function is “unintuitive,” albeit correct; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermeint
>>> hermeint([1, 2, 3]) # integrate once, value 0 at 0.
array([1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.25 , 1. , 0.5 , 0.33333333, 0.25])
>>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0.
array([2., 1., 1., 1.])
>>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1
array([-1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1)
array([1.83333333, 0. , 0.5 , 0.33333333, 0.25])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeadd

	
numpy.polynomial.hermite_e.hermeadd(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L305]

	Add one Hermite series to another.

Returns the sum of two Hermite series c1 + c2. The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the Hermite series of their sum.

See also

hermesub, hermemul, hermediv, hermepow

Notes

Unlike multiplication, division, etc., the sum of two Hermite series
is a Hermite series (without having to “reproject” the result onto
the basis set) so addition, just like that of “standard” polynomials,
is simply “component-wise.”

Examples

>>> from numpy.polynomial.hermite_e import hermeadd
>>> hermeadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermesub

	
numpy.polynomial.hermite_e.hermesub(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L353]

	Subtract one Hermite series from another.

Returns the difference of two Hermite series c1 - c2. The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Hermite series coefficients representing their difference.

See also

hermeadd, hermemul, hermediv, hermepow

Notes

Unlike multiplication, division, etc., the difference of two Hermite
series is a Hermite series (without having to “reproject” the result
onto the basis set) so subtraction, just like that of “standard”
polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial.hermite_e import hermesub
>>> hermesub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermemul

	
numpy.polynomial.hermite_e.hermemul(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L451]

	Multiply one Hermite series by another.

Returns the product of two Hermite series c1 * c2. The arguments
are sequences of coefficients, from lowest order “term” to highest,
e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to
high.

	Returns:	out : ndarray

Of Hermite series coefficients representing their product.

See also

hermeadd, hermesub, hermediv, hermepow

Notes

In general, the (polynomial) product of two C-series results in terms
that are not in the Hermite polynomial basis set. Thus, to express
the product as a Hermite series, it is necessary to “reproject” the
product onto said basis set, which may produce “unintuitive” (but
correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermemul
>>> hermemul([1, 2, 3], [0, 1, 2])
array([14., 15., 28., 7., 6.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermemulx

	
numpy.polynomial.hermite_e.hermemulx(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L402]

	Multiply a Hermite series by x.

Multiply the Hermite series c by x, where x is the independent
variable.

	Parameters:	c : array_like

1-D array of Hermite series coefficients ordered from low to
high.

	Returns:	out : ndarray

Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Hermite
polynomials in the form

[image:]

xP_i(x) = (P_{i + 1}(x) + iP_{i - 1}(x)))

Examples

>>> from numpy.polynomial.hermite_e import hermemulx
>>> hermemulx([1, 2, 3])
array([2., 7., 2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermediv

	
numpy.polynomial.hermite_e.hermediv(c1, c2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L517]

	Divide one Hermite series by another.

Returns the quotient-with-remainder of two Hermite series
c1 / c2. The arguments are sequences of coefficients from lowest
order “term” to highest, e.g., [1,2,3] represents the series
P_0 + 2*P_1 + 3*P_2.

	Parameters:	c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to
high.

	Returns:	[quo, rem] : ndarrays

Of Hermite series coefficients representing the quotient and
remainder.

See also

hermeadd, hermesub, hermemul, hermepow

Notes

In general, the (polynomial) division of one Hermite series by another
results in quotient and remainder terms that are not in the Hermite
polynomial basis set. Thus, to express these results as a Hermite
series, it is necessary to “reproject” the results onto the Hermite
basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermediv
>>> hermediv([14., 15., 28., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> hermediv([15., 17., 28., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 2.]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermepow

	
numpy.polynomial.hermite_e.hermepow(c, pow, maxpower=16)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L582]

	Raise a Hermite series to a power.

Returns the Hermite series c raised to the power pow. The
argument c is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

	Parameters:	c : array_like

1-D array of Hermite series coefficients ordered from low to
high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series
to unmanageable size. Default is 16

	Returns:	coef : ndarray

Hermite series of power.

See also

hermeadd, hermesub, hermemul, hermediv

Examples

>>> from numpy.polynomial.hermite_e import hermepow
>>> hermepow([1, 2, 3], 2)
array([23., 28., 46., 12., 9.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermegauss

	
numpy.polynomial.hermite_e.hermegauss(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1647]

	Gauss-HermiteE quadrature.

Computes the sample points and weights for Gauss-HermiteE quadrature.
These sample points and weights will correctly integrate polynomials of
degree [image: 2*deg - 1] or less over the interval [image: [-\inf, \inf]]
with the weight function [image: f(x) = \exp(-x^2/2)].

	Parameters:	deg : int

Number of sample points and weights. It must be >= 1.

	Returns:	x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may
be problematic. The weights are determined by using the fact that

[image: w_k = c / (He'_n(x_k) * He_{n-1}(x_k))]

where [image: c] is a constant independent of [image: k] and [image: x_k]
is the k’th root of [image: He_n], and then scaling the results to get
the right value when integrating 1.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeweight

	
numpy.polynomial.hermite_e.hermeweight(x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1716]

	Weight function of the Hermite_e polynomials.

The weight function is [image: \exp(-x^2/2)] and the interval of
integration is [image: [-\inf, \inf]]. the HermiteE polynomials are
orthogonal, but not normalized, with respect to this weight function.

	Parameters:	x : array_like

Values at which the weight function will be computed.

	Returns:	w : ndarray

The weight function at x.

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermecompanion

	
numpy.polynomial.hermite_e.hermecompanion(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L1542]

	Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is
symmetric when c is an HermiteE basis polynomial. This provides
better eigenvalue estimates than the unscaled case and for basis
polynomials the eigenvalues are guaranteed to be real if
numpy.linalg.eigvalsh is used to obtain them.

	Parameters:	c : array_like

1-D array of HermiteE series coefficients ordered from low to high
degree.

	Returns:	mat : ndarray

Scaled companion matrix of dimensions (deg, deg).

Notes

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermedomain

	
numpy.polynomial.hermite_e.hermedomain = array([-1, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermezero

	
numpy.polynomial.hermite_e.hermezero = array([0])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeone

	
numpy.polynomial.hermite_e.hermeone = array([1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermex

	
numpy.polynomial.hermite_e.hermex = array([0, 1])

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermetrim

	
numpy.polynomial.hermite_e.hermetrim(c, tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\polyutils.py#L191]

	Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the
parameter tol; “trailing” means highest order coefficient(s), e.g., in
[0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

	Parameters:	c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less
than or equal to tol (default value is zero) are removed.

	Returns:	trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series
would be empty, a series containing a single zero is returned.

	Raises:	ValueError

If tol < 0

See also

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.hermeline

	
numpy.polynomial.hermite_e.hermeline(off, scl)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L201]

	Hermite series whose graph is a straight line.

	Parameters:	off, scl : scalars

The specified line is given by off + scl*x.

	Returns:	y : ndarray

This module’s representation of the Hermite series for
off + scl*x.

See also

polyline, chebline

Examples

>>> from numpy.polynomial.hermite_e import hermeline
>>> from numpy.polynomial.hermite_e import hermeline, hermeval
>>> hermeval(0,hermeline(3, 2))
3.0
>>> hermeval(1,hermeline(3, 2))
5.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.herme2poly

	
numpy.polynomial.hermite_e.herme2poly(c)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L127]

	Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the “standard” basis) ordered
from lowest to highest degree.

	Parameters:	c : array_like

1-D array containing the Hermite series coefficients, ordered
from lowest order term to highest.

	Returns:	pol : ndarray

1-D array containing the coefficients of the equivalent polynomial
(relative to the “standard” basis) ordered from lowest order term
to highest.

See also

poly2herme

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite_e import herme2poly
>>> herme2poly([2., 10., 2., 3.])
array([0., 1., 2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Polynomial Package

 	HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e)

numpy.polynomial.hermite_e.poly2herme

	
numpy.polynomial.hermite_e.poly2herme(pol)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial\hermite_e.py#L81]

	Convert a polynomial to a Hermite series.

Convert an array representing the coefficients of a polynomial (relative
to the “standard” basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Hermite series, ordered
from lowest to highest degree.

	Parameters:	pol : array_like

1-D array containing the polynomial coefficients

	Returns:	c : ndarray

1-D array containing the coefficients of the equivalent Hermite
series.

See also

herme2poly

Notes

The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite_e import poly2herme
>>> poly2herme(np.arange(4))
array([2., 10., 2., 3.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

Poly1d

Basics

	poly1d(c_or_r[,r,variable])
	A one-dimensional polynomial class.

	polyval(p,x)
	Evaluate a polynomial at specific values.

	poly(seq_of_zeros)
	Find the coefficients of a polynomial with the given sequence of roots.

	roots(p)
	Return the roots of a polynomial with coefficients given in p.

Fitting

	polyfit(x,y,deg[,rcond,full,w,cov])
	Least squares polynomial fit.

Calculus

	polyder(p[,m])
	Return the derivative of the specified order of a polynomial.

	polyint(p[,m,k])
	Return an antiderivative (indefinite integral) of a polynomial.

Arithmetic

	polyadd(a1,a2)
	Find the sum of two polynomials.

	polydiv(u,v)
	Returns the quotient and remainder of polynomial division.

	polymul(a1,a2)
	Find the product of two polynomials.

	polysub(a1,a2)
	Difference (subtraction) of two polynomials.

Warnings

	RankWarning
	Issued by polyfit when the Vandermonde matrix is rank deficient.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.poly1d

	
class numpy.poly1d(c_or_r, r=0, variable=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L933]

	A one-dimensional polynomial class.

A convenience class, used to encapsulate “natural” operations on
polynomials so that said operations may take on their customary
form in code (see Examples).

	Parameters:	c_or_r : array_like

The polynomial’s coefficients, in decreasing powers, or if
the value of the second parameter is True, the polynomial’s
roots (values where the polynomial evaluates to 0). For example,
poly1d([1, 2, 3]) returns an object that represents
[image: x^2 + 2x + 3], whereas poly1d([1, 2, 3], True) returns
one that represents [image: (x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6].

r : bool, optional

If True, c_or_r specifies the polynomial’s roots; the default
is False.

variable : str, optional

Changes the variable used when printing p from x to variable
(see Examples).

Examples

Construct the polynomial [image: x^2 + 2x + 3]:

>>> p = np.poly1d([1, 2, 3])
>>> print np.poly1d(p)
 2
1 x + 2 x + 3

Evaluate the polynomial at [image: x = 0.5]:

>>> p(0.5)
4.25

Find the roots:

>>> p.r
array([-1.+1.41421356j, -1.-1.41421356j])
>>> p(p.r)
array([-4.44089210e-16+0.j, -4.44089210e-16+0.j])

These numbers in the previous line represent (0, 0) to machine precision

Show the coefficients:

>>> p.c
array([1, 2, 3])

Display the order (the leading zero-coefficients are removed):

>>> p.order
2

Show the coefficient of the k-th power in the polynomial
(which is equivalent to p.c[-(i+1)]):

>>> p[1]
2

Polynomials can be added, subtracted, multiplied, and divided
(returns quotient and remainder):

>>> p * p
poly1d([1, 4, 10, 12, 9])

>>> (p**3 + 4) / p
(poly1d([1., 4., 10., 12., 9.]), poly1d([4.]))

asarray(p) gives the coefficient array, so polynomials can be
used in all functions that accept arrays:

>>> p**2 # square of polynomial
poly1d([1, 4, 10, 12, 9])

>>> np.square(p) # square of individual coefficients
array([1, 4, 9])

The variable used in the string representation of p can be modified,
using the variable parameter:

>>> p = np.poly1d([1,2,3], variable='z')
>>> print p
 2
1 z + 2 z + 3

Construct a polynomial from its roots:

>>> np.poly1d([1, 2], True)
poly1d([1, -3, 2])

This is the same polynomial as obtained by:

>>> np.poly1d([1, -1]) * np.poly1d([1, -2])
poly1d([1, -3, 2])

Attributes

	coeffs
	

	order
	

	variable
	

Methods

	__call__(val)
	

	deriv([m])
	Return a derivative of this polynomial.

	integ([m,k])
	Return an antiderivative (indefinite integral) of this polynomial.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

 	numpy.poly1d

numpy.poly1d.__call__

	
poly1d.__call__(val)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L1130]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

 	numpy.poly1d

numpy.poly1d.deriv

	
poly1d.deriv(m=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L1256]

	Return a derivative of this polynomial.

Refer to polyder for full documentation.

See also

	polyder

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

 	numpy.poly1d

numpy.poly1d.integ

	
poly1d.integ(m=1, k=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L1243]

	Return an antiderivative (indefinite integral) of this polynomial.

Refer to polyint for full documentation.

See also

	polyint

	equivalent function

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.polyval

	
numpy.polyval(p, x)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L608]

	Evaluate a polynomial at specific values.

If p is of length N, this function returns the value:

p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]

If x is a sequence, then p(x) is returned for each element of x.
If x is another polynomial then the composite polynomial p(x(t))
is returned.

	Parameters:	p : array_like or poly1d object

1D array of polynomial coefficients (including coefficients equal
to zero) from highest degree to the constant term, or an
instance of poly1d.

x : array_like or poly1d object

A number, a 1D array of numbers, or an instance of poly1d, “at”
which to evaluate p.

	Returns:	values : ndarray or poly1d

If x is a poly1d instance, the result is the composition of the two
polynomials, i.e., x is “substituted” in p and the simplified
result is returned. In addition, the type of x - array_like or
poly1d - governs the type of the output: x array_like => values
array_like, x a poly1d object => values is also.

See also

	poly1d

	A polynomial class.

Notes

Horner’s scheme [R65] is used to evaluate the polynomial. Even so,
for polynomials of high degree the values may be inaccurate due to
rounding errors. Use carefully.

References

	[R65]	(1, 2) I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng.
trans. Ed.), Handbook of Mathematics, New York, Van Nostrand
Reinhold Co., 1985, pg. 720.

Examples

>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
76
>>> np.polyval([3,0,1], np.poly1d(5))
poly1d([76.])
>>> np.polyval(np.poly1d([3,0,1]), 5)
76
>>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
poly1d([76.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.poly

	
numpy.poly(seq_of_zeros)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L31]

	Find the coefficients of a polynomial with the given sequence of roots.

Returns the coefficients of the polynomial whose leading coefficient
is one for the given sequence of zeros (multiple roots must be included
in the sequence as many times as their multiplicity; see Examples).
A square matrix (or array, which will be treated as a matrix) can also
be given, in which case the coefficients of the characteristic polynomial
of the matrix are returned.

	Parameters:	seq_of_zeros : array_like, shape (N,) or (N, N)

A sequence of polynomial roots, or a square array or matrix object.

	Returns:	c : ndarray

1D array of polynomial coefficients from highest to lowest degree:

c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]
where c[0] always equals 1.

	Raises:	ValueError

If input is the wrong shape (the input must be a 1-D or square
2-D array).

See also

	polyval

	Evaluate a polynomial at a point.

	roots

	Return the roots of a polynomial.

	polyfit

	Least squares polynomial fit.

	poly1d

	A one-dimensional polynomial class.

Notes

Specifying the roots of a polynomial still leaves one degree of
freedom, typically represented by an undetermined leading
coefficient. [R56] In the case of this function, that coefficient -
the first one in the returned array - is always taken as one. (If
for some reason you have one other point, the only automatic way
presently to leverage that information is to use polyfit.)

The characteristic polynomial, [image: p_a(t)], of an n-by-n
matrix A is given by

[image: p_a(t) = \mathrm{det}(t\, \mathbf{I} - \mathbf{A})],

where I is the n-by-n identity matrix. [R57]

References

	[R56]	(1, 2) M. Sullivan and M. Sullivan, III, “Algebra and Trignometry,
Enhanced With Graphing Utilities,” Prentice-Hall, pg. 318, 1996.

	[R57]	(1, 2) G. Strang, “Linear Algebra and Its Applications, 2nd Edition,”
Academic Press, pg. 182, 1980.

Examples

Given a sequence of a polynomial’s zeros:

>>> np.poly((0, 0, 0)) # Multiple root example
array([1, 0, 0, 0])

The line above represents z**3 + 0*z**2 + 0*z + 0.

>>> np.poly((-1./2, 0, 1./2))
array([1. , 0. , -0.25, 0.])

The line above represents z**3 - z/4

>>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0]))
array([1. , -0.77086955, 0.08618131, 0.]) #random

Given a square array object:

>>> P = np.array([[0, 1./3], [-1./2, 0]])
>>> np.poly(P)
array([1. , 0. , 0.16666667])

Or a square matrix object:

>>> np.poly(np.matrix(P))
array([1. , 0. , 0.16666667])

Note how in all cases the leading coefficient is always 1.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.roots

	
numpy.roots(p)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L151]

	Return the roots of a polynomial with coefficients given in p.

The values in the rank-1 array p are coefficients of a polynomial.
If the length of p is n+1 then the polynomial is described by:

p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]

	Parameters:	p : array_like

Rank-1 array of polynomial coefficients.

	Returns:	out : ndarray

An array containing the complex roots of the polynomial.

	Raises:	ValueError

When p cannot be converted to a rank-1 array.

See also

	poly

	Find the coefficients of a polynomial with a given sequence of roots.

	polyval

	Evaluate a polynomial at a point.

	polyfit

	Least squares polynomial fit.

	poly1d

	A one-dimensional polynomial class.

Notes

The algorithm relies on computing the eigenvalues of the
companion matrix [R243].

References

	[R243]	(1, 2) R. A. Horn & C. R. Johnson, Matrix Analysis. Cambridge, UK:
Cambridge University Press, 1999, pp. 146-7.

Examples

>>> coeff = [3.2, 2, 1]
>>> np.roots(coeff)
array([-0.3125+0.46351241j, -0.3125-0.46351241j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.polyfit

	
numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L396]

	Least squares polynomial fit.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg
to points (x, y). Returns a vector of coefficients p that minimises
the squared error.

	Parameters:	x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.

w : array_like, shape (M,), optional

weights to apply to the y-coordinates of the sample points.

cov : bool, optional

Return the estimate and the covariance matrix of the estimate
If full is True, then cov is not returned.

	Returns:	p : ndarray, shape (M,) or (M, K)

Polynomial coefficients, highest power first. If y was 2-D, the
coefficients for k-th data set are in p[:,k].

residuals, rank, singular_values, rcond :

Present only if full = True. Residuals of the least-squares fit,
the effective rank of the scaled Vandermonde coefficient matrix,
its singular values, and the specified value of rcond. For more
details, see linalg.lstsq.

V : ndarray, shape (M,M) or (M,M,K)

Present only if full = False and cov`=True. The covariance
matrix of the polynomial coefficient estimates. The diagonal of
this matrix are the variance estimates for each coefficient. If y
is a 2-D array, then the covariance matrix for the `k-th data set
are in V[:,:,k]

	Warns:	RankWarning

The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)

See also

	polyval

	Computes polynomial values.

	linalg.lstsq

	Computes a least-squares fit.

	scipy.interpolate.UnivariateSpline

	Computes spline fits.

Notes

The solution minimizes the squared error

[image: E = \sum_{j=0}^k |p(x_j) - y_j|^2]

in the equations:

x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
...
x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]

The coefficient matrix of the coefficients p is a Vandermonde matrix.

polyfit issues a RankWarning when the least-squares fit is badly
conditioned. This implies that the best fit is not well-defined due
to numerical error. The results may be improved by lowering the polynomial
degree or by replacing x by x - x.mean(). The rcond parameter
can also be set to a value smaller than its default, but the resulting
fit may be spurious: including contributions from the small singular
values can add numerical noise to the result.

Note that fitting polynomial coefficients is inherently badly conditioned
when the degree of the polynomial is large or the interval of sample points
is badly centered. The quality of the fit should always be checked in these
cases. When polynomial fits are not satisfactory, splines may be a good
alternative.

References

	[R58]	Wikipedia, “Curve fitting”,
http://en.wikipedia.org/wiki/Curve_fitting

	[R59]	Wikipedia, “Polynomial interpolation”,
http://en.wikipedia.org/wiki/Polynomial_interpolation

Examples

>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([0.08703704, -0.81349206, 1.69312169, -0.03968254])

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

>>> p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
-0.80000000000000204
>>> p30(5)
-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-polyfit-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.polyder

	
numpy.polyder(p, m=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L328]

	Return the derivative of the specified order of a polynomial.

	Parameters:	p : poly1d or sequence

Polynomial to differentiate.
A sequence is interpreted as polynomial coefficients, see poly1d.

m : int, optional

Order of differentiation (default: 1)

	Returns:	der : poly1d

A new polynomial representing the derivative.

See also

	polyint

	Anti-derivative of a polynomial.

	poly1d

	Class for one-dimensional polynomials.

Examples

The derivative of the polynomial [image: x^3 + x^2 + x^1 + 1] is:

>>> p = np.poly1d([1,1,1,1])
>>> p2 = np.polyder(p)
>>> p2
poly1d([3, 2, 1])

which evaluates to:

>>> p2(2.)
17.0

We can verify this, approximating the derivative with
(f(x + h) - f(x))/h:

>>> (p(2. + 0.001) - p(2.)) / 0.001
17.007000999997857

The fourth-order derivative of a 3rd-order polynomial is zero:

>>> np.polyder(p, 2)
poly1d([6, 2])
>>> np.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
poly1d([0.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.polyint

	
numpy.polyint(p, m=1, k=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L235]

	Return an antiderivative (indefinite integral) of a polynomial.

The returned order m antiderivative P of polynomial p satisfies
[image: \frac{d^m}{dx^m}P(x) = p(x)] and is defined up to m - 1
integration constants k. The constants determine the low-order
polynomial part

[image: \frac{k_{m-1}}{0!} x^0 + \ldots + \frac{k_0}{(m-1)!}x^{m-1}]

of P so that [image: P^{(j)}(0) = k_{m-j-1}].

	Parameters:	p : {array_like, poly1d}

Polynomial to differentiate.
A sequence is interpreted as polynomial coefficients, see poly1d.

m : int, optional

Order of the antiderivative. (Default: 1)

k : {None, list of m scalars, scalar}, optional

Integration constants. They are given in the order of integration:
those corresponding to highest-order terms come first.

If None (default), all constants are assumed to be zero.
If m = 1, a single scalar can be given instead of a list.

See also

	polyder

	derivative of a polynomial

	poly1d.integ

	equivalent method

Examples

The defining property of the antiderivative:

>>> p = np.poly1d([1,1,1])
>>> P = np.polyint(p)
>>> P
poly1d([0.33333333, 0.5 , 1. , 0.])
>>> np.polyder(P) == p
True

The integration constants default to zero, but can be specified:

>>> P = np.polyint(p, 3)
>>> P(0)
0.0
>>> np.polyder(P)(0)
0.0
>>> np.polyder(P, 2)(0)
0.0
>>> P = np.polyint(p, 3, k=[6,5,3])
>>> P
poly1d([0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3.])

Note that 3 = 6 / 2!, and that the constants are given in the order of
integrations. Constant of the highest-order polynomial term comes first:

>>> np.polyder(P, 2)(0)
6.0
>>> np.polyder(P, 1)(0)
5.0
>>> P(0)
3.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.polyadd

	
numpy.polyadd(a1, a2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L677]

	Find the sum of two polynomials.

Returns the polynomial resulting from the sum of two input polynomials.
Each input must be either a poly1d object or a 1D sequence of polynomial
coefficients, from highest to lowest degree.

	Parameters:	a1, a2 : array_like or poly1d object

Input polynomials.

	Returns:	out : ndarray or poly1d object

The sum of the inputs. If either input is a poly1d object, then the
output is also a poly1d object. Otherwise, it is a 1D array of
polynomial coefficients from highest to lowest degree.

See also

	poly1d

	A one-dimensional polynomial class.

poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

Examples

>>> np.polyadd([1, 2], [9, 5, 4])
array([9, 6, 6])

Using poly1d objects:

>>> p1 = np.poly1d([1, 2])
>>> p2 = np.poly1d([9, 5, 4])
>>> print p1
1 x + 2
>>> print p2
 2
9 x + 5 x + 4
>>> print np.polyadd(p1, p2)
 2
9 x + 6 x + 6

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.polydiv

	
numpy.polydiv(u, v)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L840]

	Returns the quotient and remainder of polynomial division.

The input arrays are the coefficients (including any coefficients
equal to zero) of the “numerator” (dividend) and “denominator”
(divisor) polynomials, respectively.

	Parameters:	u : array_like or poly1d

Dividend polynomial’s coefficients.

v : array_like or poly1d

Divisor polynomial’s coefficients.

	Returns:	q : ndarray

Coefficients, including those equal to zero, of the quotient.

r : ndarray

Coefficients, including those equal to zero, of the remainder.

See also

poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval

Notes

Both u and v must be 0-d or 1-d (ndim = 0 or 1), but u.ndim need
not equal v.ndim. In other words, all four possible combinations -
u.ndim = v.ndim = 0, u.ndim = v.ndim = 1,
u.ndim = 1, v.ndim = 0, and u.ndim = 0, v.ndim = 1 - work.

Examples

[image: \frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25]

>>> x = np.array([3.0, 5.0, 2.0])
>>> y = np.array([2.0, 1.0])
>>> np.polydiv(x, y)
(array([1.5 , 1.75]), array([0.25]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.polymul

	
numpy.polymul(a1, a2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L784]

	Find the product of two polynomials.

Finds the polynomial resulting from the multiplication of the two input
polynomials. Each input must be either a poly1d object or a 1D sequence
of polynomial coefficients, from highest to lowest degree.

	Parameters:	a1, a2 : array_like or poly1d object

Input polynomials.

	Returns:	out : ndarray or poly1d object

The polynomial resulting from the multiplication of the inputs. If
either inputs is a poly1d object, then the output is also a poly1d
object. Otherwise, it is a 1D array of polynomial coefficients from
highest to lowest degree.

See also

	poly1d

	A one-dimensional polynomial class.

poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

	convolve

	Array convolution. Same output as polymul, but has parameter for overlap mode.

Examples

>>> np.polymul([1, 2, 3], [9, 5, 1])
array([9, 23, 38, 17, 3])

Using poly1d objects:

>>> p1 = np.poly1d([1, 2, 3])
>>> p2 = np.poly1d([9, 5, 1])
>>> print p1
 2
1 x + 2 x + 3
>>> print p2
 2
9 x + 5 x + 1
>>> print np.polymul(p1, p2)
 4 3 2
9 x + 23 x + 38 x + 17 x + 3

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.polysub

	
numpy.polysub(a1, a2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L737]

	Difference (subtraction) of two polynomials.

Given two polynomials a1 and a2, returns a1 - a2.
a1 and a2 can be either array_like sequences of the polynomials’
coefficients (including coefficients equal to zero), or poly1d objects.

	Parameters:	a1, a2 : array_like or poly1d

Minuend and subtrahend polynomials, respectively.

	Returns:	out : ndarray or poly1d

Array or poly1d object of the difference polynomial’s coefficients.

See also

polyval, polydiv, polymul, polyadd

Examples

[image: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)]

>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1, 0, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Polynomials

 	Poly1d

numpy.RankWarning

	
exception numpy.RankWarning[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\polynomial.py#L21]

	Issued by polyfit when the Vandermonde matrix is rank deficient.

For more information, a way to suppress the warning, and an example of
RankWarning being issued, see polyfit.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Random sampling (numpy.random)

Simple random data

	rand(d0,d1,...,dn)
	Random values in a given shape.

	randn(d0,d1,...,dn)
	Return a sample (or samples) from the “standard normal” distribution.

	randint(low[,high,size])
	Return random integers from low (inclusive) to high (exclusive).

	random_integers(low[,high,size])
	Return random integers between low and high, inclusive.

	random_sample([size])
	Return random floats in the half-open interval [0.0, 1.0).

	random([size])
	Return random floats in the half-open interval [0.0, 1.0).

	ranf([size])
	Return random floats in the half-open interval [0.0, 1.0).

	sample([size])
	Return random floats in the half-open interval [0.0, 1.0).

	choice(a[,size,replace,p])
	Generates a random sample from a given 1-D array

	bytes(length)
	Return random bytes.

Permutations

	shuffle(x)
	Modify a sequence in-place by shuffling its contents.

	permutation(x)
	Randomly permute a sequence, or return a permuted range.

Distributions

	beta(a,b[,size])
	The Beta distribution over [0, 1].

	binomial(n,p[,size])
	Draw samples from a binomial distribution.

	chisquare(df[,size])
	Draw samples from a chi-square distribution.

	dirichlet(alpha[,size])
	Draw samples from the Dirichlet distribution.

	exponential([scale,size])
	Exponential distribution.

	f(dfnum,dfden[,size])
	Draw samples from a F distribution.

	gamma(shape[,scale,size])
	Draw samples from a Gamma distribution.

	geometric(p[,size])
	Draw samples from the geometric distribution.

	gumbel([loc,scale,size])
	Gumbel distribution.

	hypergeometric(ngood,nbad,nsample[,size])
	Draw samples from a Hypergeometric distribution.

	laplace([loc,scale,size])
	Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay).

	logistic([loc,scale,size])
	Draw samples from a Logistic distribution.

	lognormal([mean,sigma,size])
	Return samples drawn from a log-normal distribution.

	logseries(p[,size])
	Draw samples from a Logarithmic Series distribution.

	multinomial(n,pvals[,size])
	Draw samples from a multinomial distribution.

	multivariate_normal(mean,cov[,size])
	Draw random samples from a multivariate normal distribution.

	negative_binomial(n,p[,size])
	Draw samples from a negative_binomial distribution.

	noncentral_chisquare(df,nonc[,size])
	Draw samples from a noncentral chi-square distribution.

	noncentral_f(dfnum,dfden,nonc[,size])
	Draw samples from the noncentral F distribution.

	normal([loc,scale,size])
	Draw random samples from a normal (Gaussian) distribution.

	pareto(a[,size])
	Draw samples from a Pareto II or Lomax distribution with specified shape.

	poisson([lam,size])
	Draw samples from a Poisson distribution.

	power(a[,size])
	Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

	rayleigh([scale,size])
	Draw samples from a Rayleigh distribution.

	standard_cauchy([size])
	Standard Cauchy distribution with mode = 0.

	standard_exponential([size])
	Draw samples from the standard exponential distribution.

	standard_gamma(shape[,size])
	Draw samples from a Standard Gamma distribution.

	standard_normal([size])
	Returns samples from a Standard Normal distribution (mean=0, stdev=1).

	standard_t(df[,size])
	Standard Student’s t distribution with df degrees of freedom.

	triangular(left,mode,right[,size])
	Draw samples from the triangular distribution.

	uniform([low,high,size])
	Draw samples from a uniform distribution.

	vonmises(mu,kappa[,size])
	Draw samples from a von Mises distribution.

	wald(mean,scale[,size])
	Draw samples from a Wald, or Inverse Gaussian, distribution.

	weibull(a[,size])
	Weibull distribution.

	zipf(a[,size])
	Draw samples from a Zipf distribution.

Random generator

	RandomState
	Container for the Mersenne Twister pseudo-random number generator.

	seed([seed])
	Seed the generator.

	get_state()
	Return a tuple representing the internal state of the generator.

	set_state(state)
	Set the internal state of the generator from a tuple.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.rand

	
numpy.random.rand(d0, d1, ..., dn)

	Random values in a given shape.

Create an array of the given shape and propagate it with
random samples from a uniform distribution
over [0, 1).

	Parameters:	d0, d1, ..., dn : int, optional

The dimensions of the returned array, should all be positive.
If no argument is given a single Python float is returned.

	Returns:	out : ndarray, shape (d0, d1, ..., dn)

Random values.

See also

random

Notes

This is a convenience function. If you want an interface that
takes a shape-tuple as the first argument, refer to
np.random.random_sample .

Examples

>>> np.random.rand(3,2)
array([[0.14022471, 0.96360618], #random
 [0.37601032, 0.25528411], #random
 [0.49313049, 0.94909878]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.randn

	
numpy.random.randn(d0, d1, ..., dn)

	Return a sample (or samples) from the “standard normal” distribution.

If positive, int_like or int-convertible arguments are provided,
randn generates an array of shape (d0, d1, ..., dn), filled
with random floats sampled from a univariate “normal” (Gaussian)
distribution of mean 0 and variance 1 (if any of the [image: d_i] are
floats, they are first converted to integers by truncation). A single
float randomly sampled from the distribution is returned if no
argument is provided.

This is a convenience function. If you want an interface that takes a
tuple as the first argument, use numpy.random.standard_normal instead.

	Parameters:	d0, d1, ..., dn : int, optional

The dimensions of the returned array, should be all positive.
If no argument is given a single Python float is returned.

	Returns:	Z : ndarray or float

A (d0, d1, ..., dn)-shaped array of floating-point samples from
the standard normal distribution, or a single such float if
no parameters were supplied.

See also

	random.standard_normal

	Similar, but takes a tuple as its argument.

Notes

For random samples from [image: N(\mu, \sigma^2)], use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random
 [0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.randint

	
numpy.random.randint(low, high=None, size=None)

	Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution in the
“half-open” interval [low, high). If high is None (the default),
then results are from [0, low).

	Parameters:	low : int

Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is the highest such
integer).

high : int, optional

If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : int or ndarray of ints

size-shaped array of random integers from the appropriate
distribution, or a single such random int if size not provided.

See also

	random.random_integers

	similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted. In particular, this other one is the one to use to generate uniformly distributed discrete non-integers.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],
 [3, 2, 2, 0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.random_integers

	
numpy.random.random_integers(low, high=None, size=None)

	Return random integers between low and high, inclusive.

Return random integers from the “discrete uniform” distribution in the
closed interval [low, high]. If high is None (the default),
then results are from [1, low].

	Parameters:	low : int

Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is the highest such
integer).

high : int, optional

If provided, the largest (signed) integer to be drawn from the
distribution (see above for behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : int or ndarray of ints

size-shaped array of random integers from the appropriate
distribution, or a single such random int if size not provided.

See also

	random.randint [http://docs.python.org/dev/library/random.html#random.randint]

	Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value if high is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b,
use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type 'int'>
>>> np.random.random_integers(5, size=(3.,2.))
array([[5, 4],
 [3, 3],
 [4, 5]])

Choose five random numbers from the set of five evenly-spaced
numbers between 0 and 2.5, inclusive (i.e., from the set
[image: {0, 5/8, 10/8, 15/8, 20/8}]):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([0.625, 1.25 , 0.625, 0.625, 2.5])

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-random_integers-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.random_sample

	
numpy.random.random_sample(size=None)

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample [image: Unif[a, b), b > a] multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which
case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.random

	
numpy.random.random(size=None)

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample [image: Unif[a, b), b > a] multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which
case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.ranf

	
numpy.random.ranf(size=None)

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample [image: Unif[a, b), b > a] multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which
case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.sample

	
numpy.random.sample(size=None)

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample [image: Unif[a, b), b > a] multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which
case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.choice

	
numpy.random.choice(a, size=None, replace=True, p=None)

	Generates a random sample from a given 1-D array

New in version 1.7.0.

	Parameters:	a : 1-D array-like or int

If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if a was np.arange(n)

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

replace : boolean, optional

Whether the sample is with or without replacement

p : 1-D array-like, optional

The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.

	Returns:	samples : 1-D ndarray, shape (size,)

The generated random samples

	Raises:	ValueError

If a is an int and less than zero, if a or p are not 1-dimensional,
if a is an array-like of size 0, if p is not a vector of
probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population
size

See also

randint, shuffle, permutation

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without
replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like
instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],
 dtype='|S11')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.bytes

	
numpy.random.bytes(length)

	Return random bytes.

	Parameters:	length : int

Number of random bytes.

	Returns:	out : str

String of length length.

Examples

>>> np.random.bytes(10)
' eh\x85\x022SZ\xbf\xa4' #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.shuffle

	
numpy.random.shuffle(x)

	Modify a sequence in-place by shuffling its contents.

	Parameters:	x : array_like

The array or list to be shuffled.

	Returns:	None

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]

This function only shuffles the array along the first index of a
multi-dimensional array:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],
 [6, 7, 8],
 [0, 1, 2]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.permutation

	
numpy.random.permutation(x)

	Randomly permute a sequence, or return a permuted range.

If x is a multi-dimensional array, it is only shuffled along its
first index.

	Parameters:	x : int or array_like

If x is an integer, randomly permute np.arange(x).
If x is an array, make a copy and shuffle the elements
randomly.

	Returns:	out : ndarray

Permuted sequence or array range.

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12])

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],
 [0, 1, 2],
 [3, 4, 5]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.beta

	
numpy.random.beta(a, b, size=None)

	The Beta distribution over [0, 1].

The Beta distribution is a special case of the Dirichlet distribution,
and is related to the Gamma distribution. It has the probability
distribution function

[image: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1},]

where the normalisation, B, is the beta function,

[image: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt.]

It is often seen in Bayesian inference and order statistics.

	Parameters:	a : float

Alpha, non-negative.

b : float

Beta, non-negative.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

Array of the given shape, containing values drawn from a
Beta distribution.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.binomial

	
numpy.random.binomial(n, p, size=None)

	Draw samples from a binomial distribution.

Samples are drawn from a Binomial distribution with specified
parameters, n trials and p probability of success where
n an integer >= 0 and p is in the interval [0,1]. (n may be
input as a float, but it is truncated to an integer in use)

	Parameters:	n : float (but truncated to an integer)

parameter, >= 0.

p : float

parameter, >= 0 and <=1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

where the values are all integers in [0, n].

See also

	scipy.stats.distributions.binom

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Binomial distribution is

[image: P(N) = \binom{n}{N}p^N(1-p)^{n-N},]

where [image: n] is the number of trials, [image: p] is the probability
of success, and [image: N] is the number of successes.

When estimating the standard error of a proportion in a population by
using a random sample, the normal distribution works well unless the
product p*n <=5, where p = population proportion estimate, and n =
number of samples, in which case the binomial distribution is used
instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
so the binomial distribution should be used in this case.

References

	[R184]	Dalgaard, Peter, “Introductory Statistics with R”,
Springer-Verlag, 2002.

	[R185]	Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill,
Fifth Edition, 2002.

	[R186]	Lentner, Marvin, “Elementary Applied Statistics”, Bogden
and Quigley, 1972.

	[R187]	Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/BinomialDistribution.html

	[R188]	Wikipedia, “Binomial-distribution”,
http://en.wikipedia.org/wiki/Binomial_distribution

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration
wells, each with an estimated probability of success of 0.1. All nine
wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that
generate zero positive results.

>>> sum(np.random.binomial(9,0.1,20000)==0)/20000.
answer = 0.38885, or 38%.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.chisquare

	
numpy.random.chisquare(df, size=None)

	Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal
distributions (mean 0, variance 1), are squared and summed, the
resulting distribution is chi-square (see Notes). This distribution
is often used in hypothesis testing.

	Parameters:	df : int

Number of degrees of freedom.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	output : ndarray

Samples drawn from the distribution, packed in a size-shaped
array.

	Raises:	ValueError

When df <= 0 or when an inappropriate size (e.g. size=-1)
is given.

Notes

The variable obtained by summing the squares of df independent,
standard normally distributed random variables:

[image: Q = \sum_{i=0}^{\mathtt{df}} X^2_i]

is chi-square distributed, denoted

[image: Q \sim \chi^2_k.]

The probability density function of the chi-squared distribution is

[image: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2},]

where [image: \Gamma] is the gamma function,

[image: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.]

References

NIST/SEMATECH e-Handbook of Statistical Methods [http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm]

Examples

>>> np.random.chisquare(2,4)
array([1.89920014, 9.00867716, 3.13710533, 5.62318272])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.dirichlet

	
numpy.random.dirichlet(alpha, size=None)

	Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A
Dirichlet-distributed random variable can be seen as a multivariate
generalization of a Beta distribution. Dirichlet pdf is the conjugate
prior of a multinomial in Bayesian inference.

	Parameters:	alpha : array

Parameter of the distribution (k dimension for sample of
dimension k).

size : array

Number of samples to draw.

	Returns:	samples : ndarray,

The drawn samples, of shape (alpha.ndim, size).

Notes

[image: X \approx \prod_{i=1}^{k}{x^{\alpha_i-1}_i}]

Uses the following property for computation: for each dimension,
draw a random sample y_i from a standard gamma generator of shape
alpha_i, then
[image: X = \frac{1}{\sum_{i=1}^k{y_i}} (y_1, \ldots, y_n)] is
Dirichlet distributed.

References

	[R189]	David McKay, “Information Theory, Inference and Learning
Algorithms,” chapter 23,
http://www.inference.phy.cam.ac.uk/mackay/

	[R190]	Wikipedia, “Dirichlet distribution”,
http://en.wikipedia.org/wiki/Dirichlet_distribution

Examples

Taking an example cited in Wikipedia, this distribution can be used if
one wanted to cut strings (each of initial length 1.0) into K pieces
with different lengths, where each piece had, on average, a designated
average length, but allowing some variation in the relative sizes of the
pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.exponential

	
numpy.random.exponential(scale=1.0, size=None)

	Exponential distribution.

Its probability density function is

[image: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),]

for x > 0 and 0 elsewhere. [image: \beta] is the scale parameter,
which is the inverse of the rate parameter [image: \lambda = 1/\beta].
The rate parameter is an alternative, widely used parameterization
of the exponential distribution [R193].

The exponential distribution is a continuous analogue of the
geometric distribution. It describes many common situations, such as
the size of raindrops measured over many rainstorms [R191], or the time
between page requests to Wikipedia [R192].

	Parameters:	scale : float

The scale parameter, [image: \beta = 1/\lambda].

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

References

	[R191]	(1, 2) Peyton Z. Peebles Jr., “Probability, Random Variables and
Random Signal Principles”, 4th ed, 2001, p. 57.

	[R192]	(1, 2) “Poisson Process”, Wikipedia,
http://en.wikipedia.org/wiki/Poisson_process

	[R193]	(1, 2) “Exponential Distribution, Wikipedia,
http://en.wikipedia.org/wiki/Exponential_distribution

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.f

	
numpy.random.f(dfnum, dfden, size=None)

	Draw samples from a F distribution.

Samples are drawn from an F distribution with specified parameters,
dfnum (degrees of freedom in numerator) and dfden (degrees of freedom
in denominator), where both parameters should be greater than zero.

The random variate of the F distribution (also known as the
Fisher distribution) is a continuous probability distribution
that arises in ANOVA tests, and is the ratio of two chi-square
variates.

	Parameters:	dfnum : float

Degrees of freedom in numerator. Should be greater than zero.

dfden : float

Degrees of freedom in denominator. Should be greater than zero.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

Samples from the Fisher distribution.

See also

	scipy.stats.distributions.f

	probability density function, distribution or cumulative density function, etc.

Notes

The F statistic is used to compare in-group variances to between-group
variances. Calculating the distribution depends on the sampling, and
so it is a function of the respective degrees of freedom in the
problem. The variable dfnum is the number of samples minus one, the
between-groups degrees of freedom, while dfden is the within-groups
degrees of freedom, the sum of the number of samples in each group
minus the number of groups.

References

	[R194]	Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill,
Fifth Edition, 2002.

	[R195]	Wikipedia, “F-distribution”,
http://en.wikipedia.org/wiki/F-distribution

Examples

An example from Glantz[1], pp 47-40.
Two groups, children of diabetics (25 people) and children from people
without diabetes (25 controls). Fasting blood glucose was measured,
case group had a mean value of 86.1, controls had a mean value of
82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
data consistent with the null hypothesis that the parents diabetic
status does not affect their children’s blood glucose levels?
Calculating the F statistic from the data gives a value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> sort(s)[-10]
7.61988120985

So there is about a 1% chance that the F statistic will exceed 7.62,
the measured value is 36, so the null hypothesis is rejected at the 1%
level.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.gamma

	
numpy.random.gamma(shape, scale=1.0, size=None)

	Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated “k”) and scale (sometimes designated
“theta”), where both parameters are > 0.

	Parameters:	shape : scalar > 0

The shape of the gamma distribution.

scale : scalar > 0, optional

The scale of the gamma distribution. Default is equal to 1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray, float

Returns one sample unless size parameter is specified.

See also

	scipy.stats.distributions.gamma

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

[image: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},]

where [image: k] is the shape and [image: \theta] the scale,
and [image: \Gamma] is the Gamma function.

The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.

References

	[R196]	Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

	[R197]	Wikipedia, “Gamma-distribution”,
http://en.wikipedia.org/wiki/Gamma-distribution

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean and dispersion
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-gamma-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.geometric

	
numpy.random.geometric(p, size=None)

	Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes:
success or failure (an example of such an experiment is flipping
a coin). The geometric distribution models the number of trials
that must be run in order to achieve success. It is therefore
supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is

[image: f(k) = (1 - p)^{k - 1} p]

where p is the probability of success of an individual trial.

	Parameters:	p : float

The probability of success of an individual trial.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

Samples from the geometric distribution, shaped according to
size.

Examples

Draw ten thousand values from the geometric distribution,
with the probability of an individual success equal to 0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.gumbel

	
numpy.random.gumbel(loc=0.0, scale=1.0, size=None)

	Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale.
For more information on the Gumbel distribution, see Notes and References
below.

	Parameters:	loc : float

The location of the mode of the distribution.

scale : float

The scale parameter of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

The samples

See also

scipy.stats.gumbel_l, scipy.stats.gumbel_r

	scipy.stats.genextreme

	probability density function, distribution, or cumulative density function, etc. for each of the above

weibull

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value
Type I) distribution is one of a class of Generalized Extreme Value (GEV)
distributions used in modeling extreme value problems. The Gumbel is a
special case of the Extreme Value Type I distribution for maximums from
distributions with “exponential-like” tails.

The probability density for the Gumbel distribution is

[image: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}},]

where [image: \mu] is the mode, a location parameter, and [image: \beta] is
the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used
very early in the hydrology literature, for modeling the occurrence of
flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a “fat-tailed” distribution - the probability of an event in
the tail of the distribution is larger than if one used a Gaussian, hence
the surprisingly frequent occurrence of 100-year floods. Floods were
initially modeled as a Gaussian process, which underestimated the frequency
of extreme events.

It is one of a class of extreme value distributions, the Generalized
Extreme Value (GEV) distributions, which also includes the Weibull and
Frechet.

The function has a mean of [image: \mu + 0.57721\beta] and a variance of
[image: \frac{\pi^2}{6}\beta^2].

References

Gumbel, E. J., Statistics of Extremes, New York: Columbia University
Press, 1958.

Reiss, R.-D. and Thomas, M., Statistical Analysis of Extreme Values from
Insurance, Finance, Hydrology and Other Fields, Basel: Birkhauser Verlag,
2001.

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-gumbel-1_00_00.png]

Show how an extreme value distribution can arise from a Gaussian process
and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, normed=True)
>>> beta = np.std(maxima)*np.pi/np.sqrt(6)
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

(png, pdf)

[image: ../../_images/numpy-random-gumbel-1_01_00.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.hypergeometric

	
numpy.random.hypergeometric(ngood, nbad, nsample, size=None)

	Draw samples from a Hypergeometric distribution.

Samples are drawn from a Hypergeometric distribution with specified
parameters, ngood (ways to make a good selection), nbad (ways to make
a bad selection), and nsample = number of items sampled, which is less
than or equal to the sum ngood + nbad.

	Parameters:	ngood : int or array_like

Number of ways to make a good selection. Must be nonnegative.

nbad : int or array_like

Number of ways to make a bad selection. Must be nonnegative.

nsample : int or array_like

Number of items sampled. Must be at least 1 and at most
ngood + nbad.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

The values are all integers in [0, n].

See also

	scipy.stats.distributions.hypergeom

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Hypergeometric distribution is

[image: P(x) = \frac{\binom{m}{n}\binom{N-m}{n-x}}{\binom{N}{n}},]

where [image: 0 \le x \le m] and [image: n+m-N \le x \le n]

for P(x) the probability of x successes, n = ngood, m = nbad, and
N = number of samples.

Consider an urn with black and white marbles in it, ngood of them
black and nbad are white. If you draw nsample balls without
replacement, then the Hypergeometric distribution describes the
distribution of black balls in the drawn sample.

Note that this distribution is very similar to the Binomial
distribution, except that in this case, samples are drawn without
replacement, whereas in the Binomial case samples are drawn with
replacement (or the sample space is infinite). As the sample space
becomes large, this distribution approaches the Binomial.

References

	[R198]	Lentner, Marvin, “Elementary Applied Statistics”, Bogden
and Quigley, 1972.

	[R199]	Weisstein, Eric W. “Hypergeometric Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HypergeometricDistribution.html

	[R200]	Wikipedia, “Hypergeometric-distribution”,
http://en.wikipedia.org/wiki/Hypergeometric-distribution

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> hist(s)
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles.
If you pull 15 marbles at random, how likely is it that
12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.laplace

	
numpy.random.laplace(loc=0.0, scale=1.0, size=None)

	Draw samples from the Laplace or double exponential distribution with
specified location (or mean) and scale (decay).

The Laplace distribution is similar to the Gaussian/normal distribution,
but is sharper at the peak and has fatter tails. It represents the
difference between two independent, identically distributed exponential
random variables.

	Parameters:	loc : float

The position, [image: \mu], of the distribution peak.

scale : float

[image: \lambda], the exponential decay.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

Notes

It has the probability density function

[image: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right).]

The first law of Laplace, from 1774, states that the frequency of an error
can be expressed as an exponential function of the absolute magnitude of
the error, which leads to the Laplace distribution. For many problems in
Economics and Health sciences, this distribution seems to model the data
better than the standard Gaussian distribution

References

	[R201]	Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, 9th
printing. New York: Dover, 1972.

	[R202]	The Laplace distribution and generalizations
By Samuel Kotz, Tomasz J. Kozubowski, Krzysztof Podgorski,
Birkhauser, 2001.

	[R203]	Weisstein, Eric W. “Laplace Distribution.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplaceDistribution.html

	[R204]	Wikipedia, “Laplace distribution”,
http://en.wikipedia.org/wiki/Laplace_distribution

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

(Source code, png, pdf)

[image: ../../_images/numpy-random-laplace-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.logistic

	
numpy.random.logistic(loc=0.0, scale=1.0, size=None)

	Draw samples from a Logistic distribution.

Samples are drawn from a Logistic distribution with specified
parameters, loc (location or mean, also median), and scale (>0).

	Parameters:	loc : float

scale : float > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

where the values are all integers in [0, n].

See also

	scipy.stats.distributions.logistic

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Logistic distribution is

[image: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},]

where [image: \mu] = location and [image: s] = scale.

The Logistic distribution is used in Extreme Value problems where it
can act as a mixture of Gumbel distributions, in Epidemiology, and by
the World Chess Federation (FIDE) where it is used in the Elo ranking
system, assuming the performance of each player is a logistically
distributed random variable.

References

	[R205]	Reiss, R.-D. and Thomas M. (2001), Statistical Analysis of Extreme
Values, from Insurance, Finance, Hydrology and Other Fields,
Birkhauser Verlag, Basel, pp 132-133.

	[R206]	Weisstein, Eric W. “Logistic Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LogisticDistribution.html

	[R207]	Wikipedia, “Logistic-distribution”,
http://en.wikipedia.org/wiki/Logistic-distribution

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> count, bins, ignored = plt.hist(s, bins=50)

plot against distribution

>>> def logist(x, loc, scale):
... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\
... logist(bins, loc, scale).max())
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.lognormal

	
numpy.random.lognormal(mean=0.0, sigma=1.0, size=None)

	Return samples drawn from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean,
standard deviation, and array shape. Note that the mean and standard
deviation are not the values for the distribution itself, but of the
underlying normal distribution it is derived from.

	Parameters:	mean : float

Mean value of the underlying normal distribution

sigma : float, > 0.

Standard deviation of the underlying normal distribution

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or float

The desired samples. An array of the same shape as size if given,
if size is None a float is returned.

See also

	scipy.stats.lognorm

	probability density function, distribution, cumulative density function, etc.

Notes

A variable x has a log-normal distribution if log(x) is normally
distributed. The probability density function for the log-normal
distribution is:

[image: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}]

where [image: \mu] is the mean and [image: \sigma] is the standard
deviation of the normally distributed logarithm of the variable.
A log-normal distribution results if a random variable is the product
of a large number of independent, identically-distributed variables in
the same way that a normal distribution results if the variable is the
sum of a large number of independent, identically-distributed
variables.

References

Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions
across the Sciences: Keys and Clues,” BioScience, Vol. 51, No. 5,
May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

Reiss, R.D. and Thomas, M., Statistical Analysis of Extreme Values,
Basel: Birkhauser Verlag, 2001, pp. 31-32.

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

Demonstrate that taking the products of random samples from a uniform
distribution can be fit well by a log-normal probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.random(100)
... b.append(np.product(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, normed=True, align='center')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

(Source code)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.logseries

	
numpy.random.logseries(p, size=None)

	Draw samples from a Logarithmic Series distribution.

Samples are drawn from a Log Series distribution with specified
parameter, p (probability, 0 < p < 1).

	Parameters:	loc : float

scale : float > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

where the values are all integers in [0, n].

See also

	scipy.stats.distributions.logser

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Log Series distribution is

[image: P(k) = \frac{-p^k}{k \ln(1-p)},]

where p = probability.

The Log Series distribution is frequently used to represent species
richness and occurrence, first proposed by Fisher, Corbet, and
Williams in 1943 [2]. It may also be used to model the numbers of
occupants seen in cars [3].

References

	[R208]	Buzas, Martin A.; Culver, Stephen J., Understanding regional
species diversity through the log series distribution of
occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
Volume 5, Number 5, September 1999 , pp. 187-195(9).

	[R209]	Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
relation between the number of species and the number of
individuals in a random sample of an animal population.
Journal of Animal Ecology, 12:42-58.

	[R210]	D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
Data Sets, CRC Press, 1994.

	[R211]	Wikipedia, “Logarithmic-distribution”,
http://en.wikipedia.org/wiki/Logarithmic-distribution

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> count, bins, ignored = plt.hist(s)

plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/
 logseries(bins, a).max(), 'r')
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.multinomial

	
numpy.random.multinomial(n, pvals, size=None)

	Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalisation of the
binomial distribution. Take an experiment with one of p
possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the
distribution represents n such experiments. Its values,
X_i = [X_0, X_1, ..., X_p], represent the number of times the outcome
was i.

	Parameters:	n : int

Number of experiments.

pvals : sequence of floats, length p

Probabilities of each of the p different outcomes. These
should sum to 1 (however, the last element is always assumed to
account for the remaining probability, as long as
sum(pvals[:-1]) <= 1).

size : tuple of ints

Given a size of (M, N, K), then M*N*K samples are drawn,
and the output shape becomes (M, N, K, p), since each sample
has shape (p,).

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]])

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],
 [2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second,
we threw 2 times 1, 4 times 2, etc.

A loaded dice is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5)
array([13, 16, 13, 16, 42])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.multivariate_normal

	
numpy.random.multivariate_normal(mean, cov[, size])

	Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or “center”) and variance (standard deviation, or “width,”
squared) of the one-dimensional normal distribution.

	Parameters:	mean : 1-D array_like, of length N

Mean of the N-dimensional distribution.

cov : 2-D array_like, of shape (N, N)

Covariance matrix of the distribution. Must be symmetric and
positive-semidefinite for “physically meaningful” results.

size : int or tuple of ints, optional

Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
If no shape is specified, a single (N-D) sample is returned.

	Returns:	out : ndarray

The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

Notes

The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.

Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, [image: X = [x_1, x_2, ... x_N]]. The covariance matrix
element [image: C_{ij}] is the covariance of [image: x_i] and [image: x_j].
The element [image: C_{ii}] is the variance of [image: x_i] (i.e. its
“spread”).

Instead of specifying the full covariance matrix, popular
approximations include:

	Spherical covariance (cov is a multiple of the identity matrix)

	Diagonal covariance (cov has non-negative elements, and only on
the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

>>> import matplotlib.pyplot as plt
>>> x,y = np.random.multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

Note that the covariance matrix must be non-negative definite.

References

Papoulis, A., Probability, Random Variables, and Stochastic Processes,
3rd ed., New York: McGraw-Hill, 1991.

Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification,
2nd ed., New York: Wiley, 2001.

Examples

>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = np.random.multivariate_normal(mean,cov,(3,3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> print list((x[0,0,:] - mean) < 0.6)
[True, True]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.negative_binomial

	
numpy.random.negative_binomial(n, p, size=None)

	Draw samples from a negative_binomial distribution.

Samples are drawn from a negative_Binomial distribution with specified
parameters, n trials and p probability of success where n is an
integer > 0 and p is in the interval [0, 1].

	Parameters:	n : int

Parameter, > 0.

p : float

Parameter, >= 0 and <=1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : int or ndarray of ints

Drawn samples.

Notes

The probability density for the Negative Binomial distribution is

[image: P(N;n,p) = \binom{N+n-1}{n-1}p^{n}(1-p)^{N},]

where [image: n-1] is the number of successes, [image: p] is the probability
of success, and [image: N+n-1] is the number of trials.

The negative binomial distribution gives the probability of n-1 successes
and N failures in N+n-1 trials, and success on the (N+n)th trial.

If one throws a die repeatedly until the third time a “1” appears, then the
probability distribution of the number of non-“1”s that appear before the
third “1” is a negative binomial distribution.

References

	[R212]	Weisstein, Eric W. “Negative Binomial Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NegativeBinomialDistribution.html

	[R213]	Wikipedia, “Negative binomial distribution”,
http://en.wikipedia.org/wiki/Negative_binomial_distribution

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each
with an estimated probability of success of 0.1. What is the probability
of having one success for each successive well, that is what is the
probability of a single success after drilling 5 wells, after 6 wells,
etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print i, "wells drilled, probability of one success =", probability

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.noncentral_chisquare

	
numpy.random.noncentral_chisquare(df, nonc, size=None)

	Draw samples from a noncentral chi-square distribution.

The noncentral [image: \chi^2] distribution is a generalisation of
the [image: \chi^2] distribution.

	Parameters:	df : int

Degrees of freedom, should be >= 1.

nonc : float

Non-centrality, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

Notes

The probability density function for the noncentral Chi-square distribution
is

[image: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}P_{Y_{df+2i}}(x),]

where [image: Y_{q}] is the Chi-square with q degrees of freedom.

In Delhi (2007), it is noted that the noncentral chi-square is useful in
bombing and coverage problems, the probability of killing the point target
given by the noncentral chi-squared distribution.

References

	[R214]	Delhi, M.S. Holla, “On a noncentral chi-square distribution in the
analysis of weapon systems effectiveness”, Metrika, Volume 15,
Number 1 / December, 1970.

	[R215]	Wikipedia, “Noncentral chi-square distribution”
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-noncentral_chisquare-1_00_00.png]

Draw values from a noncentral chisquare with very small noncentrality,
and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

(png, pdf)

[image: ../../_images/numpy-random-noncentral_chisquare-1_01_00.png]

Demonstrate how large values of non-centrality lead to a more symmetric
distribution.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()

(png, pdf)

[image: ../../_images/numpy-random-noncentral_chisquare-1_02_00.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.noncentral_f

	
numpy.random.noncentral_f(dfnum, dfden, nonc, size=None)

	Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters,
dfnum (degrees of freedom in numerator) and dfden (degrees of
freedom in denominator), where both parameters > 1.
nonc is the non-centrality parameter.

	Parameters:	dfnum : int

Parameter, should be > 1.

dfden : int

Parameter, should be > 1.

nonc : float

Parameter, should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : scalar or ndarray

Drawn samples.

Notes

When calculating the power of an experiment (power = probability of
rejecting the null hypothesis when a specific alternative is true) the
non-central F statistic becomes important. When the null hypothesis is
true, the F statistic follows a central F distribution. When the null
hypothesis is not true, then it follows a non-central F statistic.

References

Weisstein, Eric W. “Noncentral F-Distribution.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html

Wikipedia, “Noncentral F distribution”,
http://en.wikipedia.org/wiki/Noncentral_F-distribution

Examples

In a study, testing for a specific alternative to the null hypothesis
requires use of the Noncentral F distribution. We need to calculate the
area in the tail of the distribution that exceeds the value of the F
distribution for the null hypothesis. We’ll plot the two probability
distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, normed=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, normed=True)
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.normal

	
numpy.random.normal(loc=0.0, scale=1.0, size=None)

	Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first
derived by De Moivre and 200 years later by both Gauss and Laplace
independently [R217], is often called the bell curve because of
its characteristic shape (see the example below).

The normal distributions occurs often in nature. For example, it
describes the commonly occurring distribution of samples influenced
by a large number of tiny, random disturbances, each with its own
unique distribution [R217].

	Parameters:	loc : float

Mean (“centre”) of the distribution.

scale : float

Standard deviation (spread or “width”) of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

See also

	scipy.stats.distributions.norm

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

[image: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },]

where [image: \mu] is the mean and [image: \sigma] the standard deviation.
The square of the standard deviation, [image: \sigma^2], is called the
variance.

The function has its peak at the mean, and its “spread” increases with
the standard deviation (the function reaches 0.607 times its maximum at
[image: x + \sigma] and [image: x - \sigma] [R217]). This implies that
numpy.random.normal is more likely to return samples lying close to the
mean, rather than those far away.

References

	[R216]	Wikipedia, “Normal distribution”,
http://en.wikipedia.org/wiki/Normal_distribution

	[R217]	(1, 2, 3, 4) P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random
Variables and Random Signal Principles”, 4th ed., 2001,
pp. 51, 51, 125.

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01
True

>>> abs(sigma - np.std(s, ddof=1)) < 0.01
True

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-normal-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.pareto

	
numpy.random.pareto(a, size=None)

	Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The
classical Pareto distribution can be obtained from the Lomax distribution
by adding the location parameter m, see below. The smallest value of the
Lomax distribution is zero while for the classical Pareto distribution it
is m, where the standard Pareto distribution has location m=1.
Lomax can also be considered as a simplified version of the Generalized
Pareto distribution (available in SciPy), with the scale set to one and
the location set to zero.

The Pareto distribution must be greater than zero, and is unbounded above.
It is also known as the “80-20 rule”. In this distribution, 80 percent of
the weights are in the lowest 20 percent of the range, while the other 20
percent fill the remaining 80 percent of the range.

	Parameters:	shape : float, > 0.

Shape of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

See also

	scipy.stats.distributions.lomax.pdf

	probability density function, distribution or cumulative density function, etc.

	scipy.stats.distributions.genpareto.pdf

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Pareto distribution is

[image: p(x) = \frac{am^a}{x^{a+1}}]

where [image: a] is the shape and [image: m] the location

The Pareto distribution, named after the Italian economist Vilfredo Pareto,
is a power law probability distribution useful in many real world problems.
Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the
distribution of wealth in an economy. It has also found use in insurance,
web page access statistics, oil field sizes, and many other problems,
including the download frequency for projects in Sourceforge [1]. It is
one of the so-called “fat-tailed” distributions.

References

	[R218]	Francis Hunt and Paul Johnson, On the Pareto Distribution of
Sourceforge projects.

	[R219]	Pareto, V. (1896). Course of Political Economy. Lausanne.

	[R220]	Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
Values, Birkhauser Verlag, Basel, pp 23-30.

	[R221]	Wikipedia, “Pareto distribution”,
http://en.wikipedia.org/wiki/Pareto_distribution

Examples

Draw samples from the distribution:

>>> a, m = 3., 1. # shape and mode
>>> s = np.random.pareto(a, 1000) + m

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, normed=True, align='center')
>>> fit = a*m**a/bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit),linewidth=2, color='r')
>>> plt.show()

(Source code)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.poisson

	
numpy.random.poisson(lam=1.0, size=None)

	Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the Binomial
distribution for large N.

	Parameters:	lam : float or sequence of float

Expectation of interval, should be >= 0. A sequence of expectation
intervals must be broadcastable over the requested size.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

Notes

The Poisson distribution

[image: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}]

For events with an expected separation [image: \lambda] the Poisson
distribution [image: f(k; \lambda)] describes the probability of
[image: k] events occurring within the observed interval [image: \lambda].

Because the output is limited to the range of the C long type, a
ValueError is raised when lam is within 10 sigma of the maximum
representable value.

References

	[R222]	Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html

	[R223]	Wikipedia, “Poisson distribution”,
http://en.wikipedia.org/wiki/Poisson_distribution

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-poisson-1_00_00.png]

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.power

	
numpy.random.power(a, size=None)

	Draws samples in [0, 1] from a power distribution with positive
exponent a - 1.

Also known as the power function distribution.

	Parameters:	a : float

parameter, > 0

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

The returned samples lie in [0, 1].

	Raises:	ValueError

If a<1.

Notes

The probability density function is

[image: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.]

The power function distribution is just the inverse of the Pareto
distribution. It may also be seen as a special case of the Beta
distribution.

It is used, for example, in modeling the over-reporting of insurance
claims.

References

	[R224]	Christian Kleiber, Samuel Kotz, “Statistical size distributions
in economics and actuarial sciences”, Wiley, 2003.

	[R225]	Heckert, N. A. and Filliben, James J. (2003). NIST Handbook 148:
Dataplot Reference Manual, Volume 2: Let Subcommands and Library
Functions”, National Institute of Standards and Technology Handbook
Series, June 2003.
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-power-1_00_00.png]

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

[image: ../../_images/numpy-random-power-1_01_00.png]
(png, pdf)

[image: ../../_images/numpy-random-power-1_01_01.png]
(png, pdf)

[image: ../../_images/numpy-random-power-1_01_02.png]
(png, pdf)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.rayleigh

	
numpy.random.rayleigh(scale=1.0, size=None)

	Draw samples from a Rayleigh distribution.

The [image: \chi] and Weibull distributions are generalizations of the
Rayleigh.

	Parameters:	scale : scalar

Scale, also equals the mode. Should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

Notes

The probability density function for the Rayleigh distribution is

[image: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}]

The Rayleigh distribution arises if the wind speed and wind direction are
both gaussian variables, then the vector wind velocity forms a Rayleigh
distribution. The Rayleigh distribution is used to model the expected
output from wind turbines.

References

	[R226]	Brighton Webs Ltd., Rayleigh Distribution,
http://www.brighton-webs.co.uk/distributions/rayleigh.asp

	[R227]	Wikipedia, “Rayleigh distribution”
http://en.wikipedia.org/wiki/Rayleigh_distribution

Examples

Draw values from the distribution and plot the histogram

>>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave
height is 1 meter, what fraction of waves are likely to be larger than 3
meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.standard_cauchy

	
numpy.random.standard_cauchy(size=None)

	Standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

The drawn samples.

Notes

The probability density function for the full Cauchy distribution is

[image: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[1+ (\frac{x-x_0}{\gamma})^2 \bigr] }]

and the Standard Cauchy distribution just sets [image: x_0=0] and
[image: \gamma=1]

The Cauchy distribution arises in the solution to the driven harmonic
oscillator problem, and also describes spectral line broadening. It
also describes the distribution of values at which a line tilted at
a random angle will cut the x axis.

When studying hypothesis tests that assume normality, seeing how the
tests perform on data from a Cauchy distribution is a good indicator of
their sensitivity to a heavy-tailed distribution, since the Cauchy looks
very much like a Gaussian distribution, but with heavier tails.

References

	[R229]	NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy
Distribution”,
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm

	[R230]	Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/CauchyDistribution.html

	[R231]	Wikipedia, “Cauchy distribution”
http://en.wikipedia.org/wiki/Cauchy_distribution

Examples

Draw samples and plot the distribution:

>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.standard_exponential

	
numpy.random.standard_exponential(size=None)

	Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution
with a scale parameter of 1.

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray

Drawn samples.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.standard_gamma

	
numpy.random.standard_gamma(shape, size=None)

	Draw samples from a Standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated “k”) and scale=1.

	Parameters:	shape : float

Parameter, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

The drawn samples.

See also

	scipy.stats.distributions.gamma

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

[image: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},]

where [image: k] is the shape and [image: \theta] the scale,
and [image: \Gamma] is the Gamma function.

The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.

References

	[R232]	Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

	[R233]	Wikipedia, “Gamma-distribution”,
http://en.wikipedia.org/wiki/Gamma-distribution

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-standard_gamma-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.standard_normal

	
numpy.random.standard_normal(size=None)

	Returns samples from a Standard Normal distribution (mean=0, stdev=1).

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray

Drawn samples.

Examples

>>> s = np.random.standard_normal(8000)
>>> s
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random
 -0.38672696, -0.4685006]) #random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.standard_t

	
numpy.random.standard_t(df, size=None)

	Standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution.
As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

	Parameters:	df : int

Degrees of freedom, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

Drawn samples.

Notes

The probability density function for the t distribution is

[image: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl(1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}]

The t test is based on an assumption that the data come from a Normal
distribution. The t test provides a way to test whether the sample mean
(that is the mean calculated from the data) is a good estimate of the true
mean.

The derivation of the t-distribution was forst published in 1908 by William
Gisset while working for the Guinness Brewery in Dublin. Due to proprietary
issues, he had to publish under a pseudonym, and so he used the name
Student.

References

	[R234]	(1, 2) Dalgaard, Peter, “Introductory Statistics With R”,
Springer, 2002.

	[R235]	Wikipedia, “Student’s t-distribution”
http://en.wikipedia.org/wiki/Student’s_t-distribution

Examples

From Dalgaard page 83 [R234], suppose the daily energy intake for 11
women in Kj is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended
value of 7725 kJ?

We have 10 degrees of freedom, so is the sample mean within 95% of the
recommended value?

>>> s = np.random.standard_t(10, size=100000)
>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727

Calculate the t statistic, setting the ddof parameter to the unbiased
value so the divisor in the standard deviation will be degrees of
freedom, N-1.

>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(s, bins=100, normed=True)

For a one-sided t-test, how far out in the distribution does the t
statistic appear?

>>> >>> np.sum(s<t) / float(len(s))
0.0090699999999999999 #random

So the p-value is about 0.009, which says the null hypothesis has a
probability of about 99% of being true.

(Source code)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.triangular

	
numpy.random.triangular(left, mode, right, size=None)

	Draw samples from the triangular distribution.

The triangular distribution is a continuous probability distribution with
lower limit left, peak at mode, and upper limit right. Unlike the other
distributions, these parameters directly define the shape of the pdf.

	Parameters:	left : scalar

Lower limit.

mode : scalar

The value where the peak of the distribution occurs.
The value should fulfill the condition left <= mode <= right.

right : scalar

Upper limit, should be larger than left.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

The returned samples all lie in the interval [left, right].

Notes

The probability density function for the Triangular distribution is

[image: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(m-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases}]

The triangular distribution is often used in ill-defined problems where the
underlying distribution is not known, but some knowledge of the limits and
mode exists. Often it is used in simulations.

References

	[R236]	Wikipedia, “Triangular distribution”
http://en.wikipedia.org/wiki/Triangular_distribution

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-triangular-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.uniform

	
numpy.random.uniform(low=0.0, high=1.0, size=None)

	Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval
[low, high) (includes low, but excludes high). In other words,
any value within the given interval is equally likely to be drawn
by uniform.

	Parameters:	low : float, optional

Lower boundary of the output interval. All values generated will be
greater than or equal to low. The default value is 0.

high : float

Upper boundary of the output interval. All values generated will be
less than high. The default value is 1.0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

Drawn samples, with shape size.

See also

	randint

	Discrete uniform distribution, yielding integers.

	random_integers

	Discrete uniform distribution over the closed interval [low, high].

	random_sample

	Floats uniformly distributed over [0, 1).

	random

	Alias for random_sample.

	rand

	Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2 array of floats, uniformly distributed over [0, 1).

Notes

The probability density function of the uniform distribution is

[image: p(x) = \frac{1}{b - a}]

anywhere within the interval [a, b), and zero elsewhere.

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the
probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, normed=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-uniform-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.vonmises

	
numpy.random.vonmises(mu, kappa, size=None)

	Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode
(mu) and dispersion (kappa), on the interval [-pi, pi].

The von Mises distribution (also known as the circular normal
distribution) is a continuous probability distribution on the unit
circle. It may be thought of as the circular analogue of the normal
distribution.

	Parameters:	mu : float

Mode (“center”) of the distribution.

kappa : float

Dispersion of the distribution, has to be >=0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : scalar or ndarray

The returned samples, which are in the interval [-pi, pi].

See also

	scipy.stats.distributions.vonmises

	probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the von Mises distribution is

[image: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},]

where [image: \mu] is the mode and [image: \kappa] the dispersion,
and [image: I_0(\kappa)] is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in
Austria-Hungary, in what is now the Ukraine. He fled to the United
States in 1939 and became a professor at Harvard. He worked in
probability theory, aerodynamics, fluid mechanics, and philosophy of
science.

References

Abramowitz, M. and Stegun, I. A. (ed.), Handbook of Mathematical
Functions, New York: Dover, 1965.

von Mises, R., Mathematical Theory of Probability and Statistics,
New York: Academic Press, 1964.

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> x = np.arange(-np.pi, np.pi, 2*np.pi/50.)
>>> y = -np.exp(kappa*np.cos(x-mu))/(2*np.pi*sps.jn(0,kappa))
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-vonmises-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.wald

	
numpy.random.wald(mean, scale, size=None)

	Draw samples from a Wald, or Inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a
Gaussian.

Some references claim that the Wald is an Inverse Gaussian with mean=1, but
this is by no means universal.

The Inverse Gaussian distribution was first studied in relationship to
Brownian motion. In 1956 M.C.K. Tweedie used the name Inverse Gaussian
because there is an inverse relationship between the time to cover a unit
distance and distance covered in unit time.

	Parameters:	mean : scalar

Distribution mean, should be > 0.

scale : scalar

Scale parameter, should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

Drawn sample, all greater than zero.

Notes

The probability density function for the Wald distribution is

[image: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x}]

As noted above the Inverse Gaussian distribution first arise from attempts
to model Brownian Motion. It is also a competitor to the Weibull for use in
reliability modeling and modeling stock returns and interest rate
processes.

References

	[R237]	Brighton Webs Ltd., Wald Distribution,
http://www.brighton-webs.co.uk/distributions/wald.asp

	[R238]	Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian
Distribution: Theory : Methodology, and Applications”, CRC Press,
1988.

	[R239]	Wikipedia, “Wald distribution”
http://en.wikipedia.org/wiki/Wald_distribution

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-wald-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.weibull

	
numpy.random.weibull(a, size=None)

	Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given
shape parameter a.

[image: X = (-ln(U))^{1/a}]

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter
[image: \lambda] is just [image: X = \lambda(-ln(U))^{1/a}].

	Parameters:	a : float

Shape of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

See also

scipy.stats.distributions.weibull_max, scipy.stats.distributions.weibull_min, scipy.stats.distributions.genextreme, gumbel

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest
values, SEV Type III, or Rosin-Rammler distribution) is one of a class of
Generalized Extreme Value (GEV) distributions used in modeling extreme
value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

[image: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},]

where [image: a] is the shape and [image: \lambda] the scale.

The function has its peak (the mode) at
[image: \lambda(\frac{a-1}{a})^{1/a}].

When a = 1, the Weibull distribution reduces to the exponential
distribution.

References

	[R240]	Waloddi Weibull, Professor, Royal Technical University, Stockholm,
1939 “A Statistical Theory Of The Strength Of Materials”,
Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
Generalstabens Litografiska Anstalts Forlag, Stockholm.

	[R241]	Waloddi Weibull, 1951 “A Statistical Distribution Function of Wide
Applicability”, Journal Of Applied Mechanics ASME Paper.

	[R242]	Wikipedia, “Weibull distribution”,
http://en.wikipedia.org/wiki/Weibull_distribution

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-weibull-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.zipf

	
numpy.random.zipf(a, size=None)

	Draw samples from a Zipf distribution.

Samples are drawn from a Zipf distribution with specified parameter
a > 1.

The Zipf distribution (also known as the zeta distribution) is a
continuous probability distribution that satisfies Zipf’s law: the
frequency of an item is inversely proportional to its rank in a
frequency table.

	Parameters:	a : float > 1

Distribution parameter.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : scalar or ndarray

The returned samples are greater than or equal to one.

See also

	scipy.stats.distributions.zipf

	probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the Zipf distribution is

[image: p(x) = \frac{x^{-a}}{\zeta(a)},]

where [image: \zeta] is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted
that the frequency of any word in a sample of a language is inversely
proportional to its rank in the frequency table.

References

Zipf, G. K., Selected Studies of the Principle of Relative Frequency
in Language, Cambridge, MA: Harvard Univ. Press, 1932.

Examples

Draw samples from the distribution:

>>> a = 2. # parameter
>>> s = np.random.zipf(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
Truncate s values at 50 so plot is interesting
>>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True)
>>> x = np.arange(1., 50.)
>>> y = x**(-a)/sps.zetac(a)
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-zipf-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.RandomState

	
class numpy.random.RandomState

	Container for the Mersenne Twister pseudo-random number generator.

RandomState exposes a number of methods for generating random numbers
drawn from a variety of probability distributions. In addition to the
distribution-specific arguments, each method takes a keyword argument
size that defaults to None. If size is None, then a single
value is generated and returned. If size is an integer, then a 1-D
array filled with generated values is returned. If size is a tuple,
then an array with that shape is filled and returned.

	Parameters:	seed : {None, int, array_like}, optional

Random seed initializing the pseudo-random number generator.
Can be an integer, an array (or other sequence) of integers of
any length, or None (the default).
If seed is None, then RandomState will try to read data from
/dev/urandom (or the Windows analogue) if available or seed from
the clock otherwise.

Notes

The Python stdlib module “random” also contains a Mersenne Twister
pseudo-random number generator with a number of methods that are similar
to the ones available in RandomState. RandomState, besides being
NumPy-aware, has the advantage that it provides a much larger number
of probability distributions to choose from.

Methods

	beta(a,b[,size])
	The Beta distribution over [0, 1].

	binomial(n,p[,size])
	Draw samples from a binomial distribution.

	bytes(length)
	Return random bytes.

	chisquare(df[,size])
	Draw samples from a chi-square distribution.

	choice(a[,size,replace,p])
	Generates a random sample from a given 1-D array

	dirichlet(alpha[,size])
	Draw samples from the Dirichlet distribution.

	exponential([scale,size])
	Exponential distribution.

	f(dfnum,dfden[,size])
	Draw samples from a F distribution.

	gamma(shape[,scale,size])
	Draw samples from a Gamma distribution.

	geometric(p[,size])
	Draw samples from the geometric distribution.

	get_state()
	Return a tuple representing the internal state of the generator.

	gumbel([loc,scale,size])
	Gumbel distribution.

	hypergeometric(ngood,nbad,nsample[,size])
	Draw samples from a Hypergeometric distribution.

	laplace([loc,scale,size])
	Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay).

	logistic([loc,scale,size])
	Draw samples from a Logistic distribution.

	lognormal([mean,sigma,size])
	Return samples drawn from a log-normal distribution.

	logseries(p[,size])
	Draw samples from a Logarithmic Series distribution.

	multinomial(n,pvals[,size])
	Draw samples from a multinomial distribution.

	multivariate_normal(mean,cov[,size])
	Draw random samples from a multivariate normal distribution.

	negative_binomial(n,p[,size])
	Draw samples from a negative_binomial distribution.

	noncentral_chisquare(df,nonc[,size])
	Draw samples from a noncentral chi-square distribution.

	noncentral_f(dfnum,dfden,nonc[,size])
	Draw samples from the noncentral F distribution.

	normal([loc,scale,size])
	Draw random samples from a normal (Gaussian) distribution.

	pareto(a[,size])
	Draw samples from a Pareto II or Lomax distribution with specified shape.

	permutation(x)
	Randomly permute a sequence, or return a permuted range.

	poisson([lam,size])
	Draw samples from a Poisson distribution.

	power(a[,size])
	Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

	rand(d0,d1,...,dn)
	Random values in a given shape.

	randint(low[,high,size])
	Return random integers from low (inclusive) to high (exclusive).

	randn(d0,d1,...,dn)
	Return a sample (or samples) from the “standard normal” distribution.

	random_integers(low[,high,size])
	Return random integers between low and high, inclusive.

	random_sample([size])
	Return random floats in the half-open interval [0.0, 1.0).

	rayleigh([scale,size])
	Draw samples from a Rayleigh distribution.

	seed([seed])
	Seed the generator.

	set_state(state)
	Set the internal state of the generator from a tuple.

	shuffle(x)
	Modify a sequence in-place by shuffling its contents.

	standard_cauchy([size])
	Standard Cauchy distribution with mode = 0.

	standard_exponential([size])
	Draw samples from the standard exponential distribution.

	standard_gamma(shape[,size])
	Draw samples from a Standard Gamma distribution.

	standard_normal([size])
	Returns samples from a Standard Normal distribution (mean=0, stdev=1).

	standard_t(df[,size])
	Standard Student’s t distribution with df degrees of freedom.

	tomaxint([size])
	Random integers between 0 and sys.maxint, inclusive.

	triangular(left,mode,right[,size])
	Draw samples from the triangular distribution.

	uniform([low,high,size])
	Draw samples from a uniform distribution.

	vonmises(mu,kappa[,size])
	Draw samples from a von Mises distribution.

	wald(mean,scale[,size])
	Draw samples from a Wald, or Inverse Gaussian, distribution.

	weibull(a[,size])
	Weibull distribution.

	zipf(a[,size])
	Draw samples from a Zipf distribution.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.beta

	
RandomState.beta(a, b, size=None)

	The Beta distribution over [0, 1].

The Beta distribution is a special case of the Dirichlet distribution,
and is related to the Gamma distribution. It has the probability
distribution function

[image: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1},]

where the normalisation, B, is the beta function,

[image: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt.]

It is often seen in Bayesian inference and order statistics.

	Parameters:	a : float

Alpha, non-negative.

b : float

Beta, non-negative.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

Array of the given shape, containing values drawn from a
Beta distribution.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.binomial

	
RandomState.binomial(n, p, size=None)

	Draw samples from a binomial distribution.

Samples are drawn from a Binomial distribution with specified
parameters, n trials and p probability of success where
n an integer >= 0 and p is in the interval [0,1]. (n may be
input as a float, but it is truncated to an integer in use)

	Parameters:	n : float (but truncated to an integer)

parameter, >= 0.

p : float

parameter, >= 0 and <=1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

where the values are all integers in [0, n].

See also

	scipy.stats.distributions.binom

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Binomial distribution is

[image: P(N) = \binom{n}{N}p^N(1-p)^{n-N},]

where [image: n] is the number of trials, [image: p] is the probability
of success, and [image: N] is the number of successes.

When estimating the standard error of a proportion in a population by
using a random sample, the normal distribution works well unless the
product p*n <=5, where p = population proportion estimate, and n =
number of samples, in which case the binomial distribution is used
instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
so the binomial distribution should be used in this case.

References

	[R125]	Dalgaard, Peter, “Introductory Statistics with R”,
Springer-Verlag, 2002.

	[R126]	Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill,
Fifth Edition, 2002.

	[R127]	Lentner, Marvin, “Elementary Applied Statistics”, Bogden
and Quigley, 1972.

	[R128]	Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/BinomialDistribution.html

	[R129]	Wikipedia, “Binomial-distribution”,
http://en.wikipedia.org/wiki/Binomial_distribution

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration
wells, each with an estimated probability of success of 0.1. All nine
wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that
generate zero positive results.

>>> sum(np.random.binomial(9,0.1,20000)==0)/20000.
answer = 0.38885, or 38%.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.bytes

	
RandomState.bytes(length)

	Return random bytes.

	Parameters:	length : int

Number of random bytes.

	Returns:	out : str

String of length length.

Examples

>>> np.random.bytes(10)
' eh\x85\x022SZ\xbf\xa4' #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.chisquare

	
RandomState.chisquare(df, size=None)

	Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal
distributions (mean 0, variance 1), are squared and summed, the
resulting distribution is chi-square (see Notes). This distribution
is often used in hypothesis testing.

	Parameters:	df : int

Number of degrees of freedom.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	output : ndarray

Samples drawn from the distribution, packed in a size-shaped
array.

	Raises:	ValueError

When df <= 0 or when an inappropriate size (e.g. size=-1)
is given.

Notes

The variable obtained by summing the squares of df independent,
standard normally distributed random variables:

[image: Q = \sum_{i=0}^{\mathtt{df}} X^2_i]

is chi-square distributed, denoted

[image: Q \sim \chi^2_k.]

The probability density function of the chi-squared distribution is

[image: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2},]

where [image: \Gamma] is the gamma function,

[image: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.]

References

NIST/SEMATECH e-Handbook of Statistical Methods [http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm]

Examples

>>> np.random.chisquare(2,4)
array([1.89920014, 9.00867716, 3.13710533, 5.62318272])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.choice

	
RandomState.choice(a, size=None, replace=True, p=None)

	Generates a random sample from a given 1-D array

New in version 1.7.0.

	Parameters:	a : 1-D array-like or int

If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if a was np.arange(n)

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

replace : boolean, optional

Whether the sample is with or without replacement

p : 1-D array-like, optional

The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.

	Returns:	samples : 1-D ndarray, shape (size,)

The generated random samples

	Raises:	ValueError

If a is an int and less than zero, if a or p are not 1-dimensional,
if a is an array-like of size 0, if p is not a vector of
probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population
size

See also

randint, shuffle, permutation

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without
replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like
instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],
 dtype='|S11')

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.dirichlet

	
RandomState.dirichlet(alpha, size=None)

	Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A
Dirichlet-distributed random variable can be seen as a multivariate
generalization of a Beta distribution. Dirichlet pdf is the conjugate
prior of a multinomial in Bayesian inference.

	Parameters:	alpha : array

Parameter of the distribution (k dimension for sample of
dimension k).

size : array

Number of samples to draw.

	Returns:	samples : ndarray,

The drawn samples, of shape (alpha.ndim, size).

Notes

[image: X \approx \prod_{i=1}^{k}{x^{\alpha_i-1}_i}]

Uses the following property for computation: for each dimension,
draw a random sample y_i from a standard gamma generator of shape
alpha_i, then
[image: X = \frac{1}{\sum_{i=1}^k{y_i}} (y_1, \ldots, y_n)] is
Dirichlet distributed.

References

	[R130]	David McKay, “Information Theory, Inference and Learning
Algorithms,” chapter 23,
http://www.inference.phy.cam.ac.uk/mackay/

	[R131]	Wikipedia, “Dirichlet distribution”,
http://en.wikipedia.org/wiki/Dirichlet_distribution

Examples

Taking an example cited in Wikipedia, this distribution can be used if
one wanted to cut strings (each of initial length 1.0) into K pieces
with different lengths, where each piece had, on average, a designated
average length, but allowing some variation in the relative sizes of the
pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.exponential

	
RandomState.exponential(scale=1.0, size=None)

	Exponential distribution.

Its probability density function is

[image: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),]

for x > 0 and 0 elsewhere. [image: \beta] is the scale parameter,
which is the inverse of the rate parameter [image: \lambda = 1/\beta].
The rate parameter is an alternative, widely used parameterization
of the exponential distribution [R134].

The exponential distribution is a continuous analogue of the
geometric distribution. It describes many common situations, such as
the size of raindrops measured over many rainstorms [R132], or the time
between page requests to Wikipedia [R133].

	Parameters:	scale : float

The scale parameter, [image: \beta = 1/\lambda].

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

References

	[R132]	(1, 2) Peyton Z. Peebles Jr., “Probability, Random Variables and
Random Signal Principles”, 4th ed, 2001, p. 57.

	[R133]	(1, 2) “Poisson Process”, Wikipedia,
http://en.wikipedia.org/wiki/Poisson_process

	[R134]	(1, 2) “Exponential Distribution, Wikipedia,
http://en.wikipedia.org/wiki/Exponential_distribution

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.f

	
RandomState.f(dfnum, dfden, size=None)

	Draw samples from a F distribution.

Samples are drawn from an F distribution with specified parameters,
dfnum (degrees of freedom in numerator) and dfden (degrees of freedom
in denominator), where both parameters should be greater than zero.

The random variate of the F distribution (also known as the
Fisher distribution) is a continuous probability distribution
that arises in ANOVA tests, and is the ratio of two chi-square
variates.

	Parameters:	dfnum : float

Degrees of freedom in numerator. Should be greater than zero.

dfden : float

Degrees of freedom in denominator. Should be greater than zero.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

Samples from the Fisher distribution.

See also

	scipy.stats.distributions.f

	probability density function, distribution or cumulative density function, etc.

Notes

The F statistic is used to compare in-group variances to between-group
variances. Calculating the distribution depends on the sampling, and
so it is a function of the respective degrees of freedom in the
problem. The variable dfnum is the number of samples minus one, the
between-groups degrees of freedom, while dfden is the within-groups
degrees of freedom, the sum of the number of samples in each group
minus the number of groups.

References

	[R135]	Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill,
Fifth Edition, 2002.

	[R136]	Wikipedia, “F-distribution”,
http://en.wikipedia.org/wiki/F-distribution

Examples

An example from Glantz[1], pp 47-40.
Two groups, children of diabetics (25 people) and children from people
without diabetes (25 controls). Fasting blood glucose was measured,
case group had a mean value of 86.1, controls had a mean value of
82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
data consistent with the null hypothesis that the parents diabetic
status does not affect their children’s blood glucose levels?
Calculating the F statistic from the data gives a value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> sort(s)[-10]
7.61988120985

So there is about a 1% chance that the F statistic will exceed 7.62,
the measured value is 36, so the null hypothesis is rejected at the 1%
level.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.gamma

	
RandomState.gamma(shape, scale=1.0, size=None)

	Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated “k”) and scale (sometimes designated
“theta”), where both parameters are > 0.

	Parameters:	shape : scalar > 0

The shape of the gamma distribution.

scale : scalar > 0, optional

The scale of the gamma distribution. Default is equal to 1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray, float

Returns one sample unless size parameter is specified.

See also

	scipy.stats.distributions.gamma

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

[image: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},]

where [image: k] is the shape and [image: \theta] the scale,
and [image: \Gamma] is the Gamma function.

The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.

References

	[R137]	Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

	[R138]	Wikipedia, “Gamma-distribution”,
http://en.wikipedia.org/wiki/Gamma-distribution

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean and dispersion
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-gamma-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.geometric

	
RandomState.geometric(p, size=None)

	Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes:
success or failure (an example of such an experiment is flipping
a coin). The geometric distribution models the number of trials
that must be run in order to achieve success. It is therefore
supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is

[image: f(k) = (1 - p)^{k - 1} p]

where p is the probability of success of an individual trial.

	Parameters:	p : float

The probability of success of an individual trial.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

Samples from the geometric distribution, shaped according to
size.

Examples

Draw ten thousand values from the geometric distribution,
with the probability of an individual success equal to 0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.get_state

	
RandomState.get_state()

	Return a tuple representing the internal state of the generator.

For more details, see set_state.

	Returns:	out : tuple(str, ndarray of 624 uints, int, int, float)

The returned tuple has the following items:

	the string ‘MT19937’.

	a 1-D array of 624 unsigned integer keys.

	an integer pos.

	an integer has_gauss.

	a float cached_gaussian.

See also

set_state

Notes

set_state and get_state are not needed to work with any of the
random distributions in NumPy. If the internal state is manually altered,
the user should know exactly what he/she is doing.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.gumbel

	
RandomState.gumbel(loc=0.0, scale=1.0, size=None)

	Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale.
For more information on the Gumbel distribution, see Notes and References
below.

	Parameters:	loc : float

The location of the mode of the distribution.

scale : float

The scale parameter of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

The samples

See also

scipy.stats.gumbel_l, scipy.stats.gumbel_r

	scipy.stats.genextreme

	probability density function, distribution, or cumulative density function, etc. for each of the above

weibull

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value
Type I) distribution is one of a class of Generalized Extreme Value (GEV)
distributions used in modeling extreme value problems. The Gumbel is a
special case of the Extreme Value Type I distribution for maximums from
distributions with “exponential-like” tails.

The probability density for the Gumbel distribution is

[image: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}},]

where [image: \mu] is the mode, a location parameter, and [image: \beta] is
the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used
very early in the hydrology literature, for modeling the occurrence of
flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a “fat-tailed” distribution - the probability of an event in
the tail of the distribution is larger than if one used a Gaussian, hence
the surprisingly frequent occurrence of 100-year floods. Floods were
initially modeled as a Gaussian process, which underestimated the frequency
of extreme events.

It is one of a class of extreme value distributions, the Generalized
Extreme Value (GEV) distributions, which also includes the Weibull and
Frechet.

The function has a mean of [image: \mu + 0.57721\beta] and a variance of
[image: \frac{\pi^2}{6}\beta^2].

References

Gumbel, E. J., Statistics of Extremes, New York: Columbia University
Press, 1958.

Reiss, R.-D. and Thomas, M., Statistical Analysis of Extreme Values from
Insurance, Finance, Hydrology and Other Fields, Basel: Birkhauser Verlag,
2001.

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-gumbel-1_00_00.png]

Show how an extreme value distribution can arise from a Gaussian process
and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, normed=True)
>>> beta = np.std(maxima)*np.pi/np.sqrt(6)
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

(png, pdf)

[image: ../../_images/numpy-random-RandomState-gumbel-1_01_00.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.hypergeometric

	
RandomState.hypergeometric(ngood, nbad, nsample, size=None)

	Draw samples from a Hypergeometric distribution.

Samples are drawn from a Hypergeometric distribution with specified
parameters, ngood (ways to make a good selection), nbad (ways to make
a bad selection), and nsample = number of items sampled, which is less
than or equal to the sum ngood + nbad.

	Parameters:	ngood : int or array_like

Number of ways to make a good selection. Must be nonnegative.

nbad : int or array_like

Number of ways to make a bad selection. Must be nonnegative.

nsample : int or array_like

Number of items sampled. Must be at least 1 and at most
ngood + nbad.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

The values are all integers in [0, n].

See also

	scipy.stats.distributions.hypergeom

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Hypergeometric distribution is

[image: P(x) = \frac{\binom{m}{n}\binom{N-m}{n-x}}{\binom{N}{n}},]

where [image: 0 \le x \le m] and [image: n+m-N \le x \le n]

for P(x) the probability of x successes, n = ngood, m = nbad, and
N = number of samples.

Consider an urn with black and white marbles in it, ngood of them
black and nbad are white. If you draw nsample balls without
replacement, then the Hypergeometric distribution describes the
distribution of black balls in the drawn sample.

Note that this distribution is very similar to the Binomial
distribution, except that in this case, samples are drawn without
replacement, whereas in the Binomial case samples are drawn with
replacement (or the sample space is infinite). As the sample space
becomes large, this distribution approaches the Binomial.

References

	[R139]	Lentner, Marvin, “Elementary Applied Statistics”, Bogden
and Quigley, 1972.

	[R140]	Weisstein, Eric W. “Hypergeometric Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HypergeometricDistribution.html

	[R141]	Wikipedia, “Hypergeometric-distribution”,
http://en.wikipedia.org/wiki/Hypergeometric-distribution

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> hist(s)
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles.
If you pull 15 marbles at random, how likely is it that
12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.laplace

	
RandomState.laplace(loc=0.0, scale=1.0, size=None)

	Draw samples from the Laplace or double exponential distribution with
specified location (or mean) and scale (decay).

The Laplace distribution is similar to the Gaussian/normal distribution,
but is sharper at the peak and has fatter tails. It represents the
difference between two independent, identically distributed exponential
random variables.

	Parameters:	loc : float

The position, [image: \mu], of the distribution peak.

scale : float

[image: \lambda], the exponential decay.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

Notes

It has the probability density function

[image: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right).]

The first law of Laplace, from 1774, states that the frequency of an error
can be expressed as an exponential function of the absolute magnitude of
the error, which leads to the Laplace distribution. For many problems in
Economics and Health sciences, this distribution seems to model the data
better than the standard Gaussian distribution

References

	[R142]	Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, 9th
printing. New York: Dover, 1972.

	[R143]	The Laplace distribution and generalizations
By Samuel Kotz, Tomasz J. Kozubowski, Krzysztof Podgorski,
Birkhauser, 2001.

	[R144]	Weisstein, Eric W. “Laplace Distribution.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplaceDistribution.html

	[R145]	Wikipedia, “Laplace distribution”,
http://en.wikipedia.org/wiki/Laplace_distribution

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-laplace-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.logistic

	
RandomState.logistic(loc=0.0, scale=1.0, size=None)

	Draw samples from a Logistic distribution.

Samples are drawn from a Logistic distribution with specified
parameters, loc (location or mean, also median), and scale (>0).

	Parameters:	loc : float

scale : float > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

where the values are all integers in [0, n].

See also

	scipy.stats.distributions.logistic

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Logistic distribution is

[image: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},]

where [image: \mu] = location and [image: s] = scale.

The Logistic distribution is used in Extreme Value problems where it
can act as a mixture of Gumbel distributions, in Epidemiology, and by
the World Chess Federation (FIDE) where it is used in the Elo ranking
system, assuming the performance of each player is a logistically
distributed random variable.

References

	[R146]	Reiss, R.-D. and Thomas M. (2001), Statistical Analysis of Extreme
Values, from Insurance, Finance, Hydrology and Other Fields,
Birkhauser Verlag, Basel, pp 132-133.

	[R147]	Weisstein, Eric W. “Logistic Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LogisticDistribution.html

	[R148]	Wikipedia, “Logistic-distribution”,
http://en.wikipedia.org/wiki/Logistic-distribution

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> count, bins, ignored = plt.hist(s, bins=50)

plot against distribution

>>> def logist(x, loc, scale):
... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\
... logist(bins, loc, scale).max())
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.lognormal

	
RandomState.lognormal(mean=0.0, sigma=1.0, size=None)

	Return samples drawn from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean,
standard deviation, and array shape. Note that the mean and standard
deviation are not the values for the distribution itself, but of the
underlying normal distribution it is derived from.

	Parameters:	mean : float

Mean value of the underlying normal distribution

sigma : float, > 0.

Standard deviation of the underlying normal distribution

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or float

The desired samples. An array of the same shape as size if given,
if size is None a float is returned.

See also

	scipy.stats.lognorm

	probability density function, distribution, cumulative density function, etc.

Notes

A variable x has a log-normal distribution if log(x) is normally
distributed. The probability density function for the log-normal
distribution is:

[image: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}]

where [image: \mu] is the mean and [image: \sigma] is the standard
deviation of the normally distributed logarithm of the variable.
A log-normal distribution results if a random variable is the product
of a large number of independent, identically-distributed variables in
the same way that a normal distribution results if the variable is the
sum of a large number of independent, identically-distributed
variables.

References

Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions
across the Sciences: Keys and Clues,” BioScience, Vol. 51, No. 5,
May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

Reiss, R.D. and Thomas, M., Statistical Analysis of Extreme Values,
Basel: Birkhauser Verlag, 2001, pp. 31-32.

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

Demonstrate that taking the products of random samples from a uniform
distribution can be fit well by a log-normal probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.random(100)
... b.append(np.product(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, normed=True, align='center')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

(Source code)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.logseries

	
RandomState.logseries(p, size=None)

	Draw samples from a Logarithmic Series distribution.

Samples are drawn from a Log Series distribution with specified
parameter, p (probability, 0 < p < 1).

	Parameters:	loc : float

scale : float > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

where the values are all integers in [0, n].

See also

	scipy.stats.distributions.logser

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Log Series distribution is

[image: P(k) = \frac{-p^k}{k \ln(1-p)},]

where p = probability.

The Log Series distribution is frequently used to represent species
richness and occurrence, first proposed by Fisher, Corbet, and
Williams in 1943 [2]. It may also be used to model the numbers of
occupants seen in cars [3].

References

	[R149]	Buzas, Martin A.; Culver, Stephen J., Understanding regional
species diversity through the log series distribution of
occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
Volume 5, Number 5, September 1999 , pp. 187-195(9).

	[R150]	Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
relation between the number of species and the number of
individuals in a random sample of an animal population.
Journal of Animal Ecology, 12:42-58.

	[R151]	D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
Data Sets, CRC Press, 1994.

	[R152]	Wikipedia, “Logarithmic-distribution”,
http://en.wikipedia.org/wiki/Logarithmic-distribution

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> count, bins, ignored = plt.hist(s)

plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/
 logseries(bins, a).max(), 'r')
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.multinomial

	
RandomState.multinomial(n, pvals, size=None)

	Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalisation of the
binomial distribution. Take an experiment with one of p
possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the
distribution represents n such experiments. Its values,
X_i = [X_0, X_1, ..., X_p], represent the number of times the outcome
was i.

	Parameters:	n : int

Number of experiments.

pvals : sequence of floats, length p

Probabilities of each of the p different outcomes. These
should sum to 1 (however, the last element is always assumed to
account for the remaining probability, as long as
sum(pvals[:-1]) <= 1).

size : tuple of ints

Given a size of (M, N, K), then M*N*K samples are drawn,
and the output shape becomes (M, N, K, p), since each sample
has shape (p,).

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]])

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],
 [2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second,
we threw 2 times 1, 4 times 2, etc.

A loaded dice is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5)
array([13, 16, 13, 16, 42])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.multivariate_normal

	
RandomState.multivariate_normal(mean, cov[, size])

	Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or “center”) and variance (standard deviation, or “width,”
squared) of the one-dimensional normal distribution.

	Parameters:	mean : 1-D array_like, of length N

Mean of the N-dimensional distribution.

cov : 2-D array_like, of shape (N, N)

Covariance matrix of the distribution. Must be symmetric and
positive-semidefinite for “physically meaningful” results.

size : int or tuple of ints, optional

Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
If no shape is specified, a single (N-D) sample is returned.

	Returns:	out : ndarray

The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

Notes

The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.

Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, [image: X = [x_1, x_2, ... x_N]]. The covariance matrix
element [image: C_{ij}] is the covariance of [image: x_i] and [image: x_j].
The element [image: C_{ii}] is the variance of [image: x_i] (i.e. its
“spread”).

Instead of specifying the full covariance matrix, popular
approximations include:

	Spherical covariance (cov is a multiple of the identity matrix)

	Diagonal covariance (cov has non-negative elements, and only on
the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis

>>> import matplotlib.pyplot as plt
>>> x,y = np.random.multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()

Note that the covariance matrix must be non-negative definite.

References

Papoulis, A., Probability, Random Variables, and Stochastic Processes,
3rd ed., New York: McGraw-Hill, 1991.

Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification,
2nd ed., New York: Wiley, 2001.

Examples

>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = np.random.multivariate_normal(mean,cov,(3,3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> print list((x[0,0,:] - mean) < 0.6)
[True, True]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.negative_binomial

	
RandomState.negative_binomial(n, p, size=None)

	Draw samples from a negative_binomial distribution.

Samples are drawn from a negative_Binomial distribution with specified
parameters, n trials and p probability of success where n is an
integer > 0 and p is in the interval [0, 1].

	Parameters:	n : int

Parameter, > 0.

p : float

Parameter, >= 0 and <=1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : int or ndarray of ints

Drawn samples.

Notes

The probability density for the Negative Binomial distribution is

[image: P(N;n,p) = \binom{N+n-1}{n-1}p^{n}(1-p)^{N},]

where [image: n-1] is the number of successes, [image: p] is the probability
of success, and [image: N+n-1] is the number of trials.

The negative binomial distribution gives the probability of n-1 successes
and N failures in N+n-1 trials, and success on the (N+n)th trial.

If one throws a die repeatedly until the third time a “1” appears, then the
probability distribution of the number of non-“1”s that appear before the
third “1” is a negative binomial distribution.

References

	[R153]	Weisstein, Eric W. “Negative Binomial Distribution.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NegativeBinomialDistribution.html

	[R154]	Wikipedia, “Negative binomial distribution”,
http://en.wikipedia.org/wiki/Negative_binomial_distribution

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each
with an estimated probability of success of 0.1. What is the probability
of having one success for each successive well, that is what is the
probability of a single success after drilling 5 wells, after 6 wells,
etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print i, "wells drilled, probability of one success =", probability

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.noncentral_chisquare

	
RandomState.noncentral_chisquare(df, nonc, size=None)

	Draw samples from a noncentral chi-square distribution.

The noncentral [image: \chi^2] distribution is a generalisation of
the [image: \chi^2] distribution.

	Parameters:	df : int

Degrees of freedom, should be >= 1.

nonc : float

Non-centrality, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

Notes

The probability density function for the noncentral Chi-square distribution
is

[image: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}P_{Y_{df+2i}}(x),]

where [image: Y_{q}] is the Chi-square with q degrees of freedom.

In Delhi (2007), it is noted that the noncentral chi-square is useful in
bombing and coverage problems, the probability of killing the point target
given by the noncentral chi-squared distribution.

References

	[R155]	Delhi, M.S. Holla, “On a noncentral chi-square distribution in the
analysis of weapon systems effectiveness”, Metrika, Volume 15,
Number 1 / December, 1970.

	[R156]	Wikipedia, “Noncentral chi-square distribution”
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-noncentral_chisquare-1_00_00.png]

Draw values from a noncentral chisquare with very small noncentrality,
and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

(png, pdf)

[image: ../../_images/numpy-random-RandomState-noncentral_chisquare-1_01_00.png]

Demonstrate how large values of non-centrality lead to a more symmetric
distribution.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()

(png, pdf)

[image: ../../_images/numpy-random-RandomState-noncentral_chisquare-1_02_00.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.noncentral_f

	
RandomState.noncentral_f(dfnum, dfden, nonc, size=None)

	Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters,
dfnum (degrees of freedom in numerator) and dfden (degrees of
freedom in denominator), where both parameters > 1.
nonc is the non-centrality parameter.

	Parameters:	dfnum : int

Parameter, should be > 1.

dfden : int

Parameter, should be > 1.

nonc : float

Parameter, should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : scalar or ndarray

Drawn samples.

Notes

When calculating the power of an experiment (power = probability of
rejecting the null hypothesis when a specific alternative is true) the
non-central F statistic becomes important. When the null hypothesis is
true, the F statistic follows a central F distribution. When the null
hypothesis is not true, then it follows a non-central F statistic.

References

Weisstein, Eric W. “Noncentral F-Distribution.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html

Wikipedia, “Noncentral F distribution”,
http://en.wikipedia.org/wiki/Noncentral_F-distribution

Examples

In a study, testing for a specific alternative to the null hypothesis
requires use of the Noncentral F distribution. We need to calculate the
area in the tail of the distribution that exceeds the value of the F
distribution for the null hypothesis. We’ll plot the two probability
distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, normed=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, normed=True)
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.normal

	
RandomState.normal(loc=0.0, scale=1.0, size=None)

	Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first
derived by De Moivre and 200 years later by both Gauss and Laplace
independently [R158], is often called the bell curve because of
its characteristic shape (see the example below).

The normal distributions occurs often in nature. For example, it
describes the commonly occurring distribution of samples influenced
by a large number of tiny, random disturbances, each with its own
unique distribution [R158].

	Parameters:	loc : float

Mean (“centre”) of the distribution.

scale : float

Standard deviation (spread or “width”) of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

See also

	scipy.stats.distributions.norm

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

[image: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },]

where [image: \mu] is the mean and [image: \sigma] the standard deviation.
The square of the standard deviation, [image: \sigma^2], is called the
variance.

The function has its peak at the mean, and its “spread” increases with
the standard deviation (the function reaches 0.607 times its maximum at
[image: x + \sigma] and [image: x - \sigma] [R158]). This implies that
numpy.random.normal is more likely to return samples lying close to the
mean, rather than those far away.

References

	[R157]	Wikipedia, “Normal distribution”,
http://en.wikipedia.org/wiki/Normal_distribution

	[R158]	(1, 2, 3, 4) P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random
Variables and Random Signal Principles”, 4th ed., 2001,
pp. 51, 51, 125.

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01
True

>>> abs(sigma - np.std(s, ddof=1)) < 0.01
True

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-normal-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.pareto

	
RandomState.pareto(a, size=None)

	Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The
classical Pareto distribution can be obtained from the Lomax distribution
by adding the location parameter m, see below. The smallest value of the
Lomax distribution is zero while for the classical Pareto distribution it
is m, where the standard Pareto distribution has location m=1.
Lomax can also be considered as a simplified version of the Generalized
Pareto distribution (available in SciPy), with the scale set to one and
the location set to zero.

The Pareto distribution must be greater than zero, and is unbounded above.
It is also known as the “80-20 rule”. In this distribution, 80 percent of
the weights are in the lowest 20 percent of the range, while the other 20
percent fill the remaining 80 percent of the range.

	Parameters:	shape : float, > 0.

Shape of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

See also

	scipy.stats.distributions.lomax.pdf

	probability density function, distribution or cumulative density function, etc.

	scipy.stats.distributions.genpareto.pdf

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Pareto distribution is

[image: p(x) = \frac{am^a}{x^{a+1}}]

where [image: a] is the shape and [image: m] the location

The Pareto distribution, named after the Italian economist Vilfredo Pareto,
is a power law probability distribution useful in many real world problems.
Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the
distribution of wealth in an economy. It has also found use in insurance,
web page access statistics, oil field sizes, and many other problems,
including the download frequency for projects in Sourceforge [1]. It is
one of the so-called “fat-tailed” distributions.

References

	[R159]	Francis Hunt and Paul Johnson, On the Pareto Distribution of
Sourceforge projects.

	[R160]	Pareto, V. (1896). Course of Political Economy. Lausanne.

	[R161]	Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
Values, Birkhauser Verlag, Basel, pp 23-30.

	[R162]	Wikipedia, “Pareto distribution”,
http://en.wikipedia.org/wiki/Pareto_distribution

Examples

Draw samples from the distribution:

>>> a, m = 3., 1. # shape and mode
>>> s = np.random.pareto(a, 1000) + m

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, normed=True, align='center')
>>> fit = a*m**a/bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit),linewidth=2, color='r')
>>> plt.show()

(Source code)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.permutation

	
RandomState.permutation(x)

	Randomly permute a sequence, or return a permuted range.

If x is a multi-dimensional array, it is only shuffled along its
first index.

	Parameters:	x : int or array_like

If x is an integer, randomly permute np.arange(x).
If x is an array, make a copy and shuffle the elements
randomly.

	Returns:	out : ndarray

Permuted sequence or array range.

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12])

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],
 [0, 1, 2],
 [3, 4, 5]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.poisson

	
RandomState.poisson(lam=1.0, size=None)

	Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the Binomial
distribution for large N.

	Parameters:	lam : float or sequence of float

Expectation of interval, should be >= 0. A sequence of expectation
intervals must be broadcastable over the requested size.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

Notes

The Poisson distribution

[image: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}]

For events with an expected separation [image: \lambda] the Poisson
distribution [image: f(k; \lambda)] describes the probability of
[image: k] events occurring within the observed interval [image: \lambda].

Because the output is limited to the range of the C long type, a
ValueError is raised when lam is within 10 sigma of the maximum
representable value.

References

	[R163]	Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html

	[R164]	Wikipedia, “Poisson distribution”,
http://en.wikipedia.org/wiki/Poisson_distribution

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-poisson-1_00_00.png]

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.power

	
RandomState.power(a, size=None)

	Draws samples in [0, 1] from a power distribution with positive
exponent a - 1.

Also known as the power function distribution.

	Parameters:	a : float

parameter, > 0

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : {ndarray, scalar}

The returned samples lie in [0, 1].

	Raises:	ValueError

If a<1.

Notes

The probability density function is

[image: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.]

The power function distribution is just the inverse of the Pareto
distribution. It may also be seen as a special case of the Beta
distribution.

It is used, for example, in modeling the over-reporting of insurance
claims.

References

	[R165]	Christian Kleiber, Samuel Kotz, “Statistical size distributions
in economics and actuarial sciences”, Wiley, 2003.

	[R166]	Heckert, N. A. and Filliben, James J. (2003). NIST Handbook 148:
Dataplot Reference Manual, Volume 2: Let Subcommands and Library
Functions”, National Institute of Standards and Technology Handbook
Series, June 2003.
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-power-1_00_00.png]

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

[image: ../../_images/numpy-random-RandomState-power-1_01_00.png]
(png, pdf)

[image: ../../_images/numpy-random-RandomState-power-1_01_01.png]
(png, pdf)

[image: ../../_images/numpy-random-RandomState-power-1_01_02.png]
(png, pdf)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.rand

	
RandomState.rand(d0, d1, ..., dn)

	Random values in a given shape.

Create an array of the given shape and propagate it with
random samples from a uniform distribution
over [0, 1).

	Parameters:	d0, d1, ..., dn : int, optional

The dimensions of the returned array, should all be positive.
If no argument is given a single Python float is returned.

	Returns:	out : ndarray, shape (d0, d1, ..., dn)

Random values.

See also

random

Notes

This is a convenience function. If you want an interface that
takes a shape-tuple as the first argument, refer to
np.random.random_sample .

Examples

>>> np.random.rand(3,2)
array([[0.14022471, 0.96360618], #random
 [0.37601032, 0.25528411], #random
 [0.49313049, 0.94909878]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.randint

	
RandomState.randint(low, high=None, size=None)

	Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution in the
“half-open” interval [low, high). If high is None (the default),
then results are from [0, low).

	Parameters:	low : int

Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is the highest such
integer).

high : int, optional

If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : int or ndarray of ints

size-shaped array of random integers from the appropriate
distribution, or a single such random int if size not provided.

See also

	random.random_integers

	similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted. In particular, this other one is the one to use to generate uniformly distributed discrete non-integers.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],
 [3, 2, 2, 0]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.randn

	
RandomState.randn(d0, d1, ..., dn)

	Return a sample (or samples) from the “standard normal” distribution.

If positive, int_like or int-convertible arguments are provided,
randn generates an array of shape (d0, d1, ..., dn), filled
with random floats sampled from a univariate “normal” (Gaussian)
distribution of mean 0 and variance 1 (if any of the [image: d_i] are
floats, they are first converted to integers by truncation). A single
float randomly sampled from the distribution is returned if no
argument is provided.

This is a convenience function. If you want an interface that takes a
tuple as the first argument, use numpy.random.standard_normal instead.

	Parameters:	d0, d1, ..., dn : int, optional

The dimensions of the returned array, should be all positive.
If no argument is given a single Python float is returned.

	Returns:	Z : ndarray or float

A (d0, d1, ..., dn)-shaped array of floating-point samples from
the standard normal distribution, or a single such float if
no parameters were supplied.

See also

	random.standard_normal

	Similar, but takes a tuple as its argument.

Notes

For random samples from [image: N(\mu, \sigma^2)], use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random
 [0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.random_integers

	
RandomState.random_integers(low, high=None, size=None)

	Return random integers between low and high, inclusive.

Return random integers from the “discrete uniform” distribution in the
closed interval [low, high]. If high is None (the default),
then results are from [1, low].

	Parameters:	low : int

Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is the highest such
integer).

high : int, optional

If provided, the largest (signed) integer to be drawn from the
distribution (see above for behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : int or ndarray of ints

size-shaped array of random integers from the appropriate
distribution, or a single such random int if size not provided.

See also

	random.randint [http://docs.python.org/dev/library/random.html#random.randint]

	Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value if high is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b,
use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type 'int'>
>>> np.random.random_integers(5, size=(3.,2.))
array([[5, 4],
 [3, 3],
 [4, 5]])

Choose five random numbers from the set of five evenly-spaced
numbers between 0 and 2.5, inclusive (i.e., from the set
[image: {0, 5/8, 10/8, 15/8, 20/8}]):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([0.625, 1.25 , 0.625, 0.625, 2.5])

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-random_integers-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.random_sample

	
RandomState.random_sample(size=None)

	Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the
stated interval. To sample [image: Unif[a, b), b > a] multiply
the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which
case a single float is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
 [-2.99091858, -0.79479508],
 [-1.23204345, -1.75224494]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.rayleigh

	
RandomState.rayleigh(scale=1.0, size=None)

	Draw samples from a Rayleigh distribution.

The [image: \chi] and Weibull distributions are generalizations of the
Rayleigh.

	Parameters:	scale : scalar

Scale, also equals the mode. Should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

Notes

The probability density function for the Rayleigh distribution is

[image: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}]

The Rayleigh distribution arises if the wind speed and wind direction are
both gaussian variables, then the vector wind velocity forms a Rayleigh
distribution. The Rayleigh distribution is used to model the expected
output from wind turbines.

References

	[R167]	Brighton Webs Ltd., Rayleigh Distribution,
http://www.brighton-webs.co.uk/distributions/rayleigh.asp

	[R168]	Wikipedia, “Rayleigh distribution”
http://en.wikipedia.org/wiki/Rayleigh_distribution

Examples

Draw values from the distribution and plot the histogram

>>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave
height is 1 meter, what fraction of waves are likely to be larger than 3
meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.seed

	
RandomState.seed(seed=None)

	Seed the generator.

This method is called when RandomState is initialized. It can be
called again to re-seed the generator. For details, see RandomState.

	Parameters:	seed : int or array_like, optional

Seed for RandomState.
Must be convertable to 32 bit unsigned integers.

See also

RandomState

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.set_state

	
RandomState.set_state(state)

	Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of the
“Mersenne Twister”[R169] pseudo-random number generating algorithm.

	Parameters:	state : tuple(str, ndarray of 624 uints, int, int, float)

The state tuple has the following items:

	the string ‘MT19937’, specifying the Mersenne Twister algorithm.

	a 1-D array of 624 unsigned integers keys.

	an integer pos.

	an integer has_gauss.

	a float cached_gaussian.

	Returns:	out : None

Returns ‘None’ on success.

See also

get_state

Notes

set_state and get_state are not needed to work with any of the
random distributions in NumPy. If the internal state is manually altered,
the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is
also accepted although it is missing some information about the cached
Gaussian value: state = ('MT19937', keys, pos).

References

	[R169]	(1, 2) M. Matsumoto and T. Nishimura, “Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number
generator,” ACM Trans. on Modeling and Computer Simulation,
Vol. 8, No. 1, pp. 3-30, Jan. 1998.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.shuffle

	
RandomState.shuffle(x)

	Modify a sequence in-place by shuffling its contents.

	Parameters:	x : array_like

The array or list to be shuffled.

	Returns:	None

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]

This function only shuffles the array along the first index of a
multi-dimensional array:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],
 [6, 7, 8],
 [0, 1, 2]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.standard_cauchy

	
RandomState.standard_cauchy(size=None)

	Standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

The drawn samples.

Notes

The probability density function for the full Cauchy distribution is

[image: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[1+ (\frac{x-x_0}{\gamma})^2 \bigr] }]

and the Standard Cauchy distribution just sets [image: x_0=0] and
[image: \gamma=1]

The Cauchy distribution arises in the solution to the driven harmonic
oscillator problem, and also describes spectral line broadening. It
also describes the distribution of values at which a line tilted at
a random angle will cut the x axis.

When studying hypothesis tests that assume normality, seeing how the
tests perform on data from a Cauchy distribution is a good indicator of
their sensitivity to a heavy-tailed distribution, since the Cauchy looks
very much like a Gaussian distribution, but with heavier tails.

References

	[R170]	NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy
Distribution”,
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm

	[R171]	Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/CauchyDistribution.html

	[R172]	Wikipedia, “Cauchy distribution”
http://en.wikipedia.org/wiki/Cauchy_distribution

Examples

Draw samples and plot the distribution:

>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.standard_exponential

	
RandomState.standard_exponential(size=None)

	Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution
with a scale parameter of 1.

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray

Drawn samples.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.standard_gamma

	
RandomState.standard_gamma(shape, size=None)

	Draw samples from a Standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated “k”) and scale=1.

	Parameters:	shape : float

Parameter, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

The drawn samples.

See also

	scipy.stats.distributions.gamma

	probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

[image: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},]

where [image: k] is the shape and [image: \theta] the scale,
and [image: \Gamma] is the Gamma function.

The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.

References

	[R173]	Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

	[R174]	Wikipedia, “Gamma-distribution”,
http://en.wikipedia.org/wiki/Gamma-distribution

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-standard_gamma-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.standard_normal

	
RandomState.standard_normal(size=None)

	Returns samples from a Standard Normal distribution (mean=0, stdev=1).

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : float or ndarray

Drawn samples.

Examples

>>> s = np.random.standard_normal(8000)
>>> s
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random
 -0.38672696, -0.4685006]) #random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.standard_t

	
RandomState.standard_t(df, size=None)

	Standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution.
As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

	Parameters:	df : int

Degrees of freedom, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

Drawn samples.

Notes

The probability density function for the t distribution is

[image: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl(1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}]

The t test is based on an assumption that the data come from a Normal
distribution. The t test provides a way to test whether the sample mean
(that is the mean calculated from the data) is a good estimate of the true
mean.

The derivation of the t-distribution was forst published in 1908 by William
Gisset while working for the Guinness Brewery in Dublin. Due to proprietary
issues, he had to publish under a pseudonym, and so he used the name
Student.

References

	[R175]	(1, 2) Dalgaard, Peter, “Introductory Statistics With R”,
Springer, 2002.

	[R176]	Wikipedia, “Student’s t-distribution”
http://en.wikipedia.org/wiki/Student’s_t-distribution

Examples

From Dalgaard page 83 [R175], suppose the daily energy intake for 11
women in Kj is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended
value of 7725 kJ?

We have 10 degrees of freedom, so is the sample mean within 95% of the
recommended value?

>>> s = np.random.standard_t(10, size=100000)
>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727

Calculate the t statistic, setting the ddof parameter to the unbiased
value so the divisor in the standard deviation will be degrees of
freedom, N-1.

>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(s, bins=100, normed=True)

For a one-sided t-test, how far out in the distribution does the t
statistic appear?

>>> >>> np.sum(s<t) / float(len(s))
0.0090699999999999999 #random

So the p-value is about 0.009, which says the null hypothesis has a
probability of about 99% of being true.

(Source code)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.tomaxint

	
RandomState.tomaxint(size=None)

	Random integers between 0 and sys.maxint, inclusive.

Return a sample of uniformly distributed random integers in the interval
[0, sys.maxint].

	Parameters:	size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

Drawn samples, with shape size.

See also

	randint

	Uniform sampling over a given half-open interval of integers.

	random_integers

	Uniform sampling over a given closed interval of integers.

Examples

>>> RS = np.random.mtrand.RandomState() # need a RandomState object
>>> RS.tomaxint((2,2,2))
array([[[1170048599, 1600360186],
 [739731006, 1947757578]],
 [[1871712945, 752307660],
 [1601631370, 1479324245]]])
>>> import sys
>>> sys.maxint
2147483647
>>> RS.tomaxint((2,2,2)) < sys.maxint
array([[[True, True],
 [True, True]],
 [[True, True],
 [True, True]]], dtype=bool)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.triangular

	
RandomState.triangular(left, mode, right, size=None)

	Draw samples from the triangular distribution.

The triangular distribution is a continuous probability distribution with
lower limit left, peak at mode, and upper limit right. Unlike the other
distributions, these parameters directly define the shape of the pdf.

	Parameters:	left : scalar

Lower limit.

mode : scalar

The value where the peak of the distribution occurs.
The value should fulfill the condition left <= mode <= right.

right : scalar

Upper limit, should be larger than left.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

The returned samples all lie in the interval [left, right].

Notes

The probability density function for the Triangular distribution is

[image: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(m-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases}]

The triangular distribution is often used in ill-defined problems where the
underlying distribution is not known, but some knowledge of the limits and
mode exists. Often it is used in simulations.

References

	[R177]	Wikipedia, “Triangular distribution”
http://en.wikipedia.org/wiki/Triangular_distribution

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-triangular-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.uniform

	
RandomState.uniform(low=0.0, high=1.0, size=None)

	Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval
[low, high) (includes low, but excludes high). In other words,
any value within the given interval is equally likely to be drawn
by uniform.

	Parameters:	low : float, optional

Lower boundary of the output interval. All values generated will be
greater than or equal to low. The default value is 0.

high : float

Upper boundary of the output interval. All values generated will be
less than high. The default value is 1.0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	out : ndarray

Drawn samples, with shape size.

See also

	randint

	Discrete uniform distribution, yielding integers.

	random_integers

	Discrete uniform distribution over the closed interval [low, high].

	random_sample

	Floats uniformly distributed over [0, 1).

	random

	Alias for random_sample.

	rand

	Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2 array of floats, uniformly distributed over [0, 1).

Notes

The probability density function of the uniform distribution is

[image: p(x) = \frac{1}{b - a}]

anywhere within the interval [a, b), and zero elsewhere.

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the
probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, normed=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-uniform-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.vonmises

	
RandomState.vonmises(mu, kappa, size=None)

	Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode
(mu) and dispersion (kappa), on the interval [-pi, pi].

The von Mises distribution (also known as the circular normal
distribution) is a continuous probability distribution on the unit
circle. It may be thought of as the circular analogue of the normal
distribution.

	Parameters:	mu : float

Mode (“center”) of the distribution.

kappa : float

Dispersion of the distribution, has to be >=0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : scalar or ndarray

The returned samples, which are in the interval [-pi, pi].

See also

	scipy.stats.distributions.vonmises

	probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the von Mises distribution is

[image: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},]

where [image: \mu] is the mode and [image: \kappa] the dispersion,
and [image: I_0(\kappa)] is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in
Austria-Hungary, in what is now the Ukraine. He fled to the United
States in 1939 and became a professor at Harvard. He worked in
probability theory, aerodynamics, fluid mechanics, and philosophy of
science.

References

Abramowitz, M. and Stegun, I. A. (ed.), Handbook of Mathematical
Functions, New York: Dover, 1965.

von Mises, R., Mathematical Theory of Probability and Statistics,
New York: Academic Press, 1964.

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> x = np.arange(-np.pi, np.pi, 2*np.pi/50.)
>>> y = -np.exp(kappa*np.cos(x-mu))/(2*np.pi*sps.jn(0,kappa))
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-vonmises-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.wald

	
RandomState.wald(mean, scale, size=None)

	Draw samples from a Wald, or Inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a
Gaussian.

Some references claim that the Wald is an Inverse Gaussian with mean=1, but
this is by no means universal.

The Inverse Gaussian distribution was first studied in relationship to
Brownian motion. In 1956 M.C.K. Tweedie used the name Inverse Gaussian
because there is an inverse relationship between the time to cover a unit
distance and distance covered in unit time.

	Parameters:	mean : scalar

Distribution mean, should be > 0.

scale : scalar

Scale parameter, should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : ndarray or scalar

Drawn sample, all greater than zero.

Notes

The probability density function for the Wald distribution is

[image: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x}]

As noted above the Inverse Gaussian distribution first arise from attempts
to model Brownian Motion. It is also a competitor to the Weibull for use in
reliability modeling and modeling stock returns and interest rate
processes.

References

	[R178]	Brighton Webs Ltd., Wald Distribution,
http://www.brighton-webs.co.uk/distributions/wald.asp

	[R179]	Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian
Distribution: Theory : Methodology, and Applications”, CRC Press,
1988.

	[R180]	Wikipedia, “Wald distribution”
http://en.wikipedia.org/wiki/Wald_distribution

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-wald-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.weibull

	
RandomState.weibull(a, size=None)

	Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given
shape parameter a.

[image: X = (-ln(U))^{1/a}]

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter
[image: \lambda] is just [image: X = \lambda(-ln(U))^{1/a}].

	Parameters:	a : float

Shape of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

See also

scipy.stats.distributions.weibull_max, scipy.stats.distributions.weibull_min, scipy.stats.distributions.genextreme, gumbel

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest
values, SEV Type III, or Rosin-Rammler distribution) is one of a class of
Generalized Extreme Value (GEV) distributions used in modeling extreme
value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

[image: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},]

where [image: a] is the shape and [image: \lambda] the scale.

The function has its peak (the mode) at
[image: \lambda(\frac{a-1}{a})^{1/a}].

When a = 1, the Weibull distribution reduces to the exponential
distribution.

References

	[R181]	Waloddi Weibull, Professor, Royal Technical University, Stockholm,
1939 “A Statistical Theory Of The Strength Of Materials”,
Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
Generalstabens Litografiska Anstalts Forlag, Stockholm.

	[R182]	Waloddi Weibull, 1951 “A Statistical Distribution Function of Wide
Applicability”, Journal Of Applied Mechanics ASME Paper.

	[R183]	Wikipedia, “Weibull distribution”,
http://en.wikipedia.org/wiki/Weibull_distribution

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-weibull-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

 	numpy.random.RandomState

numpy.random.RandomState.zipf

	
RandomState.zipf(a, size=None)

	Draw samples from a Zipf distribution.

Samples are drawn from a Zipf distribution with specified parameter
a > 1.

The Zipf distribution (also known as the zeta distribution) is a
continuous probability distribution that satisfies Zipf’s law: the
frequency of an item is inversely proportional to its rank in a
frequency table.

	Parameters:	a : float > 1

Distribution parameter.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	Returns:	samples : scalar or ndarray

The returned samples are greater than or equal to one.

See also

	scipy.stats.distributions.zipf

	probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the Zipf distribution is

[image: p(x) = \frac{x^{-a}}{\zeta(a)},]

where [image: \zeta] is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted
that the frequency of any word in a sample of a language is inversely
proportional to its rank in the frequency table.

References

Zipf, G. K., Selected Studies of the Principle of Relative Frequency
in Language, Cambridge, MA: Harvard Univ. Press, 1932.

Examples

Draw samples from the distribution:

>>> a = 2. # parameter
>>> s = np.random.zipf(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
Truncate s values at 50 so plot is interesting
>>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True)
>>> x = np.arange(1., 50.)
>>> y = x**(-a)/sps.zetac(a)
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

(Source code, png, pdf)

[image: ../../_images/numpy-random-RandomState-zipf-1.png]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.seed

	
numpy.random.seed(seed=None)

	Seed the generator.

This method is called when RandomState is initialized. It can be
called again to re-seed the generator. For details, see RandomState.

	Parameters:	seed : int or array_like, optional

Seed for RandomState.
Must be convertable to 32 bit unsigned integers.

See also

RandomState

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.get_state

	
numpy.random.get_state()

	Return a tuple representing the internal state of the generator.

For more details, see set_state.

	Returns:	out : tuple(str, ndarray of 624 uints, int, int, float)

The returned tuple has the following items:

	the string ‘MT19937’.

	a 1-D array of 624 unsigned integer keys.

	an integer pos.

	an integer has_gauss.

	a float cached_gaussian.

See also

set_state

Notes

set_state and get_state are not needed to work with any of the
random distributions in NumPy. If the internal state is manually altered,
the user should know exactly what he/she is doing.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Random sampling (numpy.random)

numpy.random.set_state

	
numpy.random.set_state(state)

	Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of the
“Mersenne Twister”[R228] pseudo-random number generating algorithm.

	Parameters:	state : tuple(str, ndarray of 624 uints, int, int, float)

The state tuple has the following items:

	the string ‘MT19937’, specifying the Mersenne Twister algorithm.

	a 1-D array of 624 unsigned integers keys.

	an integer pos.

	an integer has_gauss.

	a float cached_gaussian.

	Returns:	out : None

Returns ‘None’ on success.

See also

get_state

Notes

set_state and get_state are not needed to work with any of the
random distributions in NumPy. If the internal state is manually altered,
the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is
also accepted although it is missing some information about the cached
Gaussian value: state = ('MT19937', keys, pos).

References

	[R228]	(1, 2) M. Matsumoto and T. Nishimura, “Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number
generator,” ACM Trans. on Modeling and Computer Simulation,
Vol. 8, No. 1, pp. 3-30, Jan. 1998.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Set routines

Making proper sets

	unique(ar[,return_index,return_inverse,...])
	Find the unique elements of an array.

Boolean operations

	in1d(ar1,ar2[,assume_unique,invert])
	Test whether each element of a 1-D array is also present in a second array.

	intersect1d(ar1,ar2[,assume_unique])
	Find the intersection of two arrays.

	setdiff1d(ar1,ar2[,assume_unique])
	Find the set difference of two arrays.

	setxor1d(ar1,ar2[,assume_unique])
	Find the set exclusive-or of two arrays.

	union1d(ar1,ar2)
	Find the union of two arrays.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Set routines

numpy.unique

	
numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraysetops.py#L96]

	Find the unique elements of an array.

Returns the sorted unique elements of an array. There are two optional
outputs in addition to the unique elements: the indices of the input array
that give the unique values, and the indices of the unique array that
reconstruct the input array.

	Parameters:	ar : array_like

Input array. This will be flattened if it is not already 1-D.

return_index : bool, optional

If True, also return the indices of ar that result in the unique
array.

return_inverse : bool, optional

If True, also return the indices of the unique array that can be used
to reconstruct ar.

return_counts : bool, optional

New in version 1.9.0.

If True, also return the number of times each unique value comes up
in ar.

	Returns:	unique : ndarray

The sorted unique values.

unique_indices : ndarray, optional

The indices of the first occurrences of the unique values in the
(flattened) original array. Only provided if return_index is True.

unique_inverse : ndarray, optional

The indices to reconstruct the (flattened) original array from the
unique array. Only provided if return_inverse is True.

unique_counts : ndarray, optional

New in version 1.9.0.

The number of times each of the unique values comes up in the
original array. Only provided if return_counts is True.

See also

	numpy.lib.arraysetops

	Module with a number of other functions for performing set operations on arrays.

Examples

>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'],
 dtype='|S1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'],
 dtype='|S1')

Reconstruct the input array from the unique values:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Set routines

numpy.in1d

	
numpy.in1d(ar1, ar2, assume_unique=False, invert=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraysetops.py#L296]

	Test whether each element of a 1-D array is also present in a second array.

Returns a boolean array the same length as ar1 that is True
where an element of ar1 is in ar2 and False otherwise.

	Parameters:	ar1 : (M,) array_like

Input array.

ar2 : array_like

The values against which to test each value of ar1.

assume_unique : bool, optional

If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.

invert : bool, optional

If True, the values in the returned array are inverted (that is,
False where an element of ar1 is in ar2 and True otherwise).
Default is False. np.in1d(a, b, invert=True) is equivalent
to (but is faster than) np.invert(in1d(a, b)).

New in version 1.8.0.

	Returns:	in1d : (M,) ndarray, bool

The values ar1[in1d] are in ar2.

See also

	numpy.lib.arraysetops

	Module with a number of other functions for performing set operations on arrays.

Notes

in1d can be considered as an element-wise function version of the
python keyword in, for 1-D sequences. in1d(a, b) is roughly
equivalent to np.array([item in b for item in a]).

New in version 1.4.0.

Examples

>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([True, False, True, False, True], dtype=bool)
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
array([False, True, False, True, False], dtype=bool)
>>> test[mask]
array([1, 5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Set routines

numpy.intersect1d

	
numpy.intersect1d(ar1, ar2, assume_unique=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraysetops.py#L214]

	Find the intersection of two arrays.

Return the sorted, unique values that are in both of the input arrays.

	Parameters:	ar1, ar2 : array_like

Input arrays.

assume_unique : bool

If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.

	Returns:	intersect1d : ndarray

Sorted 1D array of common and unique elements.

See also

	numpy.lib.arraysetops

	Module with a number of other functions for performing set operations on arrays.

Examples

>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Set routines

numpy.setdiff1d

	
numpy.setdiff1d(ar1, ar2, assume_unique=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraysetops.py#L422]

	Find the set difference of two arrays.

Return the sorted, unique values in ar1 that are not in ar2.

	Parameters:	ar1 : array_like

Input array.

ar2 : array_like

Input comparison array.

assume_unique : bool

If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.

	Returns:	setdiff1d : ndarray

Sorted 1D array of values in ar1 that are not in ar2.

See also

	numpy.lib.arraysetops

	Module with a number of other functions for performing set operations on arrays.

Examples

>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Set routines

numpy.setxor1d

	
numpy.setxor1d(ar1, ar2, assume_unique=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraysetops.py#L252]

	Find the set exclusive-or of two arrays.

Return the sorted, unique values that are in only one (not both) of the
input arrays.

	Parameters:	ar1, ar2 : array_like

Input arrays.

assume_unique : bool

If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.

	Returns:	setxor1d : ndarray

Sorted 1D array of unique values that are in only one of the input
arrays.

Examples

>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Set routines

numpy.union1d

	
numpy.union1d(ar1, ar2)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\arraysetops.py#L392]

	Find the union of two arrays.

Return the unique, sorted array of values that are in either of the two
input arrays.

	Parameters:	ar1, ar2 : array_like

Input arrays. They are flattened if they are not already 1D.

	Returns:	union1d : ndarray

Unique, sorted union of the input arrays.

See also

	numpy.lib.arraysetops

	Module with a number of other functions for performing set operations on arrays.

Examples

>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1, 0, 1, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Sorting, searching, and counting

Sorting

	sort(a[,axis,kind,order])
	Return a sorted copy of an array.

	lexsort(keys[,axis])
	Perform an indirect sort using a sequence of keys.

	argsort(a[,axis,kind,order])
	Returns the indices that would sort an array.

	ndarray.sort([axis,kind,order])
	Sort an array, in-place.

	msort(a)
	Return a copy of an array sorted along the first axis.

	sort_complex(a)
	Sort a complex array using the real part first, then the imaginary part.

	partition(a,kth[,axis,kind,order])
	Return a partitioned copy of an array.

	argpartition(a,kth[,axis,kind,order])
	Perform an indirect partition along the given axis using the algorithm specified by the kind keyword.

Searching

	argmax(a[,axis])
	Indices of the maximum values along an axis.

	nanargmax(a[,axis])
	Return the indices of the maximum values in the specified axis ignoring NaNs.

	argmin(a[,axis])
	Return the indices of the minimum values along an axis.

	nanargmin(a[,axis])
	Return the indices of the minimum values in the specified axis ignoring NaNs.

	argwhere(a)
	Find the indices of array elements that are non-zero, grouped by element.

	nonzero(a)
	Return the indices of the elements that are non-zero.

	flatnonzero(a)
	Return indices that are non-zero in the flattened version of a.

	where(condition,[x,y])
	Return elements, either from x or y, depending on condition.

	searchsorted(a,v[,side,sorter])
	Find indices where elements should be inserted to maintain order.

	extract(condition,arr)
	Return the elements of an array that satisfy some condition.

Counting

	count_nonzero(a)
	Counts the number of non-zero values in the array a.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.sort

	
numpy.sort(a, axis=-1, kind='quicksort', order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L686]

	Return a sorted copy of an array.

	Parameters:	a : array_like

Array to be sorted.

axis : int or None, optional

Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.

	Returns:	sorted_array : ndarray

Array of the same type and shape as a.

See also

	ndarray.sort

	Method to sort an array in-place.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in a sorted array.

	partition

	Partial sort.

Notes

The various sorting algorithms are characterized by their average speed,
worst case performance, work space size, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:

	kind
	speed
	worst case
	work space
	stable

	‘quicksort’
	1
	O(n^2)
	0
	no

	‘mergesort’
	2
	O(n*log(n))
	~n/2
	yes

	‘heapsort’
	3
	O(n*log(n))
	0
	no

All the sort algorithms make temporary copies of the data when
sorting along any but the last axis. Consequently, sorting along
the last axis is faster and uses less space than sorting along
any other axis.

The sort order for complex numbers is lexicographic. If both the real
and imaginary parts are non-nan then the order is determined by the
real parts except when they are equal, in which case the order is
determined by the imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan
values led to undefined behaviour. In numpy versions >= 1.4.0 nan
values are sorted to the end. The extended sort order is:

	Real: [R, nan]

	Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan
placements are sorted according to the non-nan part if it exists.
Non-nan values are sorted as before.

Examples

>>> a = np.array([[1,4],[3,1]])
>>> np.sort(a) # sort along the last axis
array([[1, 4],
 [1, 3]])
>>> np.sort(a, axis=None) # sort the flattened array
array([1, 1, 3, 4])
>>> np.sort(a, axis=0) # sort along the first axis
array([[1, 1],
 [3, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
>>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
... ('Galahad', 1.7, 38)]
>>> a = np.array(values, dtype=dtype) # create a structured array
>>> np.sort(a, order='height')
array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
 ('Lancelot', 1.8999999999999999, 38)],
 dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

Sort by age, then height if ages are equal:

>>> np.sort(a, order=['age', 'height'])
array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
 ('Arthur', 1.8, 41)],
 dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.lexsort

	
numpy.lexsort(keys, axis=-1)

	Perform an indirect sort using a sequence of keys.

Given multiple sorting keys, which can be interpreted as columns in a
spreadsheet, lexsort returns an array of integer indices that describes
the sort order by multiple columns. The last key in the sequence is used
for the primary sort order, the second-to-last key for the secondary sort
order, and so on. The keys argument must be a sequence of objects that
can be converted to arrays of the same shape. If a 2D array is provided
for the keys argument, it’s rows are interpreted as the sorting keys and
sorting is according to the last row, second last row etc.

	Parameters:	keys : (k, N) array or tuple containing k (N,)-shaped sequences

The k different “columns” to be sorted. The last column (or row if
keys is a 2D array) is the primary sort key.

axis : int, optional

Axis to be indirectly sorted. By default, sort over the last axis.

	Returns:	indices : (N,) ndarray of ints

Array of indices that sort the keys along the specified axis.

See also

	argsort

	Indirect sort.

	ndarray.sort

	In-place sort.

	sort

	Return a sorted copy of an array.

Examples

Sort names: first by surname, then by name.

>>> surnames = ('Hertz', 'Galilei', 'Hertz')
>>> first_names = ('Heinrich', 'Galileo', 'Gustav')
>>> ind = np.lexsort((first_names, surnames))
>>> ind
array([1, 2, 0])

>>> [surnames[i] + ", " + first_names[i] for i in ind]
['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']

Sort two columns of numbers:

>>> a = [1,5,1,4,3,4,4] # First column
>>> b = [9,4,0,4,0,2,1] # Second column
>>> ind = np.lexsort((b,a)) # Sort by a, then by b
>>> print ind
[2 0 4 6 5 3 1]

>>> [(a[i],b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]

Note that sorting is first according to the elements of a.
Secondary sorting is according to the elements of b.

A normal argsort would have yielded:

>>> [(a[i],b[i]) for i in np.argsort(a)]
[(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]

Structured arrays are sorted lexically by argsort:

>>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
... dtype=np.dtype([('x', int), ('y', int)]))

>>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
array([2, 0, 4, 6, 5, 3, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.argsort

	
numpy.argsort(a, axis=-1, kind='quicksort', order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L795]

	Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified
by the kind keyword. It returns an array of indices of the same shape as
a that index data along the given axis in sorted order.

	Parameters:	a : array_like

Array to sort.

axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None,
the flattened array is used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

	Returns:	index_array : ndarray, int

Array of indices that sort a along the specified axis.
In other words, a[index_array] yields a sorted a.

See also

	sort

	Describes sorting algorithms used.

	lexsort

	Indirect stable sort with multiple keys.

	ndarray.sort

	Inplace sort.

	argpartition

	Indirect partial sort.

Notes

See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing
nan values. The enhanced sort order is documented in sort.

Examples

One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])

Two-dimensional array:

>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],
 [2, 2]])

>>> np.argsort(x, axis=0)
array([[0, 1],
 [1, 0]])

>>> np.argsort(x, axis=1)
array([[0, 1],
 [0, 1]])

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],
 dtype=[('x', '<i4'), ('y', '<i4')])

>>> np.argsort(x, order=('x','y'))
array([1, 0])

>>> np.argsort(x, order=('y','x'))
array([0, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.ndarray.sort

	
ndarray.sort(axis=-1, kind='quicksort', order=None)

	Sort an array, in-place.

	Parameters:	axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

	numpy.sort

	Return a sorted copy of an array.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in sorted array.

	partition

	Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.msort

	
numpy.msort(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2719]

	Return a copy of an array sorted along the first axis.

	Parameters:	a : array_like

Array to be sorted.

	Returns:	sorted_array : ndarray

Array of the same type and shape as a.

See also

sort

Notes

np.msort(a) is equivalent to np.sort(a, axis=0).

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.sort_complex

	
numpy.sort_complex(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1295]

	Sort a complex array using the real part first, then the imaginary part.

	Parameters:	a : array_like

Input array

	Returns:	out : complex ndarray

Always returns a sorted complex array.

Examples

>>> np.sort_complex([5, 3, 6, 2, 1])
array([1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])

>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
array([1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.partition

	
numpy.partition(a, kth, axis=-1, kind='introselect', order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L540]

	Return a partitioned copy of an array.

Creates a copy of the array with its elements rearranged in such a way that
the value of the element in kth position is in the position it would be in
a sorted array. All elements smaller than the kth element are moved before
this element and all equal or greater are moved behind it. The ordering of
the elements in the two partitions is undefined.

New in version 1.8.0.

	Parameters:	a : array_like

Array to be sorted.

kth : int or sequence of ints

Element index to partition by. The kth value of the element will be in
its final sorted position and all smaller elements will be moved before
it and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

axis : int or None, optional

Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : list, optional

When a is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.

	Returns:	partitioned_array : ndarray

Array of the same type and shape as a.

See also

	ndarray.partition

	Method to sort an array in-place.

	argpartition

	Indirect partition.

	sort

	Full sorting

Notes

The various selection algorithms are characterized by their average speed,
worst case performance, work space size, and whether they are stable. A
stable sort keeps items with the same key in the same relative order. The
available algorithms have the following properties:

	kind
	speed
	worst case
	work space
	stable

	‘introselect’
	1
	O(n)
	0
	no

All the partition algorithms make temporary copies of the data when
partitioning along any but the last axis. Consequently, partitioning
along the last axis is faster and uses less space than partitioning
along any other axis.

The sort order for complex numbers is lexicographic. If both the real
and imaginary parts are non-nan then the order is determined by the
real parts except when they are equal, in which case the order is
determined by the imaginary parts.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> np.partition(a, 3)
array([2, 1, 3, 4])

>>> np.partition(a, (1, 3))
array([1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.argpartition

	
numpy.argpartition(a, kth, axis=-1, kind='introselect', order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L626]

	Perform an indirect partition along the given axis using the algorithm
specified by the kind keyword. It returns an array of indices of the
same shape as a that index data along the given axis in partitioned
order.

New in version 1.8.0.

	Parameters:	a : array_like

Array to sort.

kth : int or sequence of ints

Element index to partition by. The kth element will be in its final
sorted position and all smaller elements will be moved before it and
all larger elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all of them into
their sorted position at once.

axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None,
the flattened array is used.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

	Returns:	index_array : ndarray, int

Array of indices that partition a along the specified axis.
In other words, a[index_array] yields a sorted a.

See also

	partition

	Describes partition algorithms used.

	ndarray.partition

	Inplace partition.

	argsort

	Full indirect sort

Notes

See partition for notes on the different selection algorithms.

Examples

One dimensional array:

>>> x = np.array([3, 4, 2, 1])
>>> x[np.argpartition(x, 3)]
array([2, 1, 3, 4])
>>> x[np.argpartition(x, (1, 3))]
array([1, 2, 3, 4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.argmax

	
numpy.argmax(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L881]

	Indices of the maximum values along an axis.

	Parameters:	a : array_like

Input array.

axis : int, optional

By default, the index is into the flattened array, otherwise
along the specified axis.

	Returns:	index_array : ndarray of ints

Array of indices into the array. It has the same shape as a.shape
with the dimension along axis removed.

See also

ndarray.argmax, argmin

	amax

	The maximum value along a given axis.

	unravel_index

	Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the maximum values, the indices
corresponding to the first occurrence are returned.

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.argmax(a)
5
>>> np.argmax(a, axis=0)
array([1, 1, 1])
>>> np.argmax(a, axis=1)
array([2, 2])

>>> b = np.arange(6)
>>> b[1] = 5
>>> b
array([0, 5, 2, 3, 4, 5])
>>> np.argmax(b) # Only the first occurrence is returned.
1

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.nanargmax

	
numpy.nanargmax(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\nanfunctions.py#L379]

	Return the indices of the maximum values in the specified axis ignoring
NaNs. For all-NaN slices ValueError is raised. Warning: the
results cannot be trusted if a slice contains only NaNs and -Infs.

	Parameters:	a : array_like

Input data.

axis : int, optional

Axis along which to operate. By default flattened input is used.

	Returns:	index_array : ndarray

An array of indices or a single index value.

See also

argmax, nanargmin

Examples

>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmax(a)
0
>>> np.nanargmax(a)
1
>>> np.nanargmax(a, axis=0)
array([1, 0])
>>> np.nanargmax(a, axis=1)
array([1, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.argmin

	
numpy.argmin(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L938]

	Return the indices of the minimum values along an axis.

See also

	argmax

	Similar function. Please refer to numpy.argmax for detailed documentation.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.nanargmin

	
numpy.nanargmin(a, axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\nanfunctions.py#L335]

	Return the indices of the minimum values in the specified axis ignoring
NaNs. For all-NaN slices ValueError is raised. Warning: the results
cannot be trusted if a slice contains only NaNs and Infs.

	Parameters:	a : array_like

Input data.

axis : int, optional

Axis along which to operate. By default flattened input is used.

	Returns:	index_array : ndarray

An array of indices or a single index value.

See also

argmin, nanargmax

Examples

>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmin(a)
0
>>> np.nanargmin(a)
2
>>> np.nanargmin(a, axis=0)
array([1, 1])
>>> np.nanargmin(a, axis=1)
array([1, 0])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.argwhere

	
numpy.argwhere(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L733]

	Find the indices of array elements that are non-zero, grouped by element.

	Parameters:	a : array_like

Input data.

	Returns:	index_array : ndarray

Indices of elements that are non-zero. Indices are grouped by element.

See also

where, nonzero

Notes

np.argwhere(a) is the same as np.transpose(np.nonzero(a)).

The output of argwhere is not suitable for indexing arrays.
For this purpose use where(a) instead.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> x
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.argwhere(x>1)
array([[0, 2],
 [1, 0],
 [1, 1],
 [1, 2]])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.nonzero

	
numpy.nonzero(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L1372]

	Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing
the indices of the non-zero elements in that dimension. The
corresponding non-zero values can be obtained with:

a[nonzero(a)]

To group the indices by element, rather than dimension, use:

transpose(nonzero(a))

The result of this is always a 2-D array, with a row for
each non-zero element.

	Parameters:	a : array_like

Input array.

	Returns:	tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also

	flatnonzero

	Return indices that are non-zero in the flattened version of the input array.

	ndarray.nonzero

	Equivalent ndarray method.

	count_nonzero

	Counts the number of non-zero elements in the input array.

Examples

>>> x = np.eye(3)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> np.nonzero(x)
(array([0, 1, 2]), array([0, 1, 2]))

>>> x[np.nonzero(x)]
array([1., 1., 1.])
>>> np.transpose(np.nonzero(x))
array([[0, 0],
 [1, 1],
 [2, 2]])

A common use for nonzero is to find the indices of an array, where
a condition is True. Given an array a, the condition a > 3 is a
boolean array and since False is interpreted as 0, np.nonzero(a > 3)
yields the indices of the a where the condition is true.

>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
array([[False, False, False],
 [True, True, True],
 [True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the boolean array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.flatnonzero

	
numpy.flatnonzero(a)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L773]

	Return indices that are non-zero in the flattened version of a.

This is equivalent to a.ravel().nonzero()[0].

	Parameters:	a : ndarray

Input array.

	Returns:	res : ndarray

Output array, containing the indices of the elements of a.ravel()
that are non-zero.

See also

	nonzero

	Return the indices of the non-zero elements of the input array.

	ravel

	Return a 1-D array containing the elements of the input array.

Examples

>>> x = np.arange(-2, 3)
>>> x
array([-2, -1, 0, 1, 2])
>>> np.flatnonzero(x)
array([0, 1, 3, 4])

Use the indices of the non-zero elements as an index array to extract
these elements:

>>> x.ravel()[np.flatnonzero(x)]
array([-2, -1, 1, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.where

	
numpy.where(condition[, x, y])

	Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

	Parameters:	condition : array_like, bool

When True, yield x, otherwise yield y.

x, y : array_like, optional

Values from which to choose. x and y need to have the same
shape as condition.

	Returns:	out : ndarray or tuple of ndarrays

If both x and y are specified, the output array contains
elements of x where condition is True, and elements from
y elsewhere.

If only condition is given, return the tuple
condition.nonzero(), the indices where condition is True.

See also

nonzero, choose

Notes

If x and y are given and input arrays are 1-D, where is
equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

Examples

>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
 [3, 4]])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

>>> x = np.arange(9.).reshape(3, 3)
>>> np.where(x > 5)
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where(x > 3.0)] # Note: result is 1D.
array([4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[0., 1., 2.],
 [3., 4., -1.],
 [-1., -1., -1.]])

Find the indices of elements of x that are in goodvalues.

>>> goodvalues = [3, 4, 7]
>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)
>>> ix
array([[False, False, False],
 [True, True, False],
 [False, True, False]], dtype=bool)
>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.searchsorted

	
numpy.searchsorted(a, v, side='left', sorter=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L955]

	Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the
corresponding elements in v were inserted before the indices, the
order of a would be preserved.

	Parameters:	a : 1-D array_like

Input array. If sorter is None, then it must be sorted in
ascending order, otherwise sorter must be an array of indices
that sort it.

v : array_like

Values to insert into a.

side : {‘left’, ‘right’}, optional

If ‘left’, the index of the first suitable location found is given.
If ‘right’, return the last such index. If there is no suitable
index, return either 0 or N (where N is the length of a).

sorter : 1-D array_like, optional

New in version 1.7.0.

Optional array of integer indices that sort array a into ascending
order. They are typically the result of argsort.

	Returns:	indices : array of ints

Array of insertion points with the same shape as v.

See also

	sort

	Return a sorted copy of an array.

	histogram

	Produce histogram from 1-D data.

Notes

Binary search is used to find the required insertion points.

As of Numpy 1.4.0 searchsorted works with real/complex arrays containing
nan values. The enhanced sort order is documented in sort.

Examples

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.extract

	
numpy.extract(condition, arr)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1400]

	Return the elements of an array that satisfy some condition.

This is equivalent to np.compress(ravel(condition), ravel(arr)). If
condition is boolean np.extract is equivalent to arr[condition].

	Parameters:	condition : array_like

An array whose nonzero or True entries indicate the elements of arr
to extract.

arr : array_like

Input array of the same size as condition.

	Returns:	extract : ndarray

Rank 1 array of values from arr where condition is True.

See also

take, put, copyto, compress

Examples

>>> arr = np.arange(12).reshape((3, 4))
>>> arr
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> condition = np.mod(arr, 3)==0
>>> condition
array([[True, False, False, True],
 [False, False, True, False],
 [False, True, False, False]], dtype=bool)
>>> np.extract(condition, arr)
array([0, 3, 6, 9])

If condition is boolean:

>>> arr[condition]
array([0, 3, 6, 9])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Sorting, searching, and counting

numpy.count_nonzero

	
numpy.count_nonzero(a)

	Counts the number of non-zero values in the array a.

	Parameters:	a : array_like

The array for which to count non-zeros.

	Returns:	count : int or array of int

Number of non-zero values in the array.

See also

	nonzero

	Return the coordinates of all the non-zero values.

Examples

>>> np.count_nonzero(np.eye(4))
4
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]])
5

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Statistics

Order statistics

	amin(a[,axis,out,keepdims])
	Return the minimum of an array or minimum along an axis.

	amax(a[,axis,out,keepdims])
	Return the maximum of an array or maximum along an axis.

	nanmin(a[,axis,out,keepdims])
	Return minimum of an array or minimum along an axis, ignoring any NaNs.

	nanmax(a[,axis,out,keepdims])
	Return the maximum of an array or maximum along an axis, ignoring any NaNs.

	ptp(a[,axis,out])
	Range of values (maximum - minimum) along an axis.

	percentile(a,q[,axis,out,...])
	Compute the qth percentile of the data along the specified axis.

Averages and variances

	median(a[,axis,out,overwrite_input,keepdims])
	Compute the median along the specified axis.

	average(a[,axis,weights,returned])
	Compute the weighted average along the specified axis.

	mean(a[,axis,dtype,out,keepdims])
	Compute the arithmetic mean along the specified axis.

	std(a[,axis,dtype,out,ddof,keepdims])
	Compute the standard deviation along the specified axis.

	var(a[,axis,dtype,out,ddof,keepdims])
	Compute the variance along the specified axis.

	nanmean(a[,axis,dtype,out,keepdims])
	Compute the arithmetic mean along the specified axis, ignoring NaNs.

	nanstd(a[,axis,dtype,out,ddof,keepdims])
	Compute the standard deviation along the specified axis, while ignoring NaNs.

	nanvar(a[,axis,dtype,out,ddof,keepdims])
	Compute the variance along the specified axis, while ignoring NaNs.

Correlating

	corrcoef(x[,y,rowvar,bias,ddof])
	Return correlation coefficients.

	correlate(a,v[,mode,old_behavior])
	Cross-correlation of two 1-dimensional sequences.

	cov(m[,y,rowvar,bias,ddof])
	Estimate a covariance matrix, given data.

Histograms

	histogram(a[,bins,range,normed,weights,...])
	Compute the histogram of a set of data.

	histogram2d(x,y[,bins,range,normed,weights])
	Compute the bi-dimensional histogram of two data samples.

	histogramdd(sample[,bins,range,normed,...])
	Compute the multidimensional histogram of some data.

	bincount(x[,weights,minlength])
	Count number of occurrences of each value in array of non-negative ints.

	digitize(x,bins[,right])
	Return the indices of the bins to which each value in input array belongs.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.amin

	
numpy.amin(a, axis=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2134]

	Return the minimum of an array or minimum along an axis.

	Parameters:	a : array_like

Input data.

axis : int, optional

Axis along which to operate. By default, flattened input is used.

out : ndarray, optional

Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
See doc.ufuncs (Section “Output arguments”) for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	amin : ndarray or scalar

Minimum of a. If axis is None, the result is a scalar value.
If axis is given, the result is an array of dimension
a.ndim - 1.

See also

	amax

	The maximum value of an array along a given axis, propagating any NaNs.

	nanmin

	The minimum value of an array along a given axis, ignoring any NaNs.

	minimum

	Element-wise minimum of two arrays, propagating any NaNs.

	fmin

	Element-wise minimum of two arrays, ignoring any NaNs.

	argmin

	Return the indices of the minimum values.

nanmax, maximum, fmax

Notes

NaN values are propagated, that is if at least one item is NaN, the
corresponding min value will be NaN as well. To ignore NaN values
(MATLAB behavior), please use nanmin.

Don’t use amin for element-wise comparison of 2 arrays; when
a.shape[0] is 2, minimum(a[0], a[1]) is faster than
amin(a, axis=0).

Examples

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],
 [2, 3]])
>>> np.amin(a) # Minimum of the flattened array
0
>>> np.amin(a, axis=0) # Minima along the first axis
array([0, 1])
>>> np.amin(a, axis=1) # Minima along the second axis
array([0, 2])

>>> b = np.arange(5, dtype=np.float)
>>> b[2] = np.NaN
>>> np.amin(b)
nan
>>> np.nanmin(b)
0.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.amax

	
numpy.amax(a, axis=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2050]

	Return the maximum of an array or maximum along an axis.

	Parameters:	a : array_like

Input data.

axis : int, optional

Axis along which to operate. By default, flattened input is used.

out : ndarray, optional

Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
See doc.ufuncs (Section “Output arguments”) for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	amax : ndarray or scalar

Maximum of a. If axis is None, the result is a scalar value.
If axis is given, the result is an array of dimension
a.ndim - 1.

See also

	amin

	The minimum value of an array along a given axis, propagating any NaNs.

	nanmax

	The maximum value of an array along a given axis, ignoring any NaNs.

	maximum

	Element-wise maximum of two arrays, propagating any NaNs.

	fmax

	Element-wise maximum of two arrays, ignoring any NaNs.

	argmax

	Return the indices of the maximum values.

nanmin, minimum, fmin

Notes

NaN values are propagated, that is if at least one item is NaN, the
corresponding max value will be NaN as well. To ignore NaN values
(MATLAB behavior), please use nanmax.

Don’t use amax for element-wise comparison of 2 arrays; when
a.shape[0] is 2, maximum(a[0], a[1]) is faster than
amax(a, axis=0).

Examples

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],
 [2, 3]])
>>> np.amax(a) # Maximum of the flattened array
3
>>> np.amax(a, axis=0) # Maxima along the first axis
array([2, 3])
>>> np.amax(a, axis=1) # Maxima along the second axis
array([1, 3])

>>> b = np.arange(5, dtype=np.float)
>>> b[2] = np.NaN
>>> np.amax(b)
nan
>>> np.nanmax(b)
4.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.nanmin

	
numpy.nanmin(a, axis=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\nanfunctions.py#L137]

	Return minimum of an array or minimum along an axis, ignoring any NaNs.
When all-NaN slices are encountered a RuntimeWarning is raised and
Nan is returned for that slice.

	Parameters:	a : array_like

Array containing numbers whose minimum is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the minimum is computed. The default is to compute
the minimum of the flattened array.

out : ndarray, optional

Alternate output array in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details.

New in version 1.8.0.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original a.

New in version 1.8.0.

	Returns:	nanmin : ndarray

An array with the same shape as a, with the specified axis
removed. If a is a 0-d array, or if axis is None, an ndarray
scalar is returned. The same dtype as a is returned.

See also

	nanmax

	The maximum value of an array along a given axis, ignoring any NaNs.

	amin

	The minimum value of an array along a given axis, propagating any NaNs.

	fmin

	Element-wise minimum of two arrays, ignoring any NaNs.

	minimum

	Element-wise minimum of two arrays, propagating any NaNs.

	isnan

	Shows which elements are Not a Number (NaN).

	isfinite

	Shows which elements are neither NaN nor infinity.

amax, fmax, maximum

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Positive infinity is treated as a very large number and negative
infinity is treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.min.

Examples

>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmin(a)
1.0
>>> np.nanmin(a, axis=0)
array([1., 2.])
>>> np.nanmin(a, axis=1)
array([1., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmin([1, 2, np.nan, np.inf])
1.0
>>> np.nanmin([1, 2, np.nan, np.NINF])
-inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.nanmax

	
numpy.nanmax(a, axis=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\nanfunctions.py#L236]

	Return the maximum of an array or maximum along an axis, ignoring any
NaNs. When all-NaN slices are encountered a RuntimeWarning is
raised and NaN is returned for that slice.

	Parameters:	a : array_like

Array containing numbers whose maximum is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the maximum is computed. The default is to compute
the maximum of the flattened array.

out : ndarray, optional

Alternate output array in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details.

New in version 1.8.0.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original a.

New in version 1.8.0.

	Returns:	nanmax : ndarray

An array with the same shape as a, with the specified axis removed.
If a is a 0-d array, or if axis is None, an ndarray scalar is
returned. The same dtype as a is returned.

See also

	nanmin

	The minimum value of an array along a given axis, ignoring any NaNs.

	amax

	The maximum value of an array along a given axis, propagating any NaNs.

	fmax

	Element-wise maximum of two arrays, ignoring any NaNs.

	maximum

	Element-wise maximum of two arrays, propagating any NaNs.

	isnan

	Shows which elements are Not a Number (NaN).

	isfinite

	Shows which elements are neither NaN nor infinity.

amin, fmin, minimum

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Positive infinity is treated as a very large number and negative
infinity is treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.max.

Examples

>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmax(a)
3.0
>>> np.nanmax(a, axis=0)
array([3., 2.])
>>> np.nanmax(a, axis=1)
array([2., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmax([1, 2, np.nan, np.NINF])
2.0
>>> np.nanmax([1, 2, np.nan, np.inf])
inf

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.ptp

	
numpy.ptp(a, axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2005]

	Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for ‘peak to peak’.

	Parameters:	a : array_like

Input values.

axis : int, optional

Axis along which to find the peaks. By default, flatten the
array.

out : array_like

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type of the output values will be cast if necessary.

	Returns:	ptp : ndarray

A new array holding the result, unless out was
specified, in which case a reference to out is returned.

Examples

>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
 [2, 3]])

>>> np.ptp(x, axis=0)
array([2, 2])

>>> np.ptp(x, axis=1)
array([1, 1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.percentile

	
numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2947]

	Compute the qth percentile of the data along the specified axis.

Returns the qth percentile of the array elements.

	Parameters:	a : array_like

Input array or object that can be converted to an array.

q : float in range of [0,100] (or sequence of floats)

Percentile to compute which must be between 0 and 100 inclusive.

axis : int or sequence of int, optional

Axis along which the percentiles are computed. The default (None)
is to compute the percentiles along a flattened version of the array.
A sequence of axes is supported since version 1.9.0.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array a for
calculations. The input array will be modified by the call to
percentile. This will save memory when you do not need to preserve
the contents of the input array. In this case you should not make
any assumptions about the content of the passed in array a after
this function completes – treat it as undefined. Default is False.
Note that, if the a input is not already an array this parameter
will have no effect, a will be converted to an array internally
regardless of the value of this parameter.

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points i and j:

	linear: i + (j - i) * fraction, where fraction is the
fractional part of the index surrounded by i and j.

	lower: i.

	higher: j.

	nearest: i or j whichever is nearest.

	midpoint: (i + j) / 2.

New in version 1.9.0.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

New in version 1.9.0.

	Returns:	percentile : scalar or ndarray

If a single percentile q is given and axis=None a scalar is
returned. If multiple percentiles q are given an array holding
the result is returned. The results are listed in the first axis.
(If out is specified, in which case that array is returned
instead). If the input contains integers, or floats of smaller
precision than 64, then the output data-type is float64. Otherwise,
the output data-type is the same as that of the input.

See also

mean, median

Notes

Given a vector V of length N, the q-th percentile of V is the q-th ranked
value in a sorted copy of V. The values and distances of the two
nearest neighbors as well as the interpolation parameter will
determine the percentile if the normalized ranking does not match q
exactly. This function is the same as the median if q=50, the same
as the minimum if q=0 and the same as the maximum if q=100.

Examples

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
 [3, 2, 1]])
>>> np.percentile(a, 50)
array([3.5])
>>> np.percentile(a, 50, axis=0)
array([[6.5, 4.5, 2.5]])
>>> np.percentile(a, 50, axis=1)
array([[7.],
 [2.]])

>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=m)
array([[6.5, 4.5, 2.5]])
>>> m
array([[6.5, 4.5, 2.5]])

>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([[7.],
 [2.]])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.percentile(b, 50, axis=None, overwrite_input=True)
array([3.5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.median

	
numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2807]

	Compute the median along the specified axis.

Returns the median of the array elements.

	Parameters:	a : array_like

Input array or object that can be converted to an array.

axis : int or sequence of int, optional

Axis along which the medians are computed. The default (axis=None)
is to compute the median along a flattened version of the array.
A sequence of axes is supported since version 1.9.0.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape and buffer length as the expected output, but the
type (of the output) will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array (a) for
calculations. The input array will be modified by the call to
median. This will save memory when you do not need to preserve the
contents of the input array. Treat the input as undefined, but it
will probably be fully or partially sorted. Default is False. Note
that, if overwrite_input is True and the input is not already an
ndarray, an error will be raised.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

New in version 1.9.0.

	Returns:	median : ndarray

A new array holding the result (unless out is specified, in which
case that array is returned instead). If the input contains
integers, or floats of smaller precision than 64, then the output
data-type is float64. Otherwise, the output data-type is the same
as that of the input.

See also

mean, percentile

Notes

Given a vector V of length N, the median of V is the middle value of
a sorted copy of V, V_sorted - i.e., V_sorted[(N-1)/2], when N is
odd. When N is even, it is the average of the two middle values of
V_sorted.

Examples

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
 [3, 2, 1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
array([7., 2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.average

	
numpy.average(a, axis=None, weights=None, returned=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L436]

	Compute the weighted average along the specified axis.

	Parameters:	a : array_like

Array containing data to be averaged. If a is not an array, a
conversion is attempted.

axis : int, optional

Axis along which to average a. If None, averaging is done over
the flattened array.

weights : array_like, optional

An array of weights associated with the values in a. Each value in
a contributes to the average according to its associated weight.
The weights array can either be 1-D (in which case its length must be
the size of a along the given axis) or of the same shape as a.
If weights=None, then all data in a are assumed to have a
weight equal to one.

returned : bool, optional

Default is False. If True, the tuple (average, sum_of_weights)
is returned, otherwise only the average is returned.
If weights=None, sum_of_weights is equivalent to the number of
elements over which the average is taken.

	Returns:	average, [sum_of_weights] : {array_type, double}

Return the average along the specified axis. When returned is True,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is Float
if a is of integer type, otherwise it is of the same type as a.
sum_of_weights is of the same type as average.

	Raises:	ZeroDivisionError

When all weights along axis are zero. See numpy.ma.average for a
version robust to this type of error.

TypeError

When the length of 1D weights is not the same as the shape of a
along axis.

See also

mean

	ma.average

	average for masked arrays – useful if your data contains “missing” values

Examples

>>> data = range(1,5)
>>> data
[1, 2, 3, 4]
>>> np.average(data)
2.5
>>> np.average(range(1,11), weights=range(10,0,-1))
4.0

>>> data = np.arange(6).reshape((3,2))
>>> data
array([[0, 1],
 [2, 3],
 [4, 5]])
>>> np.average(data, axis=1, weights=[1./4, 3./4])
array([0.75, 2.75, 4.75])
>>> np.average(data, weights=[1./4, 3./4])
Traceback (most recent call last):
...
TypeError: Axis must be specified when shapes of a and weights differ.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.mean

	
numpy.mean(a, axis=None, dtype=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2643]

	Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over
the flattened array by default, otherwise over the specified axis.
float64 intermediate and return values are used for integer inputs.

	Parameters:	a : array_like

Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute
the mean of the flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the
input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

See also

	average

	Weighted average

std, var, nanmean, nanstd, nanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided
by the number of elements.

Note that for floating-point input, the mean is computed using the
same precision the input has. Depending on the input data, this can
cause the results to be inaccurate, especially for float32 (see
example below). Specifying a higher-precision accumulator using the
dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([2., 3.])
>>> np.mean(a, axis=1)
array([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.546875

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.std

	
numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2729]

	Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.

	Parameters:	a : array_like

Calculate the standard deviation of these values.

axis : int, optional

Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it is
the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements.
By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation,
otherwise return a reference to the output array.

See also

var, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is specified,
the divisor N - ddof is used instead. In standard statistical
practice, ddof=1 provides an unbiased estimator of the variance
of the infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables. The
standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dtype keyword can
alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.var

	
numpy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\fromnumeric.py#L2830]

	Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.

	Parameters:	a : array_like

Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance;
otherwise, a reference to the output array is returned.

See also

std, mean, nanmean, nanstd, nanvar

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.var(a)
0.20405951142311096

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932997387
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.20250000000000001

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.nanmean

	
numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\nanfunctions.py#L509]

	Compute the arithmetic mean along the specified axis, ignoring NaNs.

Returns the average of the array elements. The average is taken over
the flattened array by default, otherwise over the specified axis.
float64 intermediate and return values are used for integer inputs.

For all-NaN slices, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

	Parameters:	a : array_like

Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute
the mean of the flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default
is float64; for inexact inputs, it is the same as the input
dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default
is None; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original arr.

	Returns:	m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned. Nan is
returned for slices that contain only NaNs.

See also

	average

	Weighted average

	mean

	Arithmetic mean taken while not ignoring NaNs

var, nanvar

Notes

The arithmetic mean is the sum of the non-NaN elements along the axis
divided by the number of non-NaN elements.

Note that for floating-point input, the mean is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32. Specifying a
higher-precision accumulator using the dtype keyword can alleviate
this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanmean(a)
2.6666666666666665
>>> np.nanmean(a, axis=0)
array([2., 4.])
>>> np.nanmean(a, axis=1)
array([1., 3.5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.nanstd

	
numpy.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\nanfunctions.py#L1064]

	Compute the standard deviation along the specified axis, while
ignoring NaNs.

Returns the standard deviation, a measure of the spread of a
distribution, of the non-NaN array elements. The standard deviation is
computed for the flattened array by default, otherwise over the
specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is
returned and a RuntimeWarning is raised.

New in version 1.8.0.

	Parameters:	a : array_like

Calculate the standard deviation of the non-NaN values.

axis : int, optional

Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it
is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the
calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of non-NaN
elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard
deviation, otherwise return a reference to the output array. If
ddof is >= the number of non-NaN elements in a slice or the slice
contains only NaNs, then the result for that slice is NaN.

See also

var, mean, std, nanvar, nanmean

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared
deviations from the mean: std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is
specified, the divisor N - ddof is used instead. In standard
statistical practice, ddof=1 provides an unbiased estimator of the
variance of the infinite population. ddof=0 provides a maximum
likelihood estimate of the variance for normally distributed variables.
The standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute value before
squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanstd(a)
1.247219128924647
>>> np.nanstd(a, axis=0)
array([1., 0.])
>>> np.nanstd(a, axis=1)
array([0., 0.5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.nanvar

	
numpy.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\nanfunctions.py#L933]

	Compute the variance along the specified axis, while ignoring NaNs.

Returns the variance of the array elements, a measure of the spread of
a distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is
returned and a RuntimeWarning is raised.

New in version 1.8.0.

	Parameters:	a : array_like

Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of non-NaN
elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

	Returns:	variance : ndarray, see dtype parameter above

If out is None, return a new array containing the variance,
otherwise return a reference to the output array. If ddof is >= the
number of non-NaN elements in a slice or the slice contains only
NaNs, then the result for that slice is NaN.

See also

	std

	Standard deviation

	mean

	Average

	var

	Variance while not ignoring NaNs

nanstd, nanmean

	numpy.doc.ufuncs

	Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite
population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.var(a)
1.5555555555555554
>>> np.nanvar(a, axis=0)
array([1., 0.])
>>> np.nanvar(a, axis=1)
array([0., 0.25])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.corrcoef

	
numpy.corrcoef(x, y=None, rowvar=1, bias=0, ddof=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1904]

	Return correlation coefficients.

Please refer to the documentation for cov for more detail. The
relationship between the correlation coefficient matrix, P, and the
covariance matrix, C, is

[image: P_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }]

The values of P are between -1 and 1, inclusive.

	Parameters:	x : array_like

A 1-D or 2-D array containing multiple variables and observations.
Each row of m represents a variable, and each column a single
observation of all those variables. Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same
shape as m.

rowvar : int, optional

If rowvar is non-zero (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.

bias : int, optional

Default normalization is by (N - 1), where N is the number of
observations (unbiased estimate). If bias is 1, then
normalization is by N. These values can be overridden by using
the keyword ddof in numpy versions >= 1.5.

ddof : {None, int}, optional

New in version 1.5.

If not None normalization is by (N - ddof), where N is
the number of observations; this overrides the value implied by
bias. The default value is None.

	Returns:	out : ndarray

The correlation coefficient matrix of the variables.

See also

	cov

	Covariance matrix

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.correlate

	
numpy.correlate(a, v, mode='valid', old_behavior=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\numeric.py#L821]

	Cross-correlation of two 1-dimensional sequences.

This function computes the correlation as generally defined in signal
processing texts:

c_{av}[k] = sum_n a[n+k] * conj(v[n])

with a and v sequences being zero-padded where necessary and conj being
the conjugate.

	Parameters:	a, v : array_like

Input sequences.

mode : {‘valid’, ‘same’, ‘full’}, optional

Refer to the convolve docstring. Note that the default
is valid, unlike convolve, which uses full.

old_behavior : bool

If True, uses the old behavior from Numeric,
(correlate(a,v) == correlate(v,a), and the conjugate is not taken
for complex arrays). If False, uses the conventional signal
processing definition.

	Returns:	out : ndarray

Discrete cross-correlation of a and v.

See also

	convolve

	Discrete, linear convolution of two one-dimensional sequences.

Notes

The definition of correlation above is not unique and sometimes correlation
may be defined differently. Another common definition is:

c'_{av}[k] = sum_n a[n] conj(v[n+k])

which is related to c_{av}[k] by c'_{av}[k] = c_{av}[-k].

Examples

>>> np.correlate([1, 2, 3], [0, 1, 0.5])
array([3.5])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
array([2. , 3.5, 3.])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
array([0.5, 2. , 3.5, 3. , 0.])

Using complex sequences:

>>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
array([0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j])

Note that you get the time reversed, complex conjugated result
when the two input sequences change places, i.e.,
c_{va}[k] = c^{*}_{av}[-k]:

>>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
array([0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.cov

	
numpy.cov(m, y=None, rowvar=1, bias=0, ddof=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1780]

	Estimate a covariance matrix, given data.

Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, [image: X = [x_1, x_2, ... x_N]^T],
then the covariance matrix element [image: C_{ij}] is the covariance of
[image: x_i] and [image: x_j]. The element [image: C_{ii}] is the variance
of [image: x_i].

	Parameters:	m : array_like

A 1-D or 2-D array containing multiple variables and observations.
Each row of m represents a variable, and each column a single
observation of all those variables. Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same
form as that of m.

rowvar : int, optional

If rowvar is non-zero (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.

bias : int, optional

Default normalization is by (N - 1), where N is the number of
observations given (unbiased estimate). If bias is 1, then
normalization is by N. These values can be overridden by using
the keyword ddof in numpy versions >= 1.5.

ddof : int, optional

New in version 1.5.

If not None normalization is by (N - ddof), where N is
the number of observations; this overrides the value implied by
bias. The default value is None.

	Returns:	out : ndarray

The covariance matrix of the variables.

See also

	corrcoef

	Normalized covariance matrix

Examples

Consider two variables, [image: x_0] and [image: x_1], which
correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],
 [2, 1, 0]])

Note how [image: x_0] increases while [image: x_1] decreases. The covariance
matrix shows this clearly:

>>> np.cov(x)
array([[1., -1.],
 [-1., 1.]])

Note that element [image: C_{0,1}], which shows the correlation between
[image: x_0] and [image: x_1], is negative.

Further, note how x and y are combined:

>>> x = [-2.1, -1, 4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.vstack((x,y))
>>> print np.cov(X)
[[11.71 -4.286]
 [-4.286 2.14413333]]
>>> print np.cov(x, y)
[[11.71 -4.286]
 [-4.286 2.14413333]]
>>> print np.cov(x)
11.71

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.histogram

	
numpy.histogram(a, bins=10, range=None, normed=False, weights=None, density=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L78]

	Compute the histogram of a set of data.

	Parameters:	a : array_like

Input data. The histogram is computed over the flattened array.

bins : int or sequence of scalars, optional

If bins is an int, it defines the number of equal-width
bins in the given range (10, by default). If bins is a sequence,
it defines the bin edges, including the rightmost edge, allowing
for non-uniform bin widths.

range : (float, float), optional

The lower and upper range of the bins. If not provided, range
is simply (a.min(), a.max()). Values outside the range are
ignored.

normed : bool, optional

This keyword is deprecated in Numpy 1.6 due to confusing/buggy
behavior. It will be removed in Numpy 2.0. Use the density keyword
instead.
If False, the result will contain the number of samples
in each bin. If True, the result is the value of the
probability density function at the bin, normalized such that
the integral over the range is 1. Note that this latter behavior is
known to be buggy with unequal bin widths; use density instead.

weights : array_like, optional

An array of weights, of the same shape as a. Each value in a
only contributes its associated weight towards the bin count
(instead of 1). If normed is True, the weights are normalized,
so that the integral of the density over the range remains 1

density : bool, optional

If False, the result will contain the number of samples
in each bin. If True, the result is the value of the
probability density function at the bin, normalized such that
the integral over the range is 1. Note that the sum of the
histogram values will not be equal to 1 unless bins of unity
width are chosen; it is not a probability mass function.
Overrides the normed keyword if given.

	Returns:	hist : array

The values of the histogram. See normed and weights for a
description of the possible semantics.

bin_edges : array of dtype float

Return the bin edges (length(hist)+1).

See also

histogramdd, bincount, searchsorted, digitize

Notes

All but the last (righthand-most) bin is half-open. In other words, if
bins is:

[1, 2, 3, 4]

then the first bin is [1, 2) (including 1, but excluding 2) and the
second [2, 3). The last bin, however, is [3, 4], which includes
4.

Examples

>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))

>>> a = np.arange(5)
>>> hist, bin_edges = np.histogram(a, density=True)
>>> hist
array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
>>> hist.sum()
2.4999999999999996
>>> np.sum(hist*np.diff(bin_edges))
1.0

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.histogram2d

	
numpy.histogram2d(x, y, bins=10, range=None, normed=False, weights=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\twodim_base.py#L578]

	Compute the bi-dimensional histogram of two data samples.

	Parameters:	x : array_like, shape (N,)

An array containing the x coordinates of the points to be
histogrammed.

y : array_like, shape (N,)

An array containing the y coordinates of the points to be
histogrammed.

bins : int or [int, int] or array_like or [array, array], optional

The bin specification:

	If int, the number of bins for the two dimensions (nx=ny=bins).

	If [int, int], the number of bins in each dimension
(nx, ny = bins).

	If array_like, the bin edges for the two dimensions
(x_edges=y_edges=bins).

	If [array, array], the bin edges in each dimension
(x_edges, y_edges = bins).

range : array_like, shape(2,2), optional

The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the bins parameters):
[[xmin, xmax], [ymin, ymax]]. All values outside of this range
will be considered outliers and not tallied in the histogram.

normed : bool, optional

If False, returns the number of samples in each bin. If True,
returns the bin density bin_count / sample_count / bin_area.

weights : array_like, shape(N,), optional

An array of values w_i weighing each sample (x_i, y_i).
Weights are normalized to 1 if normed is True. If normed is
False, the values of the returned histogram are equal to the sum of
the weights belonging to the samples falling into each bin.

	Returns:	H : ndarray, shape(nx, ny)

The bi-dimensional histogram of samples x and y. Values in x
are histogrammed along the first dimension and values in y are
histogrammed along the second dimension.

xedges : ndarray, shape(nx,)

The bin edges along the first dimension.

yedges : ndarray, shape(ny,)

The bin edges along the second dimension.

See also

	histogram

	1D histogram

	histogramdd

	Multidimensional histogram

Notes

When normed is True, then the returned histogram is the sample
density, defined such that the sum over bins of the product
bin_value * bin_area is 1.

Please note that the histogram does not follow the Cartesian convention
where x values are on the abscissa and y values on the ordinate
axis. Rather, x is histogrammed along the first dimension of the
array (vertical), and y along the second dimension of the array
(horizontal). This ensures compatibility with histogramdd.

Examples

>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

Construct a 2D-histogram with variable bin width. First define the bin
edges:

>>> xedges = [0, 1, 1.5, 3, 5]
>>> yedges = [0, 2, 3, 4, 6]

Next we create a histogram H with random bin content:

>>> x = np.random.normal(3, 1, 100)
>>> y = np.random.normal(1, 1, 100)
>>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges))

Or we fill the histogram H with a determined bin content:

>>> H = np.ones((4, 4)).cumsum().reshape(4, 4)
>>> print H[::-1] # This shows the bin content in the order as plotted
[[13. 14. 15. 16.]
 [9. 10. 11. 12.]
 [5. 6. 7. 8.]
 [1. 2. 3. 4.]]

Imshow can only do an equidistant representation of bins:

>>> fig = plt.figure(figsize=(7, 3))
>>> ax = fig.add_subplot(131)
>>> ax.set_title('imshow: equidistant')
>>> im = plt.imshow(H, interpolation='nearest', origin='low',
 extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])

pcolormesh can display exact bin edges:

>>> ax = fig.add_subplot(132)
>>> ax.set_title('pcolormesh: exact bin edges')
>>> X, Y = np.meshgrid(xedges, yedges)
>>> ax.pcolormesh(X, Y, H)
>>> ax.set_aspect('equal')

NonUniformImage displays exact bin edges with interpolation:

>>> ax = fig.add_subplot(133)
>>> ax.set_title('NonUniformImage: interpolated')
>>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear')
>>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1])
>>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1])
>>> im.set_data(xcenters, ycenters, H)
>>> ax.images.append(im)
>>> ax.set_xlim(xedges[0], xedges[-1])
>>> ax.set_ylim(yedges[0], yedges[-1])
>>> ax.set_aspect('equal')
>>> plt.show()

(Source code)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.histogramdd

	
numpy.histogramdd(sample, bins=10, range=None, normed=False, weights=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L242]

	Compute the multidimensional histogram of some data.

	Parameters:	sample : array_like

The data to be histogrammed. It must be an (N,D) array or data
that can be converted to such. The rows of the resulting array
are the coordinates of points in a D dimensional polytope.

bins : sequence or int, optional

The bin specification:

	A sequence of arrays describing the bin edges along each dimension.

	The number of bins for each dimension (nx, ny, ... =bins)

	The number of bins for all dimensions (nx=ny=...=bins).

range : sequence, optional

A sequence of lower and upper bin edges to be used if the edges are
not given explicitly in bins. Defaults to the minimum and maximum
values along each dimension.

normed : bool, optional

If False, returns the number of samples in each bin. If True,
returns the bin density bin_count / sample_count / bin_volume.

weights : array_like (N,), optional

An array of values w_i weighing each sample (x_i, y_i, z_i, ...).
Weights are normalized to 1 if normed is True. If normed is False,
the values of the returned histogram are equal to the sum of the
weights belonging to the samples falling into each bin.

	Returns:	H : ndarray

The multidimensional histogram of sample x. See normed and weights
for the different possible semantics.

edges : list

A list of D arrays describing the bin edges for each dimension.

See also

	histogram

	1-D histogram

	histogram2d

	2-D histogram

Examples

>>> r = np.random.randn(100,3)
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
((5, 8, 4), 6, 9, 5)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.bincount

	
numpy.bincount(x, weights=None, minlength=None)

	Count number of occurrences of each value in array of non-negative ints.

The number of bins (of size 1) is one larger than the largest value in
x. If minlength is specified, there will be at least this number
of bins in the output array (though it will be longer if necessary,
depending on the contents of x).
Each bin gives the number of occurrences of its index value in x.
If weights is specified the input array is weighted by it, i.e. if a
value n is found at position i, out[n] += weight[i] instead
of out[n] += 1.

	Parameters:	x : array_like, 1 dimension, nonnegative ints

Input array.

weights : array_like, optional

Weights, array of the same shape as x.

minlength : int, optional

New in version 1.6.0.

A minimum number of bins for the output array.

	Returns:	out : ndarray of ints

The result of binning the input array.
The length of out is equal to np.amax(x)+1.

	Raises:	ValueError

If the input is not 1-dimensional, or contains elements with negative
values, or if minlength is non-positive.

TypeError

If the type of the input is float or complex.

See also

histogram, digitize, unique

Examples

>>> np.bincount(np.arange(5))
array([1, 1, 1, 1, 1])
>>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
array([1, 3, 1, 1, 0, 0, 0, 1])

>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
>>> np.bincount(x).size == np.amax(x)+1
True

The input array needs to be of integer dtype, otherwise a
TypeError is raised:

>>> np.bincount(np.arange(5, dtype=np.float))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: array cannot be safely cast to required type

A possible use of bincount is to perform sums over
variable-size chunks of an array, using the weights keyword.

>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
>>> x = np.array([0, 1, 1, 2, 2, 2])
>>> np.bincount(x, weights=w)
array([0.3, 0.7, 1.1])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Statistics

numpy.digitize

	
numpy.digitize(x, bins, right=False)

	Return the indices of the bins to which each value in input array belongs.

Each index i returned is such that bins[i-1] <= x < bins[i] if
bins is monotonically increasing, or bins[i-1] > x >= bins[i] if
bins is monotonically decreasing. If values in x are beyond the
bounds of bins, 0 or len(bins) is returned as appropriate. If right
is True, then the right bin is closed so that the index i is such
that bins[i-1] < x <= bins[i] or bins[i-1] >= x > bins[i]`` if bins
is monotonically increasing or decreasing, respectively.

	Parameters:	x : array_like

Input array to be binned. It has to be 1-dimensional.

bins : array_like

Array of bins. It has to be 1-dimensional and monotonic.

right : bool, optional

Indicating whether the intervals include the right or the left bin
edge. Default behavior is (right==False) indicating that the interval
does not include the right edge. The left bin and is open in this
case. Ie., bins[i-1] <= x < bins[i] is the default behavior for
monotonically increasing bins.

	Returns:	out : ndarray of ints

Output array of indices, of same shape as x.

	Raises:	ValueError

If the input is not 1-dimensional, or if bins is not monotonic.

TypeError

If the type of the input is complex.

See also

bincount, histogram, unique

Notes

If values in x are such that they fall outside the bin range,
attempting to index bins with the indices that digitize returns
will result in an IndexError.

Examples

>>> x = np.array([0.2, 6.4, 3.0, 1.6])
>>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
>>> inds = np.digitize(x, bins)
>>> inds
array([1, 4, 3, 2])
>>> for n in range(x.size):
... print bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]]
...
0.0 <= 0.2 < 1.0
4.0 <= 6.4 < 10.0
2.5 <= 3.0 < 4.0
1.0 <= 1.6 < 2.5

>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
>>> bins = np.array([0,5,10,15,20])
>>> np.digitize(x,bins,right=True)
array([1, 2, 3, 4, 4])
>>> np.digitize(x,bins,right=False)
array([1, 3, 3, 4, 5])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Test Support (numpy.testing)

Common test support for all numpy test scripts.

This single module should provide all the common functionality for numpy
tests in a single location, so that test scripts can just import it and
work right away.

Asserts

	assert_almost_equal(actual,desired[,...])
	Raises an AssertionError if two items are not equal up to desired precision.

	assert_approx_equal(actual,desired[,...])
	Raises an AssertionError if two items are not equal up to significant digits.

	assert_array_almost_equal(x,y[,decimal,...])
	Raises an AssertionError if two objects are not equal up to desired precision.

	assert_allclose(actual,desired[,rtol,...])
	Raises an AssertionError if two objects are not equal up to desired tolerance.

	assert_array_almost_equal_nulp(x,y[,nulp])
	Compare two arrays relatively to their spacing.

	assert_array_max_ulp(a,b[,maxulp,dtype])
	Check that all items of arrays differ in at most N Units in the Last Place.

	assert_array_equal(x,y[,err_msg,verbose])
	Raises an AssertionError if two array_like objects are not equal.

	assert_array_less(x,y[,err_msg,verbose])
	Raises an AssertionError if two array_like objects are not ordered by less than.

	assert_equal(actual,desired[,err_msg,verbose])
	Raises an AssertionError if two objects are not equal.

	assert_raises(exception_class,callable,...)
	Fail unless an exception of class exception_class is thrown by callable when invoked with arguments args and keyword arguments kwargs.

	assert_raises_regex(exception_class,...[,...])
	Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by callable when invoked with arguments args and keyword arguments kwargs.

	assert_warns(warning_class,func,*args,**kw)
	Fail unless the given callable throws the specified warning.

	assert_string_equal(actual,desired)
	Test if two strings are equal.

Decorators

	decorators.deprecated([conditional])
	Filter deprecation warnings while running the test suite.

	decorators.knownfailureif(fail_condition[,msg])
	Make function raise KnownFailureTest exception if given condition is true.

	decorators.setastest([tf])
	Signals to nose that this function is or is not a test.

	decorators.skipif(skip_condition[,msg])
	Make function raise SkipTest exception if a given condition is true.

	decorators.slow(t)
	Label a test as ‘slow’.

	decorate_methods(cls,decorator[,testmatch])
	Apply a decorator to all methods in a class matching a regular expression.

Test Running

	Tester
	alias of NoseTester

	run_module_suite([file_to_run,argv])
	Run a test module.

	rundocs([filename,raise_on_error])
	Run doctests found in the given file.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_almost_equal

	
numpy.testing.assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L375]

	Raises an AssertionError if two items are not equal up to desired
precision.

Note

It is recommended to use one of assert_allclose,
assert_array_almost_equal_nulp or assert_array_max_ulp
instead of this function for more consistent floating point
comparisons.

The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal).

Given two objects (numbers or ndarrays), check that all elements of these
objects are almost equal. An exception is raised at conflicting values.
For ndarrays this delegates to assert_array_almost_equal

	Parameters:	actual : array_like

The object to check.

desired : array_like

The expected object.

decimal : int, optional

Desired precision, default is 7.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

	Raises:	AssertionError

If actual and desired are not equal up to specified precision.

See also

	assert_allclose

	Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

>>> import numpy.testing as npt
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
...
<type 'exceptions.AssertionError'>:
Items are not equal:
 ACTUAL: 2.3333333333333002
 DESIRED: 2.3333333399999998

>>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
... np.array([1.0,2.33333334]), decimal=9)
...
<type 'exceptions.AssertionError'>:
Arrays are not almost equal

(mismatch 50.0%)
 x: array([1. , 2.33333333])
 y: array([1. , 2.33333334])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_approx_equal

	
numpy.testing.assert_approx_equal(actual, desired, significant=7, err_msg='', verbose=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L493]

	Raises an AssertionError if two items are not equal up to significant
digits.

Note

It is recommended to use one of assert_allclose,
assert_array_almost_equal_nulp or assert_array_max_ulp
instead of this function for more consistent floating point
comparisons.

Given two numbers, check that they are approximately equal.
Approximately equal is defined as the number of significant digits
that agree.

	Parameters:	actual : scalar

The object to check.

desired : scalar

The expected object.

significant : int, optional

Desired precision, default is 7.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

	Raises:	AssertionError

If actual and desired are not equal up to specified precision.

See also

	assert_allclose

	Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,
 significant=8)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,
 significant=8)
...
<type 'exceptions.AssertionError'>:
Items are not equal to 8 significant digits:
 ACTUAL: 1.234567e-021
 DESIRED: 1.2345672000000001e-021

the evaluated condition that raises the exception is

>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
True

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_array_almost_equal

	
numpy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L741]

	Raises an AssertionError if two objects are not equal up to desired
precision.

Note

It is recommended to use one of assert_allclose,
assert_array_almost_equal_nulp or assert_array_max_ulp
instead of this function for more consistent floating point
comparisons.

The test verifies identical shapes and verifies values with
abs(desired-actual) < 0.5 * 10**(-decimal).

Given two array_like objects, check that the shape is equal and all
elements of these objects are almost equal. An exception is raised at
shape mismatch or conflicting values. In contrast to the standard usage
in numpy, NaNs are compared like numbers, no assertion is raised if
both objects have NaNs in the same positions.

	Parameters:	x : array_like

The actual object to check.

y : array_like

The desired, expected object.

decimal : int, optional

Desired precision, default is 6.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

	Raises:	AssertionError

If actual and desired are not equal up to specified precision.

See also

	assert_allclose

	Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

the first assert does not raise an exception

>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
 [1.0,2.333,np.nan])

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33339,np.nan], decimal=5)
...
<type 'exceptions.AssertionError'>:
AssertionError:
Arrays are not almost equal

(mismatch 50.0%)
 x: array([1. , 2.33333, NaN])
 y: array([1. , 2.33339, NaN])

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33333, 5], decimal=5)
<type 'exceptions.ValueError'>:
ValueError:
Arrays are not almost equal
 x: array([1. , 2.33333, NaN])
 y: array([1. , 2.33333, 5.])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_allclose

	
numpy.testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, err_msg='', verbose=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L1247]

	Raises an AssertionError if two objects are not equal up to desired
tolerance.

The test is equivalent to allclose(actual, desired, rtol, atol).
It compares the difference between actual and desired to
atol + rtol * abs(desired).

New in version 1.5.0.

	Parameters:	actual : array_like

Array obtained.

desired : array_like

Array desired.

rtol : float, optional

Relative tolerance.

atol : float, optional

Absolute tolerance.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

	Raises:	AssertionError

If actual and desired are not equal up to specified precision.

See also

assert_array_almost_equal_nulp, assert_array_max_ulp

Examples

>>> x = [1e-5, 1e-3, 1e-1]
>>> y = np.arccos(np.cos(x))
>>> assert_allclose(x, y, rtol=1e-5, atol=0)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_array_almost_equal_nulp

	
numpy.testing.assert_array_almost_equal_nulp(x, y, nulp=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L1299]

	Compare two arrays relatively to their spacing.

This is a relatively robust method to compare two arrays whose amplitude
is variable.

	Parameters:	x, y : array_like

Input arrays.

nulp : int, optional

The maximum number of unit in the last place for tolerance (see Notes).
Default is 1.

	Returns:	None

	Raises:	AssertionError

If the spacing between x and y for one or more elements is larger
than nulp.

See also

	assert_array_max_ulp

	Check that all items of arrays differ in at most N Units in the Last Place.

	spacing

	Return the distance between x and the nearest adjacent number.

Notes

An assertion is raised if the following condition is not met:

abs(x - y) <= nulps * spacing(max(abs(x), abs(y)))

Examples

>>> x = np.array([1., 1e-10, 1e-20])
>>> eps = np.finfo(x.dtype).eps
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)

>>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
Traceback (most recent call last):
 ...
AssertionError: X and Y are not equal to 1 ULP (max is 2)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_array_max_ulp

	
numpy.testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L1360]

	Check that all items of arrays differ in at most N Units in the Last Place.

	Parameters:	a, b : array_like

Input arrays to be compared.

maxulp : int, optional

The maximum number of units in the last place that elements of a and
b can differ. Default is 1.

dtype : dtype, optional

Data-type to convert a and b to if given. Default is None.

	Returns:	ret : ndarray

Array containing number of representable floating point numbers between
items in a and b.

	Raises:	AssertionError

If one or more elements differ by more than maxulp.

See also

	assert_array_almost_equal_nulp

	Compare two arrays relatively to their spacing.

Examples

>>> a = np.linspace(0., 1., 100)
>>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_array_equal

	
numpy.testing.assert_array_equal(x, y, err_msg='', verbose=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L675]

	Raises an AssertionError if two array_like objects are not equal.

Given two array_like objects, check that the shape is equal and all
elements of these objects are equal. An exception is raised at
shape mismatch or conflicting values. In contrast to the standard usage
in numpy, NaNs are compared like numbers, no assertion is raised if
both objects have NaNs in the same positions.

The usual caution for verifying equality with floating point numbers is
advised.

	Parameters:	x : array_like

The actual object to check.

y : array_like

The desired, expected object.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

	Raises:	AssertionError

If actual and desired objects are not equal.

See also

	assert_allclose

	Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

The first assert does not raise an exception:

>>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
... [np.exp(0),2.33333, np.nan])

Assert fails with numerical inprecision with floats:

>>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan])
...
<type 'exceptions.ValueError'>:
AssertionError:
Arrays are not equal

(mismatch 50.0%)
 x: array([1. , 3.14159265, NaN])
 y: array([1. , 3.14159265, NaN])

Use assert_allclose or one of the nulp (number of floating point values)
functions for these cases instead:

>>> np.testing.assert_allclose([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan],
... rtol=1e-10, atol=0)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_array_less

	
numpy.testing.assert_array_less(x, y, err_msg='', verbose=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L845]

	Raises an AssertionError if two array_like objects are not ordered by less
than.

Given two array_like objects, check that the shape is equal and all
elements of the first object are strictly smaller than those of the
second object. An exception is raised at shape mismatch or incorrectly
ordered values. Shape mismatch does not raise if an object has zero
dimension. In contrast to the standard usage in numpy, NaNs are
compared, no assertion is raised if both objects have NaNs in the same
positions.

	Parameters:	x : array_like

The smaller object to check.

y : array_like

The larger object to compare.

err_msg : string

The error message to be printed in case of failure.

verbose : bool

If True, the conflicting values are appended to the error message.

	Raises:	AssertionError

If actual and desired objects are not equal.

See also

	assert_array_equal

	tests objects for equality

	assert_array_almost_equal

	test objects for equality up to precision

Examples

>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
 x: array([1., 1., NaN])
 y: array([1., 2., NaN])

>>> np.testing.assert_array_less([1.0, 4.0], 3)
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
 x: array([1., 4.])
 y: array(3)

>>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(shapes (3,), (1,) mismatch)
 x: array([1., 2., 3.])
 y: array([4])

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_equal

	
numpy.testing.assert_equal(actual, desired, err_msg='', verbose=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L223]

	Raises an AssertionError if two objects are not equal.

Given two objects (scalars, lists, tuples, dictionaries or numpy arrays),
check that all elements of these objects are equal. An exception is raised
at the first conflicting values.

	Parameters:	actual : array_like

The object to check.

desired : array_like

The expected object.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

	Raises:	AssertionError

If actual and desired are not equal.

Examples

>>> np.testing.assert_equal([4,5], [4,6])
...
<type 'exceptions.AssertionError'>:
Items are not equal:
item=1
 ACTUAL: 5
 DESIRED: 6

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_raises

	
numpy.testing.assert_raises(exception_class, callable, *args, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L1041]

	Fail unless an exception of class exception_class is thrown
by callable when invoked with arguments args and keyword
arguments kwargs. If a different type of exception is
thrown, it will not be caught, and the test case will be
deemed to have suffered an error, exactly as for an
unexpected exception.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_raises_regex

	
numpy.testing.assert_raises_regex(exception_class, expected_regexp, callable_obj=None, *args, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L1060]

	Fail unless an exception of class exception_class and with message that
matches expected_regexp is thrown by callable when invoked with arguments
args and keyword arguments kwargs.

Name of this function adheres to Python 3.2+ reference, but should work in
all versions down to 2.6.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_warns

	
numpy.testing.assert_warns(warning_class, func, *args, **kw)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L1568]

	Fail unless the given callable throws the specified warning.

A warning of class warning_class should be thrown by the callable when
invoked with arguments args and keyword arguments kwargs.
If a different type of warning is thrown, it will not be caught, and the
test case will be deemed to have suffered an error.

New in version 1.4.0.

	Parameters:	warning_class : class

The class defining the warning that func is expected to throw.

func : callable

The callable to test.

*args : Arguments

Arguments passed to func.

**kwargs : Kwargs

Keyword arguments passed to func.

	Returns:	The value returned by func.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.assert_string_equal

	
numpy.testing.assert_string_equal(actual, desired)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L918]

	Test if two strings are equal.

If the given strings are equal, assert_string_equal does nothing.
If they are not equal, an AssertionError is raised, and the diff
between the strings is shown.

	Parameters:	actual : str

The string to test for equality against the expected string.

desired : str

The expected string.

Examples

>>> np.testing.assert_string_equal('abc', 'abc')
>>> np.testing.assert_string_equal('abc', 'abcd')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
...
AssertionError: Differences in strings:
- abc+ abcd? +

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.decorators.deprecated

	
numpy.testing.decorators.deprecated(conditional=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\decorators.py#L220]

	Filter deprecation warnings while running the test suite.

This decorator can be used to filter DeprecationWarning’s, to avoid
printing them during the test suite run, while checking that the test
actually raises a DeprecationWarning.

	Parameters:	conditional : bool or callable, optional

Flag to determine whether to mark test as deprecated or not. If the
condition is a callable, it is used at runtime to dynamically make the
decision. Default is True.

	Returns:	decorator : function

The deprecated decorator itself.

Notes

New in version 1.4.0.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.decorators.knownfailureif

	
numpy.testing.decorators.knownfailureif(fail_condition, msg=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\decorators.py#L167]

	Make function raise KnownFailureTest exception if given condition is true.

If the condition is a callable, it is used at runtime to dynamically
make the decision. This is useful for tests that may require costly
imports, to delay the cost until the test suite is actually executed.

	Parameters:	fail_condition : bool or callable

Flag to determine whether to mark the decorated test as a known
failure (if True) or not (if False).

msg : str, optional

Message to give on raising a KnownFailureTest exception.
Default is None.

	Returns:	decorator : function

Decorator, which, when applied to a function, causes SkipTest
to be raised when skip_condition is True, and the function
to be called normally otherwise.

Notes

The decorator itself is decorated with the nose.tools.make_decorator
function in order to transmit function name, and various other metadata.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.decorators.setastest

	
numpy.testing.decorators.setastest(tf=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\decorators.py#L57]

	Signals to nose that this function is or is not a test.

	Parameters:	tf : bool

If True, specifies that the decorated callable is a test.
If False, specifies that the decorated callable is not a test.
Default is True.

Notes

This decorator can’t use the nose namespace, because it can be
called from a non-test module. See also istest and nottest in
nose.tools.

Examples

setastest can be used in the following way:

from numpy.testing.decorators import setastest

@setastest(False)
def func_with_test_in_name(arg1, arg2):
 pass

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.decorators.skipif

	
numpy.testing.decorators.skipif(skip_condition, msg=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\decorators.py#L90]

	Make function raise SkipTest exception if a given condition is true.

If the condition is a callable, it is used at runtime to dynamically
make the decision. This is useful for tests that may require costly
imports, to delay the cost until the test suite is actually executed.

	Parameters:	skip_condition : bool or callable

Flag to determine whether to skip the decorated test.

msg : str, optional

Message to give on raising a SkipTest exception. Default is None.

	Returns:	decorator : function

Decorator which, when applied to a function, causes SkipTest
to be raised when skip_condition is True, and the function
to be called normally otherwise.

Notes

The decorator itself is decorated with the nose.tools.make_decorator
function in order to transmit function name, and various other metadata.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.decorators.slow

	
numpy.testing.decorators.slow(t)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\decorators.py#L22]

	Label a test as ‘slow’.

The exact definition of a slow test is obviously both subjective and
hardware-dependent, but in general any individual test that requires more
than a second or two should be labeled as slow (the whole suite consits of
thousands of tests, so even a second is significant).

	Parameters:	t : callable

The test to label as slow.

	Returns:	t : callable

The decorated test t.

Examples

The numpy.testing module includes import decorators as dec.
A test can be decorated as slow like this:

from numpy.testing import *

@dec.slow
def test_big(self):
 print 'Big, slow test'

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.decorate_methods

	
numpy.testing.decorate_methods(cls, decorator, testmatch=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L1135]

	Apply a decorator to all methods in a class matching a regular expression.

The given decorator is applied to all public methods of cls that are
matched by the regular expression testmatch
(testmatch.search(methodname)). Methods that are private, i.e. start
with an underscore, are ignored.

	Parameters:	cls : class

Class whose methods to decorate.

decorator : function

Decorator to apply to methods

testmatch : compiled regexp or str, optional

The regular expression. Default value is None, in which case the
nose default (re.compile(r'(?:^|[\b_\.%s-])[Tt]est' % os.sep))
is used.
If testmatch is a string, it is compiled to a regular expression
first.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.Tester

	
numpy.testing.Tester[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\nosetester.py#L129]

	alias of NoseTester

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.run_module_suite

	
numpy.testing.run_module_suite(file_to_run=None, argv=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\nosetester.py#L78]

	Run a test module.

Equivalent to calling $ nosetests <argv> <file_to_run> from
the command line

	Parameters:	file_to_run: str, optional

Path to test module, or None.
By default, run the module from which this function is called.

argv: list of strings

Arguments to be passed to the nose test runner. argv[0] is
ignored. All command line arguments accepted by nosetests
will work.

New in version 1.9.0.

Examples

Adding the following:

if __name__ == "__main__" :
 run_module_suite(argv=sys.argv)

at the end of a test module will run the tests when that module is
called in the python interpreter.

Alternatively, calling:

>>> run_module_suite(file_to_run="numpy/tests/test_matlib.py")

from an interpreter will run all the test routine in ‘test_matlib.py’.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Test Support (numpy.testing)

numpy.testing.rundocs

	
numpy.testing.rundocs(filename=None, raise_on_error=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\utils.py#L986]

	Run doctests found in the given file.

By default rundocs raises an AssertionError on failure.

	Parameters:	filename : str

The path to the file for which the doctests are run.

raise_on_error : bool

Whether to raise an AssertionError when a doctest fails. Default is
True.

Notes

The doctests can be run by the user/developer by adding the doctests
argument to the test() call. For example, to run all tests (including
doctests) for numpy.lib:

>>> np.lib.test(doctests=True)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

Window functions

Various windows

	bartlett(M)
	Return the Bartlett window.

	blackman(M)
	Return the Blackman window.

	hamming(M)
	Return the Hamming window.

	hanning(M)
	Return the Hanning window.

	kaiser(M,beta)
	Return the Kaiser window.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Window functions

numpy.bartlett

	
numpy.bartlett(M)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2058]

	Return the Bartlett window.

The Bartlett window is very similar to a triangular window, except
that the end points are at zero. It is often used in signal
processing for tapering a signal, without generating too much
ripple in the frequency domain.

	Parameters:	M : int

Number of points in the output window. If zero or less, an
empty array is returned.

	Returns:	out : array

The triangular window, with the maximum value normalized to one
(the value one appears only if the number of samples is odd), with
the first and last samples equal to zero.

See also

blackman, hamming, hanning, kaiser

Notes

The Bartlett window is defined as

[image: w(n) = \frac{2}{M-1} \left(\frac{M-1}{2} - \left|n - \frac{M-1}{2}\right| \right)]

Most references to the Bartlett window come from the signal
processing literature, where it is used as one of many windowing
functions for smoothing values. Note that convolution with this
window produces linear interpolation. It is also known as an
apodization (which means”removing the foot”, i.e. smoothing
discontinuities at the beginning and end of the sampled signal) or
tapering function. The fourier transform of the Bartlett is the product
of two sinc functions.
Note the excellent discussion in Kanasewich.

References

	[R11]	M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”,
Biometrika 37, 1-16, 1950.

	[R12]	E.R. Kanasewich, “Time Sequence Analysis in Geophysics”,
The University of Alberta Press, 1975, pp. 109-110.

	[R13]	A.V. Oppenheim and R.W. Schafer, “Discrete-Time Signal
Processing”, Prentice-Hall, 1999, pp. 468-471.

	[R14]	Wikipedia, “Window function”,
http://en.wikipedia.org/wiki/Window_function

	[R15]	W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
“Numerical Recipes”, Cambridge University Press, 1986, page 429.

Examples

>>> np.bartlett(12)
array([0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273,
 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636,
 0.18181818, 0.])

Plot the window and its frequency response (requires SciPy and matplotlib):

>>> from numpy.fft import fft, fftshift
>>> window = np.bartlett(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Bartlett window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Bartlett window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Window functions

numpy.blackman

	
numpy.blackman(M)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L1960]

	Return the Blackman window.

The Blackman window is a taper formed by using the first three
terms of a summation of cosines. It was designed to have close to the
minimal leakage possible. It is close to optimal, only slightly worse
than a Kaiser window.

	Parameters:	M : int

Number of points in the output window. If zero or less, an empty
array is returned.

	Returns:	out : ndarray

The window, with the maximum value normalized to one (the value one
appears only if the number of samples is odd).

See also

bartlett, hamming, hanning, kaiser

Notes

The Blackman window is defined as

[image: w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)]

Most references to the Blackman window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
“removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function. It is known as a
“near optimal” tapering function, almost as good (by some measures)
as the kaiser window.

References

Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra,
Dover Publications, New York.

Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

Examples

>>> np.blackman(12)
array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01,
 4.14397981e-01, 7.36045180e-01, 9.67046769e-01,
 9.67046769e-01, 7.36045180e-01, 4.14397981e-01,
 1.59903635e-01, 3.26064346e-02, -1.38777878e-17])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.blackman(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Blackman window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Blackman window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Window functions

numpy.hamming

	
numpy.hamming(M)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2265]

	Return the Hamming window.

The Hamming window is a taper formed by using a weighted cosine.

	Parameters:	M : int

Number of points in the output window. If zero or less, an
empty array is returned.

	Returns:	out : ndarray

The window, with the maximum value normalized to one (the value
one appears only if the number of samples is odd).

See also

bartlett, blackman, hanning, kaiser

Notes

The Hamming window is defined as

[image: w(n) = 0.54 - 0.46cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1]

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey
and is described in Blackman and Tukey. It was recommended for
smoothing the truncated autocovariance function in the time domain.
Most references to the Hamming window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
“removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

References

	[R21]	Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.

	[R22]	E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The
University of Alberta Press, 1975, pp. 109-110.

	[R23]	Wikipedia, “Window function”,
http://en.wikipedia.org/wiki/Window_function

	[R24]	W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
“Numerical Recipes”, Cambridge University Press, 1986, page 425.

Examples

>>> np.hamming(12)
array([0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594,
 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909,
 0.15302337, 0.08])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.hamming(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hamming window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Hamming window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Window functions

numpy.hanning

	
numpy.hanning(M)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2165]

	Return the Hanning window.

The Hanning window is a taper formed by using a weighted cosine.

	Parameters:	M : int

Number of points in the output window. If zero or less, an
empty array is returned.

	Returns:	out : ndarray, shape(M,)

The window, with the maximum value normalized to one (the value
one appears only if M is odd).

See also

bartlett, blackman, hamming, kaiser

Notes

The Hanning window is defined as

[image: w(n) = 0.5 - 0.5cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1]

The Hanning was named for Julius van Hann, an Austrian meteorologist.
It is also known as the Cosine Bell. Some authors prefer that it be
called a Hann window, to help avoid confusion with the very similar
Hamming window.

Most references to the Hanning window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
“removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

References

	[R25]	Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.

	[R26]	E.R. Kanasewich, “Time Sequence Analysis in Geophysics”,
The University of Alberta Press, 1975, pp. 106-108.

	[R27]	Wikipedia, “Window function”,
http://en.wikipedia.org/wiki/Window_function

	[R28]	W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
“Numerical Recipes”, Cambridge University Press, 1986, page 425.

Examples

>>> np.hanning(12)
array([0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037,
 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249,
 0.07937323, 0.])

Plot the window and its frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.hanning(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hann window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of the Hann window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Routines

 	Window functions

numpy.kaiser

	
numpy.kaiser(M, beta)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/lib\function_base.py#L2513]

	Return the Kaiser window.

The Kaiser window is a taper formed by using a Bessel function.

	Parameters:	M : int

Number of points in the output window. If zero or less, an
empty array is returned.

beta : float

Shape parameter for window.

	Returns:	out : array

The window, with the maximum value normalized to one (the value
one appears only if the number of samples is odd).

See also

bartlett, blackman, hamming, hanning

Notes

The Kaiser window is defined as

[image: w(n) = I_0\left(\beta \sqrt{1-\frac{4n^2}{(M-1)^2}} \right)/I_0(\beta)]

with

[image: \quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2},]

where [image: I_0] is the modified zeroth-order Bessel function.

The Kaiser was named for Jim Kaiser, who discovered a simple
approximation to the DPSS window based on Bessel functions. The Kaiser
window is a very good approximation to the Digital Prolate Spheroidal
Sequence, or Slepian window, which is the transform which maximizes the
energy in the main lobe of the window relative to total energy.

The Kaiser can approximate many other windows by varying the beta
parameter.

	beta
	Window shape

	0
	Rectangular

	5
	Similar to a Hamming

	6
	Similar to a Hanning

	8.6
	Similar to a Blackman

A beta value of 14 is probably a good starting point. Note that as beta
gets large, the window narrows, and so the number of samples needs to be
large enough to sample the increasingly narrow spike, otherwise NaNs will
get returned.

Most references to the Kaiser window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
“removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

References

	[R34]	J. F. Kaiser, “Digital Filters” - Ch 7 in “Systems analysis by
digital computer”, Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
John Wiley and Sons, New York, (1966).

	[R35]	E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The
University of Alberta Press, 1975, pp. 177-178.

	[R36]	Wikipedia, “Window function”,
http://en.wikipedia.org/wiki/Window_function

Examples

>>> np.kaiser(12, 14)
array([7.72686684e-06, 3.46009194e-03, 4.65200189e-02,
 2.29737120e-01, 5.99885316e-01, 9.45674898e-01,
 9.45674898e-01, 5.99885316e-01, 2.29737120e-01,
 4.65200189e-02, 3.46009194e-03, 7.72686684e-06])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.kaiser(51, 14)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Kaiser window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Kaiser window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

Packaging (numpy.distutils)

NumPy provides enhanced distutils functionality to make it easier to
build and install sub-packages, auto-generate code, and extension
modules that use Fortran-compiled libraries. To use features of NumPy
distutils, use the setup command from
numpy.distutils.core. A useful Configuration class is also provided in
numpy.distutils.misc_util that can make it easier to construct
keyword arguments to pass to the setup function (by passing the
dictionary obtained from the todict() method of the class). More
information is available in the NumPy Distutils Users Guide in
<site-packages>/numpy/doc/DISTUTILS.txt.

Modules in numpy.distutils

misc_util

	get_numpy_include_dirs()
	

	dict_append(d,**kws)
	

	appendpath(prefix,path)
	

	allpath(name)
	Convert a /-separated pathname to one using the OS’s path separator.

	dot_join(*args)
	

	generate_config_py(target)
	Generate config.py file containing system_info information used during building the package.

	get_cmd(cmdname[,_cache])
	

	terminal_has_colors()
	

	red_text(s)
	

	green_text(s)
	

	yellow_text(s)
	

	blue_text(s)
	

	cyan_text(s)
	

	cyg2win32(path)
	

	all_strings(lst)
	Return True if all items in lst are string objects.

	has_f_sources(sources)
	Return True if sources contains Fortran files

	has_cxx_sources(sources)
	Return True if sources contains C++ files

	filter_sources(sources)
	Return four lists of filenames containing C, C++, Fortran, and Fortran 90 module sources, respectively.

	get_dependencies(sources)
	

	is_local_src_dir(directory)
	Return true if directory is local directory.

	get_ext_source_files(ext)
	

	get_script_files(scripts)
	

	
class numpy.distutils.misc_util.Configuration(package_name=None, parent_name=None, top_path=None, package_path=None, **attrs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L659]

	Construct a configuration instance for the given package name. If
parent_name is not None, then construct the package as a
sub-package of the parent_name package. If top_path and
package_path are None then they are assumed equal to
the path of the file this instance was created in. The setup.py
files in the numpy distribution are good examples of how to use
the Configuration instance.

	
todict()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L766]

	Return a dictionary compatible with the keyword arguments of distutils
setup function.

Examples

>>> setup(**config.todict())

	
get_distribution()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L809]

	Return the distutils distribution object for self.

	
get_subpackage(subpackage_name, subpackage_path=None, parent_name=None, caller_level=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L880]

	Return list of subpackage configurations.

	Parameters:	subpackage_name : str or None

Name of the subpackage to get the configuration. ‘*’ in
subpackage_name is handled as a wildcard.

subpackage_path : str

If None, then the path is assumed to be the local path plus the
subpackage_name. If a setup.py file is not found in the
subpackage_path, then a default configuration is used.

parent_name : str

Parent name.

	
add_subpackage(subpackage_name, subpackage_path=None, standalone=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L941]

	Add a sub-package to the current Configuration instance.

This is useful in a setup.py script for adding sub-packages to a
package.

	Parameters:	subpackage_name : str

name of the subpackage

subpackage_path : str

if given, the subpackage path such as the subpackage is in
subpackage_path / subpackage_name. If None,the subpackage is
assumed to be located in the local path / subpackage_name.

standalone : bool

	
add_data_files(*files)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1112]

	Add data files to configuration data_files.

	Parameters:	files : sequence

Argument(s) can be either

	2-sequence (<datadir prefix>,<path to data file(s)>)

	paths to data files where python datadir prefix defaults
to package dir.

Notes

The form of each element of the files sequence is very flexible
allowing many combinations of where to get the files from the package
and where they should ultimately be installed on the system. The most
basic usage is for an element of the files argument sequence to be a
simple filename. This will cause that file from the local path to be
installed to the installation path of the self.name package (package
path). The file argument can also be a relative path in which case the
entire relative path will be installed into the package directory.
Finally, the file can be an absolute path name in which case the file
will be found at the absolute path name but installed to the package
path.

This basic behavior can be augmented by passing a 2-tuple in as the
file argument. The first element of the tuple should specify the
relative path (under the package install directory) where the
remaining sequence of files should be installed to (it has nothing to
do with the file-names in the source distribution). The second element
of the tuple is the sequence of files that should be installed. The
files in this sequence can be filenames, relative paths, or absolute
paths. For absolute paths the file will be installed in the top-level
package installation directory (regardless of the first argument).
Filenames and relative path names will be installed in the package
install directory under the path name given as the first element of
the tuple.

Rules for installation paths:

	file.txt -> (., file.txt)-> parent/file.txt

	foo/file.txt -> (foo, foo/file.txt) -> parent/foo/file.txt

	/foo/bar/file.txt -> (., /foo/bar/file.txt) -> parent/file.txt

	*.txt -> parent/a.txt, parent/b.txt

	foo/*.txt -> parent/foo/a.txt, parent/foo/b.txt

	/.txt -> (, */.txt) -> parent/c/a.txt, parent/d/b.txt

	(sun, file.txt) -> parent/sun/file.txt

	(sun, bar/file.txt) -> parent/sun/file.txt

	(sun, /foo/bar/file.txt) -> parent/sun/file.txt

	(sun, *.txt) -> parent/sun/a.txt, parent/sun/b.txt

	(sun, bar/*.txt) -> parent/sun/a.txt, parent/sun/b.txt

	(sun/, */.txt) -> parent/sun/c/a.txt, parent/d/b.txt

An additional feature is that the path to a data-file can actually be
a function that takes no arguments and returns the actual path(s) to
the data-files. This is useful when the data files are generated while
building the package.

Examples

Add files to the list of data_files to be included with the package.

>>> self.add_data_files('foo.dat',
... ('fun', ['gun.dat', 'nun/pun.dat', '/tmp/sun.dat']),
... 'bar/cat.dat',
... '/full/path/to/can.dat')

will install these data files to:

<package install directory>/
 foo.dat
 fun/
 gun.dat
 nun/
 pun.dat
 sun.dat
 bar/
 car.dat
 can.dat

where <package install directory> is the package (or sub-package)
directory such as ‘/usr/lib/python2.4/site-packages/mypackage’ (‘C:
Python2.4 Lib site-packages mypackage’) or
‘/usr/lib/python2.4/site- packages/mypackage/mysubpackage’ (‘C:
Python2.4 Lib site-packages mypackage mysubpackage’).

	
add_data_dir(data_path)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L984]

	Recursively add files under data_path to data_files list.

Recursively add files under data_path to the list of data_files to be
installed (and distributed). The data_path can be either a relative
path-name, or an absolute path-name, or a 2-tuple where the first
argument shows where in the install directory the data directory
should be installed to.

	Parameters:	data_path : seq or str

Argument can be either

	2-sequence (<datadir suffix>, <path to data directory>)

	path to data directory where python datadir suffix defaults
to package dir.

Notes

	Rules for installation paths:

	foo/bar -> (foo/bar, foo/bar) -> parent/foo/bar
(gun, foo/bar) -> parent/gun
foo/* -> (foo/a, foo/a), (foo/b, foo/b) -> parent/foo/a, parent/foo/b
(gun, foo/) -> (gun, foo/a), (gun, foo/b) -> gun
(gun/, foo/) -> parent/gun/a, parent/gun/b
/foo/bar -> (bar, /foo/bar) -> parent/bar
(gun, /foo/bar) -> parent/gun
(fun//gun/*, sun/foo/bar) -> parent/fun/foo/gun/bar

Examples

For example suppose the source directory contains fun/foo.dat and
fun/bar/car.dat:

>>> self.add_data_dir('fun')
>>> self.add_data_dir(('sun', 'fun'))
>>> self.add_data_dir(('gun', '/full/path/to/fun'))

Will install data-files to the locations:

<package install directory>/
 fun/
 foo.dat
 bar/
 car.dat
 sun/
 foo.dat
 bar/
 car.dat
 gun/
 foo.dat
 car.dat

	
add_include_dirs(*paths)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1281]

	Add paths to configuration include directories.

Add the given sequence of paths to the beginning of the include_dirs
list. This list will be visible to all extension modules of the
current package.

	
add_headers(*files)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1297]

	Add installable headers to configuration.

Add the given sequence of files to the beginning of the headers list.
By default, headers will be installed under <python-
include>/<self.name.replace(‘.’,’/’)>/ directory. If an item of files
is a tuple, then its first argument specifies the actual installation
location relative to the <python-include> path.

	Parameters:	files : str or seq

Argument(s) can be either:

	2-sequence (<includedir suffix>,<path to header file(s)>)

	path(s) to header file(s) where python includedir suffix will
default to package name.

	
add_extension(name, sources, **kw)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1354]

	Add extension to configuration.

Create and add an Extension instance to the ext_modules list. This
method also takes the following optional keyword arguments that are
passed on to the Extension constructor.

	Parameters:	name : str

name of the extension

sources : seq

list of the sources. The list of sources may contain functions
(called source generators) which must take an extension instance
and a build directory as inputs and return a source file or list of
source files or None. If None is returned then no sources are
generated. If the Extension instance has no sources after
processing all source generators, then no extension module is
built.

include_dirs :

define_macros :

undef_macros :

library_dirs :

libraries :

runtime_library_dirs :

extra_objects :

extra_compile_args :

extra_link_args :

extra_f77_compile_args :

extra_f90_compile_args :

export_symbols :

swig_opts :

depends :

The depends list contains paths to files or directories that the
sources of the extension module depend on. If any path in the
depends list is newer than the extension module, then the module
will be rebuilt.

language :

f2py_options :

module_dirs :

extra_info : dict or list

dict or list of dict of keywords to be appended to keywords.

Notes

The self.paths(...) method is applied to all lists that may contain
paths.

	
add_library(name, sources, **build_info)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1457]

	Add library to configuration.

	Parameters:	name : str

Name of the extension.

sources : sequence

List of the sources. The list of sources may contain functions
(called source generators) which must take an extension instance
and a build directory as inputs and return a source file or list of
source files or None. If None is returned then no sources are
generated. If the Extension instance has no sources after
processing all source generators, then no extension module is
built.

build_info : dict, optional

The following keys are allowed:

	depends

	macros

	include_dirs

	extra_compiler_args

	extra_f77_compiler_args

	extra_f90_compiler_args

	f2py_options

	language

	
add_scripts(*files)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1634]

	Add scripts to configuration.

Add the sequence of files to the beginning of the scripts list.
Scripts will be installed under the <prefix>/bin/ directory.

	
add_installed_library(name, sources, install_dir, build_info=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1510]

	Similar to add_library, but the specified library is installed.

Most C libraries used with distutils [http://docs.python.org/dev/library/distutils.html#module-distutils] are only used to build python
extensions, but libraries built through this method will be installed
so that they can be reused by third-party packages.

	Parameters:	name : str

Name of the installed library.

sources : sequence

List of the library’s source files. See add_library for details.

install_dir : str

Path to install the library, relative to the current sub-package.

build_info : dict, optional

The following keys are allowed:

	depends

	macros

	include_dirs

	extra_compiler_args

	extra_f77_compiler_args

	extra_f90_compiler_args

	f2py_options

	language

	Returns:	None

See also

add_library, add_npy_pkg_config, get_info

Notes

The best way to encode the options required to link against the specified
C libraries is to use a “libname.ini” file, and use get_info to
retrieve the required options (see add_npy_pkg_config for more
information).

	
add_npy_pkg_config(template, install_dir, subst_dict=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1561]

	Generate and install a npy-pkg config file from a template.

The config file generated from template is installed in the
given install directory, using subst_dict for variable substitution.

	Parameters:	template : str

The path of the template, relatively to the current package path.

install_dir : str

Where to install the npy-pkg config file, relatively to the current
package path.

subst_dict : dict, optional

If given, any string of the form @key@ will be replaced by
subst_dict[key] in the template file when installed. The install
prefix is always available through the variable @prefix@, since the
install prefix is not easy to get reliably from setup.py.

See also

add_installed_library, get_info

Notes

This works for both standard installs and in-place builds, i.e. the
@prefix@ refer to the source directory for in-place builds.

Examples

config.add_npy_pkg_config('foo.ini.in', 'lib', {'foo': bar})

Assuming the foo.ini.in file has the following content:

[meta]
Name=@foo@
Version=1.0
Description=dummy description

[default]
Cflags=-I@prefix@/include
Libs=

The generated file will have the following content:

[meta]
Name=bar
Version=1.0
Description=dummy description

[default]
Cflags=-Iprefix_dir/include
Libs=

and will be installed as foo.ini in the ‘lib’ subpath.

	
paths(*paths, **kws)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1331]

	Apply glob to paths and prepend local_path if needed.

Applies glob.glob(...) to each path in the sequence (if needed) and
pre-pends the local_path if needed. Because this is called on all
source lists, this allows wildcard characters to be specified in lists
of sources for extension modules and libraries and scripts and allows
path-names be relative to the source directory.

	
get_config_cmd()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1688]

	Returns the numpy.distutils config command instance.

	
get_build_temp_dir()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1702]

	Return a path to a temporary directory where temporary files should be
placed.

	
have_f77c()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1711]

	Check for availability of Fortran 77 compiler.

Use it inside source generating function to ensure that
setup distribution instance has been initialized.

Notes

True if a Fortran 77 compiler is available (because a simple Fortran 77
code was able to be compiled successfully).

	
have_f90c()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1730]

	Check for availability of Fortran 90 compiler.

Use it inside source generating function to ensure that
setup distribution instance has been initialized.

Notes

True if a Fortran 90 compiler is available (because a simple Fortran
90 code was able to be compiled successfully)

	
get_version(version_file=None, version_variable=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1843]

	Try to get version string of a package.

Return a version string of the current package or None if the version
information could not be detected.

Notes

This method scans files named
__version__.py, <packagename>_version.py, version.py, and
__svn_version__.py for string variables version, __version__, and
<packagename>_version, until a version number is found.

	
make_svn_version_py(delete=True)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1912]

	Appends a data function to the data_files list that will generate
__svn_version__.py file to the current package directory.

Generate package __svn_version__.py file from SVN revision number,
it will be removed after python exits but will be available
when sdist, etc commands are executed.

Notes

If __svn_version__.py existed before, nothing is done.

This is
intended for working with source directories that are in an SVN
repository.

	
make_config_py(name='__config__')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L1997]

	Generate package __config__.py file containing system_info
information used during building the package.

This file is installed to the
package installation directory.

	
get_info(*names)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L2008]

	Get resources information.

Return information (from system_info.get_info) for all of the names in
the argument list in a single dictionary.

Other modules

	system_info.get_info(name[,notfound_action])
	notfound_action:

	system_info.get_standard_file(fname)
	Returns a list of files named ‘fname’ from

	cpuinfo.cpu
	

	log.set_verbosity(v[,force])
	

	exec_command
	

Building Installable C libraries

Conventional C libraries (installed through add_library) are not installed, and
are just used during the build (they are statically linked). An installable C
library is a pure C library, which does not depend on the python C runtime, and
is installed such that it may be used by third-party packages. To build and
install the C library, you just use the method add_installed_library instead of
add_library, which takes the same arguments except for an additional
install_dir argument:

>>> config.add_installed_library('foo', sources=['foo.c'], install_dir='lib')

npy-pkg-config files

To make the necessary build options available to third parties, you could use
the npy-pkg-config mechanism implemented in numpy.distutils. This mechanism is
based on a .ini file which contains all the options. A .ini file is very
similar to .pc files as used by the pkg-config unix utility:

[meta]
Name: foo
Version: 1.0
Description: foo library

[variables]
prefix = /home/user/local
libdir = ${prefix}/lib
includedir = ${prefix}/include

[default]
cflags = -I${includedir}
libs = -L${libdir} -lfoo

Generally, the file needs to be generated during the build, since it needs some
information known at build time only (e.g. prefix). This is mostly automatic if
one uses the Configuration method add_npy_pkg_config. Assuming we have a
template file foo.ini.in as follows:

[meta]
Name: foo
Version: @version@
Description: foo library

[variables]
prefix = @prefix@
libdir = ${prefix}/lib
includedir = ${prefix}/include

[default]
cflags = -I${includedir}
libs = -L${libdir} -lfoo

and the following code in setup.py:

>>> config.add_installed_library('foo', sources=['foo.c'], install_dir='lib')
>>> subst = {'version': '1.0'}
>>> config.add_npy_pkg_config('foo.ini.in', 'lib', subst_dict=subst)

This will install the file foo.ini into the directory package_dir/lib, and the
foo.ini file will be generated from foo.ini.in, where each @version@ will be
replaced by subst_dict['version']. The dictionary has an additional prefix
substitution rule automatically added, which contains the install prefix (since
this is not easy to get from setup.py). npy-pkg-config files can also be
installed at the same location as used for numpy, using the path returned from
get_npy_pkg_dir function.

Reusing a C library from another package

Info are easily retrieved from the get_info function in
numpy.distutils.misc_util:

>>> info = get_info('npymath')
>>> config.add_extension('foo', sources=['foo.c'], extra_info=**info)

An additional list of paths to look for .ini files can be given to get_info.

Conversion of .src files

NumPy distutils supports automatic conversion of source files named
<somefile>.src. This facility can be used to maintain very similar
code blocks requiring only simple changes between blocks. During the
build phase of setup, if a template file named <somefile>.src is
encountered, a new file named <somefile> is constructed from the
template and placed in the build directory to be used instead. Two
forms of template conversion are supported. The first form occurs for
files named named <file>.ext.src where ext is a recognized Fortran
extension (f, f90, f95, f77, for, ftn, pyf). The second form is used
for all other cases.

Fortran files

This template converter will replicate all function and
subroutine blocks in the file with names that contain ‘<...>’
according to the rules in ‘<...>’. The number of comma-separated words
in ‘<...>’ determines the number of times the block is repeated. What
these words are indicates what that repeat rule, ‘<...>’, should be
replaced with in each block. All of the repeat rules in a block must
contain the same number of comma-separated words indicating the number
of times that block should be repeated. If the word in the repeat rule
needs a comma, leftarrow, or rightarrow, then prepend it with a
backslash ‘ ‘. If a word in the repeat rule matches ‘ \<index>’ then
it will be replaced with the <index>-th word in the same repeat
specification. There are two forms for the repeat rule: named and
short.

Named repeat rule

A named repeat rule is useful when the same set of repeats must be
used several times in a block. It is specified using <rule1=item1,
item2, item3,..., itemN>, where N is the number of times the block
should be repeated. On each repeat of the block, the entire
expression, ‘<...>’ will be replaced first with item1, and then with
item2, and so forth until N repeats are accomplished. Once a named
repeat specification has been introduced, the same repeat rule may be
used in the current block by referring only to the name
(i.e. <rule1>.

Short repeat rule

A short repeat rule looks like <item1, item2, item3, ..., itemN>. The
rule specifies that the entire expression, ‘<...>’ should be replaced
first with item1, and then with item2, and so forth until N repeats
are accomplished.

Pre-defined names

The following predefined named repeat rules are available:

	<prefix=s,d,c,z>

	<_c=s,d,c,z>

	<_t=real, double precision, complex, double complex>

	<ftype=real, double precision, complex, double complex>

	<ctype=float, double, complex_float, complex_double>

	<ftypereal=float, double precision, \0, \1>

	<ctypereal=float, double, \0, \1>

Other files

Non-Fortran files use a separate syntax for defining template blocks
that should be repeated using a variable expansion similar to the
named repeat rules of the Fortran-specific repeats. The template rules
for these files are:

	“/**begin repeat “on a line by itself marks the beginning of
a segment that should be repeated.

	Named variable expansions are defined using #name=item1, item2, item3,
..., itemN# and placed on successive lines. These variables are
replaced in each repeat block with corresponding word. All named
variables in the same repeat block must define the same number of
words.

	In specifying the repeat rule for a named variable, item*N is short-
hand for item, item, ..., item repeated N times. In addition,
parenthesis in combination with *N can be used for grouping several
items that should be repeated. Thus, #name=(item1, item2)*4# is
equivalent to #name=item1, item2, item1, item2, item1, item2, item1,
item2#

	“*/ “on a line by itself marks the end of the the variable expansion
naming. The next line is the first line that will be repeated using
the named rules.

	Inside the block to be repeated, the variables that should be expanded
are specified as @name@.

	“/**end repeat**/ “on a line by itself marks the previous line
as the last line of the block to be repeated.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.get_numpy_include_dirs

	
numpy.distutils.misc_util.get_numpy_include_dirs()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L2033]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.dict_append

	
numpy.distutils.misc_util.dict_append(d, **kws)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L2178]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.appendpath

	
numpy.distutils.misc_util.appendpath(prefix, path)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L2189]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.allpath

	
numpy.distutils.misc_util.allpath(name)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L73]

	Convert a /-separated pathname to one using the OS’s path separator.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.dot_join

	
numpy.distutils.misc_util.dot_join(*args)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L642]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.generate_config_py

	
numpy.distutils.misc_util.generate_config_py(target)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L2210]

	Generate config.py file containing system_info information
used during building the package.

	Usage:

	config[‘py_modules’].append((packagename, ‘__config__’,generate_config_py))

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.get_cmd

	
numpy.distutils.misc_util.get_cmd(cmdname, _cache={})[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L2021]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.terminal_has_colors

	
numpy.distutils.misc_util.terminal_has_colors()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L277]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.red_text

	
numpy.distutils.misc_util.red_text(s)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L327]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.green_text

	
numpy.distutils.misc_util.green_text(s)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L329]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.yellow_text

	
numpy.distutils.misc_util.yellow_text(s)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L331]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.blue_text

	
numpy.distutils.misc_util.blue_text(s)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L335]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.cyan_text

	
numpy.distutils.misc_util.cyan_text(s)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L333]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.cyg2win32

	
numpy.distutils.misc_util.cyg2win32(path)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L340]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.all_strings

	
numpy.distutils.misc_util.all_strings(lst)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L398]

	Return True if all items in lst are string objects.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.has_f_sources

	
numpy.distutils.misc_util.has_f_sources(sources)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L436]

	Return True if sources contains Fortran files

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.has_cxx_sources

	
numpy.distutils.misc_util.has_cxx_sources(sources)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L443]

	Return True if sources contains C++ files

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.filter_sources

	
numpy.distutils.misc_util.filter_sources(sources)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L450]

	Return four lists of filenames containing
C, C++, Fortran, and Fortran 90 module sources,
respectively.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.get_dependencies

	
numpy.distutils.misc_util.get_dependencies(sources)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L490]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.is_local_src_dir

	
numpy.distutils.misc_util.is_local_src_dir(directory)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L494]

	Return true if directory is local directory.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.get_ext_source_files

	
numpy.distutils.misc_util.get_ext_source_files(ext)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L545]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.misc_util.get_script_files

	
numpy.distutils.misc_util.get_script_files(scripts)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\misc_util.py#L558]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.system_info.get_info

	
numpy.distutils.system_info.get_info(name, notfound_action=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\system_info.py#L292]

	
	notfound_action:

	0 - do nothing
1 - display warning message
2 - raise error

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.system_info.get_standard_file

	
numpy.distutils.system_info.get_standard_file(fname)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\system_info.py#L256]

	Returns a list of files named ‘fname’ from
1) System-wide directory (directory-location of this module)
2) Users HOME directory (os.environ[‘HOME’])
3) Local directory

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.cpuinfo.cpu

	
numpy.distutils.cpuinfo.cpu = <numpy.distutils.cpuinfo.Win32CPUInfo object at 0x0000000007050748>

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.log.set_verbosity

	
numpy.distutils.log.set_verbosity(v, force=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/distutils\log.py#L71]

	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Packaging (numpy.distutils)

numpy.distutils.exec_command

exec_command

Implements exec_command function that is (almost) equivalent to
commands.getstatusoutput function but on NT, DOS systems the
returned status is actually correct (though, the returned status
values may be different by a factor). In addition, exec_command
takes keyword arguments for (re-)defining environment variables.

	Provides functions:

	
	exec_command — execute command in a specified directory and

	in the modified environment.

	find_executable — locate a command using info from environment

	variable PATH. Equivalent to posix which
command.

Author: Pearu Peterson <pearu@cens.ioc.ee>
Created: 11 January 2003

Requires: Python 2.x

	Succesfully tested on:

	os.name | sys.platform | comments
——–+————–+———-
posix | linux2 | Debian (sid) Linux, Python 2.1.3+, 2.2.3+, 2.3.3

PyCrust 0.9.3, Idle 1.0.2

posix | linux2 | Red Hat 9 Linux, Python 2.1.3, 2.2.2, 2.3.2
posix | sunos5 | SunOS 5.9, Python 2.2, 2.3.2
posix | darwin | Darwin 7.2.0, Python 2.3
nt | win32 | Windows Me

Python 2.3(EE), Idle 1.0, PyCrust 0.7.2
Python 2.1.1 Idle 0.8

nt | win32 | Windows 98, Python 2.1.1. Idle 0.8
nt | win32 | Cygwin 98-4.10, Python 2.1.1(MSC) - echo tests

fail i.e. redefining environment variables may
not work. FIXED: don’t use cygwin echo!
Comment: also cmd /c echo will not work
but redefining environment variables do work.

posix | cygwin | Cygwin 98-4.10, Python 2.3.3(cygming special)
nt | win32 | Windows XP, Python 2.3.3

Known bugs:
- Tests, that send messages to stderr, fail when executed from MSYS prompt

because the messages are lost at some point.

Functions

	exec_command(command[,execute_in,...])
	Return (status,output) of executed command.

	find_executable(exe[,path,_cache])
	Return full path of a executable or None.

	get_exception()
	

	get_pythonexe()
	

	is_sequence(seq)
	

	make_temp_file([suffix,prefix,text])
	

	open_latin1(filename[,mode])
	

	quote_arg(arg)
	

	splitcmdline(line)
	

	temp_file_name()
	

	test(**kws)
	

	test_cl(**kws)
	

	test_execute_in(**kws)
	

	test_nt(**kws)
	

	test_posix(**kws)
	

	test_svn(**kws)
	

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

Numpy C-API

Beware of the man who won’t be bothered with details.

— William Feather, Sr.

The truth is out there.

— Chris Carter, The X Files

NumPy provides a C-API to enable users to extend the system and get
access to the array object for use in other routines. The best way to
truly understand the C-API is to read the source code. If you are
unfamiliar with (C) source code, however, this can be a daunting
experience at first. Be assured that the task becomes easier with
practice, and you may be surprised at how simple the C-code can be to
understand. Even if you don’t think you can write C-code from scratch,
it is much easier to understand and modify already-written source code
then create it de novo.

Python extensions are especially straightforward to understand because
they all have a very similar structure. Admittedly, NumPy is not a
trivial extension to Python, and may take a little more snooping to
grasp. This is especially true because of the code-generation
techniques, which simplify maintenance of very similar code, but can
make the code a little less readable to beginners. Still, with a
little persistence, the code can be opened to your understanding. It
is my hope, that this guide to the C-API can assist in the process of
becoming familiar with the compiled-level work that can be done with
NumPy in order to squeeze that last bit of necessary speed out of your
code.

	Python Types and C-Structures
	New Python Types Defined

	Other C-Structures

	System configuration
	Data type sizes

	Platform information

	Data Type API
	Enumerated Types

	Defines

	C-type names

	Printf Formatting

	Array API
	Array structure and data access

	Creating arrays

	Dealing with types

	Array flags

	Array method alternative API

	Functions

	Auxiliary Data With Object Semantics

	Array Iterators

	Broadcasting (multi-iterators)

	Neighborhood iterator

	Array Scalars

	Data-type descriptors

	Conversion Utilities

	Miscellaneous

	Array Iterator API
	Array Iterator

	Converting from Previous NumPy Iterators

	Simple Iteration Example

	Simple Multi-Iteration Example

	Iterator Data Types

	Construction and Destruction

	Functions For Iteration

	UFunc API
	Constants

	Macros

	Functions

	Generic functions

	Importing the API

	Generalized Universal Function API
	Definitions

	Details of Signature

	C-API for implementing Elementary Functions

	Numpy core libraries
	Numpy core math library

	C API Deprecations
	Background

	Deprecation Mechanism NPY_NO_DEPRECATED_API

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

Python Types and C-Structures

Several new types are defined in the C-code. Most of these are
accessible from Python, but a few are not exposed due to their limited
use. Every new Python type has an associated PyObject * with an
internal structure that includes a pointer to a “method table” that
defines how the new object behaves in Python. When you receive a
Python object into C code, you always get a pointer to a
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] structure. Because a PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] structure is
very generic and defines only PyObject_HEAD [http://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD], by itself it
is not very interesting. However, different objects contain more
details after the PyObject_HEAD [http://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD] (but you have to cast to the
correct type to access them — or use accessor functions or macros).

New Python Types Defined

Python types are the functional equivalent in C of classes in Python.
By constructing a new Python type you make available a new object for
Python. The ndarray object is an example of a new type defined in C.
New types are defined in C by two basic steps:

	creating a C-structure (usually named Py{Name}Object) that is
binary- compatible with the PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] structure itself but holds
the additional information needed for that particular object;

	populating the PyTypeObject [http://docs.python.org/dev/c-api/type.html#c.PyTypeObject] table (pointed to by the ob_type
member of the PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] structure) with pointers to functions
that implement the desired behavior for the type.

Instead of special method names which define behavior for Python
classes, there are “function tables” which point to functions that
implement the desired results. Since Python 2.2, the PyTypeObject
itself has become dynamic which allows C types that can be “sub-typed
“from other C-types in C, and sub-classed in Python. The children
types inherit the attributes and methods from their parent(s).

There are two major new types: the ndarray (PyArray_Type)
and the ufunc (PyUFunc_Type). Additional types play a
supportive role: the PyArrayIter_Type, the
PyArrayMultiIter_Type, and the PyArrayDescr_Type
. The PyArrayIter_Type is the type for a flat iterator for an
ndarray (the object that is returned when getting the flat
attribute). The PyArrayMultiIter_Type is the type of the
object returned when calling broadcast (). It handles iteration
and broadcasting over a collection of nested sequences. Also, the
PyArrayDescr_Type is the data-type-descriptor type whose
instances describe the data. Finally, there are 21 new scalar-array
types which are new Python scalars corresponding to each of the
fundamental data types available for arrays. An additional 10 other
types are place holders that allow the array scalars to fit into a
hierarchy of actual Python types.

PyArray_Type

	
PyArray_Type

	The Python type of the ndarray is PyArray_Type. In C, every
ndarray is a pointer to a PyArrayObject structure. The ob_type
member of this structure contains a pointer to the PyArray_Type
typeobject.

	
PyArrayObject

	The PyArrayObject C-structure contains all of the required
information for an array. All instances of an ndarray (and its
subclasses) will have this structure. For future compatibility,
these structure members should normally be accessed using the
provided macros. If you need a shorter name, then you can make use
of NPY_AO which is defined to be equivalent to
PyArrayObject.

typedef struct PyArrayObject {
 PyObject_HEAD
 char *data;
 int nd;
 npy_intp *dimensions;
 npy_intp *strides;
 PyObject *base;
 PyArray_Descr *descr;
 int flags;
 PyObject *weakreflist;
} PyArrayObject;

	
PyArrayObject.PyObject_HEAD

	This is needed by all Python objects. It consists of (at least)
a reference count member (ob_refcnt) and a pointer to the
typeobject (ob_type). (Other elements may also be present
if Python was compiled with special options see
Include/object.h in the Python source tree for more
information). The ob_type member points to a Python type
object.

	
char *PyArrayObject.data

	A pointer to the first element of the array. This pointer can
(and normally should) be recast to the data type of the array.

	
int PyArrayObject.nd

	An integer providing the number of dimensions for this
array. When nd is 0, the array is sometimes called a rank-0
array. Such arrays have undefined dimensions and strides and
cannot be accessed. NPY_MAXDIMS is the largest number of
dimensions for any array.

	
npy_intp PyArrayObject.dimensions

	An array of integers providing the shape in each dimension as
long as nd [image: \geq] 1. The integer is always large enough
to hold a pointer on the platform, so the dimension size is
only limited by memory.

	
npy_intp *PyArrayObject.strides

	An array of integers providing for each dimension the number of
bytes that must be skipped to get to the next element in that
dimension.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArrayObject.base

	This member is used to hold a pointer to another Python object that
is related to this array. There are two use cases: 1) If this array
does not own its own memory, then base points to the Python object
that owns it (perhaps another array object), 2) If this array has
the NPY_ARRAY_UPDATEIFCOPY flag set, then this array is
a working copy of a “misbehaved” array. As soon as this array is
deleted, the array pointed to by base will be updated with the
contents of this array.

	
PyArray_Descr *PyArrayObject.descr

	A pointer to a data-type descriptor object (see below). The
data-type descriptor object is an instance of a new built-in
type which allows a generic description of memory. There is a
descriptor structure for each data type supported. This
descriptor structure contains useful information about the type
as well as a pointer to a table of function pointers to
implement specific functionality.

	
int PyArrayObject.flags

	Flags indicating how the memory pointed to by data is to be
interpreted. Possible flags are NPY_ARRAY_C_CONTIGUOUS,
NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_OWNDATA,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, and
NPY_ARRAY_UPDATEIFCOPY.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArrayObject.weakreflist

	This member allows array objects to have weak references (using the
weakref module).

PyArrayDescr_Type

	
PyArrayDescr_Type

	The PyArrayDescr_Type is the built-in type of the
data-type-descriptor objects used to describe how the bytes comprising
the array are to be interpreted. There are 21 statically-defined
PyArray_Descr objects for the built-in data-types. While these
participate in reference counting, their reference count should never
reach zero. There is also a dynamic table of user-defined
PyArray_Descr objects that is also maintained. Once a
data-type-descriptor object is “registered” it should never be
deallocated either. The function PyArray_DescrFromType (...) can
be used to retrieve a PyArray_Descr object from an enumerated
type-number (either built-in or user- defined).

	
PyArray_Descr

	The format of the PyArray_Descr structure that lies at the
heart of the PyArrayDescr_Type is

typedef struct {
 PyObject_HEAD
 PyTypeObject *typeobj;
 char kind;
 char type;
 char byteorder;
 char unused;
 int flags;
 int type_num;
 int elsize;
 int alignment;
 PyArray_ArrayDescr *subarray;
 PyObject *fields;
 PyArray_ArrFuncs *f;
} PyArray_Descr;

	
PyTypeObject [http://docs.python.org/dev/c-api/type.html#c.PyTypeObject] *PyArray_Descr.typeobj

	Pointer to a typeobject that is the corresponding Python type for
the elements of this array. For the builtin types, this points to
the corresponding array scalar. For user-defined types, this
should point to a user-defined typeobject. This typeobject can
either inherit from array scalars or not. If it does not inherit
from array scalars, then the NPY_USE_GETITEM and
NPY_USE_SETITEM flags should be set in the flags member.

	
char PyArray_Descr.kind

	A character code indicating the kind of array (using the array
interface typestring notation). A ‘b’ represents Boolean, a ‘i’
represents signed integer, a ‘u’ represents unsigned integer, ‘f’
represents floating point, ‘c’ represents complex floating point, ‘S’
represents 8-bit character string, ‘U’ represents 32-bit/character
unicode string, and ‘V’ repesents arbitrary.

	
char PyArray_Descr.type

	A traditional character code indicating the data type.

	
char PyArray_Descr.byteorder

	A character indicating the byte-order: ‘>’ (big-endian), ‘<’ (little-
endian), ‘=’ (native), ‘|’ (irrelevant, ignore). All builtin data-
types have byteorder ‘=’.

	
int PyArray_Descr.flags

	A data-type bit-flag that determines if the data-type exhibits object-
array like behavior. Each bit in this member is a flag which are named
as:

	
NPY_ITEM_REFCOUNT

	

	
NPY_ITEM_HASOBJECT

	Indicates that items of this data-type must be reference
counted (using Py_INCREF [http://docs.python.org/dev/c-api/refcounting.html#c.Py_INCREF] and Py_DECREF [http://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF]).

	
NPY_LIST_PICKLE

	Indicates arrays of this data-type must be converted to a list
before pickling.

	
NPY_ITEM_IS_POINTER

	Indicates the item is a pointer to some other data-type

	
NPY_NEEDS_INIT

	Indicates memory for this data-type must be initialized (set
to 0) on creation.

	
NPY_NEEDS_PYAPI

	Indicates this data-type requires the Python C-API during
access (so don’t give up the GIL if array access is going to
be needed).

	
NPY_USE_GETITEM

	On array access use the f->getitem function pointer
instead of the standard conversion to an array scalar. Must
use if you don’t define an array scalar to go along with
the data-type.

	
NPY_USE_SETITEM

	When creating a 0-d array from an array scalar use
f->setitem instead of the standard copy from an array
scalar. Must use if you don’t define an array scalar to go
along with the data-type.

	
NPY_FROM_FIELDS

	The bits that are inherited for the parent data-type if these
bits are set in any field of the data-type. Currently (
NPY_NEEDS_INIT | NPY_LIST_PICKLE |
NPY_ITEM_REFCOUNT | NPY_NEEDS_PYAPI).

	
NPY_OBJECT_DTYPE_FLAGS

	Bits set for the object data-type: (NPY_LIST_PICKLE
| NPY_USE_GETITEM | NPY_ITEM_IS_POINTER |
NPY_REFCOUNT | NPY_NEEDS_INIT |
NPY_NEEDS_PYAPI).

	
PyDataType_FLAGCHK(PyArray_Descr*dtype, intflags)

	Return true if all the given flags are set for the data-type
object.

	
PyDataType_REFCHK(PyArray_Descr*dtype)

	Equivalent to PyDataType_FLAGCHK (dtype,
NPY_ITEM_REFCOUNT).

	
int PyArray_Descr.type_num

	A number that uniquely identifies the data type. For new data-types,
this number is assigned when the data-type is registered.

	
int PyArray_Descr.elsize

	For data types that are always the same size (such as long), this
holds the size of the data type. For flexible data types where
different arrays can have a different elementsize, this should be
0.

	
int PyArray_Descr.alignment

	A number providing alignment information for this data type.
Specifically, it shows how far from the start of a 2-element
structure (whose first element is a char), the compiler
places an item of this type: offsetof(struct {char c; type v;},
v)

	
PyArray_ArrayDescr *PyArray_Descr.subarray

	If this is non- NULL, then this data-type descriptor is a
C-style contiguous array of another data-type descriptor. In
other-words, each element that this descriptor describes is
actually an array of some other base descriptor. This is most
useful as the data-type descriptor for a field in another
data-type descriptor. The fields member should be NULL if this
is non- NULL (the fields member of the base descriptor can be
non- NULL however). The PyArray_ArrayDescr structure is
defined using

typedef struct {
 PyArray_Descr *base;
 PyObject *shape;
} PyArray_ArrayDescr;

The elements of this structure are:

	
PyArray_Descr *PyArray_ArrayDescr.base

	The data-type-descriptor object of the base-type.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_ArrayDescr.shape

	The shape (always C-style contiguous) of the sub-array as a Python
tuple.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_Descr.fields

	If this is non-NULL, then this data-type-descriptor has fields
described by a Python dictionary whose keys are names (and also
titles if given) and whose values are tuples that describe the
fields. Recall that a data-type-descriptor always describes a
fixed-length set of bytes. A field is a named sub-region of that
total, fixed-length collection. A field is described by a tuple
composed of another data- type-descriptor and a byte
offset. Optionally, the tuple may contain a title which is
normally a Python string. These tuples are placed in this
dictionary keyed by name (and also title if given).

	
PyArray_ArrFuncs *PyArray_Descr.f

	A pointer to a structure containing functions that the type needs
to implement internal features. These functions are not the same
thing as the universal functions (ufuncs) described later. Their
signatures can vary arbitrarily.

	
PyArray_ArrFuncs

	Functions implementing internal features. Not all of these
function pointers must be defined for a given type. The required
members are nonzero, copyswap, copyswapn, setitem,
getitem, and cast. These are assumed to be non- NULL
and NULL entries will cause a program crash. The other
functions may be NULL which will just mean reduced
functionality for that data-type. (Also, the nonzero function will
be filled in with a default function if it is NULL when you
register a user-defined data-type).

typedef struct {
 PyArray_VectorUnaryFunc *cast[NPY_NTYPES];
 PyArray_GetItemFunc *getitem;
 PyArray_SetItemFunc *setitem;
 PyArray_CopySwapNFunc *copyswapn;
 PyArray_CopySwapFunc *copyswap;
 PyArray_CompareFunc *compare;
 PyArray_ArgFunc *argmax;
 PyArray_DotFunc *dotfunc;
 PyArray_ScanFunc *scanfunc;
 PyArray_FromStrFunc *fromstr;
 PyArray_NonzeroFunc *nonzero;
 PyArray_FillFunc *fill;
 PyArray_FillWithScalarFunc *fillwithscalar;
 PyArray_SortFunc *sort[NPY_NSORTS];
 PyArray_ArgSortFunc *argsort[NPY_NSORTS];
 PyObject *castdict;
 PyArray_ScalarKindFunc *scalarkind;
 int **cancastscalarkindto;
 int *cancastto;
 int listpickle
} PyArray_ArrFuncs;

The concept of a behaved segment is used in the description of the
function pointers. A behaved segment is one that is aligned and in
native machine byte-order for the data-type. The nonzero,
copyswap, copyswapn, getitem, and setitem
functions can (and must) deal with mis-behaved arrays. The other
functions require behaved memory segments.

	
void cast(void *from, void *to, npy_intp n, void *fromarr,

	
void *toarr)

	An array of function pointers to cast from the current type to
all of the other builtin types. Each function casts a
contiguous, aligned, and notswapped buffer pointed at by
from to a contiguous, aligned, and notswapped buffer pointed
at by to The number of items to cast is given by n, and
the arguments fromarr and toarr are interpreted as
PyArrayObjects for flexible arrays to get itemsize
information.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *getitem(void*data, void*arr)

	A pointer to a function that returns a standard Python object
from a single element of the array object arr pointed to by
data. This function must be able to deal with “misbehaved
“(misaligned and/or swapped) arrays correctly.

	
int setitem(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*item, void*data, void*arr)

	A pointer to a function that sets the Python object item
into the array, arr, at the position pointed to by data
. This function deals with “misbehaved” arrays. If successful,
a zero is returned, otherwise, a negative one is returned (and
a Python error set).

	
void copyswapn(void *dest, npy_intp dstride, void *src,

	
npy_intp sstride, npy_intp n, int swap, void *arr)

	

	
void copyswap(void*dest, void*src, intswap, void*arr)

	These members are both pointers to functions to copy data from
src to dest and swap if indicated. The value of arr is
only used for flexible (NPY_STRING, NPY_UNICODE,
and NPY_VOID) arrays (and is obtained from
arr->descr->elsize). The second function copies a single
value, while the first loops over n values with the provided
strides. These functions can deal with misbehaved src
data. If src is NULL then no copy is performed. If swap is
0, then no byteswapping occurs. It is assumed that dest and
src do not overlap. If they overlap, then use memmove
(...) first followed by copyswap(n) with NULL valued
src.

	
int compare(const void*d1, const void*d2, void*arr)

	A pointer to a function that compares two elements of the
array, arr, pointed to by d1 and d2. This
function requires behaved (aligned and not swapped) arrays.
The return value is 1 if * d1 > * d2, 0 if * d1 == *
d2, and -1 if * d1 < * d2. The array object arr is
used to retrieve itemsize and field information for flexible arrays.

	
int argmax(void* data, npy_intp n, npy_intp* max_ind,

	
void* arr)

	A pointer to a function that retrieves the index of the
largest of n elements in arr beginning at the element
pointed to by data. This function requires that the
memory segment be contiguous and behaved. The return value is
always 0. The index of the largest element is returned in
max_ind.

	
void dotfunc(void* ip1, npy_intp is1, void* ip2, npy_intp is2,

	
void* op, npy_intp n, void* arr)

	A pointer to a function that multiplies two n -length
sequences together, adds them, and places the result in
element pointed to by op of arr. The start of the two
sequences are pointed to by ip1 and ip2. To get to
the next element in each sequence requires a jump of is1
and is2 bytes, respectively. This function requires
behaved (though not necessarily contiguous) memory.

	
int scanfunc(FILE*fd, void*ip, void*sep, void*arr)

	A pointer to a function that scans (scanf style) one element
of the corresponding type from the file descriptor fd into
the array memory pointed to by ip. The array is assumed
to be behaved. If sep is not NULL, then a separator string
is also scanned from the file before returning. The last
argument arr is the array to be scanned into. A 0 is
returned if the scan is successful. A negative number
indicates something went wrong: -1 means the end of file was
reached before the separator string could be scanned, -4 means
that the end of file was reached before the element could be
scanned, and -3 means that the element could not be
interpreted from the format string. Requires a behaved array.

	
int fromstr(char*str, void*ip, char**endptr, void*arr)

	A pointer to a function that converts the string pointed to by
str to one element of the corresponding type and places it
in the memory location pointed to by ip. After the
conversion is completed, *endptr points to the rest of the
string. The last argument arr is the array into which ip
points (needed for variable-size data- types). Returns 0 on
success or -1 on failure. Requires a behaved array.

	
Bool nonzero(void*data, void*arr)

	A pointer to a function that returns TRUE if the item of
arr pointed to by data is nonzero. This function can
deal with misbehaved arrays.

	
void fill(void*data, npy_intplength, void*arr)

	A pointer to a function that fills a contiguous array of given
length with data. The first two elements of the array must
already be filled- in. From these two values, a delta will be
computed and the values from item 3 to the end will be
computed by repeatedly adding this computed delta. The data
buffer must be well-behaved.

	
void fillwithscalar(void* buffer, npy_intp length,

	
void* value, void* arr)

	A pointer to a function that fills a contiguous buffer of
the given length with a single scalar value whose
address is given. The final argument is the array which is
needed to get the itemsize for variable-length arrays.

	
int sort(void*start, npy_intplength, void*arr)

	An array of function pointers to a particular sorting
algorithms. A particular sorting algorithm is obtained using a
key (so far NPY_QUICKSORT, :data`NPY_HEAPSORT`, and
NPY_MERGESORT are defined). These sorts are done
in-place assuming contiguous and aligned data.

	
int argsort(void* start, npy_intp* result, npy_intp length,

	
void *arr)

	An array of function pointers to sorting algorithms for this
data type. The same sorting algorithms as for sort are
available. The indices producing the sort are returned in
result (which must be initialized with indices 0 to length-1
inclusive).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *castdict

	Either NULL or a dictionary containing low-level casting
functions for user- defined data-types. Each function is
wrapped in a PyCObject * and keyed by the data-type number.

	
NPY_SCALARKIND scalarkind(PyArrayObject*arr)

	A function to determine how scalars of this type should be
interpreted. The argument is NULL or a 0-dimensional array
containing the data (if that is needed to determine the kind
of scalar). The return value must be of type
NPY_SCALARKIND.

	
int **cancastscalarkindto

	Either NULL or an array of NPY_NSCALARKINDS
pointers. These pointers should each be either NULL or a
pointer to an array of integers (terminated by
NPY_NOTYPE) indicating data-types that a scalar of
this data-type of the specified kind can be cast to safely
(this usually means without losing precision).

	
int *cancastto

	Either NULL or an array of integers (terminated by
NPY_NOTYPE) indicated data-types that this data-type
can be cast to safely (this usually means without losing
precision).

	
int listpickle

	Unused.

The PyArray_Type typeobject implements many of the features of
Python objects including the tp_as_number, tp_as_sequence,
tp_as_mapping, and tp_as_buffer interfaces. The rich comparison
(tp_richcompare) is also used along with new-style attribute lookup
for methods (tp_methods) and properties (tp_getset). The
PyArray_Type can also be sub-typed.

Tip

The tp_as_number methods use a generic approach to call whatever
function has been registered for handling the operation. The
function PyNumeric_SetOps(..) can be used to register functions to
handle particular mathematical operations (for all arrays). When
the umath module is imported, it sets the numeric operations for
all arrays to the corresponding ufuncs. The tp_str and tp_repr
methods can also be altered using PyString_SetStringFunction(...).

PyUFunc_Type

	
PyUFunc_Type

	The ufunc object is implemented by creation of the
PyUFunc_Type. It is a very simple type that implements only
basic getattribute behavior, printing behavior, and has call
behavior which allows these objects to act like functions. The
basic idea behind the ufunc is to hold a reference to fast
1-dimensional (vector) loops for each data type that supports the
operation. These one-dimensional loops all have the same signature
and are the key to creating a new ufunc. They are called by the
generic looping code as appropriate to implement the N-dimensional
function. There are also some generic 1-d loops defined for
floating and complexfloating arrays that allow you to define a
ufunc using a single scalar function (e.g. atanh).

	
PyUFuncObject

	The core of the ufunc is the PyUFuncObject which contains all
the information needed to call the underlying C-code loops that
perform the actual work. It has the following structure:

typedef struct {
 PyObject_HEAD
 int nin;
 int nout;
 int nargs;
 int identity;
 PyUFuncGenericFunction *functions;
 void **data;
 int ntypes;
 int check_return;
 const char *name;
 char *types;
 const char *doc;
 void *ptr;
 PyObject *obj;
 PyObject *userloops;
 npy_uint32 *op_flags;
 npy_uint32 *iter_flags;
} PyUFuncObject;

	
PyUFuncObject.PyObject_HEAD

	required for all Python objects.

	
int PyUFuncObject.nin

	The number of input arguments.

	
int PyUFuncObject.nout

	The number of output arguments.

	
int PyUFuncObject.nargs

	The total number of arguments (nin + nout). This must be
less than NPY_MAXARGS.

	
int PyUFuncObject.identity

	Either PyUFunc_One, PyUFunc_Zero, or
PyUFunc_None to indicate the identity for this operation.
It is only used for a reduce-like call on an empty array.

	
void PyUFuncObject.functions(char** args, npy_intp* dims,

	
npy_intp* steps, void* extradata)

	An array of function pointers — one for each data type
supported by the ufunc. This is the vector loop that is called
to implement the underlying function dims [0] times. The
first argument, args, is an array of nargs pointers to
behaved memory. Pointers to the data for the input arguments
are first, followed by the pointers to the data for the output
arguments. How many bytes must be skipped to get to the next
element in the sequence is specified by the corresponding entry
in the steps array. The last argument allows the loop to
receive extra information. This is commonly used so that a
single, generic vector loop can be used for multiple
functions. In this case, the actual scalar function to call is
passed in as extradata. The size of this function pointer
array is ntypes.

	
void **PyUFuncObject.data

	Extra data to be passed to the 1-d vector loops or NULL if
no extra-data is needed. This C-array must be the same size (
i.e. ntypes) as the functions array. NULL is used if
extra_data is not needed. Several C-API calls for UFuncs are
just 1-d vector loops that make use of this extra data to
receive a pointer to the actual function to call.

	
int PyUFuncObject.ntypes

	The number of supported data types for the ufunc. This number
specifies how many different 1-d loops (of the builtin data types) are
available.

	
int PyUFuncObject.check_return

	Obsolete and unused. However, it is set by the corresponding entry in
the main ufunc creation routine: PyUFunc_FromFuncAndData (...).

	
char *PyUFuncObject.name

	A string name for the ufunc. This is used dynamically to build
the __doc__ attribute of ufuncs.

	
char *PyUFuncObject.types

	An array of nargs [image: \times] ntypes 8-bit type_numbers
which contains the type signature for the function for each of
the supported (builtin) data types. For each of the ntypes
functions, the corresponding set of type numbers in this array
shows how the args argument should be interpreted in the 1-d
vector loop. These type numbers do not have to be the same type
and mixed-type ufuncs are supported.

	
char *PyUFuncObject.doc

	Documentation for the ufunc. Should not contain the function
signature as this is generated dynamically when __doc__ is
retrieved.

	
void *PyUFuncObject.ptr

	Any dynamically allocated memory. Currently, this is used for dynamic
ufuncs created from a python function to store room for the types,
data, and name members.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyUFuncObject.obj

	For ufuncs dynamically created from python functions, this member
holds a reference to the underlying Python function.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyUFuncObject.userloops

	A dictionary of user-defined 1-d vector loops (stored as CObject ptrs)
for user-defined types. A loop may be registered by the user for any
user-defined type. It is retrieved by type number. User defined type
numbers are always larger than NPY_USERDEF.

	
npy_uint32 PyUFuncObject.op_flags

	Override the default operand flags for each ufunc operand.

	
npy_uint32 PyUFuncObject.iter_flags

	Override the default nditer flags for the ufunc.

PyArrayIter_Type

	
PyArrayIter_Type

	This is an iterator object that makes it easy to loop over an N-dimensional
array. It is the object returned from the flat attribute of an
ndarray. It is also used extensively throughout the implementation
internals to loop over an N-dimensional array. The tp_as_mapping
interface is implemented so that the iterator object can be indexed
(using 1-d indexing), and a few methods are implemented through the
tp_methods table. This object implements the next method and can be
used anywhere an iterator can be used in Python.

	
PyArrayIterObject

	The C-structure corresponding to an object of PyArrayIter_Type is
the PyArrayIterObject. The PyArrayIterObject is used to
keep track of a pointer into an N-dimensional array. It contains associated
information used to quickly march through the array. The pointer can
be adjusted in three basic ways: 1) advance to the “next” position in
the array in a C-style contiguous fashion, 2) advance to an arbitrary
N-dimensional coordinate in the array, and 3) advance to an arbitrary
one-dimensional index into the array. The members of the
PyArrayIterObject structure are used in these
calculations. Iterator objects keep their own dimension and strides
information about an array. This can be adjusted as needed for
“broadcasting,” or to loop over only specific dimensions.

typedef struct {
 PyObject_HEAD
 int nd_m1;
 npy_intp index;
 npy_intp size;
 npy_intp coordinates[NPY_MAXDIMS];
 npy_intp dims_m1[NPY_MAXDIMS];
 npy_intp strides[NPY_MAXDIMS];
 npy_intp backstrides[NPY_MAXDIMS];
 npy_intp factors[NPY_MAXDIMS];
 PyArrayObject *ao;
 char *dataptr;
 Bool contiguous;
} PyArrayIterObject;

	
int PyArrayIterObject.nd_m1

	[image: N-1] where [image: N] is the number of dimensions in the
underlying array.

	
npy_intp PyArrayIterObject.index

	The current 1-d index into the array.

	
npy_intp PyArrayIterObject.size

	The total size of the underlying array.

	
npy_intp *PyArrayIterObject.coordinates

	An [image: N] -dimensional index into the array.

	
npy_intp *PyArrayIterObject.dims_m1

	The size of the array minus 1 in each dimension.

	
npy_intp *PyArrayIterObject.strides

	The strides of the array. How many bytes needed to jump to the next
element in each dimension.

	
npy_intp *PyArrayIterObject.backstrides

	How many bytes needed to jump from the end of a dimension back
to its beginning. Note that backstrides [k]= strides [k]*d
ims_m1 [k], but it is stored here as an optimization.

	
npy_intp *PyArrayIterObject.factors

	This array is used in computing an N-d index from a 1-d index. It
contains needed products of the dimensions.

	
PyArrayObject *PyArrayIterObject.ao

	A pointer to the underlying ndarray this iterator was created to
represent.

	
char *PyArrayIterObject.dataptr

	This member points to an element in the ndarray indicated by the
index.

	
Bool PyArrayIterObject.contiguous

	This flag is true if the underlying array is
NPY_ARRAY_C_CONTIGUOUS. It is used to simplify
calculations when possible.

How to use an array iterator on a C-level is explained more fully in
later sections. Typically, you do not need to concern yourself with
the internal structure of the iterator object, and merely interact
with it through the use of the macros PyArray_ITER_NEXT (it),
PyArray_ITER_GOTO (it, dest), or PyArray_ITER_GOTO1D (it,
index). All of these macros require the argument it to be a
PyArrayIterObject *.

PyArrayMultiIter_Type

	
PyArrayMultiIter_Type

	This type provides an iterator that encapsulates the concept of
broadcasting. It allows [image: N] arrays to be broadcast together
so that the loop progresses in C-style contiguous fashion over the
broadcasted array. The corresponding C-structure is the
PyArrayMultiIterObject whose memory layout must begin any
object, obj, passed in to the PyArray_Broadcast (obj)
function. Broadcasting is performed by adjusting array iterators so
that each iterator represents the broadcasted shape and size, but
has its strides adjusted so that the correct element from the array
is used at each iteration.

	
PyArrayMultiIterObject

	typedef struct {
 PyObject_HEAD
 int numiter;
 npy_intp size;
 npy_intp index;
 int nd;
 npy_intp dimensions[NPY_MAXDIMS];
 PyArrayIterObject *iters[NPY_MAXDIMS];
} PyArrayMultiIterObject;

	
PyArrayMultiIterObject.PyObject_HEAD

	Needed at the start of every Python object (holds reference count and
type identification).

	
int PyArrayMultiIterObject.numiter

	The number of arrays that need to be broadcast to the same shape.

	
npy_intp PyArrayMultiIterObject.size

	The total broadcasted size.

	
npy_intp PyArrayMultiIterObject.index

	The current (1-d) index into the broadcasted result.

	
int PyArrayMultiIterObject.nd

	The number of dimensions in the broadcasted result.

	
npy_intp *PyArrayMultiIterObject.dimensions

	The shape of the broadcasted result (only nd slots are used).

	
PyArrayIterObject **PyArrayMultiIterObject.iters

	An array of iterator objects that holds the iterators for the arrays
to be broadcast together. On return, the iterators are adjusted for
broadcasting.

PyArrayNeighborhoodIter_Type

	
PyArrayNeighborhoodIter_Type

	This is an iterator object that makes it easy to loop over an N-dimensional
neighborhood.

	
PyArrayNeighborhoodIterObject

	The C-structure corresponding to an object of
PyArrayNeighborhoodIter_Type is the
PyArrayNeighborhoodIterObject.

PyArrayFlags_Type

	
PyArrayFlags_Type

	When the flags attribute is retrieved from Python, a special
builtin object of this type is constructed. This special type makes
it easier to work with the different flags by accessing them as
attributes or by accessing them as if the object were a dictionary
with the flag names as entries.

ScalarArrayTypes

There is a Python type for each of the different built-in data types
that can be present in the array Most of these are simple wrappers
around the corresponding data type in C. The C-names for these types
are Py{TYPE}ArrType_Type where {TYPE} can be

Bool, Byte, Short, Int, Long, LongLong,
UByte, UShort, UInt, ULong, ULongLong,
Half, Float, Double, LongDouble, CFloat, CDouble,
CLongDouble, String, Unicode, Void, and
Object.

These type names are part of the C-API and can therefore be created in
extension C-code. There is also a PyIntpArrType_Type and a
PyUIntpArrType_Type that are simple substitutes for one of the
integer types that can hold a pointer on the platform. The structure
of these scalar objects is not exposed to C-code. The function
PyArray_ScalarAsCtype (..) can be used to extract the C-type value
from the array scalar and the function PyArray_Scalar (...) can be
used to construct an array scalar from a C-value.

Other C-Structures

A few new C-structures were found to be useful in the development of
NumPy. These C-structures are used in at least one C-API call and are
therefore documented here. The main reason these structures were
defined is to make it easy to use the Python ParseTuple C-API to
convert from Python objects to a useful C-Object.

PyArray_Dims

	
PyArray_Dims

	This structure is very useful when shape and/or strides information is
supposed to be interpreted. The structure is:

typedef struct {
 npy_intp *ptr;
 int len;
} PyArray_Dims;

The members of this structure are

	
npy_intp *PyArray_Dims.ptr

	A pointer to a list of (npy_intp) integers which usually
represent array shape or array strides.

	
int PyArray_Dims.len

	The length of the list of integers. It is assumed safe to
access ptr [0] to ptr [len-1].

PyArray_Chunk

	
PyArray_Chunk

	This is equivalent to the buffer object structure in Python up to
the ptr member. On 32-bit platforms (i.e. if NPY_SIZEOF_INT
== NPY_SIZEOF_INTP), the len member also matches an equivalent
member of the buffer object. It is useful to represent a generic
single-segment chunk of memory.

typedef struct {
 PyObject_HEAD
 PyObject *base;
 void *ptr;
 npy_intp len;
 int flags;
} PyArray_Chunk;

The members are

	
PyArray_Chunk.PyObject_HEAD

	Necessary for all Python objects. Included here so that the
PyArray_Chunk structure matches that of the buffer object
(at least to the len member).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_Chunk.base

	The Python object this chunk of memory comes from. Needed so that
memory can be accounted for properly.

	
void *PyArray_Chunk.ptr

	A pointer to the start of the single-segment chunk of memory.

	
npy_intp PyArray_Chunk.len

	The length of the segment in bytes.

	
int PyArray_Chunk.flags

	Any data flags (e.g. NPY_ARRAY_WRITEABLE) that should
be used to interpret the memory.

PyArrayInterface

See also

The Array Interface

	
PyArrayInterface

	The PyArrayInterface structure is defined so that NumPy and
other extension modules can use the rapid array interface
protocol. The __array_struct__ method of an object that
supports the rapid array interface protocol should return a
PyCObject that contains a pointer to a PyArrayInterface
structure with the relevant details of the array. After the new
array is created, the attribute should be DECREF‘d which will
free the PyArrayInterface structure. Remember to INCREF the
object (whose __array_struct__ attribute was retrieved) and
point the base member of the new PyArrayObject to this same
object. In this way the memory for the array will be managed
correctly.

typedef struct {
 int two;
 int nd;
 char typekind;
 int itemsize;
 int flags;
 npy_intp *shape;
 npy_intp *strides;
 void *data;
 PyObject *descr;
} PyArrayInterface;

	
int PyArrayInterface.two

	the integer 2 as a sanity check.

	
int PyArrayInterface.nd

	the number of dimensions in the array.

	
char PyArrayInterface.typekind

	A character indicating what kind of array is present according to the
typestring convention with ‘t’ -> bitfield, ‘b’ -> Boolean, ‘i’ ->
signed integer, ‘u’ -> unsigned integer, ‘f’ -> floating point, ‘c’ ->
complex floating point, ‘O’ -> object, ‘S’ -> (byte-)string, ‘U’ ->
unicode, ‘V’ -> void.

	
int PyArrayInterface.itemsize

	The number of bytes each item in the array requires.

	
int PyArrayInterface.flags

	Any of the bits NPY_ARRAY_C_CONTIGUOUS (1),
NPY_ARRAY_F_CONTIGUOUS (2), NPY_ARRAY_ALIGNED (0x100),
NPY_ARRAY_NOTSWAPPED (0x200), or NPY_ARRAY_WRITEABLE
(0x400) to indicate something about the data. The
NPY_ARRAY_ALIGNED, NPY_ARRAY_C_CONTIGUOUS, and
NPY_ARRAY_F_CONTIGUOUS flags can actually be determined from
the other parameters. The flag NPY_ARR_HAS_DESCR
(0x800) can also be set to indicate to objects consuming the
version 3 array interface that the descr member of the
structure is present (it will be ignored by objects consuming
version 2 of the array interface).

	
npy_intp *PyArrayInterface.shape

	An array containing the size of the array in each dimension.

	
npy_intp *PyArrayInterface.strides

	An array containing the number of bytes to jump to get to the next
element in each dimension.

	
void *PyArrayInterface.data

	A pointer to the first element of the array.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArrayInterface.descr

	A Python object describing the data-type in more detail (same
as the descr key in __array_interface__). This can be
NULL if typekind and itemsize provide enough
information. This field is also ignored unless
ARR_HAS_DESCR flag is on in flags.

Internally used structures

Internally, the code uses some additional Python objects primarily for
memory management. These types are not accessible directly from
Python, and are not exposed to the C-API. They are included here only
for completeness and assistance in understanding the code.

	
PyUFuncLoopObject

	A loose wrapper for a C-structure that contains the information
needed for looping. This is useful if you are trying to understand
the ufunc looping code. The PyUFuncLoopObject is the associated
C-structure. It is defined in the ufuncobject.h header.

	
PyUFuncReduceObject

	A loose wrapper for the C-structure that contains the information
needed for reduce-like methods of ufuncs. This is useful if you are
trying to understand the reduce, accumulate, and reduce-at
code. The PyUFuncReduceObject is the associated C-structure. It
is defined in the ufuncobject.h header.

	
PyUFunc_Loop1d

	A simple linked-list of C-structures containing the information needed
to define a 1-d loop for a ufunc for every defined signature of a
user-defined data-type.

	
PyArrayMapIter_Type

	Advanced indexing is handled with this Python type. It is simply a
loose wrapper around the C-structure containing the variables
needed for advanced array indexing. The associated C-structure,
PyArrayMapIterObject, is useful if you are trying to
understand the advanced-index mapping code. It is defined in the
arrayobject.h header. This type is not exposed to Python and
could be replaced with a C-structure. As a Python type it takes
advantage of reference- counted memory management.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

System configuration

When NumPy is built, information about system configuration is
recorded, and is made available for extension modules using Numpy’s C
API. These are mostly defined in numpyconfig.h (included in
ndarrayobject.h). The public symbols are prefixed by NPY_*.
Numpy also offers some functions for querying information about the
platform in use.

For private use, Numpy also constructs a config.h in the NumPy
include directory, which is not exported by Numpy (that is a python
extension which use the numpy C API will not see those symbols), to
avoid namespace pollution.

Data type sizes

The NPY_SIZEOF_{CTYPE} constants are defined so that sizeof
information is available to the pre-processor.

	
NPY_SIZEOF_SHORT

	

	
NPY_SIZEOF_INT

	

	
NPY_SIZEOF_LONG

	

	
NPY_SIZEOF_LONGLONG

	sizeof(longlong) where longlong is defined appropriately on the
platform.

	
NPY_SIZEOF_PY_LONG_LONG

	

	
NPY_SIZEOF_FLOAT

	

	
NPY_SIZEOF_DOUBLE

	

	
NPY_SIZEOF_LONG_DOUBLE

	

	
NPY_SIZEOF_PY_INTPTR_T

	Size of a pointer on this platform (sizeof(void *)) (A macro defines
NPY_SIZEOF_INTP as well.)

Platform information

	
NPY_CPU_X86

	

	
NPY_CPU_AMD64

	

	
NPY_CPU_IA64

	

	
NPY_CPU_PPC

	

	
NPY_CPU_PPC64

	

	
NPY_CPU_SPARC

	

	
NPY_CPU_SPARC64

	

	
NPY_CPU_S390

	

	
NPY_CPU_PARISC

	
New in version 1.3.0.

CPU architecture of the platform; only one of the above is
defined.

Defined in numpy/npy_cpu.h

	
NPY_LITTLE_ENDIAN

	

	
NPY_BIG_ENDIAN

	

	
NPY_BYTE_ORDER

	
New in version 1.3.0.

Portable alternatives to the endian.h macros of GNU Libc.
If big endian, NPY_BYTE_ORDER == NPY_BIG_ENDIAN, and
similarly for little endian architectures.

Defined in numpy/npy_endian.h.

	
PyArray_GetEndianness()

	
New in version 1.3.0.

Returns the endianness of the current platform.
One of NPY_CPU_BIG, NPY_CPU_LITTLE,
or NPY_CPU_UNKNOWN_ENDIAN.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

Data Type API

The standard array can have 24 different data types (and has some
support for adding your own types). These data types all have an
enumerated type, an enumerated type-character, and a corresponding
array scalar Python type object (placed in a hierarchy). There are
also standard C typedefs to make it easier to manipulate elements of
the given data type. For the numeric types, there are also bit-width
equivalent C typedefs and named typenumbers that make it easier to
select the precision desired.

Warning

The names for the types in c code follows c naming conventions
more closely. The Python names for these types follow Python
conventions. Thus, NPY_FLOAT picks up a 32-bit float in
C, but numpy.float_ in Python corresponds to a 64-bit
double. The bit-width names can be used in both Python and C for
clarity.

Enumerated Types

There is a list of enumerated types defined providing the basic 24
data types plus some useful generic names. Whenever the code requires
a type number, one of these enumerated types is requested. The types
are all called NPY_{NAME}:

	
NPY_BOOL

	The enumeration value for the boolean type, stored as one byte.
It may only be set to the values 0 and 1.

	
NPY_BYTE

	

	
NPY_INT8

	The enumeration value for an 8-bit/1-byte signed integer.

	
NPY_SHORT

	

	
NPY_INT16

	The enumeration value for a 16-bit/2-byte signed integer.

	
NPY_INT

	

	
NPY_INT32

	The enumeration value for a 32-bit/4-byte signed integer.

	
NPY_LONG

	Equivalent to either NPY_INT or NPY_LONGLONG, depending on the
platform.

	
NPY_LONGLONG

	

	
NPY_INT64

	The enumeration value for a 64-bit/8-byte signed integer.

	
NPY_UBYTE

	

	
NPY_UINT8

	The enumeration value for an 8-bit/1-byte unsigned integer.

	
NPY_USHORT

	

	
NPY_UINT16

	The enumeration value for a 16-bit/2-byte unsigned integer.

	
NPY_UINT

	

	
NPY_UINT32

	The enumeration value for a 32-bit/4-byte unsigned integer.

	
NPY_ULONG

	Equivalent to either NPY_UINT or NPY_ULONGLONG, depending on the
platform.

	
NPY_ULONGLONG

	

	
NPY_UINT64

	The enumeration value for a 64-bit/8-byte unsigned integer.

	
NPY_HALF

	

	
NPY_FLOAT16

	The enumeration value for a 16-bit/2-byte IEEE 754-2008 compatible floating
point type.

	
NPY_FLOAT

	

	
NPY_FLOAT32

	The enumeration value for a 32-bit/4-byte IEEE 754 compatible floating
point type.

	
NPY_DOUBLE

	

	
NPY_FLOAT64

	The enumeration value for a 64-bit/8-byte IEEE 754 compatible floating
point type.

	
NPY_LONGDOUBLE

	The enumeration value for a platform-specific floating point type which is
at least as large as NPY_DOUBLE, but larger on many platforms.

	
NPY_CFLOAT

	

	
NPY_COMPLEX64

	The enumeration value for a 64-bit/8-byte complex type made up of
two NPY_FLOAT values.

	
NPY_CDOUBLE

	

	
NPY_COMPLEX128

	The enumeration value for a 128-bit/16-byte complex type made up of
two NPY_DOUBLE values.

	
NPY_CLONGDOUBLE

	The enumeration value for a platform-specific complex floating point
type which is made up of two NPY_LONGDOUBLE values.

	
NPY_DATETIME

	The enumeration value for a data type which holds dates or datetimes with
a precision based on selectable date or time units.

	
NPY_TIMEDELTA

	The enumeration value for a data type which holds lengths of times in
integers of selectable date or time units.

	
NPY_STRING

	The enumeration value for ASCII strings of a selectable size. The
strings have a fixed maximum size within a given array.

	
NPY_UNICODE

	The enumeration value for UCS4 strings of a selectable size. The
strings have a fixed maximum size within a given array.

	
NPY_OBJECT

	The enumeration value for references to arbitrary Python objects.

	
NPY_VOID

	Primarily used to hold struct dtypes, but can contain arbitrary
binary data.

Some useful aliases of the above types are

	
NPY_INTP

	The enumeration value for a signed integer type which is the same
size as a (void *) pointer. This is the type used by all
arrays of indices.

	
NPY_UINTP

	The enumeration value for an unsigned integer type which is the
same size as a (void *) pointer.

	
NPY_MASK

	The enumeration value of the type used for masks, such as with
the NPY_ITER_ARRAYMASK iterator flag. This is equivalent
to NPY_UINT8.

	
NPY_DEFAULT_TYPE

	The default type to use when no dtype is explicitly specified, for
example when calling np.zero(shape). This is equivalent to
NPY_DOUBLE.

Other useful related constants are

	
NPY_NTYPES

	The total number of built-in NumPy types. The enumeration covers
the range from 0 to NPY_NTYPES-1.

	
NPY_NOTYPE

	A signal value guaranteed not to be a valid type enumeration number.

	
NPY_USERDEF

	The start of type numbers used for Custom Data types.

The various character codes indicating certain types are also part of
an enumerated list. References to type characters (should they be
needed at all) should always use these enumerations. The form of them
is NPY_{NAME}LTR where {NAME} can be

BOOL, BYTE, UBYTE, SHORT, USHORT, INT,
UINT, LONG, ULONG, LONGLONG, ULONGLONG,
HALF, FLOAT, DOUBLE, LONGDOUBLE, CFLOAT,
CDOUBLE, CLONGDOUBLE, DATETIME, TIMEDELTA,
OBJECT, STRING, VOID

INTP, UINTP

GENBOOL, SIGNED, UNSIGNED, FLOATING, COMPLEX

The latter group of {NAME}s corresponds to letters used in the array
interface typestring specification.

Defines

Max and min values for integers

	
NPY_MAX_INT{bits}

	

	
NPY_MAX_UINT{bits}

	

	
NPY_MIN_INT{bits}

	These are defined for {bits} = 8, 16, 32, 64, 128, and 256 and provide
the maximum (minimum) value of the corresponding (unsigned) integer
type. Note: the actual integer type may not be available on all
platforms (i.e. 128-bit and 256-bit integers are rare).

	
NPY_MIN_{type}

	This is defined for {type} = BYTE, SHORT, INT,
LONG, LONGLONG, INTP

	
NPY_MAX_{type}

	This is defined for all defined for {type} = BYTE, UBYTE,
SHORT, USHORT, INT, UINT, LONG, ULONG,
LONGLONG, ULONGLONG, INTP, UINTP

Number of bits in data types

All NPY_SIZEOF_{CTYPE} constants have corresponding
NPY_BITSOF_{CTYPE} constants defined. The NPY_BITSOF_{CTYPE}
constants provide the number of bits in the data type. Specifically,
the available {CTYPE}s are

BOOL, CHAR, SHORT, INT, LONG,
LONGLONG, FLOAT, DOUBLE, LONGDOUBLE

Bit-width references to enumerated typenums

All of the numeric data types (integer, floating point, and complex)
have constants that are defined to be a specific enumerated type
number. Exactly which enumerated type a bit-width type refers to is
platform dependent. In particular, the constants available are
PyArray_{NAME}{BITS} where {NAME} is INT, UINT,
FLOAT, COMPLEX and {BITS} can be 8, 16, 32, 64, 80, 96, 128,
160, 192, 256, and 512. Obviously not all bit-widths are available on
all platforms for all the kinds of numeric types. Commonly 8-, 16-,
32-, 64-bit integers; 32-, 64-bit floats; and 64-, 128-bit complex
types are available.

Integer that can hold a pointer

The constants NPY_INTP and NPY_UINTP refer to an
enumerated integer type that is large enough to hold a pointer on the
platform. Index arrays should always be converted to NPY_INTP
, because the dimension of the array is of type npy_intp.

C-type names

There are standard variable types for each of the numeric data types
and the bool data type. Some of these are already available in the
C-specification. You can create variables in extension code with these
types.

Boolean

	
npy_bool

	unsigned char; The constants NPY_FALSE and
NPY_TRUE are also defined.

(Un)Signed Integer

Unsigned versions of the integers can be defined by pre-pending a ‘u’
to the front of the integer name.

	
npy_(u)byte

	(unsigned) char

	
npy_(u)short

	(unsigned) short

	
npy_(u)int

	(unsigned) int

	
npy_(u)long

	(unsigned) long int

	
npy_(u)longlong

	(unsigned long long int)

	
npy_(u)intp

	(unsigned) Py_intptr_t (an integer that is the size of a pointer on
the platform).

(Complex) Floating point

	
npy_(c)float

	float

	
npy_(c)double

	double

	
npy_(c)longdouble

	long double

complex types are structures with .real and .imag members (in
that order).

Bit-width names

There are also typedefs for signed integers, unsigned integers,
floating point, and complex floating point types of specific bit-
widths. The available type names are

npy_int{bits}, npy_uint{bits}, npy_float{bits},
and npy_complex{bits}

where {bits} is the number of bits in the type and can be 8,
16, 32, 64, 128, and 256 for integer types; 16, 32
, 64, 80, 96, 128, and 256 for floating-point types; and 32,
64, 128, 160, 192, and 512 for complex-valued types. Which
bit-widths are available is platform dependent. The bolded bit-widths
are usually available on all platforms.

Printf Formatting

For help in printing, the following strings are defined as the correct
format specifier in printf and related commands.

NPY_LONGLONG_FMT, NPY_ULONGLONG_FMT,
NPY_INTP_FMT, NPY_UINTP_FMT,
NPY_LONGDOUBLE_FMT

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

Array API

The test of a first-rate intelligence is the ability to hold two

opposed ideas in the mind at the same time, and still retain the

ability to function.

— F. Scott Fitzgerald

For a successful technology, reality must take precedence over public

relations, for Nature cannot be fooled.

— Richard P. Feynman

Array structure and data access

These macros all access the PyArrayObject structure members. The input
argument, arr, can be any PyObject * that is directly interpretable
as a PyArrayObject * (any instance of the PyArray_Type and its
sub-types).

	
int PyArray_NDIM(PyArrayObject*arr)

	The number of dimensions in the array.

	
npy_intp *PyArray_DIMS(PyArrayObject*arr)

	Returns a pointer to the dimensions/shape of the array. The
number of elements matches the number of dimensions
of the array.

	
npy_intp *PyArray_SHAPE(PyArrayObject*arr)

	
New in version 1.7.

A synonym for PyArray_DIMS, named to be consistent with the
‘shape’ usage within Python.

	
void *PyArray_DATA(PyArrayObject*arr)

	

	
char *PyArray_BYTES(PyArrayObject*arr)

	These two macros are similar and obtain the pointer to the
data-buffer for the array. The first macro can (and should be)
assigned to a particular pointer where the second is for generic
processing. If you have not guaranteed a contiguous and/or aligned
array then be sure you understand how to access the data in the
array to avoid memory and/or alignment problems.

	
npy_intp *PyArray_STRIDES(PyArrayObject*arr)

	Returns a pointer to the strides of the array. The
number of elements matches the number of dimensions
of the array.

	
npy_intp PyArray_DIM(PyArrayObject*arr, intn)

	Return the shape in the n [image: ^{\textrm{th}}] dimension.

	
npy_intp PyArray_STRIDE(PyArrayObject*arr, intn)

	Return the stride in the n [image: ^{\textrm{th}}] dimension.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_BASE(PyArrayObject*arr)

	This returns the base object of the array. In most cases, this
means the object which owns the memory the array is pointing at.

If you are constructing an array using the C API, and specifying
your own memory, you should use the function PyArray_SetBaseObject
to set the base to an object which owns the memory.

If the NPY_ARRAY_UPDATEIFCOPY flag is set, it has a different
meaning, namely base is the array into which the current array will
be copied upon destruction. This overloading of the base property
for two functions is likely to change in a future version of NumPy.

	
PyArray_Descr *PyArray_DESCR(PyArrayObject*arr)

	Returns a borrowed reference to the dtype property of the array.

	
PyArray_Descr *PyArray_DTYPE(PyArrayObject*arr)

	
New in version 1.7.

A synonym for PyArray_DESCR, named to be consistent with the
‘dtype’ usage within Python.

	
void PyArray_ENABLEFLAGS(PyArrayObject*arr, intflags)

	
New in version 1.7.

Enables the specified array flags. This function does no validation,
and assumes that you know what you’re doing.

	
void PyArray_CLEARFLAGS(PyArrayObject*arr, intflags)

	
New in version 1.7.

Clears the specified array flags. This function does no validation,
and assumes that you know what you’re doing.

	
int PyArray_FLAGS(PyArrayObject*arr)

	

	
int PyArray_ITEMSIZE(PyArrayObject*arr)

	Return the itemsize for the elements of this array.

	
int PyArray_TYPE(PyArrayObject*arr)

	Return the (builtin) typenumber for the elements of this array.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_GETITEM(PyArrayObject*arr, void*itemptr)

	Get a Python object from the ndarray, arr, at the location
pointed to by itemptr. Return NULL on failure.

	
int PyArray_SETITEM(PyArrayObject*arr, void*itemptr, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	Convert obj and place it in the ndarray, arr, at the place
pointed to by itemptr. Return -1 if an error occurs or 0 on
success.

	
npy_intp PyArray_SIZE(PyArrayObject*arr)

	Returns the total size (in number of elements) of the array.

	
npy_intp PyArray_Size(PyArrayObject*obj)

	Returns 0 if obj is not a sub-class of bigndarray. Otherwise,
returns the total number of elements in the array. Safer version
of PyArray_SIZE (obj).

	
npy_intp PyArray_NBYTES(PyArrayObject*arr)

	Returns the total number of bytes consumed by the array.

Data access

These functions and macros provide easy access to elements of the
ndarray from C. These work for all arrays. You may need to take care
when accessing the data in the array, however, if it is not in machine
byte-order, misaligned, or not writeable. In other words, be sure to
respect the state of the flags unless you know what you are doing, or
have previously guaranteed an array that is writeable, aligned, and in
machine byte-order using PyArray_FromAny. If you wish to handle all
types of arrays, the copyswap function for each type is useful for
handling misbehaved arrays. Some platforms (e.g. Solaris) do not like
misaligned data and will crash if you de-reference a misaligned
pointer. Other platforms (e.g. x86 Linux) will just work more slowly
with misaligned data.

	
void* PyArray_GetPtr(PyArrayObject*aobj, npy_intp*ind)

	Return a pointer to the data of the ndarray, aobj, at the
N-dimensional index given by the c-array, ind, (which must be
at least aobj ->nd in size). You may want to typecast the
returned pointer to the data type of the ndarray.

	
void* PyArray_GETPTR1(PyArrayObject*obj, npy_intpi)

	

	
void* PyArray_GETPTR2(PyArrayObject*obj, npy_intpi, npy_intpj)

	

	
void* PyArray_GETPTR3(PyArrayObject*obj, npy_intpi, npy_intpj, npy_intpk)

	

	
void* PyArray_GETPTR4(PyArrayObject*obj, npy_intpi, npy_intpj, npy_intpk, npy_intpl)

	Quick, inline access to the element at the given coordinates in
the ndarray, obj, which must have respectively 1, 2, 3, or 4
dimensions (this is not checked). The corresponding i, j,
k, and l coordinates can be any integer but will be
interpreted as npy_intp. You may want to typecast the
returned pointer to the data type of the ndarray.

Creating arrays

From scratch

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_NewFromDescr(PyTypeObject [http://docs.python.org/dev/c-api/type.html#c.PyTypeObject]*subtype, PyArray_Descr*descr, intnd, npy_intp*dims, npy_intp*strides, void*data, intflags, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	This function steals a reference to descr.

This is the main array creation function. Most new arrays are
created with this flexible function.

The returned object is an object of Python-type subtype, which
must be a subtype of PyArray_Type. The array has nd
dimensions, described by dims. The data-type descriptor of the
new array is descr.

If subtype is of an array subclass instead of the base
&PyArray_Type, then obj is the object to pass to
the __array_finalize__ method of the subclass.

If data is NULL, then new memory will be allocated and flags
can be non-zero to indicate a Fortran-style contiguous array. If
data is not NULL, then it is assumed to point to the memory
to be used for the array and the flags argument is used as the
new flags for the array (except the state of NPY_OWNDATA
and NPY_ARRAY_UPDATEIFCOPY flags of the new array will
be reset).

In addition, if data is non-NULL, then strides can
also be provided. If strides is NULL, then the array strides
are computed as C-style contiguous (default) or Fortran-style
contiguous (flags is nonzero for data = NULL or flags &
NPY_ARRAY_F_CONTIGUOUS is nonzero non-NULL data). Any
provided dims and strides are copied into newly allocated
dimension and strides arrays for the new array object.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_NewLikeArray(PyArrayObject*prototype, NPY_ORDERorder, PyArray_Descr*descr, intsubok)

	
New in version 1.6.

This function steals a reference to descr if it is not NULL.

This array creation routine allows for the convenient creation of
a new array matching an existing array’s shapes and memory layout,
possibly changing the layout and/or data type.

When order is NPY_ANYORDER, the result order is
NPY_FORTRANORDER if prototype is a fortran array,
NPY_CORDER otherwise. When order is
NPY_KEEPORDER, the result order matches that of prototype, even
when the axes of prototype aren’t in C or Fortran order.

If descr is NULL, the data type of prototype is used.

If subok is 1, the newly created array will use the sub-type of
prototype to create the new array, otherwise it will create a
base-class array.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_New(PyTypeObject [http://docs.python.org/dev/c-api/type.html#c.PyTypeObject]*subtype, intnd, npy_intp*dims, inttype_num, npy_intp*strides, void*data, intitemsize, intflags, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	This is similar to PyArray_DescrNew (...) except you
specify the data-type descriptor with type_num and itemsize,
where type_num corresponds to a builtin (or user-defined)
type. If the type always has the same number of bytes, then
itemsize is ignored. Otherwise, itemsize specifies the particular
size of this array.

Warning

If data is passed to PyArray_NewFromDescr or PyArray_New,
this memory must not be deallocated until the new array is
deleted. If this data came from another Python object, this can
be accomplished using Py_INCREF [http://docs.python.org/dev/c-api/refcounting.html#c.Py_INCREF] on that object and setting the
base member of the new array to point to that object. If strides
are passed in they must be consistent with the dimensions, the
itemsize, and the data of the array.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_SimpleNew(intnd, npy_intp*dims, inttypenum)

	Create a new unitialized array of type, typenum, whose size in
each of nd dimensions is given by the integer array, dims.
This function cannot be used to create a flexible-type array (no
itemsize given).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_SimpleNewFromData(intnd, npy_intp*dims, inttypenum, void*data)

	Create an array wrapper around data pointed to by the given
pointer. The array flags will have a default that the data area is
well-behaved and C-style contiguous. The shape of the array is
given by the dims c-array of length nd. The data-type of the
array is indicated by typenum.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_SimpleNewFromDescr(intnd, npy_intp*dims, PyArray_Descr*descr)

	This function steals a reference to descr if it is not NULL.

Create a new array with the provided data-type descriptor, descr
, of the shape deteremined by nd and dims.

	
PyArray_FILLWBYTE(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, intval)

	Fill the array pointed to by obj —which must be a (subclass
of) bigndarray—with the contents of val (evaluated as a byte).
This macro calls memset, so obj must be contiguous.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Zeros(intnd, npy_intp*dims, PyArray_Descr*dtype, intfortran)

	Construct a new nd -dimensional array with shape given by dims
and data type given by dtype. If fortran is non-zero, then a
Fortran-order array is created, otherwise a C-order array is
created. Fill the memory with zeros (or the 0 object if dtype
corresponds to NPY_OBJECT).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ZEROS(intnd, npy_intp*dims, inttype_num, intfortran)

	Macro form of PyArray_Zeros which takes a type-number instead
of a data-type object.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Empty(intnd, npy_intp*dims, PyArray_Descr*dtype, intfortran)

	Construct a new nd -dimensional array with shape given by dims
and data type given by dtype. If fortran is non-zero, then a
Fortran-order array is created, otherwise a C-order array is
created. The array is uninitialized unless the data type
corresponds to NPY_OBJECT in which case the array is
filled with Py_None [http://docs.python.org/dev/c-api/none.html#c.Py_None].

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_EMPTY(intnd, npy_intp*dims, inttypenum, intfortran)

	Macro form of PyArray_Empty which takes a type-number,
typenum, instead of a data-type object.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Arange(doublestart, doublestop, doublestep, inttypenum)

	Construct a new 1-dimensional array of data-type, typenum, that
ranges from start to stop (exclusive) in increments of step
. Equivalent to arange (start, stop, step, dtype).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ArangeObj(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*start, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*stop, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*step, PyArray_Descr*descr)

	Construct a new 1-dimensional array of data-type determined by
descr, that ranges from start to stop (exclusive) in
increments of step. Equivalent to arange(start,
stop, step, typenum).

	
int PyArray_SetBaseObject(PyArrayObject*arr, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	
New in version 1.7.

This function steals a reference to obj and sets it as the
base property of arr.

If you construct an array by passing in your own memory buffer as
a parameter, you need to set the array’s base property to ensure
the lifetime of the memory buffer is appropriate.

The return value is 0 on success, -1 on failure.

If the object provided is an array, this function traverses the
chain of base pointers so that each array points to the owner
of the memory directly. Once the base is set, it may not be changed
to another value.

From other objects

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromAny(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, PyArray_Descr*dtype, intmin_depth, intmax_depth, intrequirements, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*context)

	This is the main function used to obtain an array from any nested
sequence, or object that exposes the array interface, op. The
parameters allow specification of the required dtype, the
minimum (min_depth) and maximum (max_depth) number of
dimensions acceptable, and other requirements for the array. The
dtype argument needs to be a PyArray_Descr structure
indicating the desired data-type (including required
byteorder). The dtype argument may be NULL, indicating that any
data-type (and byteorder) is acceptable. Unless FORCECAST is
present in flags, this call will generate an error if the data
type cannot be safely obtained from the object. If you want to use
NULL for the dtype and ensure the array is notswapped then
use PyArray_CheckFromAny. A value of 0 for either of the
depth parameters causes the parameter to be ignored. Any of the
following array flags can be added (e.g. using |) to get the
requirements argument. If your code can handle general (e.g.
strided, byte-swapped, or unaligned arrays) then requirements
may be 0. Also, if op is not already an array (or does not
expose the array interface), then a new array will be created (and
filled from op using the sequence protocol). The new array will
have NPY_DEFAULT as its flags member. The context argument
is passed to the __array__ method of op and is only used if
the array is constructed that way. Almost always this
parameter is NULL.

In versions 1.6 and earlier of NumPy, the following flags
did not have the _ARRAY_ macro namespace in them. That form
of the constant names is deprecated in 1.7.

	
NPY_ARRAY_C_CONTIGUOUS

	Make sure the returned array is C-style contiguous

	
NPY_ARRAY_F_CONTIGUOUS

	Make sure the returned array is Fortran-style contiguous.

	
NPY_ARRAY_ALIGNED

	Make sure the returned array is aligned on proper boundaries for its
data type. An aligned array has the data pointer and every strides
factor as a multiple of the alignment factor for the data-type-
descriptor.

	
NPY_ARRAY_WRITEABLE

	Make sure the returned array can be written to.

	
NPY_ARRAY_ENSURECOPY

	Make sure a copy is made of op. If this flag is not
present, data is not copied if it can be avoided.

	
NPY_ARRAY_ENSUREARRAY

	Make sure the result is a base-class ndarray or bigndarray. By
default, if op is an instance of a subclass of the
bigndarray, an instance of that same subclass is returned. If
this flag is set, an ndarray object will be returned instead.

	
NPY_ARRAY_FORCECAST

	Force a cast to the output type even if it cannot be done
safely. Without this flag, a data cast will occur only if it
can be done safely, otherwise an error is reaised.

	
NPY_ARRAY_UPDATEIFCOPY

	If op is already an array, but does not satisfy the
requirements, then a copy is made (which will satisfy the
requirements). If this flag is present and a copy (of an object
that is already an array) must be made, then the corresponding
NPY_ARRAY_UPDATEIFCOPY flag is set in the returned
copy and op is made to be read-only. When the returned copy
is deleted (presumably after your calculations are complete),
its contents will be copied back into op and the op array
will be made writeable again. If op is not writeable to begin
with, then an error is raised. If op is not already an array,
then this flag has no effect.

	
NPY_ARRAY_BEHAVED

	NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE

	
NPY_ARRAY_CARRAY

	NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_BEHAVED

	
NPY_ARRAY_CARRAY_RO

	NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED

	
NPY_ARRAY_FARRAY

	NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_BEHAVED

	
NPY_ARRAY_FARRAY_RO

	NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

	
NPY_ARRAY_DEFAULT

	NPY_ARRAY_CARRAY

	
NPY_ARRAY_IN_ARRAY

	NPY_ARRAY_CONTIGUOUS | NPY_ARRAY_ALIGNED

	
NPY_ARRAY_IN_FARRAY

	NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

	
NPY_OUT_ARRAY

	NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE |
NPY_ARRAY_ALIGNED

	
NPY_ARRAY_OUT_FARRAY

	NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_WRITEABLE |
NPY_ARRAY_ALIGNED

	
NPY_ARRAY_INOUT_ARRAY

	NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE |
NPY_ARRAY_ALIGNED | NPY_ARRAY_UPDATEIFCOPY

	
NPY_ARRAY_INOUT_FARRAY

	NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_WRITEABLE |
NPY_ARRAY_ALIGNED | NPY_ARRAY_UPDATEIFCOPY

	
int PyArray_GetArrayParamsFromObject(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, PyArray_Descr*requested_dtype, npy_boolwriteable, PyArray_Descr**out_dtype, int*out_ndim, npy_intp*out_dims, PyArrayObject**out_arr, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*context)

	
New in version 1.6.

Retrieves the array parameters for viewing/converting an arbitrary
PyObject* to a NumPy array. This allows the “innate type and shape”
of Python list-of-lists to be discovered without
actually converting to an array. PyArray_FromAny calls this function
to analyze its input.

In some cases, such as structured arrays and the __array__ interface,
a data type needs to be used to make sense of the object. When
this is needed, provide a Descr for ‘requested_dtype’, otherwise
provide NULL. This reference is not stolen. Also, if the requested
dtype doesn’t modify the interpretation of the input, out_dtype will
still get the “innate” dtype of the object, not the dtype passed
in ‘requested_dtype’.

If writing to the value in ‘op’ is desired, set the boolean
‘writeable’ to 1. This raises an error when ‘op’ is a scalar, list
of lists, or other non-writeable ‘op’. This differs from passing
NPY_ARRAY_WRITEABLE to PyArray_FromAny, where the writeable array may
be a copy of the input.

When success (0 return value) is returned, either out_arr
is filled with a non-NULL PyArrayObject and
the rest of the parameters are untouched, or out_arr is
filled with NULL, and the rest of the parameters are filled.

Typical usage:

PyArrayObject *arr = NULL;
PyArray_Descr *dtype = NULL;
int ndim = 0;
npy_intp dims[NPY_MAXDIMS];

if (PyArray_GetArrayParamsFromObject(op, NULL, 1, &dtype,
 &ndim, &dims, &arr, NULL) < 0) {
 return NULL;
}
if (arr == NULL) {
 ... validate/change dtype, validate flags, ndim, etc ...
 // Could make custom strides here too
 arr = PyArray_NewFromDescr(&PyArray_Type, dtype, ndim,
 dims, NULL,
 fortran ? NPY_ARRAY_F_CONTIGUOUS : 0,
 NULL);
 if (arr == NULL) {
 return NULL;
 }
 if (PyArray_CopyObject(arr, op) < 0) {
 Py_DECREF(arr);
 return NULL;
 }
}
else {
 ... in this case the other parameters weren't filled, just
 validate and possibly copy arr itself ...
}
... use arr ...

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_CheckFromAny(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, PyArray_Descr*dtype, intmin_depth, intmax_depth, intrequirements, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*context)

	Nearly identical to PyArray_FromAny (...) except
requirements can contain NPY_ARRAY_NOTSWAPPED (over-riding the
specification in dtype) and NPY_ARRAY_ELEMENTSTRIDES which
indicates that the array should be aligned in the sense that the
strides are multiples of the element size.

In versions 1.6 and earlier of NumPy, the following flags
did not have the _ARRAY_ macro namespace in them. That form
of the constant names is deprecated in 1.7.

	
NPY_ARRAY_NOTSWAPPED

	Make sure the returned array has a data-type descriptor that is in
machine byte-order, over-riding any specification in the dtype
argument. Normally, the byte-order requirement is determined by
the dtype argument. If this flag is set and the dtype argument
does not indicate a machine byte-order descriptor (or is NULL and
the object is already an array with a data-type descriptor that is
not in machine byte- order), then a new data-type descriptor is
created and used with its byte-order field set to native.

	
NPY_ARRAY_BEHAVED_NS

	NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED

	
NPY_ARRAY_ELEMENTSTRIDES

	Make sure the returned array has strides that are multiples of the
element size.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromArray(PyArrayObject*op, PyArray_Descr*newtype, intrequirements)

	Special case of PyArray_FromAny for when op is already an
array but it needs to be of a specific newtype (including
byte-order) or has certain requirements.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromStructInterface(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op)

	Returns an ndarray object from a Python object that exposes the
__array_struct__` method and follows the array interface
protocol. If the object does not contain this method then a
borrowed reference to Py_NotImplemented [http://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented] is returned.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromInterface(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op)

	Returns an ndarray object from a Python object that exposes the
__array_shape__ and __array_typestr__
methods following
the array interface protocol. If the object does not contain one
of these method then a borrowed reference to Py_NotImplemented [http://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented]
is returned.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromArrayAttr(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, PyArray_Descr*dtype, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*context)

	Return an ndarray object from a Python object that exposes the
__array__ method. The __array__ method can take 0, 1, or 2
arguments ([dtype, context]) where context is used to pass
information about where the __array__ method is being called
from (currently only used in ufuncs).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ContiguousFromAny(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, inttypenum, intmin_depth, intmax_depth)

	This function returns a (C-style) contiguous and behaved function
array from any nested sequence or array interface exporting
object, op, of (non-flexible) type given by the enumerated
typenum, of minimum depth min_depth, and of maximum depth
max_depth. Equivalent to a call to PyArray_FromAny with
requirements set to NPY_DEFAULT and the type_num member of the
type argument set to typenum.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_FromObject(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, inttypenum, intmin_depth, intmax_depth)

	Return an aligned and in native-byteorder array from any nested
sequence or array-interface exporting object, op, of a type given by
the enumerated typenum. The minimum number of dimensions the array can
have is given by min_depth while the maximum is max_depth. This is
equivalent to a call to PyArray_FromAny with requirements set to
BEHAVED.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_EnsureArray(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op)

	This function steals a reference to op and makes sure that
op is a base-class ndarray. It special cases array scalars,
but otherwise calls PyArray_FromAny (op, NULL, 0, 0,
NPY_ARRAY_ENSUREARRAY).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromString(char*string, npy_intpslen, PyArray_Descr*dtype, npy_intpnum, char*sep)

	Construct a one-dimensional ndarray of a single type from a binary
or (ASCII) text string of length slen. The data-type of
the array to-be-created is given by dtype. If num is -1, then
copy the entire string and return an appropriately sized
array, otherwise, num is the number of items to copy from
the string. If sep is NULL (or “”), then interpret the string
as bytes of binary data, otherwise convert the sub-strings
separated by sep to items of data-type dtype. Some
data-types may not be readable in text mode and an error will be
raised if that occurs. All errors return NULL.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromFile(FILE*fp, PyArray_Descr*dtype, npy_intpnum, char*sep)

	Construct a one-dimensional ndarray of a single type from a binary
or text file. The open file pointer is fp, the data-type of
the array to be created is given by dtype. This must match
the data in the file. If num is -1, then read until the end of
the file and return an appropriately sized array, otherwise,
num is the number of items to read. If sep is NULL (or
“”), then read from the file in binary mode, otherwise read from
the file in text mode with sep providing the item
separator. Some array types cannot be read in text mode in which
case an error is raised.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromBuffer(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*buf, PyArray_Descr*dtype, npy_intpcount, npy_intpoffset)

	Construct a one-dimensional ndarray of a single type from an
object, buf, that exports the (single-segment) buffer protocol
(or has an attribute __buffer__ that returns an object that
exports the buffer protocol). A writeable buffer will be tried
first followed by a read- only buffer. The NPY_ARRAY_WRITEABLE
flag of the returned array will reflect which one was
successful. The data is assumed to start at offset bytes from
the start of the memory location for the object. The type of the
data in the buffer will be interpreted depending on the data- type
descriptor, dtype. If count is negative then it will be
determined from the size of the buffer and the requested itemsize,
otherwise, count represents how many elements should be
converted from the buffer.

	
int PyArray_CopyInto(PyArrayObject*dest, PyArrayObject*src)

	Copy from the source array, src, into the destination array,
dest, performing a data-type conversion if necessary. If an
error occurs return -1 (otherwise 0). The shape of src must be
broadcastable to the shape of dest. The data areas of dest
and src must not overlap.

	
int PyArray_MoveInto(PyArrayObject*dest, PyArrayObject*src)

	Move data from the source array, src, into the destination
array, dest, performing a data-type conversion if
necessary. If an error occurs return -1 (otherwise 0). The shape
of src must be broadcastable to the shape of dest. The
data areas of dest and src may overlap.

	
PyArrayObject* PyArray_GETCONTIGUOUS(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op)

	If op is already (C-style) contiguous and well-behaved then
just return a reference, otherwise return a (contiguous and
well-behaved) copy of the array. The parameter op must be a
(sub-class of an) ndarray and no checking for that is done.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FROM_O(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	Convert obj to an ndarray. The argument can be any nested
sequence or object that exports the array interface. This is a
macro form of PyArray_FromAny using NULL, 0, 0, 0 for the
other arguments. Your code must be able to handle any data-type
descriptor and any combination of data-flags to use this macro.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FROM_OF(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, intrequirements)

	Similar to PyArray_FROM_O except it can take an argument
of requirements indicating properties the resulting array must
have. Available requirements that can be enforced are
NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE,
NPY_ARRAY_NOTSWAPPED, NPY_ARRAY_ENSURECOPY,
NPY_ARRAY_UPDATEIFCOPY, NPY_ARRAY_FORCECAST, and
NPY_ARRAY_ENSUREARRAY. Standard combinations of flags can also
be used:

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FROM_OT(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, inttypenum)

	Similar to PyArray_FROM_O except it can take an argument of
typenum specifying the type-number the returned array.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FROM_OTF(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, inttypenum, intrequirements)

	Combination of PyArray_FROM_OF and PyArray_FROM_OT
allowing both a typenum and a flags argument to be provided..

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FROMANY(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, inttypenum, intmin, intmax, intrequirements)

	Similar to PyArray_FromAny except the data-type is
specified using a typenumber. PyArray_DescrFromType
(typenum) is passed directly to PyArray_FromAny. This
macro also adds NPY_DEFAULT to requirements if
NPY_ARRAY_ENSURECOPY is passed in as requirements.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_CheckAxis(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, int*axis, intrequirements)

	Encapsulate the functionality of functions and methods that take
the axis= keyword and work properly with None as the axis
argument. The input array is obj, while *axis is a
converted integer (so that >=MAXDIMS is the None value), and
requirements gives the needed properties of obj. The
output is a converted version of the input so that requirements
are met and if needed a flattening has occurred. On output
negative values of *axis are converted and the new value is
checked to ensure consistency with the shape of obj.

Dealing with types

General check of Python Type

	
PyArray_Check(op)

	Evaluates true if op is a Python object whose type is a sub-type
of PyArray_Type.

	
PyArray_CheckExact(op)

	Evaluates true if op is a Python object with type
PyArray_Type.

	
PyArray_HasArrayInterface(op, out)

	If op implements any part of the array interface, then out
will contain a new reference to the newly created ndarray using
the interface or out will contain NULL if an error during
conversion occurs. Otherwise, out will contain a borrowed
reference to Py_NotImplemented [http://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented] and no error condition is set.

	
PyArray_HasArrayInterfaceType(op, type, context, out)

	If op implements any part of the array interface, then out
will contain a new reference to the newly created ndarray using
the interface or out will contain NULL if an error during
conversion occurs. Otherwise, out will contain a borrowed
reference to Py_NotImplemented and no error condition is set.
This version allows setting of the type and context in the part of
the array interface that looks for the __array__ attribute.

	
PyArray_IsZeroDim(op)

	Evaluates true if op is an instance of (a subclass of)
PyArray_Type and has 0 dimensions.

	
PyArray_IsScalar(op, cls)

	Evaluates true if op is an instance of Py{cls}ArrType_Type.

	
PyArray_CheckScalar(op)

	Evaluates true if op is either an array scalar (an instance of a
sub-type of PyGenericArr_Type), or an instance of (a
sub-class of) PyArray_Type whose dimensionality is 0.

	
PyArray_IsPythonScalar(op)

	Evaluates true if op is a builtin Python “scalar” object (int,
float, complex, str, unicode, long, bool).

	
PyArray_IsAnyScalar(op)

	Evaluates true if op is either a Python scalar or an array
scalar (an instance of a sub- type of PyGenericArr_Type).

Data-type checking

For the typenum macros, the argument is an integer representing an
enumerated array data type. For the array type checking macros the
argument must be a PyObject * that can be directly interpreted as a
PyArrayObject *.

	
PyTypeNum_ISUNSIGNED(num)

	

	
PyDataType_ISUNSIGNED(descr)

	

	
PyArray_ISUNSIGNED(obj)

	Type represents an unsigned integer.

	
PyTypeNum_ISSIGNED(num)

	

	
PyDataType_ISSIGNED(descr)

	

	
PyArray_ISSIGNED(obj)

	Type represents a signed integer.

	
PyTypeNum_ISINTEGER(num)

	

	
PyDataType_ISINTEGER(descr)

	

	
PyArray_ISINTEGER(obj)

	Type represents any integer.

	
PyTypeNum_ISFLOAT(num)

	

	
PyDataType_ISFLOAT(descr)

	

	
PyArray_ISFLOAT(obj)

	Type represents any floating point number.

	
PyTypeNum_ISCOMPLEX(num)

	

	
PyDataType_ISCOMPLEX(descr)

	

	
PyArray_ISCOMPLEX(obj)

	Type represents any complex floating point number.

	
PyTypeNum_ISNUMBER(num)

	

	
PyDataType_ISNUMBER(descr)

	

	
PyArray_ISNUMBER(obj)

	Type represents any integer, floating point, or complex floating point
number.

	
PyTypeNum_ISSTRING(num)

	

	
PyDataType_ISSTRING(descr)

	

	
PyArray_ISSTRING(obj)

	Type represents a string data type.

	
PyTypeNum_ISPYTHON(num)

	

	
PyDataType_ISPYTHON(descr)

	

	
PyArray_ISPYTHON(obj)

	Type represents an enumerated type corresponding to one of the
standard Python scalar (bool, int, float, or complex).

	
PyTypeNum_ISFLEXIBLE(num)

	

	
PyDataType_ISFLEXIBLE(descr)

	

	
PyArray_ISFLEXIBLE(obj)

	Type represents one of the flexible array types (NPY_STRING,
NPY_UNICODE, or NPY_VOID).

	
PyTypeNum_ISUSERDEF(num)

	

	
PyDataType_ISUSERDEF(descr)

	

	
PyArray_ISUSERDEF(obj)

	Type represents a user-defined type.

	
PyTypeNum_ISEXTENDED(num)

	

	
PyDataType_ISEXTENDED(descr)

	

	
PyArray_ISEXTENDED(obj)

	Type is either flexible or user-defined.

	
PyTypeNum_ISOBJECT(num)

	

	
PyDataType_ISOBJECT(descr)

	

	
PyArray_ISOBJECT(obj)

	Type represents object data type.

	
PyTypeNum_ISBOOL(num)

	

	
PyDataType_ISBOOL(descr)

	

	
PyArray_ISBOOL(obj)

	Type represents Boolean data type.

	
PyDataType_HASFIELDS(descr)

	

	
PyArray_HASFIELDS(obj)

	Type has fields associated with it.

	
PyArray_ISNOTSWAPPED(m)

	Evaluates true if the data area of the ndarray m is in machine
byte-order according to the array’s data-type descriptor.

	
PyArray_ISBYTESWAPPED(m)

	Evaluates true if the data area of the ndarray m is not in
machine byte-order according to the array’s data-type descriptor.

	
Bool PyArray_EquivTypes(PyArray_Descr*type1, PyArray_Descr*type2)

	Return NPY_TRUE if type1 and type2 actually represent
equivalent types for this platform (the fortran member of each
type is ignored). For example, on 32-bit platforms,
NPY_LONG and NPY_INT are equivalent. Otherwise
return NPY_FALSE.

	
Bool PyArray_EquivArrTypes(PyArrayObject*a1, PyArrayObject *a2)

	Return NPY_TRUE if a1 and a2 are arrays with equivalent
types for this platform.

	
Bool PyArray_EquivTypenums(inttypenum1, inttypenum2)

	Special case of PyArray_EquivTypes (...) that does not accept
flexible data types but may be easier to call.

	
int PyArray_EquivByteorders({byteorder}b1, {byteorder}b2)

	True if byteorder characters (NPY_LITTLE,
NPY_BIG, NPY_NATIVE, NPY_IGNORE) are
either equal or equivalent as to their specification of a native
byte order. Thus, on a little-endian machine NPY_LITTLE
and NPY_NATIVE are equivalent where they are not
equivalent on a big-endian machine.

Converting data types

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Cast(PyArrayObject*arr, inttypenum)

	Mainly for backwards compatibility to the Numeric C-API and for
simple casts to non-flexible types. Return a new array object with
the elements of arr cast to the data-type typenum which must
be one of the enumerated types and not a flexible type.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_CastToType(PyArrayObject*arr, PyArray_Descr*type, intfortran)

	Return a new array of the type specified, casting the elements
of arr as appropriate. The fortran argument specifies the
ordering of the output array.

	
int PyArray_CastTo(PyArrayObject*out, PyArrayObject*in)

	As of 1.6, this function simply calls PyArray_CopyInto,
which handles the casting.

Cast the elements of the array in into the array out. The
output array should be writeable, have an integer-multiple of the
number of elements in the input array (more than one copy can be
placed in out), and have a data type that is one of the builtin
types. Returns 0 on success and -1 if an error occurs.

	
PyArray_VectorUnaryFunc* PyArray_GetCastFunc(PyArray_Descr*from, inttotype)

	Return the low-level casting function to cast from the given
descriptor to the builtin type number. If no casting function
exists return NULL and set an error. Using this function
instead of direct access to from ->f->cast will allow support of
any user-defined casting functions added to a descriptors casting
dictionary.

	
int PyArray_CanCastSafely(intfromtype, inttotype)

	Returns non-zero if an array of data type fromtype can be cast
to an array of data type totype without losing information. An
exception is that 64-bit integers are allowed to be cast to 64-bit
floating point values even though this can lose precision on large
integers so as not to proliferate the use of long doubles without
explict requests. Flexible array types are not checked according
to their lengths with this function.

	
int PyArray_CanCastTo(PyArray_Descr*fromtype, PyArray_Descr*totype)

	PyArray_CanCastTypeTo supercedes this function in
NumPy 1.6 and later.

Equivalent to PyArray_CanCastTypeTo(fromtype, totype, NPY_SAFE_CASTING).

	
int PyArray_CanCastTypeTo(PyArray_Descr*fromtype, PyArray_Descr*totype, NPY_CASTINGcasting)

	
New in version 1.6.

Returns non-zero if an array of data type fromtype (which can
include flexible types) can be cast safely to an array of data
type totype (which can include flexible types) according to
the casting rule casting. For simple types with NPY_SAFE_CASTING,
this is basically a wrapper around PyArray_CanCastSafely, but
for flexible types such as strings or unicode, it produces results
taking into account their sizes. Integer and float types can only be cast
to a string or unicode type using NPY_SAFE_CASTING if the string
or unicode type is big enough to hold the max value of the integer/float
type being cast from.

	
int PyArray_CanCastArrayTo(PyArrayObject*arr, PyArray_Descr*totype, NPY_CASTINGcasting)

	
New in version 1.6.

Returns non-zero if arr can be cast to totype according
to the casting rule given in casting. If arr is an array
scalar, its value is taken into account, and non-zero is also
returned when the value will not overflow or be truncated to
an integer when converting to a smaller type.

This is almost the same as the result of
PyArray_CanCastTypeTo(PyArray_MinScalarType(arr), totype, casting),
but it also handles a special case arising because the set
of uint values is not a subset of the int values for types with the
same number of bits.

	
PyArray_Descr* PyArray_MinScalarType(PyArrayObject*arr)

	
New in version 1.6.

If arr is an array, returns its data type descriptor, but if
arr is an array scalar (has 0 dimensions), it finds the data type
of smallest size to which the value may be converted
without overflow or truncation to an integer.

This function will not demote complex to float or anything to
boolean, but will demote a signed integer to an unsigned integer
when the scalar value is positive.

	
PyArray_Descr* PyArray_PromoteTypes(PyArray_Descr*type1, PyArray_Descr*type2)

	
New in version 1.6.

Finds the data type of smallest size and kind to which type1 and
type2 may be safely converted. This function is symmetric and
associative. A string or unicode result will be the proper size for
storing the max value of the input types converted to a string or unicode.

	
PyArray_Descr* PyArray_ResultType(npy_intpnarrs, PyArrayObject**arrs, npy_intpndtypes, PyArray_Descr**dtypes)

	
New in version 1.6.

This applies type promotion to all the inputs,
using the NumPy rules for combining scalars and arrays, to
determine the output type of a set of operands. This is the
same result type that ufuncs produce. The specific algorithm
used is as follows.

Categories are determined by first checking which of boolean,
integer (int/uint), or floating point (float/complex) the maximum
kind of all the arrays and the scalars are.

If there are only scalars or the maximum category of the scalars
is higher than the maximum category of the arrays,
the data types are combined with PyArray_PromoteTypes
to produce the return value.

Otherwise, PyArray_MinScalarType is called on each array, and
the resulting data types are all combined with
PyArray_PromoteTypes to produce the return value.

The set of int values is not a subset of the uint values for types
with the same number of bits, something not reflected in
PyArray_MinScalarType, but handled as a special case in
PyArray_ResultType.

	
int PyArray_ObjectType(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, intmintype)

	This function is superceded by PyArray_MinScalarType and/or
PyArray_ResultType.

This function is useful for determining a common type that two or
more arrays can be converted to. It only works for non-flexible
array types as no itemsize information is passed. The mintype
argument represents the minimum type acceptable, and op
represents the object that will be converted to an array. The
return value is the enumerated typenumber that represents the
data-type that op should have.

	
void PyArray_ArrayType(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, PyArray_Descr*mintype, PyArray_Descr*outtype)

	This function is superceded by PyArray_ResultType.

This function works similarly to PyArray_ObjectType (...)
except it handles flexible arrays. The mintype argument can have
an itemsize member and the outtype argument will have an
itemsize member at least as big but perhaps bigger depending on
the object op.

	
PyArrayObject** PyArray_ConvertToCommonType(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, int*n)

	The functionality this provides is largely superceded by iterator
NpyIter introduced in 1.6, with flag
NPY_ITER_COMMON_DTYPE or with the same dtype parameter for
all operands.

Convert a sequence of Python objects contained in op to an array
of ndarrays each having the same data type. The type is selected
based on the typenumber (larger type number is chosen over a
smaller one) ignoring objects that are only scalars. The length of
the sequence is returned in n, and an n -length array of
PyArrayObject pointers is the return value (or NULL if an
error occurs). The returned array must be freed by the caller of
this routine (using PyDataMem_FREE) and all the array objects
in it DECREF ‘d or a memory-leak will occur. The example
template-code below shows a typically usage:

mps = PyArray_ConvertToCommonType(obj, &n);
if (mps==NULL) return NULL;
{code}
<before return>
for (i=0; i<n; i++) Py_DECREF(mps[i]);
PyDataMem_FREE(mps);
{return}

	
char* PyArray_Zero(PyArrayObject*arr)

	A pointer to newly created memory of size arr ->itemsize that
holds the representation of 0 for that type. The returned pointer,
ret, must be freed using PyDataMem_FREE (ret) when it is
not needed anymore.

	
char* PyArray_One(PyArrayObject*arr)

	A pointer to newly created memory of size arr ->itemsize that
holds the representation of 1 for that type. The returned pointer,
ret, must be freed using PyDataMem_FREE (ret) when it
is not needed anymore.

	
int PyArray_ValidType(inttypenum)

	Returns NPY_TRUE if typenum represents a valid type-number
(builtin or user-defined or character code). Otherwise, this
function returns NPY_FALSE.

New data types

	
void PyArray_InitArrFuncs(PyArray_ArrFuncs*f)

	Initialize all function pointers and members to NULL.

	
int PyArray_RegisterDataType(PyArray_Descr*dtype)

	Register a data-type as a new user-defined data type for
arrays. The type must have most of its entries filled in. This is
not always checked and errors can produce segfaults. In
particular, the typeobj member of the dtype structure must be
filled with a Python type that has a fixed-size element-size that
corresponds to the elsize member of dtype. Also the f
member must have the required functions: nonzero, copyswap,
copyswapn, getitem, setitem, and cast (some of the cast functions
may be NULL if no support is desired). To avoid confusion, you
should choose a unique character typecode but this is not enforced
and not relied on internally.

A user-defined type number is returned that uniquely identifies
the type. A pointer to the new structure can then be obtained from
PyArray_DescrFromType using the returned type number. A -1 is
returned if an error occurs. If this dtype has already been
registered (checked only by the address of the pointer), then
return the previously-assigned type-number.

	
int PyArray_RegisterCastFunc(PyArray_Descr*descr, inttotype, PyArray_VectorUnaryFunc*castfunc)

	Register a low-level casting function, castfunc, to convert
from the data-type, descr, to the given data-type number,
totype. Any old casting function is over-written. A 0 is
returned on success or a -1 on failure.

	
int PyArray_RegisterCanCast(PyArray_Descr*descr, inttotype, NPY_SCALARKINDscalar)

	Register the data-type number, totype, as castable from
data-type object, descr, of the given scalar kind. Use
scalar = NPY_NOSCALAR to register that an array of data-type
descr can be cast safely to a data-type whose type_number is
totype.

Special functions for NPY_OBJECT

	
int PyArray_INCREF(PyArrayObject*op)

	Used for an array, op, that contains any Python objects. It
increments the reference count of every object in the array
according to the data-type of op. A -1 is returned if an error
occurs, otherwise 0 is returned.

	
void PyArray_Item_INCREF(char*ptr, PyArray_Descr*dtype)

	A function to INCREF all the objects at the location ptr
according to the data-type dtype. If ptr is the start of a
record with an object at any offset, then this will (recursively)
increment the reference count of all object-like items in the
record.

	
int PyArray_XDECREF(PyArrayObject*op)

	Used for an array, op, that contains any Python objects. It
decrements the reference count of every object in the array
according to the data-type of op. Normal return value is 0. A
-1 is returned if an error occurs.

	
void PyArray_Item_XDECREF(char*ptr, PyArray_Descr*dtype)

	A function to XDECREF all the object-like items at the loacation
ptr as recorded in the data-type, dtype. This works
recursively so that if dtype itself has fields with data-types
that contain object-like items, all the object-like fields will be
XDECREF 'd.

	
void PyArray_FillObjectArray(PyArrayObject*arr, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	Fill a newly created array with a single value obj at all
locations in the structure with object data-types. No checking is
performed but arr must be of data-type NPY_OBJECT and be
single-segment and uninitialized (no previous objects in
position). Use PyArray_DECREF (arr) if you need to
decrement all the items in the object array prior to calling this
function.

Array flags

The flags attribute of the PyArrayObject structure contains
important information about the memory used by the array (pointed to
by the data member) This flag information must be kept accurate or
strange results and even segfaults may result.

There are 6 (binary) flags that describe the memory area used by the
data buffer. These constants are defined in arrayobject.h and
determine the bit-position of the flag. Python exposes a nice
attribute- based interface as well as a dictionary-like interface for
getting (and, if appropriate, setting) these flags.

Memory areas of all kinds can be pointed to by an ndarray, necessitating
these flags. If you get an arbitrary PyArrayObject in C-code, you
need to be aware of the flags that are set. If you need to guarantee
a certain kind of array (like NPY_ARRAY_C_CONTIGUOUS and
NPY_ARRAY_BEHAVED), then pass these requirements into the
PyArray_FromAny function.

Basic Array Flags

An ndarray can have a data segment that is not a simple contiguous
chunk of well-behaved memory you can manipulate. It may not be aligned
with word boundaries (very important on some platforms). It might have
its data in a different byte-order than the machine recognizes. It
might not be writeable. It might be in Fortan-contiguous order. The
array flags are used to indicate what can be said about data
associated with an array.

In versions 1.6 and earlier of NumPy, the following flags
did not have the _ARRAY_ macro namespace in them. That form
of the constant names is deprecated in 1.7.

	
NPY_ARRAY_C_CONTIGUOUS

	The data area is in C-style contiguous order (last index varies the
fastest).

	
NPY_ARRAY_F_CONTIGUOUS

	The data area is in Fortran-style contiguous order (first index varies
the fastest).

Note

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true. The correct way to access the
itemsize of an array from the C API is PyArray_ITEMSIZE(arr).

See also

Internal memory layout of an ndarray

	
NPY_ARRAY_OWNDATA

	The data area is owned by this array.

	
NPY_ARRAY_ALIGNED

	The data area and all array elements are aligned appropriately.

	
NPY_ARRAY_WRITEABLE

	The data area can be written to.

Notice that the above 3 flags are are defined so that a new, well-
behaved array has these flags defined as true.

	
NPY_ARRAY_UPDATEIFCOPY

	The data area represents a (well-behaved) copy whose information
should be transferred back to the original when this array is deleted.

This is a special flag that is set if this array represents a copy
made because a user required certain flags in
PyArray_FromAny and a copy had to be made of some other
array (and the user asked for this flag to be set in such a
situation). The base attribute then points to the “misbehaved”
array (which is set read_only). When the array with this flag set
is deallocated, it will copy its contents back to the “misbehaved”
array (casting if necessary) and will reset the “misbehaved” array
to NPY_ARRAY_WRITEABLE. If the “misbehaved” array was not
NPY_ARRAY_WRITEABLE to begin with then PyArray_FromAny
would have returned an error because NPY_ARRAY_UPDATEIFCOPY
would not have been possible.

PyArray_UpdateFlags (obj, flags) will update the obj->flags
for flags which can be any of NPY_ARRAY_C_CONTIGUOUS,
NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_ALIGNED, or
NPY_ARRAY_WRITEABLE.

Combinations of array flags

	
NPY_ARRAY_BEHAVED

	NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE

	
NPY_ARRAY_CARRAY

	NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_BEHAVED

	
NPY_ARRAY_CARRAY_RO

	NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED

	
NPY_ARRAY_FARRAY

	NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_BEHAVED

	
NPY_ARRAY_FARRAY_RO

	NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

	
NPY_ARRAY_DEFAULT

	NPY_ARRAY_CARRAY

	
NPY_ARRAY_UPDATE_ALL

	NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

Flag-like constants

These constants are used in PyArray_FromAny (and its macro forms) to
specify desired properties of the new array.

	
NPY_ARRAY_FORCECAST

	Cast to the desired type, even if it can’t be done without losing
information.

	
NPY_ARRAY_ENSURECOPY

	Make sure the resulting array is a copy of the original.

	
NPY_ARRAY_ENSUREARRAY

	Make sure the resulting object is an actual ndarray (or bigndarray),
and not a sub-class.

	
NPY_ARRAY_NOTSWAPPED

	Only used in PyArray_CheckFromAny to over-ride the byteorder
of the data-type object passed in.

	
NPY_ARRAY_BEHAVED_NS

	NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED

Flag checking

For all of these macros arr must be an instance of a (subclass of)
PyArray_Type, but no checking is done.

	
PyArray_CHKFLAGS(arr, flags)

	The first parameter, arr, must be an ndarray or subclass. The
parameter, flags, should be an integer consisting of bitwise
combinations of the possible flags an array can have:
NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS,
NPY_ARRAY_OWNDATA, NPY_ARRAY_ALIGNED,
NPY_ARRAY_WRITEABLE, NPY_ARRAY_UPDATEIFCOPY.

	
PyArray_IS_C_CONTIGUOUS(arr)

	Evaluates true if arr is C-style contiguous.

	
PyArray_IS_F_CONTIGUOUS(arr)

	Evaluates true if arr is Fortran-style contiguous.

	
PyArray_ISFORTRAN(arr)

	Evaluates true if arr is Fortran-style contiguous and not
C-style contiguous. PyArray_IS_F_CONTIGUOUS
is the correct way to test for Fortran-style contiguity.

	
PyArray_ISWRITEABLE(arr)

	Evaluates true if the data area of arr can be written to

	
PyArray_ISALIGNED(arr)

	Evaluates true if the data area of arr is properly aligned on
the machine.

	
PyArray_ISBEHAVED(arr)

	Evalutes true if the data area of arr is aligned and writeable
and in machine byte-order according to its descriptor.

	
PyArray_ISBEHAVED_RO(arr)

	Evaluates true if the data area of arr is aligned and in machine
byte-order.

	
PyArray_ISCARRAY(arr)

	Evaluates true if the data area of arr is C-style contiguous,
and PyArray_ISBEHAVED (arr) is true.

	
PyArray_ISFARRAY(arr)

	Evaluates true if the data area of arr is Fortran-style
contiguous and PyArray_ISBEHAVED (arr) is true.

	
PyArray_ISCARRAY_RO(arr)

	Evaluates true if the data area of arr is C-style contiguous,
aligned, and in machine byte-order.

	
PyArray_ISFARRAY_RO(arr)

	Evaluates true if the data area of arr is Fortran-style
contiguous, aligned, and in machine byte-order .

	
PyArray_ISONESEGMENT(arr)

	Evaluates true if the data area of arr consists of a single
(C-style or Fortran-style) contiguous segment.

	
void PyArray_UpdateFlags(PyArrayObject*arr, intflagmask)

	The NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_ALIGNED, and
NPY_ARRAY_F_CONTIGUOUS array flags can be “calculated” from the
array object itself. This routine updates one or more of these
flags of arr as specified in flagmask by performing the
required calculation.

Warning

It is important to keep the flags updated (using
PyArray_UpdateFlags can help) whenever a manipulation with an
array is performed that might cause them to change. Later
calculations in NumPy that rely on the state of these flags do not
repeat the calculation to update them.

Array method alternative API

Conversion

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_GetField(PyArrayObject*self, PyArray_Descr*dtype, intoffset)

	Equivalent to ndarray.getfield (self, dtype, offset). Return
a new array of the given dtype using the data in the current
array at a specified offset in bytes. The offset plus the
itemsize of the new array type must be less than self
->descr->elsize or an error is raised. The same shape and strides
as the original array are used. Therefore, this function has the
effect of returning a field from a record array. But, it can also
be used to select specific bytes or groups of bytes from any array
type.

	
int PyArray_SetField(PyArrayObject*self, PyArray_Descr*dtype, intoffset, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*val)

	Equivalent to ndarray.setfield (self, val, dtype, offset
). Set the field starting at offset in bytes and of the given
dtype to val. The offset plus dtype ->elsize must be less
than self ->descr->elsize or an error is raised. Otherwise, the
val argument is converted to an array and copied into the field
pointed to. If necessary, the elements of val are repeated to
fill the destination array, But, the number of elements in the
destination must be an integer multiple of the number of elements
in val.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Byteswap(PyArrayObject*self, Boolinplace)

	Equivalent to ndarray.byteswap (self, inplace). Return an array
whose data area is byteswapped. If inplace is non-zero, then do
the byteswap inplace and return a reference to self. Otherwise,
create a byteswapped copy and leave self unchanged.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_NewCopy(PyArrayObject*old, NPY_ORDERorder)

	Equivalent to ndarray.copy (self, fortran). Make a copy of the
old array. The returned array is always aligned and writeable
with data interpreted the same as the old array. If order is
NPY_CORDER, then a C-style contiguous array is returned. If
order is NPY_FORTRANORDER, then a Fortran-style contiguous
array is returned. If order is NPY_ANYORDER, then the array
returned is Fortran-style contiguous only if the old one is;
otherwise, it is C-style contiguous.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ToList(PyArrayObject*self)

	Equivalent to ndarray.tolist (self). Return a nested Python list
from self.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ToString(PyArrayObject*self, NPY_ORDERorder)

	Equivalent to ndarray.tobytes (self, order). Return the bytes
of this array in a Python string.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ToFile(PyArrayObject*self, FILE*fp, char*sep, char*format)

	Write the contents of self to the file pointer fp in C-style
contiguous fashion. Write the data as binary bytes if sep is the
string “”or NULL. Otherwise, write the contents of self as
text using the sep string as the item separator. Each item will
be printed to the file. If the format string is not NULL or
“”, then it is a Python print statement format string showing how
the items are to be written.

	
int PyArray_Dump(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*file, intprotocol)

	Pickle the object in self to the given file (either a string
or a Python file object). If file is a Python string it is
considered to be the name of a file which is then opened in binary
mode. The given protocol is used (if protocol is negative, or
the highest available is used). This is a simple wrapper around
cPickle.dump(self, file, protocol).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Dumps(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*self, intprotocol)

	Pickle the object in self to a Python string and return it. Use
the Pickle protocol provided (or the highest available if
protocol is negative).

	
int PyArray_FillWithScalar(PyArrayObject*arr, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	Fill the array, arr, with the given scalar object, obj. The
object is first converted to the data type of arr, and then
copied into every location. A -1 is returned if an error occurs,
otherwise 0 is returned.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_View(PyArrayObject*self, PyArray_Descr*dtype, PyTypeObject [http://docs.python.org/dev/c-api/type.html#c.PyTypeObject]*ptype)

	Equivalent to ndarray.view (self, dtype). Return a new
view of the array self as possibly a different data-type, dtype,
and different array subclass ptype.

If dtype is NULL, then the returned array will have the same
data type as self. The new data-type must be consistent with the
size of self. Either the itemsizes must be identical, or self must
be single-segment and the total number of bytes must be the same.
In the latter case the dimensions of the returned array will be
altered in the last (or first for Fortran-style contiguous arrays)
dimension. The data area of the returned array and self is exactly
the same.

Shape Manipulation

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Newshape(PyArrayObject*self, PyArray_Dims*newshape, NPY_ORDERorder)

	Result will be a new array (pointing to the same memory location
as self if possible), but having a shape given by newshape.
If the new shape is not compatible with the strides of self,
then a copy of the array with the new specified shape will be
returned.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Reshape(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*shape)

	Equivalent to ndarray.reshape (self, shape) where shape is a
sequence. Converts shape to a PyArray_Dims structure and
calls PyArray_Newshape internally.
For back-ward compatability – Not recommended

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Squeeze(PyArrayObject*self)

	Equivalent to ndarray.squeeze (self). Return a new view of self
with all of the dimensions of length 1 removed from the shape.

Warning

matrix objects are always 2-dimensional. Therefore,
PyArray_Squeeze has no effect on arrays of matrix sub-class.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_SwapAxes(PyArrayObject*self, inta1, inta2)

	Equivalent to ndarray.swapaxes (self, a1, a2). The returned
array is a new view of the data in self with the given axes,
a1 and a2, swapped.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Resize(PyArrayObject*self, PyArray_Dims*newshape, intrefcheck, NPY_ORDERfortran)

	Equivalent to ndarray.resize (self, newshape, refcheck
= refcheck, order= fortran). This function only works on
single-segment arrays. It changes the shape of self inplace and
will reallocate the memory for self if newshape has a
different total number of elements then the old shape. If
reallocation is necessary, then self must own its data, have
self - >base==NULL, have self - >weakrefs==NULL, and
(unless refcheck is 0) not be referenced by any other array. A
reference to the new array is returned. The fortran argument can
be NPY_ANYORDER, NPY_CORDER, or
NPY_FORTRANORDER. It currently has no effect. Eventually
it could be used to determine how the resize operation should view
the data when constructing a differently-dimensioned array.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Transpose(PyArrayObject*self, PyArray_Dims*permute)

	Equivalent to ndarray.transpose (self, permute). Permute the
axes of the ndarray object self according to the data structure
permute and return the result. If permute is NULL, then
the resulting array has its axes reversed. For example if self
has shape [image: 10\times20\times30], and permute .ptr is
(0,2,1) the shape of the result is [image: 10\times30\times20.] If
permute is NULL, the shape of the result is
[image: 30\times20\times10.]

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Flatten(PyArrayObject*self, NPY_ORDERorder)

	Equivalent to ndarray.flatten (self, order). Return a 1-d copy
of the array. If order is NPY_FORTRANORDER the elements are
scanned out in Fortran order (first-dimension varies the
fastest). If order is NPY_CORDER, the elements of self
are scanned in C-order (last dimension varies the fastest). If
order NPY_ANYORDER, then the result of
PyArray_ISFORTRAN (self) is used to determine which order
to flatten.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Ravel(PyArrayObject*self, NPY_ORDERorder)

	Equivalent to self.ravel(order). Same basic functionality
as PyArray_Flatten (self, order) except if order is 0
and self is C-style contiguous, the shape is altered but no copy
is performed.

Item selection and manipulation

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_TakeFrom(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*indices, intaxis, PyArrayObject*ret, NPY_CLIPMODEclipmode)

	Equivalent to ndarray.take (self, indices, axis, ret,
clipmode) except axis =None in Python is obtained by setting
axis = NPY_MAXDIMS in C. Extract the items from self
indicated by the integer-valued indices along the given axis.
The clipmode argument can be NPY_RAISE, NPY_WRAP, or
NPY_CLIP to indicate what to do with out-of-bound indices. The
ret argument can specify an output array rather than having one
created internally.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_PutTo(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*values, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*indices, NPY_CLIPMODEclipmode)

	Equivalent to self.put(values, indices, clipmode
). Put values into self at the corresponding (flattened)
indices. If values is too small it will be repeated as
necessary.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_PutMask(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*values, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*mask)

	Place the values in self wherever corresponding positions
(using a flattened context) in mask are true. The mask and
self arrays must have the same total number of elements. If
values is too small, it will be repeated as necessary.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Repeat(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, intaxis)

	Equivalent to ndarray.repeat (self, op, axis). Copy the
elements of self, op times along the given axis. Either
op is a scalar integer or a sequence of length self
->dimensions[axis] indicating how many times to repeat each
item along the axis.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Choose(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, PyArrayObject*ret, NPY_CLIPMODEclipmode)

	Equivalent to ndarray.choose (self, op, ret, clipmode).
Create a new array by selecting elements from the sequence of
arrays in op based on the integer values in self. The arrays
must all be broadcastable to the same shape and the entries in
self should be between 0 and len(op). The output is placed
in ret unless it is NULL in which case a new output is
created. The clipmode argument determines behavior for when
entries in self are not between 0 and len(op).

	
NPY_RAISE

	raise a ValueError;

	
NPY_WRAP

	wrap values < 0 by adding len(op) and values >=len(op)
by subtracting len(op) until they are in range;

	
NPY_CLIP

	all values are clipped to the region [0, len(op)).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Sort(PyArrayObject*self, intaxis)

	Equivalent to ndarray.sort (self, axis). Return an array with
the items of self sorted along axis.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ArgSort(PyArrayObject*self, intaxis)

	Equivalent to ndarray.argsort (self, axis). Return an array of
indices such that selection of these indices along the given
axis would return a sorted version of self. If self
->descr is a data-type with fields defined, then
self->descr->names is used to determine the sort order. A
comparison where the first field is equal will use the second
field and so on. To alter the sort order of a record array, create
a new data-type with a different order of names and construct a
view of the array with that new data-type.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_LexSort(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*sort_keys, intaxis)

	Given a sequence of arrays (sort_keys) of the same shape,
return an array of indices (similar to PyArray_ArgSort (...))
that would sort the arrays lexicographically. A lexicographic sort
specifies that when two keys are found to be equal, the order is
based on comparison of subsequent keys. A merge sort (which leaves
equal entries unmoved) is required to be defined for the
types. The sort is accomplished by sorting the indices first using
the first sort_key and then using the second sort_key and so
forth. This is equivalent to the lexsort(sort_keys, axis)
Python command. Because of the way the merge-sort works, be sure
to understand the order the sort_keys must be in (reversed from
the order you would use when comparing two elements).

If these arrays are all collected in a record array, then
PyArray_Sort (...) can also be used to sort the array
directly.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_SearchSorted(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*values, NPY_SEARCHSIDEside, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*perm)

	Equivalent to ndarray.searchsorted (self, values, side,
perm). Assuming self is a 1-d array in ascending order, then the
output is an array of indices the same shape as values such that, if
the elements in values were inserted before the indices, the order of
self would be preserved. No checking is done on whether or not self is
in ascending order.

The side argument indicates whther the index returned should be that of
the first suitable location (if NPY_SEARCHLEFT) or of the last
(if NPY_SEARCHRIGHT).

The sorter argument, if not NULL, must be a 1D array of integer
indices the same length as self, that sorts it into ascending order.
This is typically the result of a call to PyArray_ArgSort (...)
Binary search is used to find the required insertion points.

	
int PyArray_Partition(PyArrayObject*self, PyArrayObject *ktharray, intaxis, NPY_SELECTKINDwhich)

	Equivalent to ndarray.partition (self, ktharray, axis,
kind). Partitions the array so that the values of the element indexed by
ktharray are in the positions they would be if the array is fully sorted
and places all elements smaller than the kth before and all elements equal
or greater after the kth element. The ordering of all elements within the
partitions is undefined.
If self->descr is a data-type with fields defined, then
self->descr->names is used to determine the sort order. A comparison where
the first field is equal will use the second field and so on. To alter the
sort order of a record array, create a new data-type with a different
order of names and construct a view of the array with that new data-type.
Returns zero on success and -1 on failure.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ArgPartition(PyArrayObject*op, PyArrayObject *ktharray, intaxis, NPY_SELECTKINDwhich)

	Equivalent to ndarray.argpartition (self, ktharray, axis,
kind). Return an array of indices such that selection of these indices
along the given axis would return a partitioned version of self.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Diagonal(PyArrayObject*self, intoffset, intaxis1, intaxis2)

	Equivalent to ndarray.diagonal (self, offset, axis1, axis2
). Return the offset diagonals of the 2-d arrays defined by
axis1 and axis2.

	
npy_intp PyArray_CountNonzero(PyArrayObject*self)

	
New in version 1.6.

Counts the number of non-zero elements in the array object self.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Nonzero(PyArrayObject*self)

	Equivalent to ndarray.nonzero (self). Returns a tuple of index
arrays that select elements of self that are nonzero. If (nd=
PyArray_NDIM (self))==1, then a single index array is
returned. The index arrays have data type NPY_INTP. If a
tuple is returned (nd [image: \neq] 1), then its length is nd.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Compress(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*condition, intaxis, PyArrayObject*out)

	Equivalent to ndarray.compress (self, condition, axis
). Return the elements along axis corresponding to elements of
condition that are true.

Calculation

Tip

Pass in NPY_MAXDIMS for axis in order to achieve the same
effect that is obtained by passing in axis = None in Python
(treating the array as a 1-d array).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ArgMax(PyArrayObject*self, intaxis, PyArrayObject*out)

	Equivalent to ndarray.argmax (self, axis). Return the index of
the largest element of self along axis.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ArgMin(PyArrayObject*self, intaxis, PyArrayObject*out)

	Equivalent to ndarray.argmin (self, axis). Return the index of
the smallest element of self along axis.

Note

The out argument specifies where to place the result. If out is
NULL, then the output array is created, otherwise the output is
placed in out which must be the correct size and type. A new
reference to the ouput array is always returned even when out
is not NULL. The caller of the routine has the responsability
to DECREF out if not NULL or a memory-leak will occur.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Max(PyArrayObject*self, intaxis, PyArrayObject*out)

	Equivalent to ndarray.max (self, axis). Return the largest
element of self along the given axis.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Min(PyArrayObject*self, intaxis, PyArrayObject*out)

	Equivalent to ndarray.min (self, axis). Return the smallest
element of self along the given axis.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Ptp(PyArrayObject*self, intaxis, PyArrayObject*out)

	Equivalent to ndarray.ptp (self, axis). Return the difference
between the largest element of self along axis and the
smallest element of self along axis.

Note

The rtype argument specifies the data-type the reduction should
take place over. This is important if the data-type of the array
is not “large” enough to handle the output. By default, all
integer data-types are made at least as large as NPY_LONG
for the “add” and “multiply” ufuncs (which form the basis for
mean, sum, cumsum, prod, and cumprod functions).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Mean(PyArrayObject*self, intaxis, intrtype, PyArrayObject*out)

	Equivalent to ndarray.mean (self, axis, rtype). Returns the
mean of the elements along the given axis, using the enumerated
type rtype as the data type to sum in. Default sum behavior is
obtained using NPY_NOTYPE for rtype.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Trace(PyArrayObject*self, intoffset, intaxis1, intaxis2, intrtype, PyArrayObject*out)

	Equivalent to ndarray.trace (self, offset, axis1, axis2,
rtype). Return the sum (using rtype as the data type of
summation) over the offset diagonal elements of the 2-d arrays
defined by axis1 and axis2 variables. A positive offset
chooses diagonals above the main diagonal. A negative offset
selects diagonals below the main diagonal.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Clip(PyArrayObject*self, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*min, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*max)

	Equivalent to ndarray.clip (self, min, max). Clip an array,
self, so that values larger than max are fixed to max and
values less than min are fixed to min.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Conjugate(PyArrayObject*self)

	Equivalent to ndarray.conjugate (self).
Return the complex conjugate of self. If self is not of
complex data type, then return self with an reference.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Round(PyArrayObject*self, intdecimals, PyArrayObject*out)

	Equivalent to ndarray.round (self, decimals, out). Returns
the array with elements rounded to the nearest decimal place. The
decimal place is defined as the [image: 10^{-\textrm{decimals}}]
digit so that negative decimals cause rounding to the nearest 10’s, 100’s, etc. If out is NULL, then the output array is created, otherwise the output is placed in out which must be the correct size and type.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Std(PyArrayObject*self, intaxis, intrtype, PyArrayObject*out)

	Equivalent to ndarray.std (self, axis, rtype). Return the
standard deviation using data along axis converted to data type
rtype.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Sum(PyArrayObject*self, intaxis, intrtype, PyArrayObject*out)

	Equivalent to ndarray.sum (self, axis, rtype). Return 1-d
vector sums of elements in self along axis. Perform the sum
after converting data to data type rtype.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_CumSum(PyArrayObject*self, intaxis, intrtype, PyArrayObject*out)

	Equivalent to ndarray.cumsum (self, axis, rtype). Return
cumulative 1-d sums of elements in self along axis. Perform
the sum after converting data to data type rtype.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Prod(PyArrayObject*self, intaxis, intrtype, PyArrayObject*out)

	Equivalent to ndarray.prod (self, axis, rtype). Return 1-d
products of elements in self along axis. Perform the product
after converting data to data type rtype.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_CumProd(PyArrayObject*self, intaxis, intrtype, PyArrayObject*out)

	Equivalent to ndarray.cumprod (self, axis, rtype). Return
1-d cumulative products of elements in self along axis.
Perform the product after converting data to data type rtype.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_All(PyArrayObject*self, intaxis, PyArrayObject*out)

	Equivalent to ndarray.all (self, axis). Return an array with
True elements for every 1-d sub-array of self defined by
axis in which all the elements are True.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Any(PyArrayObject*self, intaxis, PyArrayObject*out)

	Equivalent to ndarray.any (self, axis). Return an array with
True elements for every 1-d sub-array of self defined by axis
in which any of the elements are True.

Functions

Array Functions

	
int PyArray_AsCArray(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]**op, void*ptr, npy_intp*dims, intnd, inttypenum, intitemsize)

	Sometimes it is useful to access a multidimensional array as a
C-style multi-dimensional array so that algorithms can be
implemented using C’s a[i][j][k] syntax. This routine returns a
pointer, ptr, that simulates this kind of C-style array, for
1-, 2-, and 3-d ndarrays.

	Parameters:	
	op – The address to any Python object. This Python object will be replaced
with an equivalent well-behaved, C-style contiguous, ndarray of the
given data type specifice by the last two arguments. Be sure that
stealing a reference in this way to the input object is justified.

	ptr – The address to a (ctype* for 1-d, ctype** for 2-d or ctype*** for 3-d)
variable where ctype is the equivalent C-type for the data type. On
return, ptr will be addressable as a 1-d, 2-d, or 3-d array.

	dims – An output array that contains the shape of the array object. This
array gives boundaries on any looping that will take place.

	nd – The dimensionality of the array (1, 2, or 3).

	typenum – The expected data type of the array.

	itemsize – This argument is only needed when typenum represents a
flexible array. Otherwise it should be 0.

Note

The simulation of a C-style array is not complete for 2-d and 3-d
arrays. For example, the simulated arrays of pointers cannot be passed
to subroutines expecting specific, statically-defined 2-d and 3-d
arrays. To pass to functions requiring those kind of inputs, you must
statically define the required array and copy data.

	
int PyArray_Free(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, void*ptr)

	Must be called with the same objects and memory locations returned
from PyArray_AsCArray (...). This function cleans up memory
that otherwise would get leaked.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Concatenate(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, intaxis)

	Join the sequence of objects in obj together along axis into a
single array. If the dimensions or types are not compatible an
error is raised.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_InnerProduct(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj1, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj2)

	Compute a product-sum over the last dimensions of obj1 and
obj2. Neither array is conjugated.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_MatrixProduct(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj1, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	Compute a product-sum over the last dimension of obj1 and the
second-to-last dimension of obj2. For 2-d arrays this is a
matrix-product. Neither array is conjugated.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_MatrixProduct2(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj1, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*out)

	
New in version 1.6.

Same as PyArray_MatrixProduct, but store the result in out. The
output array must have the correct shape, type, and be
C-contiguous, or an exception is raised.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_EinsteinSum(char*subscripts, npy_intpnop, PyArrayObject**op_in, PyArray_Descr*dtype, NPY_ORDERorder, NPY_CASTINGcasting, PyArrayObject*out)

	
New in version 1.6.

Applies the einstein summation convention to the array operands
provided, returning a new array or placing the result in out.
The string in subscripts is a comma separated list of index
letters. The number of operands is in nop, and op_in is an
array containing those operands. The data type of the output can
be forced with dtype, the output order can be forced with order
(NPY_KEEPORDER is recommended), and when dtype is specified,
casting indicates how permissive the data conversion should be.

See the einsum function for more details.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_CopyAndTranspose(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *op)

	A specialized copy and transpose function that works only for 2-d
arrays. The returned array is a transposed copy of op.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Correlate(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op1, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op2, intmode)

	Compute the 1-d correlation of the 1-d arrays op1 and op2
. The correlation is computed at each output point by multiplying
op1 by a shifted version of op2 and summing the result. As a
result of the shift, needed values outside of the defined range of
op1 and op2 are interpreted as zero. The mode determines how
many shifts to return: 0 - return only shifts that did not need to
assume zero- values; 1 - return an object that is the same size as
op1, 2 - return all possible shifts (any overlap at all is
accepted).

Notes

This does not compute the usual correlation: if op2 is larger than op1, the
arguments are swapped, and the conjugate is never taken for complex arrays.
See PyArray_Correlate2 for the usual signal processing correlation.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Correlate2(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op1, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op2, intmode)

	Updated version of PyArray_Correlate, which uses the usual definition of
correlation for 1d arrays. The correlation is computed at each output point
by multiplying op1 by a shifted version of op2 and summing the result.
As a result of the shift, needed values outside of the defined range of
op1 and op2 are interpreted as zero. The mode determines how many
shifts to return: 0 - return only shifts that did not need to assume zero-
values; 1 - return an object that is the same size as op1, 2 - return all
possible shifts (any overlap at all is accepted).

Notes

Compute z as follows:

z[k] = sum_n op1[n] * conj(op2[n+k])

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Where(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*condition, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*x, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*y)

	If both x and y are NULL, then return
PyArray_Nonzero (condition). Otherwise, both x and y
must be given and the object returned is shaped like condition
and has elements of x and y where condition is respectively
True or False.

Other functions

	
Bool PyArray_CheckStrides(intelsize, intnd, npy_intpnumbytes, npy_intp*dims, npy_intp*newstrides)

	Determine if newstrides is a strides array consistent with the
memory of an nd -dimensional array with shape dims and
element-size, elsize. The newstrides array is checked to see
if jumping by the provided number of bytes in each direction will
ever mean jumping more than numbytes which is the assumed size
of the available memory segment. If numbytes is 0, then an
equivalent numbytes is computed assuming nd, dims, and
elsize refer to a single-segment array. Return NPY_TRUE if
newstrides is acceptable, otherwise return NPY_FALSE.

	
npy_intp PyArray_MultiplyList(npy_intp*seq, intn)

	

	
int PyArray_MultiplyIntList(int*seq, intn)

	Both of these routines multiply an n -length array, seq, of
integers and return the result. No overflow checking is performed.

	
int PyArray_CompareLists(npy_intp*l1, npy_intp*l2, intn)

	Given two n -length arrays of integers, l1, and l2, return
1 if the lists are identical; otherwise, return 0.

Auxiliary Data With Object Semantics

New in version 1.7.0.

	
NpyAuxData

	

When working with more complex dtypes which are composed of other dtypes,
such as the struct dtype, creating inner loops that manipulate the dtypes
requires carrying along additional data. NumPy supports this idea
through a struct NpyAuxData, mandating a few conventions so that
it is possible to do this.

Defining an NpyAuxData is similar to defining a class in C++,
but the object semantics have to be tracked manually since the API is in C.
Here’s an example for a function which doubles up an element using
an element copier function as a primitive.:

typedef struct {
 NpyAuxData base;
 ElementCopier_Func *func;
 NpyAuxData *funcdata;
} eldoubler_aux_data;

void free_element_doubler_aux_data(NpyAuxData *data)
{
 eldoubler_aux_data *d = (eldoubler_aux_data *)data;
 /* Free the memory owned by this auxadata */
 NPY_AUXDATA_FREE(d->funcdata);
 PyArray_free(d);
}

NpyAuxData *clone_element_doubler_aux_data(NpyAuxData *data)
{
 eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
 if (ret == NULL) {
 return NULL;
 }

 /* Raw copy of all data */
 memcpy(ret, data, sizeof(eldoubler_aux_data));

 /* Fix up the owned auxdata so we have our own copy */
 ret->funcdata = NPY_AUXDATA_CLONE(ret->funcdata);
 if (ret->funcdata == NULL) {
 PyArray_free(ret);
 return NULL;
 }

 return (NpyAuxData *)ret;
}

NpyAuxData *create_element_doubler_aux_data(
 ElementCopier_Func *func,
 NpyAuxData *funcdata)
{
 eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
 if (ret == NULL) {
 PyErr_NoMemory();
 return NULL;
 }
 memset(&ret, 0, sizeof(eldoubler_aux_data));
 ret->base->free = &free_element_doubler_aux_data;
 ret->base->clone = &clone_element_doubler_aux_data;
 ret->func = func;
 ret->funcdata = funcdata;

 return (NpyAuxData *)ret;
}

	
NpyAuxData_FreeFunc

	The function pointer type for NpyAuxData free functions.

	
NpyAuxData_CloneFunc

	The function pointer type for NpyAuxData clone functions. These
functions should never set the Python exception on error, because
they may be called from a multi-threaded context.

	
NPY_AUXDATA_FREE(auxdata)

	A macro which calls the auxdata’s free function appropriately,
does nothing if auxdata is NULL.

	
NPY_AUXDATA_CLONE(auxdata)

	A macro which calls the auxdata’s clone function appropriately,
returning a deep copy of the auxiliary data.

Array Iterators

As of Numpy 1.6, these array iterators are superceded by
the new array iterator, NpyIter.

An array iterator is a simple way to access the elements of an
N-dimensional array quickly and efficiently. Section 2 provides more description and examples of
this useful approach to looping over an array.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_IterNew(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*arr)

	Return an array iterator object from the array, arr. This is
equivalent to arr. flat. The array iterator object makes
it easy to loop over an N-dimensional non-contiguous array in
C-style contiguous fashion.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_IterAllButAxis(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*arr, int*axis)

	Return an array iterator that will iterate over all axes but the
one provided in *axis. The returned iterator cannot be used
with PyArray_ITER_GOTO1D. This iterator could be used to
write something similar to what ufuncs do wherein the loop over
the largest axis is done by a separate sub-routine. If *axis is
negative then *axis will be set to the axis having the smallest
stride and that axis will be used.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_BroadcastToShape(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*arr, npy_intp*dimensions, intnd)

	Return an array iterator that is broadcast to iterate as an array
of the shape provided by dimensions and nd.

	
int PyArrayIter_Check(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op)

	Evaluates true if op is an array iterator (or instance of a
subclass of the array iterator type).

	
void PyArray_ITER_RESET(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*iterator)

	Reset an iterator to the beginning of the array.

	
void PyArray_ITER_NEXT(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*iterator)

	Incremement the index and the dataptr members of the iterator to
point to the next element of the array. If the array is not
(C-style) contiguous, also increment the N-dimensional coordinates
array.

	
void *PyArray_ITER_DATA(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*iterator)

	A pointer to the current element of the array.

	
void PyArray_ITER_GOTO(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*iterator, npy_intp*destination)

	Set the iterator index, dataptr, and coordinates members to the
location in the array indicated by the N-dimensional c-array,
destination, which must have size at least iterator
->nd_m1+1.

	
PyArray_ITER_GOTO1D(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*iterator, npy_intpindex)

	Set the iterator index and dataptr to the location in the array
indicated by the integer index which points to an element in the
C-styled flattened array.

	
int PyArray_ITER_NOTDONE(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*iterator)

	Evaluates TRUE as long as the iterator has not looped through all of
the elements, otherwise it evaluates FALSE.

Broadcasting (multi-iterators)

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_MultiIterNew(intnum, ...)

	A simplified interface to broadcasting. This function takes the
number of arrays to broadcast and then num extra (PyObject *
) arguments. These arguments are converted to arrays and iterators
are created. PyArray_Broadcast is then called on the resulting
multi-iterator object. The resulting, broadcasted mult-iterator
object is then returned. A broadcasted operation can then be
performed using a single loop and using PyArray_MultiIter_NEXT
(..)

	
void PyArray_MultiIter_RESET(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*multi)

	Reset all the iterators to the beginning in a multi-iterator
object, multi.

	
void PyArray_MultiIter_NEXT(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*multi)

	Advance each iterator in a multi-iterator object, multi, to its
next (broadcasted) element.

	
void *PyArray_MultiIter_DATA(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*multi, inti)

	Return the data-pointer of the i [image: ^{\textrm{th}}] iterator
in a multi-iterator object.

	
void PyArray_MultiIter_NEXTi(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*multi, inti)

	Advance the pointer of only the i [image: ^{\textrm{th}}] iterator.

	
void PyArray_MultiIter_GOTO(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*multi, npy_intp*destination)

	Advance each iterator in a multi-iterator object, multi, to the
given [image: N] -dimensional destination where [image: N] is the
number of dimensions in the broadcasted array.

	
void PyArray_MultiIter_GOTO1D(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*multi, npy_intpindex)

	Advance each iterator in a multi-iterator object, multi, to the
corresponding location of the index into the flattened
broadcasted array.

	
int PyArray_MultiIter_NOTDONE(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*multi)

	Evaluates TRUE as long as the multi-iterator has not looped
through all of the elements (of the broadcasted result), otherwise
it evaluates FALSE.

	
int PyArray_Broadcast(PyArrayMultiIterObject*mit)

	This function encapsulates the broadcasting rules. The mit
container should already contain iterators for all the arrays that
need to be broadcast. On return, these iterators will be adjusted
so that iteration over each simultaneously will accomplish the
broadcasting. A negative number is returned if an error occurs.

	
int PyArray_RemoveSmallest(PyArrayMultiIterObject*mit)

	This function takes a multi-iterator object that has been
previously “broadcasted,” finds the dimension with the smallest
“sum of strides” in the broadcasted result and adapts all the
iterators so as not to iterate over that dimension (by effectively
making them of length-1 in that dimension). The corresponding
dimension is returned unless mit ->nd is 0, then -1 is
returned. This function is useful for constructing ufunc-like
routines that broadcast their inputs correctly and then call a
strided 1-d version of the routine as the inner-loop. This 1-d
version is usually optimized for speed and for this reason the
loop should be performed over the axis that won’t require large
stride jumps.

Neighborhood iterator

New in version 1.4.0.

Neighborhood iterators are subclasses of the iterator object, and can be used
to iter over a neighborhood of a point. For example, you may want to iterate
over every voxel of a 3d image, and for every such voxel, iterate over an
hypercube. Neighborhood iterator automatically handle boundaries, thus making
this kind of code much easier to write than manual boundaries handling, at the
cost of a slight overhead.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_NeighborhoodIterNew(PyArrayIterObject*iter, npy_intpbounds, intmode, PyArrayObject*fill_value)

	This function creates a new neighborhood iterator from an existing
iterator. The neighborhood will be computed relatively to the position
currently pointed by iter, the bounds define the shape of the
neighborhood iterator, and the mode argument the boundaries handling mode.

The bounds argument is expected to be a (2 * iter->ao->nd) arrays, such
as the range bound[2*i]->bounds[2*i+1] defines the range where to walk for
dimension i (both bounds are included in the walked coordinates). The
bounds should be ordered for each dimension (bounds[2*i] <= bounds[2*i+1]).

The mode should be one of:

	NPY_NEIGHBORHOOD_ITER_ZERO_PADDING: zero padding. Outside bounds values
will be 0.

	NPY_NEIGHBORHOOD_ITER_ONE_PADDING: one padding, Outside bounds values
will be 1.

	NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING: constant padding. Outside bounds
values will be the same as the first item in fill_value.

	NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING: mirror padding. Outside bounds
values will be as if the array items were mirrored. For example, for the
array [1, 2, 3, 4], x[-2] will be 2, x[-2] will be 1, x[4] will be 4,
x[5] will be 1, etc...

	NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING: circular padding. Outside bounds
values will be as if the array was repeated. For example, for the
array [1, 2, 3, 4], x[-2] will be 3, x[-2] will be 4, x[4] will be 1,
x[5] will be 2, etc...

If the mode is constant filling (NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING),
fill_value should point to an array object which holds the filling value
(the first item will be the filling value if the array contains more than
one item). For other cases, fill_value may be NULL.

	The iterator holds a reference to iter

	Return NULL on failure (in which case the reference count of iter is not
changed)

	iter itself can be a Neighborhood iterator: this can be useful for .e.g
automatic boundaries handling

	the object returned by this function should be safe to use as a normal
iterator

	If the position of iter is changed, any subsequent call to
PyArrayNeighborhoodIter_Next is undefined behavior, and
PyArrayNeighborhoodIter_Reset must be called.

PyArrayIterObject *iter;
PyArrayNeighborhoodIterObject *neigh_iter;
iter = PyArray_IterNew(x);

//For a 3x3 kernel
bounds = {-1, 1, -1, 1};
neigh_iter = (PyArrayNeighborhoodIterObject*)PyArrayNeighborhoodIter_New(
 iter, bounds, NPY_NEIGHBORHOOD_ITER_ZERO_PADDING, NULL);

for(i = 0; i < iter->size; ++i) {
 for (j = 0; j < neigh_iter->size; ++j) {
 // Walk around the item currently pointed by iter->dataptr
 PyArrayNeighborhoodIter_Next(neigh_iter);
 }

 // Move to the next point of iter
 PyArrayIter_Next(iter);
 PyArrayNeighborhoodIter_Reset(neigh_iter);
}

	
int PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject*iter)

	Reset the iterator position to the first point of the neighborhood. This
should be called whenever the iter argument given at
PyArray_NeighborhoodIterObject is changed (see example)

	
int PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject*iter)

	After this call, iter->dataptr points to the next point of the
neighborhood. Calling this function after every point of the
neighborhood has been visited is undefined.

Array Scalars

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Return(PyArrayObject*arr)

	This function checks to see if arr is a 0-dimensional array and,
if so, returns the appropriate array scalar. It should be used
whenever 0-dimensional arrays could be returned to Python.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_Scalar(void*data, PyArray_Descr*dtype, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*itemsize)

	Return an array scalar object of the given enumerated typenum
and itemsize by copying from memory pointed to by data
. If swap is nonzero then this function will byteswap the data
if appropriate to the data-type because array scalars are always
in correct machine-byte order.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_ToScalar(void*data, PyArrayObject*arr)

	Return an array scalar object of the type and itemsize indicated
by the array object arr copied from the memory pointed to by
data and swapping if the data in arr is not in machine
byte-order.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_FromScalar(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*scalar, PyArray_Descr*outcode)

	Return a 0-dimensional array of type determined by outcode from
scalar which should be an array-scalar object. If outcode is
NULL, then the type is determined from scalar.

	
void PyArray_ScalarAsCtype(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*scalar, void*ctypeptr)

	Return in ctypeptr a pointer to the actual value in an array
scalar. There is no error checking so scalar must be an
array-scalar object, and ctypeptr must have enough space to hold
the correct type. For flexible-sized types, a pointer to the data
is copied into the memory of ctypeptr, for all other types, the
actual data is copied into the address pointed to by ctypeptr.

	
void PyArray_CastScalarToCtype(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*scalar, void*ctypeptr, PyArray_Descr*outcode)

	Return the data (cast to the data type indicated by outcode)
from the array-scalar, scalar, into the memory pointed to by
ctypeptr (which must be large enough to handle the incoming
memory).

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_TypeObjectFromType(inttype)

	Returns a scalar type-object from a type-number, type
. Equivalent to PyArray_DescrFromType (type)->typeobj
except for reference counting and error-checking. Returns a new
reference to the typeobject on success or NULL on failure.

	
NPY_SCALARKIND PyArray_ScalarKind(inttypenum, PyArrayObject**arr)

	See the function PyArray_MinScalarType for an alternative
mechanism introduced in NumPy 1.6.0.

Return the kind of scalar represented by typenum and the array
in *arr (if arr is not NULL). The array is assumed to be
rank-0 and only used if typenum represents a signed integer. If
arr is not NULL and the first element is negative then
NPY_INTNEG_SCALAR is returned, otherwise
NPY_INTPOS_SCALAR is returned. The possible return values
are NPY_{kind}_SCALAR where {kind} can be INTPOS,
INTNEG, FLOAT, COMPLEX, BOOL, or OBJECT.
NPY_NOSCALAR is also an enumerated value
NPY_SCALARKIND variables can take on.

	
int PyArray_CanCoerceScalar(charthistype, charneededtype, NPY_SCALARKINDscalar)

	See the function PyArray_ResultType for details of
NumPy type promotion, updated in NumPy 1.6.0.

Implements the rules for scalar coercion. Scalars are only
silently coerced from thistype to neededtype if this function
returns nonzero. If scalar is NPY_NOSCALAR, then this
function is equivalent to PyArray_CanCastSafely. The rule is
that scalars of the same KIND can be coerced into arrays of the
same KIND. This rule means that high-precision scalars will never
cause low-precision arrays of the same KIND to be upcast.

Data-type descriptors

Warning

Data-type objects must be reference counted so be aware of the
action on the data-type reference of different C-API calls. The
standard rule is that when a data-type object is returned it is a
new reference. Functions that take PyArray_Descr * objects and
return arrays steal references to the data-type their inputs
unless otherwise noted. Therefore, you must own a reference to any
data-type object used as input to such a function.

	
int PyArray_DescrCheck(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	Evaluates as true if obj is a data-type object (PyArray_Descr *).

	
PyArray_Descr* PyArray_DescrNew(PyArray_Descr*obj)

	Return a new data-type object copied from obj (the fields
reference is just updated so that the new object points to the
same fields dictionary if any).

	
PyArray_Descr* PyArray_DescrNewFromType(inttypenum)

	Create a new data-type object from the built-in (or
user-registered) data-type indicated by typenum. All builtin
types should not have any of their fields changed. This creates a
new copy of the PyArray_Descr structure so that you can fill
it in as appropriate. This function is especially needed for
flexible data-types which need to have a new elsize member in
order to be meaningful in array construction.

	
PyArray_Descr* PyArray_DescrNewByteorder(PyArray_Descr*obj, charnewendian)

	Create a new data-type object with the byteorder set according to
newendian. All referenced data-type objects (in subdescr and
fields members of the data-type object) are also changed
(recursively). If a byteorder of NPY_IGNORE is encountered it
is left alone. If newendian is NPY_SWAP, then all byte-orders
are swapped. Other valid newendian values are NPY_NATIVE,
NPY_LITTLE, and NPY_BIG which all cause the returned
data-typed descriptor (and all it’s
referenced data-type descriptors) to have the corresponding byte-
order.

	
PyArray_Descr* PyArray_DescrFromObject(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, PyArray_Descr*mintype)

	Determine an appropriate data-type object from the object op
(which should be a “nested” sequence object) and the minimum
data-type descriptor mintype (which can be NULL). Similar in
behavior to array(op).dtype. Don’t confuse this function with
PyArray_DescrConverter. This function essentially looks at
all the objects in the (nested) sequence and determines the
data-type from the elements it finds.

	
PyArray_Descr* PyArray_DescrFromScalar(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*scalar)

	Return a data-type object from an array-scalar object. No checking
is done to be sure that scalar is an array scalar. If no
suitable data-type can be determined, then a data-type of
NPY_OBJECT is returned by default.

	
PyArray_Descr* PyArray_DescrFromType(inttypenum)

	Returns a data-type object corresponding to typenum. The
typenum can be one of the enumerated types, a character code for
one of the enumerated types, or a user-defined type.

	
int PyArray_DescrConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyArray_Descr**dtype)

	Convert any compatible Python object, obj, to a data-type object
in dtype. A large number of Python objects can be converted to
data-type objects. See Data type objects (dtype) for a complete
description. This version of the converter converts None objects
to a NPY_DEFAULT_TYPE data-type object. This function can
be used with the “O&” character code in PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple]
processing.

	
int PyArray_DescrConverter2(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyArray_Descr**dtype)

	Convert any compatible Python object, obj, to a data-type
object in dtype. This version of the converter converts None
objects so that the returned data-type is NULL. This function
can also be used with the “O&” character in PyArg_ParseTuple
processing.

	
int Pyarray_DescrAlignConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyArray_Descr**dtype)

	Like PyArray_DescrConverter except it aligns C-struct-like
objects on word-boundaries as the compiler would.

	
int Pyarray_DescrAlignConverter2(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyArray_Descr**dtype)

	Like PyArray_DescrConverter2 except it aligns C-struct-like
objects on word-boundaries as the compiler would.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *PyArray_FieldNames(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*dict)

	Take the fields dictionary, dict, such as the one attached to a
data-type object and construct an ordered-list of field names such
as is stored in the names field of the PyArray_Descr object.

Conversion Utilities

For use with PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple]

All of these functions can be used in PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple] (...) with
the “O&” format specifier to automatically convert any Python object
to the required C-object. All of these functions return
NPY_SUCCEED if successful and NPY_FAIL if not. The first
argument to all of these function is a Python object. The second
argument is the address of the C-type to convert the Python object
to.

Warning

Be sure to understand what steps you should take to manage the
memory when using these conversion functions. These functions can
require freeing memory, and/or altering the reference counts of
specific objects based on your use.

	
int PyArray_Converter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]**address)

	Convert any Python object to a PyArrayObject. If
PyArray_Check (obj) is TRUE then its reference count is
incremented and a reference placed in address. If obj is not
an array, then convert it to an array using PyArray_FromAny
. No matter what is returned, you must DECREF the object returned
by this routine in address when you are done with it.

	
int PyArray_OutputConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyArrayObject**address)

	This is a default converter for output arrays given to
functions. If obj is Py_None [http://docs.python.org/dev/c-api/none.html#c.Py_None] or NULL, then *address
will be NULL but the call will succeed. If PyArray_Check (
obj) is TRUE then it is returned in *address without
incrementing its reference count.

	
int PyArray_IntpConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyArray_Dims*seq)

	Convert any Python sequence, obj, smaller than NPY_MAXDIMS
to a C-array of npy_intp. The Python object could also be a
single number. The seq variable is a pointer to a structure with
members ptr and len. On successful return, seq ->ptr contains a
pointer to memory that must be freed to avoid a memory leak. The
restriction on memory size allows this converter to be
conveniently used for sequences intended to be interpreted as
array shapes.

	
int PyArray_BufferConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, PyArray_Chunk*buf)

	Convert any Python object, obj, with a (single-segment) buffer
interface to a variable with members that detail the object’s use
of its chunk of memory. The buf variable is a pointer to a
structure with base, ptr, len, and flags members. The
PyArray_Chunk structure is binary compatibile with the
Python’s buffer object (through its len member on 32-bit platforms
and its ptr member on 64-bit platforms or in Python 2.5). On
return, the base member is set to obj (or its base if obj is
already a buffer object pointing to another object). If you need
to hold on to the memory be sure to INCREF the base member. The
chunk of memory is pointed to by buf ->ptr member and has length
buf ->len. The flags member of buf is NPY_BEHAVED_RO with
the NPY_ARRAY_WRITEABLE flag set if obj has a writeable buffer
interface.

	
int PyArray_AxisConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject] *obj, int*axis)

	Convert a Python object, obj, representing an axis argument to
the proper value for passing to the functions that take an integer
axis. Specifically, if obj is None, axis is set to
NPY_MAXDIMS which is interpreted correctly by the C-API
functions that take axis arguments.

	
int PyArray_BoolConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, Bool*value)

	Convert any Python object, obj, to NPY_TRUE or
NPY_FALSE, and place the result in value.

	
int PyArray_ByteorderConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, char*endian)

	Convert Python strings into the corresponding byte-order
character:
‘>’, ‘<’, ‘s’, ‘=’, or ‘|’.

	
int PyArray_SortkindConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, NPY_SORTKIND*sort)

	Convert Python strings into one of NPY_QUICKSORT (starts
with ‘q’ or ‘Q’) , NPY_HEAPSORT (starts with ‘h’ or ‘H’),
or NPY_MERGESORT (starts with ‘m’ or ‘M’).

	
int PyArray_SearchsideConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, NPY_SEARCHSIDE*side)

	Convert Python strings into one of NPY_SEARCHLEFT (starts with ‘l’
or ‘L’), or NPY_SEARCHRIGHT (starts with ‘r’ or ‘R’).

	
int PyArray_OrderConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, NPY_ORDER*order)

	Convert the Python strings ‘C’, ‘F’, ‘A’, and ‘K’ into the NPY_ORDER
enumeration NPY_CORDER, NPY_FORTRANORDER,
NPY_ANYORDER, and NPY_KEEPORDER.

	
int PyArray_CastingConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, NPY_CASTING*casting)

	Convert the Python strings ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, and
‘unsafe’ into the NPY_CASTING enumeration NPY_NO_CASTING,
NPY_EQUIV_CASTING, NPY_SAFE_CASTING,
NPY_SAME_KIND_CASTING, and NPY_UNSAFE_CASTING.

	
int PyArray_ClipmodeConverter(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*object, NPY_CLIPMODE*val)

	Convert the Python strings ‘clip’, ‘wrap’, and ‘raise’ into the
NPY_CLIPMODE enumeration NPY_CLIP, NPY_WRAP,
and NPY_RAISE.

	
int PyArray_ConvertClipmodeSequence(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*object, NPY_CLIPMODE*modes, intn)

	Converts either a sequence of clipmodes or a single clipmode into
a C array of NPY_CLIPMODE values. The number of clipmodes n
must be known before calling this function. This function is provided
to help functions allow a different clipmode for each dimension.

Other conversions

	
int PyArray_PyIntAsInt(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op)

	Convert all kinds of Python objects (including arrays and array
scalars) to a standard integer. On error, -1 is returned and an
exception set. You may find useful the macro:

#define error_converting(x) (((x) == -1) && PyErr_Occurred()

	
npy_intp PyArray_PyIntAsIntp(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op)

	Convert all kinds of Python objects (including arrays and array
scalars) to a (platform-pointer-sized) integer. On error, -1 is
returned and an exception set.

	
int PyArray_IntpFromSequence(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*seq, npy_intp*vals, intmaxvals)

	Convert any Python sequence (or single Python number) passed in as
seq to (up to) maxvals pointer-sized integers and place them
in the vals array. The sequence can be smaller then maxvals as
the number of converted objects is returned.

	
int PyArray_TypestrConvert(intitemsize, intgentype)

	Convert typestring characters (with itemsize) to basic
enumerated data types. The typestring character corresponding to
signed and unsigned integers, floating point numbers, and
complex-floating point numbers are recognized and converted. Other
values of gentype are returned. This function can be used to
convert, for example, the string ‘f4’ to NPY_FLOAT32.

Miscellaneous

Importing the API

In order to make use of the C-API from another extension module, the
import_array () command must be used. If the extension module is
self-contained in a single .c file, then that is all that needs to be
done. If, however, the extension module involves multiple files where
the C-API is needed then some additional steps must be taken.

	
void import_array(void)

	This function must be called in the initialization section of a
module that will make use of the C-API. It imports the module
where the function-pointer table is stored and points the correct
variable to it.

	
PY_ARRAY_UNIQUE_SYMBOL

	

	
NO_IMPORT_ARRAY

	Using these #defines you can use the C-API in multiple files for a
single extension module. In each file you must define
PY_ARRAY_UNIQUE_SYMBOL to some name that will hold the
C-API (e.g. myextension_ARRAY_API). This must be done before
including the numpy/arrayobject.h file. In the module
intialization routine you call import_array (). In addition,
in the files that do not have the module initialization
sub_routine define NO_IMPORT_ARRAY prior to including
numpy/arrayobject.h.

Suppose I have two files coolmodule.c and coolhelper.c which need
to be compiled and linked into a single extension module. Suppose
coolmodule.c contains the required initcool module initialization
function (with the import_array() function called). Then,
coolmodule.c would have at the top:

#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
#include numpy/arrayobject.h

On the other hand, coolhelper.c would contain at the top:

#define NO_IMPORT_ARRAY
#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
#include numpy/arrayobject.h

You can also put the common two last lines into an extension-local
header file as long as you make sure that NO_IMPORT_ARRAY is
#defined before #including that file.

Checking the API Version

Because python extensions are not used in the same way as usual libraries on
most platforms, some errors cannot be automatically detected at build time or
even runtime. For example, if you build an extension using a function available
only for numpy >= 1.3.0, and you import the extension later with numpy 1.2, you
will not get an import error (but almost certainly a segmentation fault when
calling the function). That’s why several functions are provided to check for
numpy versions. The macros NPY_VERSION and
NPY_FEATURE_VERSION corresponds to the numpy version used to build the
extension, whereas the versions returned by the functions
PyArray_GetNDArrayCVersion and PyArray_GetNDArrayCFeatureVersion corresponds to
the runtime numpy’s version.

The rules for ABI and API compatibilities can be summarized as follows:

	Whenever NPY_VERSION != PyArray_GetNDArrayCVersion, the
extension has to be recompiled (ABI incompatibility).

	NPY_VERSION == PyArray_GetNDArrayCVersion and
NPY_FEATURE_VERSION <= PyArray_GetNDArrayCFeatureVersion means
backward compatible changes.

ABI incompatibility is automatically detected in every numpy’s version. API
incompatibility detection was added in numpy 1.4.0. If you want to supported
many different numpy versions with one extension binary, you have to build your
extension with the lowest NPY_FEATURE_VERSION as possible.

	
unsigned int PyArray_GetNDArrayCVersion(void)

	This just returns the value NPY_VERSION. NPY_VERSION
changes whenever a backward incompatible change at the ABI level. Because
it is in the C-API, however, comparing the output of this function from the
value defined in the current header gives a way to test if the C-API has
changed thus requiring a re-compilation of extension modules that use the
C-API. This is automatically checked in the function import_array.

	
unsigned int PyArray_GetNDArrayCFeatureVersion(void)

	
New in version 1.4.0.

This just returns the value NPY_FEATURE_VERSION.
NPY_FEATURE_VERSION changes whenever the API changes (e.g. a
function is added). A changed value does not always require a recompile.

Internal Flexibility

	
int PyArray_SetNumericOps(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*dict)

	NumPy stores an internal table of Python callable objects that are
used to implement arithmetic operations for arrays as well as
certain array calculation methods. This function allows the user
to replace any or all of these Python objects with their own
versions. The keys of the dictionary, dict, are the named
functions to replace and the paired value is the Python callable
object to use. Care should be taken that the function used to
replace an internal array operation does not itself call back to
that internal array operation (unless you have designed the
function to handle that), or an unchecked infinite recursion can
result (possibly causing program crash). The key names that
represent operations that can be replaced are:

add, subtract, multiply, divide,
remainder, power, square, reciprocal,
ones_like, sqrt, negative, absolute,
invert, left_shift, right_shift,
bitwise_and, bitwise_xor, bitwise_or,
less, less_equal, equal, not_equal,
greater, greater_equal, floor_divide,
true_divide, logical_or, logical_and,
floor, ceil, maximum, minimum, rint.

These functions are included here because they are used at least once
in the array object’s methods. The function returns -1 (without
setting a Python Error) if one of the objects being assigned is not
callable.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* PyArray_GetNumericOps(void)

	Return a Python dictionary containing the callable Python objects
stored in the the internal arithmetic operation table. The keys of
this dictionary are given in the explanation for PyArray_SetNumericOps.

	
void PyArray_SetStringFunction(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op, intrepr)

	This function allows you to alter the tp_str and tp_repr methods
of the array object to any Python function. Thus you can alter
what happens for all arrays when str(arr) or repr(arr) is called
from Python. The function to be called is passed in as op. If
repr is non-zero, then this function will be called in response
to repr(arr), otherwise the function will be called in response to
str(arr). No check on whether or not op is callable is
performed. The callable passed in to op should expect an array
argument and should return a string to be printed.

Memory management

	
char* PyDataMem_NEW(size_tnbytes)

	

	
PyDataMem_FREE(char*ptr)

	

	
char* PyDataMem_RENEW(void *ptr, size_tnewbytes)

	Macros to allocate, free, and reallocate memory. These macros are used
internally to create arrays.

	
npy_intp* PyDimMem_NEW(nd)

	

	
PyDimMem_FREE(npy_intp*ptr)

	

	
npy_intp* PyDimMem_RENEW(npy_intp*ptr, npy_intpnewnd)

	Macros to allocate, free, and reallocate dimension and strides memory.

	
PyArray_malloc(nbytes)

	

	
PyArray_free(ptr)

	

	
PyArray_realloc(ptr, nbytes)

	These macros use different memory allocators, depending on the
constant NPY_USE_PYMEM. The system malloc is used when
NPY_USE_PYMEM is 0, if NPY_USE_PYMEM is 1, then
the Python memory allocator is used.

Threading support

These macros are only meaningful if NPY_ALLOW_THREADS
evaluates True during compilation of the extension module. Otherwise,
these macros are equivalent to whitespace. Python uses a single Global
Interpreter Lock (GIL) for each Python process so that only a single
thread may excecute at a time (even on multi-cpu machines). When
calling out to a compiled function that may take time to compute (and
does not have side-effects for other threads like updated global
variables), the GIL should be released so that other Python threads
can run while the time-consuming calculations are performed. This can
be accomplished using two groups of macros. Typically, if one macro in
a group is used in a code block, all of them must be used in the same
code block. Currently, NPY_ALLOW_THREADS is defined to the
python-defined WITH_THREADS constant unless the environment
variable NPY_NOSMP is set in which case
NPY_ALLOW_THREADS is defined to be 0.

Group 1

This group is used to call code that may take some time but does not
use any Python C-API calls. Thus, the GIL should be released during
its calculation.

	
NPY_BEGIN_ALLOW_THREADS

	Equivalent to Py_BEGIN_ALLOW_THREADS [http://docs.python.org/dev/c-api/init.html#c.Py_BEGIN_ALLOW_THREADS] except it uses
NPY_ALLOW_THREADS to determine if the macro if
replaced with white-space or not.

	
NPY_END_ALLOW_THREADS

	Equivalent to Py_END_ALLOW_THREADS [http://docs.python.org/dev/c-api/init.html#c.Py_END_ALLOW_THREADS] except it uses
NPY_ALLOW_THREADS to determine if the macro if
replaced with white-space or not.

	
NPY_BEGIN_THREADS_DEF

	Place in the variable declaration area. This macro sets up the
variable needed for storing the Python state.

	
NPY_BEGIN_THREADS

	Place right before code that does not need the Python
interpreter (no Python C-API calls). This macro saves the
Python state and releases the GIL.

	
NPY_END_THREADS

	Place right after code that does not need the Python
interpreter. This macro acquires the GIL and restores the
Python state from the saved variable.

	
NPY_BEGIN_THREADS_DESCR(PyArray_Descr*dtype)

	Useful to release the GIL only if dtype does not contain
arbitrary Python objects which may need the Python interpreter
during execution of the loop. Equivalent to

	
NPY_END_THREADS_DESCR(PyArray_Descr*dtype)

	Useful to regain the GIL in situations where it was released
using the BEGIN form of this macro.

	
NPY_BEGIN_THREADS_THRESHOLDED(intloop_size)

	Useful to release the GIL only if loop_size exceeds a
minimum threshold, currently set to 500. Should be matched
with a .. cmacro::NPY_END_THREADS to regain the GIL.

Group 2

This group is used to re-acquire the Python GIL after it has been
released. For example, suppose the GIL has been released (using the
previous calls), and then some path in the code (perhaps in a
different subroutine) requires use of the Python C-API, then these
macros are useful to acquire the GIL. These macros accomplish
essentially a reverse of the previous three (acquire the LOCK saving
what state it had) and then re-release it with the saved state.

	
NPY_ALLOW_C_API_DEF

	Place in the variable declaration area to set up the necessary
variable.

	
NPY_ALLOW_C_API

	Place before code that needs to call the Python C-API (when it is
known that the GIL has already been released).

	
NPY_DISABLE_C_API

	Place after code that needs to call the Python C-API (to re-release
the GIL).

Tip

Never use semicolons after the threading support macros.

Priority

	
NPY_PRIORITY

	Default priority for arrays.

	
NPY_SUBTYPE_PRIORITY

	Default subtype priority.

	
NPY_SCALAR_PRIORITY

	Default scalar priority (very small)

	
double PyArray_GetPriority(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj, doubledef)

	Return the __array_priority__ attribute (converted to a
double) of obj or def if no attribute of that name
exists. Fast returns that avoid the attribute lookup are provided
for objects of type PyArray_Type.

Default buffers

	
NPY_BUFSIZE

	Default size of the user-settable internal buffers.

	
NPY_MIN_BUFSIZE

	Smallest size of user-settable internal buffers.

	
NPY_MAX_BUFSIZE

	Largest size allowed for the user-settable buffers.

Other constants

	
NPY_NUM_FLOATTYPE

	The number of floating-point types

	
NPY_MAXDIMS

	The maximum number of dimensions allowed in arrays.

	
NPY_VERSION

	The current version of the ndarray object (check to see if this
variable is defined to guarantee the numpy/arrayobject.h header is
being used).

	
NPY_FALSE

	Defined as 0 for use with Bool.

	
NPY_TRUE

	Defined as 1 for use with Bool.

	
NPY_FAIL

	The return value of failed converter functions which are called using
the “O&” syntax in PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple]-like functions.

	
NPY_SUCCEED

	The return value of successful converter functions which are called
using the “O&” syntax in PyArg_ParseTuple [http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple]-like functions.

Miscellaneous Macros

	
PyArray_SAMESHAPE(a1, a2)

	Evaluates as True if arrays a1 and a2 have the same shape.

	
PyArray_MAX(a, b)

	Returns the maximum of a and b. If (a) or (b) are
expressions they are evaluated twice.

	
PyArray_MIN(a, b)

	Returns the minimum of a and b. If (a) or (b) are
expressions they are evaluated twice.

	
PyArray_CLT(a, b)

	

	
PyArray_CGT(a, b)

	

	
PyArray_CLE(a, b)

	

	
PyArray_CGE(a, b)

	

	
PyArray_CEQ(a, b)

	

	
PyArray_CNE(a, b)

	Implements the complex comparisons between two complex numbers
(structures with a real and imag member) using NumPy’s definition
of the ordering which is lexicographic: comparing the real parts
first and then the complex parts if the real parts are equal.

	
PyArray_REFCOUNT(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*op)

	Returns the reference count of any Python object.

	
PyArray_XDECREF_ERR(PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*obj)

	DECREF’s an array object which may have the NPY_ARRAY_UPDATEIFCOPY
flag set without causing the contents to be copied back into the
original array. Resets the NPY_ARRAY_WRITEABLE flag on the base
object. This is useful for recovering from an error condition when
NPY_ARRAY_UPDATEIFCOPY is used.

Enumerated Types

	
NPY_SORTKIND

	A special variable-type which can take on the values NPY_{KIND}
where {KIND} is

QUICKSORT, HEAPSORT, MERGESORT

	
NPY_NSORTS

	Defined to be the number of sorts.

	
NPY_SCALARKIND

	A special variable type indicating the number of “kinds” of
scalars distinguished in determining scalar-coercion rules. This
variable can take on the values NPY_{KIND} where {KIND} can be

NOSCALAR, BOOL_SCALAR, INTPOS_SCALAR,
INTNEG_SCALAR, FLOAT_SCALAR, COMPLEX_SCALAR,
OBJECT_SCALAR

	
NPY_NSCALARKINDS

	Defined to be the number of scalar kinds
(not including NPY_NOSCALAR).

	
NPY_ORDER

	An enumeration type indicating the element order that an array should be
interpreted in. When a brand new array is created, generally
only NPY_CORDER and NPY_FORTRANORDER are used, whereas
when one or more inputs are provided, the order can be based on them.

	
NPY_ANYORDER

	Fortran order if all the inputs are Fortran, C otherwise.

	
NPY_CORDER

	C order.

	
NPY_FORTRANORDER

	Fortran order.

	
NPY_KEEPORDER

	An order as close to the order of the inputs as possible, even
if the input is in neither C nor Fortran order.

	
NPY_CLIPMODE

	A variable type indicating the kind of clipping that should be
applied in certain functions.

	
NPY_RAISE

	The default for most operations, raises an exception if an index
is out of bounds.

	
NPY_CLIP

	Clips an index to the valid range if it is out of bounds.

	
NPY_WRAP

	Wraps an index to the valid range if it is out of bounds.

	
NPY_CASTING

	
New in version 1.6.

An enumeration type indicating how permissive data conversions should
be. This is used by the iterator added in NumPy 1.6, and is intended
to be used more broadly in a future version.

	
NPY_NO_CASTING

	Only allow identical types.

	
NPY_EQUIV_CASTING

	Allow identical and casts involving byte swapping.

	
NPY_SAFE_CASTING

	Only allow casts which will not cause values to be rounded,
truncated, or otherwise changed.

	
NPY_SAME_KIND_CASTING

	Allow any safe casts, and casts between types of the same kind.
For example, float64 -> float32 is permitted with this rule.

	
NPY_UNSAFE_CASTING

	Allow any cast, no matter what kind of data loss may occur.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

Array Iterator API

New in version 1.6.

Array Iterator

The array iterator encapsulates many of the key features in ufuncs,
allowing user code to support features like output parameters,
preservation of memory layouts, and buffering of data with the wrong
alignment or type, without requiring difficult coding.

This page documents the API for the iterator.
The iterator is named NpyIter and functions are
named NpyIter_*.

There is an introductory guide to array iteration
which may be of interest for those using this C API. In many instances,
testing out ideas by creating the iterator in Python is a good idea
before writing the C iteration code.

Converting from Previous NumPy Iterators

The existing iterator API includes functions like PyArrayIter_Check,
PyArray_Iter* and PyArray_ITER_*. The multi-iterator array includes
PyArray_MultiIter*, PyArray_Broadcast, and PyArray_RemoveSmallest. The
new iterator design replaces all of this functionality with a single object
and associated API. One goal of the new API is that all uses of the
existing iterator should be replaceable with the new iterator without
significant effort. In 1.6, the major exception to this is the neighborhood
iterator, which does not have corresponding features in this iterator.

Here is a conversion table for which functions to use with the new iterator:

	Iterator Functions
	

	PyArray_IterNew
	NpyIter_New

	PyArray_IterAllButAxis
	NpyIter_New + axes parameter or
Iterator flag NPY_ITER_EXTERNAL_LOOP

	PyArray_BroadcastToShape
	NOT SUPPORTED (Use the support for
multiple operands instead.)

	PyArrayIter_Check
	Will need to add this in Python exposure

	PyArray_ITER_RESET
	NpyIter_Reset

	PyArray_ITER_NEXT
	Function pointer from NpyIter_GetIterNext

	PyArray_ITER_DATA
	NpyIter_GetDataPtrArray

	PyArray_ITER_GOTO
	NpyIter_GotoMultiIndex

	PyArray_ITER_GOTO1D
	NpyIter_GotoIndex or
NpyIter_GotoIterIndex

	PyArray_ITER_NOTDONE
	Return value of iternext function pointer

	Multi-iterator Functions
	

	PyArray_MultiIterNew
	NpyIter_MultiNew

	PyArray_MultiIter_RESET
	NpyIter_Reset

	PyArray_MultiIter_NEXT
	Function pointer from NpyIter_GetIterNext

	PyArray_MultiIter_DATA
	NpyIter_GetDataPtrArray

	PyArray_MultiIter_NEXTi
	NOT SUPPORTED (always lock-step iteration)

	PyArray_MultiIter_GOTO
	NpyIter_GotoMultiIndex

	PyArray_MultiIter_GOTO1D
	NpyIter_GotoIndex or
NpyIter_GotoIterIndex

	PyArray_MultiIter_NOTDONE
	Return value of iternext function pointer

	PyArray_Broadcast
	Handled by NpyIter_MultiNew

	PyArray_RemoveSmallest
	Iterator flag NPY_ITER_EXTERNAL_LOOP

	Other Functions
	

	PyArray_ConvertToCommonType
	Iterator flag NPY_ITER_COMMON_DTYPE

Simple Iteration Example

The best way to become familiar with the iterator is to look at its
usage within the NumPy codebase itself. For example, here is a slightly
tweaked version of the code for PyArray_CountNonzero, which counts the
number of non-zero elements in an array.

npy_intp PyArray_CountNonzero(PyArrayObject* self)
{
 /* Nonzero boolean function */
 PyArray_NonzeroFunc* nonzero = PyArray_DESCR(self)->f->nonzero;

 NpyIter* iter;
 NpyIter_IterNextFunc *iternext;
 char** dataptr;
 npy_intp* strideptr,* innersizeptr;

 /* Handle zero-sized arrays specially */
 if (PyArray_SIZE(self) == 0) {
 return 0;
 }

 /*
 * Create and use an iterator to count the nonzeros.
 * flag NPY_ITER_READONLY
 * - The array is never written to.
 * flag NPY_ITER_EXTERNAL_LOOP
 * - Inner loop is done outside the iterator for efficiency.
 * flag NPY_ITER_NPY_ITER_REFS_OK
 * - Reference types are acceptable.
 * order NPY_KEEPORDER
 * - Visit elements in memory order, regardless of strides.
 * This is good for performance when the specific order
 * elements are visited is unimportant.
 * casting NPY_NO_CASTING
 * - No casting is required for this operation.
 */
 iter = NpyIter_New(self, NPY_ITER_READONLY|
 NPY_ITER_EXTERNAL_LOOP|
 NPY_ITER_REFS_OK,
 NPY_KEEPORDER, NPY_NO_CASTING,
 NULL);
 if (iter == NULL) {
 return -1;
 }

 /*
 * The iternext function gets stored in a local variable
 * so it can be called repeatedly in an efficient manner.
 */
 iternext = NpyIter_GetIterNext(iter, NULL);
 if (iternext == NULL) {
 NpyIter_Deallocate(iter);
 return -1;
 }
 /* The location of the data pointer which the iterator may update */
 dataptr = NpyIter_GetDataPtrArray(iter);
 /* The location of the stride which the iterator may update */
 strideptr = NpyIter_GetInnerStrideArray(iter);
 /* The location of the inner loop size which the iterator may update */
 innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);

 /* The iteration loop */
 do {
 /* Get the inner loop data/stride/count values */
 char* data = *dataptr;
 npy_intp stride = *strideptr;
 npy_intp count = *innersizeptr;

 /* This is a typical inner loop for NPY_ITER_EXTERNAL_LOOP */
 while (count--) {
 if (nonzero(data, self)) {
 ++nonzero_count;
 }
 data += stride;
 }

 /* Increment the iterator to the next inner loop */
 } while(iternext(iter));

 NpyIter_Deallocate(iter);

 return nonzero_count;
}

Simple Multi-Iteration Example

Here is a simple copy function using the iterator. The order parameter
is used to control the memory layout of the allocated result, typically
NPY_KEEPORDER is desired.

PyObject *CopyArray(PyObject *arr, NPY_ORDER order)
{
 NpyIter *iter;
 NpyIter_IterNextFunc *iternext;
 PyObject *op[2], *ret;
 npy_uint32 flags;
 npy_uint32 op_flags[2];
 npy_intp itemsize, *innersizeptr, innerstride;
 char **dataptrarray;

 /*
 * No inner iteration - inner loop is handled by CopyArray code
 */
 flags = NPY_ITER_EXTERNAL_LOOP;
 /*
 * Tell the constructor to automatically allocate the output.
 * The data type of the output will match that of the input.
 */
 op[0] = arr;
 op[1] = NULL;
 op_flags[0] = NPY_ITER_READONLY;
 op_flags[1] = NPY_ITER_WRITEONLY | NPY_ITER_ALLOCATE;

 /* Construct the iterator */
 iter = NpyIter_MultiNew(2, op, flags, order, NPY_NO_CASTING,
 op_flags, NULL);
 if (iter == NULL) {
 return NULL;
 }

 /*
 * Make a copy of the iternext function pointer and
 * a few other variables the inner loop needs.
 */
 iternext = NpyIter_GetIterNext(iter, NULL);
 innerstride = NpyIter_GetInnerStrideArray(iter)[0];
 itemsize = NpyIter_GetDescrArray(iter)[0]->elsize;
 /*
 * The inner loop size and data pointers may change during the
 * loop, so just cache the addresses.
 */
 innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);
 dataptrarray = NpyIter_GetDataPtrArray(iter);

 /*
 * Note that because the iterator allocated the output,
 * it matches the iteration order and is packed tightly,
 * so we don't need to check it like the input.
 */
 if (innerstride == itemsize) {
 do {
 memcpy(dataptrarray[1], dataptrarray[0],
 itemsize * (*innersizeptr));
 } while (iternext(iter));
 } else {
 /* For efficiency, should specialize this based on item size... */
 npy_intp i;
 do {
 npy_intp size = *innersizeptr;
 char *src = dataptrarray[0], *dst = dataptrarray[1];
 for(i = 0; i < size; i++, src += innerstride, dst += itemsize) {
 memcpy(dst, src, itemsize);
 }
 } while (iternext(iter));
 }

 /* Get the result from the iterator object array */
 ret = NpyIter_GetOperandArray(iter)[1];
 Py_INCREF(ret);

 if (NpyIter_Deallocate(iter) != NPY_SUCCEED) {
 Py_DECREF(ret);
 return NULL;
 }

 return ret;
}

Iterator Data Types

The iterator layout is an internal detail, and user code only sees
an incomplete struct.

	
NpyIter

	This is an opaque pointer type for the iterator. Access to its contents
can only be done through the iterator API.

	
NpyIter_Type

	This is the type which exposes the iterator to Python. Currently, no
API is exposed which provides access to the values of a Python-created
iterator. If an iterator is created in Python, it must be used in Python
and vice versa. Such an API will likely be created in a future version.

	
NpyIter_IterNextFunc

	This is a function pointer for the iteration loop, returned by
NpyIter_GetIterNext.

	
NpyIter_GetMultiIndexFunc

	This is a function pointer for getting the current iterator multi-index,
returned by NpyIter_GetGetMultiIndex.

Construction and Destruction

	
NpyIter* NpyIter_New(PyArrayObject*op, npy_uint32flags, NPY_ORDERorder, NPY_CASTINGcasting, PyArray_Descr*dtype)

	Creates an iterator for the given numpy array object op.

Flags that may be passed in flags are any combination
of the global and per-operand flags documented in
NpyIter_MultiNew, except for NPY_ITER_ALLOCATE.

Any of the NPY_ORDER enum values may be passed to order. For
efficient iteration, NPY_KEEPORDER is the best option, and
the other orders enforce the particular iteration pattern.

Any of the NPY_CASTING enum values may be passed to casting.
The values include NPY_NO_CASTING, NPY_EQUIV_CASTING,
NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING. To allow the casts to occur, copying or
buffering must also be enabled.

If dtype isn’t NULL, then it requires that data type.
If copying is allowed, it will make a temporary copy if the data
is castable. If NPY_ITER_UPDATEIFCOPY is enabled, it will
also copy the data back with another cast upon iterator destruction.

Returns NULL if there is an error, otherwise returns the allocated
iterator.

To make an iterator similar to the old iterator, this should work.

iter = NpyIter_New(op, NPY_ITER_READWRITE,
 NPY_CORDER, NPY_NO_CASTING, NULL);

If you want to edit an array with aligned double code,
but the order doesn’t matter, you would use this.

dtype = PyArray_DescrFromType(NPY_DOUBLE);
iter = NpyIter_New(op, NPY_ITER_READWRITE|
 NPY_ITER_BUFFERED|
 NPY_ITER_NBO|
 NPY_ITER_ALIGNED,
 NPY_KEEPORDER,
 NPY_SAME_KIND_CASTING,
 dtype);
Py_DECREF(dtype);

	
NpyIter* NpyIter_MultiNew(npy_intpnop, PyArrayObject**op, npy_uint32flags, NPY_ORDERorder, NPY_CASTINGcasting, npy_uint32*op_flags, PyArray_Descr**op_dtypes)

	Creates an iterator for broadcasting the nop array objects provided
in op, using regular NumPy broadcasting rules.

Any of the NPY_ORDER enum values may be passed to order. For
efficient iteration, NPY_KEEPORDER is the best option, and the
other orders enforce the particular iteration pattern. When using
NPY_KEEPORDER, if you also want to ensure that the iteration is
not reversed along an axis, you should pass the flag
NPY_ITER_DONT_NEGATE_STRIDES.

Any of the NPY_CASTING enum values may be passed to casting.
The values include NPY_NO_CASTING, NPY_EQUIV_CASTING,
NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING. To allow the casts to occur, copying or
buffering must also be enabled.

If op_dtypes isn’t NULL, it specifies a data type or NULL
for each op[i].

Returns NULL if there is an error, otherwise returns the allocated
iterator.

Flags that may be passed in flags, applying to the whole
iterator, are:

	
NPY_ITER_C_INDEX

	Causes the iterator to track a raveled flat index matching C
order. This option cannot be used with NPY_ITER_F_INDEX.

	
NPY_ITER_F_INDEX

	Causes the iterator to track a raveled flat index matching Fortran
order. This option cannot be used with NPY_ITER_C_INDEX.

	
NPY_ITER_MULTI_INDEX

	Causes the iterator to track a multi-index.
This prevents the iterator from coalescing axes to
produce bigger inner loops. If the loop is also not buffered
and no index is being tracked (NpyIter_RemoveAxis can be called),
then the iterator size can be -1 to indicate that the iterator
is too large. This can happen due to complex broadcasting and
will result in errors being created when the setting the iterator
range, removing the multi index, or getting the next function.
However, it is possible to remove axes again and use the iterator
normally if the size is small enough after removal.

	
NPY_ITER_EXTERNAL_LOOP

	Causes the iterator to skip iteration of the innermost
loop, requiring the user of the iterator to handle it.

This flag is incompatible with NPY_ITER_C_INDEX,
NPY_ITER_F_INDEX, and NPY_ITER_MULTI_INDEX.

	
NPY_ITER_DONT_NEGATE_STRIDES

	This only affects the iterator when NPY_KEEPORDER is
specified for the order parameter. By default with
NPY_KEEPORDER, the iterator reverses axes which have
negative strides, so that memory is traversed in a forward
direction. This disables this step. Use this flag if you
want to use the underlying memory-ordering of the axes,
but don’t want an axis reversed. This is the behavior of
numpy.ravel(a, order='K'), for instance.

	
NPY_ITER_COMMON_DTYPE

	Causes the iterator to convert all the operands to a common
data type, calculated based on the ufunc type promotion rules.
Copying or buffering must be enabled.

If the common data type is known ahead of time, don’t use this
flag. Instead, set the requested dtype for all the operands.

	
NPY_ITER_REFS_OK

	Indicates that arrays with reference types (object
arrays or structured arrays containing an object type)
may be accepted and used in the iterator. If this flag
is enabled, the caller must be sure to check whether
:cfunc:`NpyIter_IterationNeedsAPI`(iter) is true, in which case
it may not release the GIL during iteration.

	
NPY_ITER_ZEROSIZE_OK

	Indicates that arrays with a size of zero should be permitted.
Since the typical iteration loop does not naturally work with
zero-sized arrays, you must check that the IterSize is larger
than zero before entering the iteration loop.
Currently only the operands are checked, not a forced shape.

	
NPY_ITER_REDUCE_OK

	Permits writeable operands with a dimension with zero
stride and size greater than one. Note that such operands
must be read/write.

When buffering is enabled, this also switches to a special
buffering mode which reduces the loop length as necessary to
not trample on values being reduced.

Note that if you want to do a reduction on an automatically
allocated output, you must use NpyIter_GetOperandArray
to get its reference, then set every value to the reduction
unit before doing the iteration loop. In the case of a
buffered reduction, this means you must also specify the
flag NPY_ITER_DELAY_BUFALLOC, then reset the iterator
after initializing the allocated operand to prepare the
buffers.

	
NPY_ITER_RANGED

	Enables support for iteration of sub-ranges of the full
iterindex range [0, NpyIter_IterSize(iter)). Use
the function NpyIter_ResetToIterIndexRange to specify
a range for iteration.

This flag can only be used with NPY_ITER_EXTERNAL_LOOP
when NPY_ITER_BUFFERED is enabled. This is because
without buffering, the inner loop is always the size of the
innermost iteration dimension, and allowing it to get cut up
would require special handling, effectively making it more
like the buffered version.

	
NPY_ITER_BUFFERED

	Causes the iterator to store buffering data, and use buffering
to satisfy data type, alignment, and byte-order requirements.
To buffer an operand, do not specify the NPY_ITER_COPY
or NPY_ITER_UPDATEIFCOPY flags, because they will
override buffering. Buffering is especially useful for Python
code using the iterator, allowing for larger chunks
of data at once to amortize the Python interpreter overhead.

If used with NPY_ITER_EXTERNAL_LOOP, the inner loop
for the caller may get larger chunks than would be possible
without buffering, because of how the strides are laid out.

Note that if an operand is given the flag NPY_ITER_COPY
or NPY_ITER_UPDATEIFCOPY, a copy will be made in preference
to buffering. Buffering will still occur when the array was
broadcast so elements need to be duplicated to get a constant
stride.

In normal buffering, the size of each inner loop is equal
to the buffer size, or possibly larger if
NPY_ITER_GROWINNER is specified. If
NPY_ITER_REDUCE_OK is enabled and a reduction occurs,
the inner loops may become smaller depending
on the structure of the reduction.

	
NPY_ITER_GROWINNER

	When buffering is enabled, this allows the size of the inner
loop to grow when buffering isn’t necessary. This option
is best used if you’re doing a straight pass through all the
data, rather than anything with small cache-friendly arrays
of temporary values for each inner loop.

	
NPY_ITER_DELAY_BUFALLOC

	When buffering is enabled, this delays allocation of the
buffers until NpyIter_Reset or another reset function is
called. This flag exists to avoid wasteful copying of
buffer data when making multiple copies of a buffered
iterator for multi-threaded iteration.

Another use of this flag is for setting up reduction operations.
After the iterator is created, and a reduction output
is allocated automatically by the iterator (be sure to use
READWRITE access), its value may be initialized to the reduction
unit. Use NpyIter_GetOperandArray to get the object.
Then, call NpyIter_Reset to allocate and fill the buffers
with their initial values.

Flags that may be passed in op_flags[i], where 0 <= i < nop:

	
NPY_ITER_READWRITE

	

	
NPY_ITER_READONLY

	

	
NPY_ITER_WRITEONLY

	Indicate how the user of the iterator will read or write
to op[i]. Exactly one of these flags must be specified
per operand.

	
NPY_ITER_COPY

	Allow a copy of op[i] to be made if it does not
meet the data type or alignment requirements as specified
by the constructor flags and parameters.

	
NPY_ITER_UPDATEIFCOPY

	Triggers NPY_ITER_COPY, and when an array operand
is flagged for writing and is copied, causes the data
in a copy to be copied back to op[i] when the iterator
is destroyed.

If the operand is flagged as write-only and a copy is needed,
an uninitialized temporary array will be created and then copied
to back to op[i] on destruction, instead of doing
the unecessary copy operation.

	
NPY_ITER_NBO

	

	
NPY_ITER_ALIGNED

	

	
NPY_ITER_CONTIG

	Causes the iterator to provide data for op[i]
that is in native byte order, aligned according to
the dtype requirements, contiguous, or any combination.

By default, the iterator produces pointers into the
arrays provided, which may be aligned or unaligned, and
with any byte order. If copying or buffering is not
enabled and the operand data doesn’t satisfy the constraints,
an error will be raised.

The contiguous constraint applies only to the inner loop,
successive inner loops may have arbitrary pointer changes.

If the requested data type is in non-native byte order,
the NBO flag overrides it and the requested data type is
converted to be in native byte order.

	
NPY_ITER_ALLOCATE

	This is for output arrays, and requires that the flag
NPY_ITER_WRITEONLY or NPY_ITER_READWRITE
be set. If op[i] is NULL, creates a new array with
the final broadcast dimensions, and a layout matching
the iteration order of the iterator.

When op[i] is NULL, the requested data type
op_dtypes[i] may be NULL as well, in which case it is
automatically generated from the dtypes of the arrays which
are flagged as readable. The rules for generating the dtype
are the same is for UFuncs. Of special note is handling
of byte order in the selected dtype. If there is exactly
one input, the input’s dtype is used as is. Otherwise,
if more than one input dtypes are combined together, the
output will be in native byte order.

After being allocated with this flag, the caller may retrieve
the new array by calling NpyIter_GetOperandArray and
getting the i-th object in the returned C array. The caller
must call Py_INCREF on it to claim a reference to the array.

	
NPY_ITER_NO_SUBTYPE

	For use with NPY_ITER_ALLOCATE, this flag disables
allocating an array subtype for the output, forcing
it to be a straight ndarray.

TODO: Maybe it would be better to introduce a function
NpyIter_GetWrappedOutput and remove this flag?

	
NPY_ITER_NO_BROADCAST

	Ensures that the input or output matches the iteration
dimensions exactly.

	
NPY_ITER_ARRAYMASK

	
New in version 1.7.

Indicates that this operand is the mask to use for
selecting elements when writing to operands which have
the NPY_ITER_WRITEMASKED flag applied to them.
Only one operand may have NPY_ITER_ARRAYMASK flag
applied to it.

The data type of an operand with this flag should be either
NPY_BOOL, NPY_MASK, or a struct dtype
whose fields are all valid mask dtypes. In the latter case,
it must match up with a struct operand being WRITEMASKED,
as it is specifying a mask for each field of that array.

This flag only affects writing from the buffer back to
the array. This means that if the operand is also
NPY_ITER_READWRITE or NPY_ITER_WRITEONLY,
code doing iteration can write to this operand to
control which elements will be untouched and which ones will be
modified. This is useful when the mask should be a combination
of input masks, for example. Mask values can be created
with the NpyMask_Create function.

	
NPY_ITER_WRITEMASKED

	
New in version 1.7.

Indicates that only elements which the operand with
the ARRAYMASK flag indicates are intended to be modified
by the iteration. In general, the iterator does not enforce
this, it is up to the code doing the iteration to follow
that promise. Code can use the NpyMask_IsExposed
inline function to test whether the mask at a particular
element allows writing.

When this flag is used, and this operand is buffered, this
changes how data is copied from the buffer into the array.
A masked copying routine is used, which only copies the
elements in the buffer for which NpyMask_IsExposed
returns true from the corresponding element in the ARRAYMASK
operand.

	
NpyIter* NpyIter_AdvancedNew(npy_intpnop, PyArrayObject**op, npy_uint32flags, NPY_ORDERorder, NPY_CASTINGcasting, npy_uint32*op_flags, PyArray_Descr**op_dtypes, intoa_ndim, int**op_axes, npy_intp*itershape, npy_intpbuffersize)

	Extends NpyIter_MultiNew with several advanced options providing
more control over broadcasting and buffering.

If -1/NULL values are passed to oa_ndim, op_axes, itershape,
and buffersize, it is equivalent to NpyIter_MultiNew.

The parameter oa_ndim, when not zero or -1, specifies the number of
dimensions that will be iterated with customized broadcasting.
If it is provided, op_axes must and itershape can also be provided.
The op_axes parameter let you control in detail how the
axes of the operand arrays get matched together and iterated.
In op_axes, you must provide an array of nop pointers
to oa_ndim-sized arrays of type npy_intp. If an entry
in op_axes is NULL, normal broadcasting rules will apply.
In op_axes[j][i] is stored either a valid axis of op[j], or
-1 which means newaxis. Within each op_axes[j] array, axes
may not be repeated. The following example is how normal broadcasting
applies to a 3-D array, a 2-D array, a 1-D array and a scalar.

Note: Before NumPy 1.8 oa_ndim == 0` was used for signalling that
that ``op_axes and itershape are unused. This is deprecated and
should be replaced with -1. Better backward compatibility may be
achieved by using NpyIter_MultiNew for this case.

int oa_ndim = 3; /* # iteration axes */
int op0_axes[] = {0, 1, 2}; /* 3-D operand */
int op1_axes[] = {-1, 0, 1}; /* 2-D operand */
int op2_axes[] = {-1, -1, 0}; /* 1-D operand */
int op3_axes[] = {-1, -1, -1} /* 0-D (scalar) operand */
int* op_axes[] = {op0_axes, op1_axes, op2_axes, op3_axes};

The itershape parameter allows you to force the iterator
to have a specific iteration shape. It is an array of length
oa_ndim. When an entry is negative, its value is determined
from the operands. This parameter allows automatically allocated
outputs to get additional dimensions which don’t match up with
any dimension of an input.

If buffersize is zero, a default buffer size is used,
otherwise it specifies how big of a buffer to use. Buffers
which are powers of 2 such as 4096 or 8192 are recommended.

Returns NULL if there is an error, otherwise returns the allocated
iterator.

	
NpyIter* NpyIter_Copy(NpyIter*iter)

	Makes a copy of the given iterator. This function is provided
primarily to enable multi-threaded iteration of the data.

TODO: Move this to a section about multithreaded iteration.

The recommended approach to multithreaded iteration is to
first create an iterator with the flags
NPY_ITER_EXTERNAL_LOOP, NPY_ITER_RANGED,
NPY_ITER_BUFFERED, NPY_ITER_DELAY_BUFALLOC, and
possibly NPY_ITER_GROWINNER. Create a copy of this iterator
for each thread (minus one for the first iterator). Then, take
the iteration index range [0, NpyIter_GetIterSize(iter)) and
split it up into tasks, for example using a TBB parallel_for loop.
When a thread gets a task to execute, it then uses its copy of
the iterator by calling NpyIter_ResetToIterIndexRange and
iterating over the full range.

When using the iterator in multi-threaded code or in code not
holding the Python GIL, care must be taken to only call functions
which are safe in that context. NpyIter_Copy cannot be safely
called without the Python GIL, because it increments Python
references. The Reset* and some other functions may be safely
called by passing in the errmsg parameter as non-NULL, so that
the functions will pass back errors through it instead of setting
a Python exception.

	
int NpyIter_RemoveAxis(NpyIter* iter, int axis)``

	Removes an axis from iteration. This requires that
NPY_ITER_MULTI_INDEX was set for iterator creation, and does
not work if buffering is enabled or an index is being tracked. This
function also resets the iterator to its initial state.

This is useful for setting up an accumulation loop, for example.
The iterator can first be created with all the dimensions, including
the accumulation axis, so that the output gets created correctly.
Then, the accumulation axis can be removed, and the calculation
done in a nested fashion.

WARNING: This function may change the internal memory layout of
the iterator. Any cached functions or pointers from the iterator
must be retrieved again! The iterator range will be reset as well.

Returns NPY_SUCCEED or NPY_FAIL.

	
int NpyIter_RemoveMultiIndex(NpyIter*iter)

	If the iterator is tracking a multi-index, this strips support for them,
and does further iterator optimizations that are possible if multi-indices
are not needed. This function also resets the iterator to its initial
state.

WARNING: This function may change the internal memory layout of
the iterator. Any cached functions or pointers from the iterator
must be retrieved again!

After calling this function, :cfunc:`NpyIter_HasMultiIndex`(iter) will
return false.

Returns NPY_SUCCEED or NPY_FAIL.

	
int NpyIter_EnableExternalLoop(NpyIter*iter)

	If NpyIter_RemoveMultiIndex was called, you may want to enable the
flag NPY_ITER_EXTERNAL_LOOP. This flag is not permitted
together with NPY_ITER_MULTI_INDEX, so this function is provided
to enable the feature after NpyIter_RemoveMultiIndex is called.
This function also resets the iterator to its initial state.

WARNING: This function changes the internal logic of the iterator.
Any cached functions or pointers from the iterator must be retrieved
again!

Returns NPY_SUCCEED or NPY_FAIL.

	
int NpyIter_Deallocate(NpyIter*iter)

	Deallocates the iterator object. This additionally frees any
copies made, triggering UPDATEIFCOPY behavior where necessary.

Returns NPY_SUCCEED or NPY_FAIL.

	
int NpyIter_Reset(NpyIter*iter, char**errmsg)

	Resets the iterator back to its initial state, at the beginning
of the iteration range.

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

	
int NpyIter_ResetToIterIndexRange(NpyIter*iter, npy_intpistart, npy_intpiend, char**errmsg)

	Resets the iterator and restricts it to the iterindex range
[istart, iend). See NpyIter_Copy for an explanation of
how to use this for multi-threaded iteration. This requires that
the flag NPY_ITER_RANGED was passed to the iterator constructor.

If you want to reset both the iterindex range and the base
pointers at the same time, you can do the following to avoid
extra buffer copying (be sure to add the return code error checks
when you copy this code).

/* Set to a trivial empty range */
NpyIter_ResetToIterIndexRange(iter, 0, 0);
/* Set the base pointers */
NpyIter_ResetBasePointers(iter, baseptrs);
/* Set to the desired range */
NpyIter_ResetToIterIndexRange(iter, istart, iend);

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

	
int NpyIter_ResetBasePointers(NpyIter*iter, char**baseptrs, char**errmsg)

	Resets the iterator back to its initial state, but using the values
in baseptrs for the data instead of the pointers from the arrays
being iterated. This functions is intended to be used, together with
the op_axes parameter, by nested iteration code with two or more
iterators.

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

TODO: Move the following into a special section on nested iterators.

Creating iterators for nested iteration requires some care. All
the iterator operands must match exactly, or the calls to
NpyIter_ResetBasePointers will be invalid. This means that
automatic copies and output allocation should not be used haphazardly.
It is possible to still use the automatic data conversion and casting
features of the iterator by creating one of the iterators with
all the conversion parameters enabled, then grabbing the allocated
operands with the NpyIter_GetOperandArray function and passing
them into the constructors for the rest of the iterators.

WARNING: When creating iterators for nested iteration,
the code must not use a dimension more than once in the different
iterators. If this is done, nested iteration will produce
out-of-bounds pointers during iteration.

WARNING: When creating iterators for nested iteration, buffering
can only be applied to the innermost iterator. If a buffered iterator
is used as the source for baseptrs, it will point into a small buffer
instead of the array and the inner iteration will be invalid.

The pattern for using nested iterators is as follows.

NpyIter *iter1, *iter1;
NpyIter_IterNextFunc *iternext1, *iternext2;
char **dataptrs1;

/*
 * With the exact same operands, no copies allowed, and
 * no axis in op_axes used both in iter1 and iter2.
 * Buffering may be enabled for iter2, but not for iter1.
 */
iter1 = ...; iter2 = ...;

iternext1 = NpyIter_GetIterNext(iter1);
iternext2 = NpyIter_GetIterNext(iter2);
dataptrs1 = NpyIter_GetDataPtrArray(iter1);

do {
 NpyIter_ResetBasePointers(iter2, dataptrs1);
 do {
 /* Use the iter2 values */
 } while (iternext2(iter2));
} while (iternext1(iter1));

	
int NpyIter_GotoMultiIndex(NpyIter*iter, npy_intp*multi_index)

	Adjusts the iterator to point to the ndim indices
pointed to by multi_index. Returns an error if a multi-index
is not being tracked, the indices are out of bounds,
or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

	
int NpyIter_GotoIndex(NpyIter*iter, npy_intpindex)

	Adjusts the iterator to point to the index specified.
If the iterator was constructed with the flag
NPY_ITER_C_INDEX, index is the C-order index,
and if the iterator was constructed with the flag
NPY_ITER_F_INDEX, index is the Fortran-order
index. Returns an error if there is no index being tracked,
the index is out of bounds, or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

	
npy_intp NpyIter_GetIterSize(NpyIter*iter)

	Returns the number of elements being iterated. This is the product
of all the dimensions in the shape. When a multi index is being tracked
(and NpyIter_RemoveAxis may be called) the size may be -1 to
indicate an iterator is too large. Such an iterator is invalid, but
may become valid after NpyIter_RemoveAxis is called. It is not
necessary to check for this case.

	
npy_intp NpyIter_GetIterIndex(NpyIter*iter)

	Gets the iterindex of the iterator, which is an index matching
the iteration order of the iterator.

	
void NpyIter_GetIterIndexRange(NpyIter*iter, npy_intp*istart, npy_intp*iend)

	Gets the iterindex sub-range that is being iterated. If
NPY_ITER_RANGED was not specified, this always returns the
range [0, NpyIter_IterSize(iter)).

	
int NpyIter_GotoIterIndex(NpyIter*iter, npy_intpiterindex)

	Adjusts the iterator to point to the iterindex specified.
The IterIndex is an index matching the iteration order of the iterator.
Returns an error if the iterindex is out of bounds,
buffering is enabled, or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

	
npy_bool NpyIter_HasDelayedBufAlloc(NpyIter*iter)

	Returns 1 if the flag NPY_ITER_DELAY_BUFALLOC was passed
to the iterator constructor, and no call to one of the Reset
functions has been done yet, 0 otherwise.

	
npy_bool NpyIter_HasExternalLoop(NpyIter*iter)

	Returns 1 if the caller needs to handle the inner-most 1-dimensional
loop, or 0 if the iterator handles all looping. This is controlled
by the constructor flag NPY_ITER_EXTERNAL_LOOP or
NpyIter_EnableExternalLoop.

	
npy_bool NpyIter_HasMultiIndex(NpyIter*iter)

	Returns 1 if the iterator was created with the
NPY_ITER_MULTI_INDEX flag, 0 otherwise.

	
npy_bool NpyIter_HasIndex(NpyIter*iter)

	Returns 1 if the iterator was created with the
NPY_ITER_C_INDEX or NPY_ITER_F_INDEX
flag, 0 otherwise.

	
npy_bool NpyIter_RequiresBuffering(NpyIter*iter)

	Returns 1 if the iterator requires buffering, which occurs
when an operand needs conversion or alignment and so cannot
be used directly.

	
npy_bool NpyIter_IsBuffered(NpyIter*iter)

	Returns 1 if the iterator was created with the
NPY_ITER_BUFFERED flag, 0 otherwise.

	
npy_bool NpyIter_IsGrowInner(NpyIter*iter)

	Returns 1 if the iterator was created with the
NPY_ITER_GROWINNER flag, 0 otherwise.

	
npy_intp NpyIter_GetBufferSize(NpyIter*iter)

	If the iterator is buffered, returns the size of the buffer
being used, otherwise returns 0.

	
int NpyIter_GetNDim(NpyIter*iter)

	Returns the number of dimensions being iterated. If a multi-index
was not requested in the iterator constructor, this value
may be smaller than the number of dimensions in the original
objects.

	
int NpyIter_GetNOp(NpyIter*iter)

	Returns the number of operands in the iterator.

When NPY_ITER_USE_MASKNA is used on an operand, a new
operand is added to the end of the operand list in the iterator
to track that operand’s NA mask. Thus, this equals the number
of construction operands plus the number of operands for
which the flag NPY_ITER_USE_MASKNA was specified.

	
int NpyIter_GetFirstMaskNAOp(NpyIter*iter)

	
New in version 1.7.

Returns the index of the first NA mask operand in the array. This
value is equal to the number of operands passed into the constructor.

	
npy_intp* NpyIter_GetAxisStrideArray(NpyIter*iter, intaxis)

	Gets the array of strides for the specified axis. Requires that
the iterator be tracking a multi-index, and that buffering not
be enabled.

This may be used when you want to match up operand axes in
some fashion, then remove them with NpyIter_RemoveAxis to
handle their processing manually. By calling this function
before removing the axes, you can get the strides for the
manual processing.

Returns NULL on error.

	
int NpyIter_GetShape(NpyIter*iter, npy_intp*outshape)

	Returns the broadcast shape of the iterator in outshape.
This can only be called on an iterator which is tracking a multi-index.

Returns NPY_SUCCEED or NPY_FAIL.

	
PyArray_Descr** NpyIter_GetDescrArray(NpyIter*iter)

	This gives back a pointer to the nop data type Descrs for
the objects being iterated. The result points into iter,
so the caller does not gain any references to the Descrs.

This pointer may be cached before the iteration loop, calling
iternext will not change it.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]** NpyIter_GetOperandArray(NpyIter*iter)

	This gives back a pointer to the nop operand PyObjects
that are being iterated. The result points into iter,
so the caller does not gain any references to the PyObjects.

	
npy_int8* NpyIter_GetMaskNAIndexArray(NpyIter*iter)

	
New in version 1.7.

This gives back a pointer to the nop indices which map
construction operands with NPY_ITER_USE_MASKNA flagged
to their corresponding NA mask operands and vice versa. For
operands which were not flagged with NPY_ITER_USE_MASKNA,
this array contains negative values.

	
PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]* NpyIter_GetIterView(NpyIter*iter, npy_intpi)

	This gives back a reference to a new ndarray view, which is a view
into the i-th object in the array :cfunc:`NpyIter_GetOperandArray`(),
whose dimensions and strides match the internal optimized
iteration pattern. A C-order iteration of this view is equivalent
to the iterator’s iteration order.

For example, if an iterator was created with a single array as its
input, and it was possible to rearrange all its axes and then
collapse it into a single strided iteration, this would return
a view that is a one-dimensional array.

	
void NpyIter_GetReadFlags(NpyIter*iter, char*outreadflags)

	Fills nop flags. Sets outreadflags[i] to 1 if
op[i] can be read from, and to 0 if not.

	
void NpyIter_GetWriteFlags(NpyIter*iter, char*outwriteflags)

	Fills nop flags. Sets outwriteflags[i] to 1 if
op[i] can be written to, and to 0 if not.

	
int NpyIter_CreateCompatibleStrides(NpyIter*iter, npy_intpitemsize, npy_intp*outstrides)

	Builds a set of strides which are the same as the strides of an
output array created using the NPY_ITER_ALLOCATE flag, where NULL
was passed for op_axes. This is for data packed contiguously,
but not necessarily in C or Fortran order. This should be used
together with NpyIter_GetShape and NpyIter_GetNDim
with the flag NPY_ITER_MULTI_INDEX passed into the constructor.

A use case for this function is to match the shape and layout of
the iterator and tack on one or more dimensions. For example,
in order to generate a vector per input value for a numerical gradient,
you pass in ndim*itemsize for itemsize, then add another dimension to
the end with size ndim and stride itemsize. To do the Hessian matrix,
you do the same thing but add two dimensions, or take advantage of
the symmetry and pack it into 1 dimension with a particular encoding.

This function may only be called if the iterator is tracking a multi-index
and if NPY_ITER_DONT_NEGATE_STRIDES was used to prevent an axis
from being iterated in reverse order.

If an array is created with this method, simply adding ‘itemsize’
for each iteration will traverse the new array matching the
iterator.

Returns NPY_SUCCEED or NPY_FAIL.

	
npy_bool NpyIter_IsFirstVisit(NpyIter*iter, intiop)

	
New in version 1.7.

Checks to see whether this is the first time the elements of the
specified reduction operand which the iterator points at are being
seen for the first time. The function returns a reasonable answer
for reduction operands and when buffering is disabled. The answer
may be incorrect for buffered non-reduction operands.

This function is intended to be used in EXTERNAL_LOOP mode only,
and will produce some wrong answers when that mode is not enabled.

If this function returns true, the caller should also check the inner
loop stride of the operand, because if that stride is 0, then only
the first element of the innermost external loop is being visited
for the first time.

WARNING: For performance reasons, ‘iop’ is not bounds-checked,
it is not confirmed that ‘iop’ is actually a reduction operand,
and it is not confirmed that EXTERNAL_LOOP mode is enabled. These
checks are the responsibility of the caller, and should be done
outside of any inner loops.

Functions For Iteration

	
NpyIter_IterNextFunc* NpyIter_GetIterNext(NpyIter*iter, char**errmsg)

	Returns a function pointer for iteration. A specialized version
of the function pointer may be calculated by this function
instead of being stored in the iterator structure. Thus, to
get good performance, it is required that the function pointer
be saved in a variable rather than retrieved for each loop iteration.

Returns NULL if there is an error. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

The typical looping construct is as follows.

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char** dataptr = NpyIter_GetDataPtrArray(iter);

do {
 /* use the addresses dataptr[0], ... dataptr[nop-1] */
} while(iternext(iter));

When NPY_ITER_EXTERNAL_LOOP is specified, the typical
inner loop construct is as follows.

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char** dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp* stride = NpyIter_GetInnerStrideArray(iter);
npy_intp* size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp iop, nop = NpyIter_GetNOp(iter);

do {
 size = *size_ptr;
 while (size--) {
 /* use the addresses dataptr[0], ... dataptr[nop-1] */
 for (iop = 0; iop < nop; ++iop) {
 dataptr[iop] += stride[iop];
 }
 }
} while (iternext());

Observe that we are using the dataptr array inside the iterator, not
copying the values to a local temporary. This is possible because
when iternext() is called, these pointers will be overwritten
with fresh values, not incrementally updated.

If a compile-time fixed buffer is being used (both flags
NPY_ITER_BUFFERED and NPY_ITER_EXTERNAL_LOOP), the
inner size may be used as a signal as well. The size is guaranteed
to become zero when iternext() returns false, enabling the
following loop construct. Note that if you use this construct,
you should not pass NPY_ITER_GROWINNER as a flag, because it
will cause larger sizes under some circumstances.

/* The constructor should have buffersize passed as this value */
#define FIXED_BUFFER_SIZE 1024

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char **dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp *stride = NpyIter_GetInnerStrideArray(iter);
npy_intp *size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp i, iop, nop = NpyIter_GetNOp(iter);

/* One loop with a fixed inner size */
size = *size_ptr;
while (size == FIXED_BUFFER_SIZE) {
 /*
 * This loop could be manually unrolled by a factor
 * which divides into FIXED_BUFFER_SIZE
 */
 for (i = 0; i < FIXED_BUFFER_SIZE; ++i) {
 /* use the addresses dataptr[0], ... dataptr[nop-1] */
 for (iop = 0; iop < nop; ++iop) {
 dataptr[iop] += stride[iop];
 }
 }
 iternext();
 size = *size_ptr;
}

/* Finish-up loop with variable inner size */
if (size > 0) do {
 size = *size_ptr;
 while (size--) {
 /* use the addresses dataptr[0], ... dataptr[nop-1] */
 for (iop = 0; iop < nop; ++iop) {
 dataptr[iop] += stride[iop];
 }
 }
} while (iternext());

	
NpyIter_GetMultiIndexFunc *NpyIter_GetGetMultiIndex(NpyIter*iter, char**errmsg)

	Returns a function pointer for getting the current multi-index
of the iterator. Returns NULL if the iterator is not tracking
a multi-index. It is recommended that this function
pointer be cached in a local variable before the iteration
loop.

Returns NULL if there is an error. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

	
char** NpyIter_GetDataPtrArray(NpyIter*iter)

	This gives back a pointer to the nop data pointers. If
NPY_ITER_EXTERNAL_LOOP was not specified, each data
pointer points to the current data item of the iterator. If
no inner iteration was specified, it points to the first data
item of the inner loop.

This pointer may be cached before the iteration loop, calling
iternext will not change it. This function may be safely
called without holding the Python GIL.

	
char** NpyIter_GetInitialDataPtrArray(NpyIter*iter)

	Gets the array of data pointers directly into the arrays (never
into the buffers), corresponding to iteration index 0.

These pointers are different from the pointers accepted by
NpyIter_ResetBasePointers, because the direction along
some axes may have been reversed.

This function may be safely called without holding the Python GIL.

	
npy_intp* NpyIter_GetIndexPtr(NpyIter*iter)

	This gives back a pointer to the index being tracked, or NULL
if no index is being tracked. It is only useable if one of
the flags NPY_ITER_C_INDEX or NPY_ITER_F_INDEX
were specified during construction.

When the flag NPY_ITER_EXTERNAL_LOOP is used, the code
needs to know the parameters for doing the inner loop. These
functions provide that information.

	
npy_intp* NpyIter_GetInnerStrideArray(NpyIter*iter)

	Returns a pointer to an array of the nop strides,
one for each iterated object, to be used by the inner loop.

This pointer may be cached before the iteration loop, calling
iternext will not change it. This function may be safely
called without holding the Python GIL.

	
npy_intp* NpyIter_GetInnerLoopSizePtr(NpyIter*iter)

	Returns a pointer to the number of iterations the
inner loop should execute.

This address may be cached before the iteration loop, calling
iternext will not change it. The value itself may change during
iteration, in particular if buffering is enabled. This function
may be safely called without holding the Python GIL.

	
void NpyIter_GetInnerFixedStrideArray(NpyIter*iter, npy_intp*out_strides)

	Gets an array of strides which are fixed, or will not change during
the entire iteration. For strides that may change, the value
NPY_MAX_INTP is placed in the stride.

Once the iterator is prepared for iteration (after a reset if
NPY_DELAY_BUFALLOC was used), call this to get the strides
which may be used to select a fast inner loop function. For example,
if the stride is 0, that means the inner loop can always load its
value into a variable once, then use the variable throughout the loop,
or if the stride equals the itemsize, a contiguous version for that
operand may be used.

This function may be safely called without holding the Python GIL.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

UFunc API

Constants

	
UFUNC_ERR_{HANDLER}

	{HANDLER} can be IGNORE, WARN, RAISE, or CALL

	
UFUNC_{THING}_{ERR}

	{THING} can be MASK, SHIFT, or FPE, and {ERR} can
be DIVIDEBYZERO, OVERFLOW, UNDERFLOW, and INVALID.

	
PyUFunc_{VALUE}

	{VALUE} can be One (1), Zero (0), or None (-1)

Macros

	
NPY_LOOP_BEGIN_THREADS

	Used in universal function code to only release the Python GIL if
loop->obj is not true (i.e. this is not an OBJECT array
loop). Requires use of NPY_BEGIN_THREADS_DEF in variable
declaration area.

	
NPY_LOOP_END_THREADS

	Used in universal function code to re-acquire the Python GIL if it
was released (because loop->obj was not true).

	
UFUNC_CHECK_ERROR(loop)

	A macro used internally to check for errors and goto fail if
found. This macro requires a fail label in the current code
block. The loop variable must have at least members (obj,
errormask, and errorobj). If loop ->obj is nonzero, then
PyErr_Occurred [http://docs.python.org/dev/c-api/exceptions.html#c.PyErr_Occurred] () is called (meaning the GIL must be held). If
loop ->obj is zero, then if loop ->errormask is nonzero,
PyUFunc_checkfperr is called with arguments loop ->errormask
and loop ->errobj. If the result of this check of the IEEE
floating point registers is true then the code redirects to the
fail label which must be defined.

	
UFUNC_CHECK_STATUS(ret)

	Deprecated: use npy_clear_floatstatus from npy_math.h instead.

A macro that expands to platform-dependent code. The ret
variable can can be any integer. The UFUNC_FPE_{ERR} bits are
set in ret according to the status of the corresponding error
flags of the floating point processor.

Functions

	
PyObject* PyUFunc_FromFuncAndData(PyUFuncGenericFunction* func,

	
void** data, char* types, int ntypes, int nin, int nout, int identity,

	
char* name, char* doc, int check_return)

	Create a new broadcasting universal function from required variables.
Each ufunc builds around the notion of an element-by-element
operation. Each ufunc object contains pointers to 1-d loops
implementing the basic functionality for each supported type.

Note

The func, data, types, name, and doc arguments are not
copied by PyUFunc_FromFuncAndData. The caller must ensure
that the memory used by these arrays is not freed as long as the
ufunc object is alive.

	Parameters:	
	func – Must to an array of length ntypes containing
PyUFuncGenericFunction items. These items are pointers to
functions that actually implement the underlying
(element-by-element) function [image: N] times.

	data – Should be NULL or a pointer to an array of size ntypes
. This array may contain arbitrary extra-data to be passed to
the corresponding 1-d loop function in the func array.

	types – Must be of length (nin + nout) * ntypes, and it
contains the data-types (built-in only) that the corresponding
function in the func array can deal with.

	ntypes – How many different data-type “signatures” the ufunc has implemented.

	nin – The number of inputs to this operation.

	nout – The number of outputs

	name – The name for the ufunc. Specifying a name of ‘add’ or
‘multiply’ enables a special behavior for integer-typed
reductions when no dtype is given. If the input type is an
integer (or boolean) data type smaller than the size of the int_
data type, it will be internally upcast to the int_ (or uint)
data type.

	doc – Allows passing in a documentation string to be stored with the
ufunc. The documentation string should not contain the name
of the function or the calling signature as that will be
dynamically determined from the object and available when
accessing the __doc__ attribute of the ufunc.

	check_return – Unused and present for backwards compatibility of the C-API. A
corresponding check_return integer does exist in the ufunc
structure and it does get set with this value when the ufunc
object is created.

	
PyObject* PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction* func,

	
void** data, char* types, int ntypes, int nin, int nout, int identity,

	
char* name, char* doc, int check_return, char *signature)

	This function is very similar to PyUFunc_FromFuncAndData above, but has
an extra signature argument, to define generalized universal functions.
Similarly to how ufuncs are built around an element-by-element operation,
gufuncs are around subarray-by-subarray operations, the signature defining
the subarrays to operate on.

	Parameters:	
	signature – The signature for the new gufunc. Setting it to NULL is equivalent
to calling PyUFunc_FromFuncAndData. A copy of the string is made,
so the passed in buffer can be freed.

	
int PyUFunc_RegisterLoopForType(PyUFuncObject* ufunc,

	
int usertype, PyUFuncGenericFunction function, int* arg_types, void* data)

	This function allows the user to register a 1-d loop with an
already- created ufunc to be used whenever the ufunc is called
with any of its input arguments as the user-defined
data-type. This is needed in order to make ufuncs work with
built-in data-types. The data-type must have been previously
registered with the numpy system. The loop is passed in as
function. This loop can take arbitrary data which should be
passed in as data. The data-types the loop requires are passed
in as arg_types which must be a pointer to memory at least as
large as ufunc->nargs.

	
int PyUFunc_RegisterLoopForDescr(PyUFuncObject* ufunc,

	
PyArray_Descr* userdtype, PyUFuncGenericFunction function,

	
PyArray_Descr** arg_dtypes, void* data)

	This function behaves like PyUFunc_RegisterLoopForType above, except
that it allows the user to register a 1-d loop using PyArray_Descr
objects instead of dtype type num values. This allows a 1-d loop to be
registered for structured array data-dtypes and custom data-types
instead of scalar data-types.

	
int PyUFunc_ReplaceLoopBySignature(PyUFuncObject* ufunc,

	
PyUFuncGenericFunction newfunc, int* signature,

	
PyUFuncGenericFunction* oldfunc)

	Replace a 1-d loop matching the given signature in the
already-created ufunc with the new 1-d loop newfunc. Return the
old 1-d loop function in oldfunc. Return 0 on success and -1 on
failure. This function works only with built-in types (use
PyUFunc_RegisterLoopForType for user-defined types). A
signature is an array of data-type numbers indicating the inputs
followed by the outputs assumed by the 1-d loop.

	
int PyUFunc_GenericFunction(PyUFuncObject* self,

	
PyObject* args, PyObject* kwds, PyArrayObject** mps)

	A generic ufunc call. The ufunc is passed in as self, the arguments
to the ufunc as args and kwds. The mps argument is an array of
PyArrayObject pointers whose values are discarded and which
receive the converted input arguments as well as the ufunc outputs
when success is returned. The user is responsible for managing this
array and receives a new reference for each array in mps. The total
number of arrays in mps is given by self ->nin + self ->nout.

Returns 0 on success, -1 on error.

	
int PyUFunc_checkfperr(interrmask, PyObject [http://docs.python.org/dev/c-api/structures.html#c.PyObject]*errobj)

	A simple interface to the IEEE error-flag checking support. The
errmask argument is a mask of UFUNC_MASK_{ERR} bitmasks
indicating which errors to check for (and how to check for
them). The errobj must be a Python tuple with two elements: a
string containing the name which will be used in any communication
of error and either a callable Python object (call-back function)
or Py_None [http://docs.python.org/dev/c-api/none.html#c.Py_None]. The callable object will only be used if
UFUNC_ERR_CALL is set as the desired error checking
method. This routine manages the GIL and is safe to call even
after releasing the GIL. If an error in the IEEE-compatibile
hardware is determined a -1 is returned, otherwise a 0 is
returned.

	
void PyUFunc_clearfperr()

	Clear the IEEE error flags.

	
void PyUFunc_GetPyValues(char* name, int* bufsize,

	
int* errmask, PyObject** errobj)

	Get the Python values used for ufunc processing from the
thread-local storage area unless the defaults have been set in
which case the name lookup is bypassed. The name is placed as a
string in the first element of *errobj. The second element is
the looked-up function to call on error callback. The value of the
looked-up buffer-size to use is passed into bufsize, and the
value of the error mask is placed into errmask.

Generic functions

At the core of every ufunc is a collection of type-specific functions
that defines the basic functionality for each of the supported types.
These functions must evaluate the underlying function [image: N\geq1]
times. Extra-data may be passed in that may be used during the
calculation. This feature allows some general functions to be used as
these basic looping functions. The general function has all the code
needed to point variables to the right place and set up a function
call. The general function assumes that the actual function to call is
passed in as the extra data and calls it with the correct values. All
of these functions are suitable for placing directly in the array of
functions stored in the functions member of the PyUFuncObject
structure.

	
void PyUFunc_f_f_As_d_d(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_d_d(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_f_f(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_g_g(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_F_F_As_D_D(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_F_F(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_D_D(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_G_G(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_e_e(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_e_e_As_f_f(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_e_e_As_d_d(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	Type specific, core 1-d functions for ufuncs where each
calculation is obtained by calling a function taking one input
argument and returning one output. This function is passed in
func. The letters correspond to dtypechar’s of the supported
data types (e - half, f - float, d - double,
g - long double, F - cfloat, D - cdouble,
G - clongdouble). The argument func must support the same
signature. The _As_X_X variants assume ndarray’s of one data type
but cast the values to use an underlying function that takes a
different data type. Thus, PyUFunc_f_f_As_d_d uses
ndarrays of data type NPY_FLOAT but calls out to a
C-function that takes double and returns double.

	
void PyUFunc_ff_f_As_dd_d(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_ff_f(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_dd_d(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_gg_g(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_FF_F_As_DD_D(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_DD_D(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_FF_F(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_GG_G(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_ee_e(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_ee_e_As_ff_f(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_ee_e_As_dd_d(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	Type specific, core 1-d functions for ufuncs where each
calculation is obtained by calling a function taking two input
arguments and returning one output. The underlying function to
call is passed in as func. The letters correspond to
dtypechar’s of the specific data type supported by the
general-purpose function. The argument func must support the
corresponding signature. The _As_XX_X variants assume ndarrays
of one data type but cast the values at each iteration of the loop
to use the underlying function that takes a different data type.

	
void PyUFunc_O_O(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	

	
void PyUFunc_OO_O(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	One-input, one-output, and two-input, one-output core 1-d functions
for the NPY_OBJECT data type. These functions handle reference
count issues and return early on error. The actual function to call is
func and it must accept calls with the signature (PyObject*)
(PyObject*) for PyUFunc_O_O or (PyObject*)(PyObject *,
PyObject *) for PyUFunc_OO_O.

	
void PyUFunc_O_O_method(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	This general purpose 1-d core function assumes that func is a string
representing a method of the input object. For each
iteration of the loop, the Python obejct is extracted from the array
and its func method is called returning the result to the output array.

	
void PyUFunc_OO_O_method(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	This general purpose 1-d core function assumes that func is a
string representing a method of the input object that takes one
argument. The first argument in args is the method whose function is
called, the second argument in args is the argument passed to the
function. The output of the function is stored in the third entry
of args.

	
void PyUFunc_On_Om(char** args, npy_intp* dimensions,

	
npy_intp* steps, void* func)

	This is the 1-d core function used by the dynamic ufuncs created
by umath.frompyfunc(function, nin, nout). In this case func is a
pointer to a PyUFunc_PyFuncData structure which has definition

	
PyUFunc_PyFuncData

	typedef struct {
 int nin;
 int nout;
 PyObject *callable;
} PyUFunc_PyFuncData;

At each iteration of the loop, the nin input objects are exctracted
from their object arrays and placed into an argument tuple, the Python
callable is called with the input arguments, and the nout
outputs are placed into their object arrays.

Importing the API

	
PY_UFUNC_UNIQUE_SYMBOL

	

	
NO_IMPORT_UFUNC

	

	
void import_ufunc(void)

	These are the constants and functions for accessing the ufunc
C-API from extension modules in precisely the same way as the
array C-API can be accessed. The import_ufunc () function must
always be called (in the initialization subroutine of the
extension module). If your extension module is in one file then
that is all that is required. The other two constants are useful
if your extension module makes use of multiple files. In that
case, define PY_UFUNC_UNIQUE_SYMBOL to something unique to
your code and then in source files that do not contain the module
initialization function but still need access to the UFUNC API,
define PY_UFUNC_UNIQUE_SYMBOL to the same name used previously
and also define NO_IMPORT_UFUNC.

The C-API is actually an array of function pointers. This array is
created (and pointed to by a global variable) by import_ufunc. The
global variable is either statically defined or allowed to be seen
by other files depending on the state of
Py_UFUNC_UNIQUE_SYMBOL and NO_IMPORT_UFUNC.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

Generalized Universal Function API

There is a general need for looping over not only functions on scalars
but also over functions on vectors (or arrays).
This concept is realized in Numpy by generalizing the universal functions
(ufuncs). In regular ufuncs, the elementary function is limited to
element-by-element operations, whereas the generalized version (gufuncs)
supports “sub-array” by “sub-array” operations. The Perl vector library PDL
provides a similar functionality and its terms are re-used in the following.

Each generalized ufunc has information associated with it that states
what the “core” dimensionality of the inputs is, as well as the
corresponding dimensionality of the outputs (the element-wise ufuncs
have zero core dimensions). The list of the core dimensions for all
arguments is called the “signature” of a ufunc. For example, the
ufunc numpy.add has signature (),()->() defining two scalar inputs
and one scalar output.

Another example is the function inner1d(a, b) with a signature of
(i),(i)->(). This applies the inner product along the last axis of
each input, but keeps the remaining indices intact.
For example, where a is of shape (3, 5, N) and b is of shape
(5, N), this will return an output of shape (3,5).
The underlying elementary function is called 3 * 5 times. In the
signature, we specify one core dimension (i) for each input and zero core
dimensions () for the output, since it takes two 1-d arrays and
returns a scalar. By using the same name i, we specify that the two
corresponding dimensions should be of the same size.

The dimensions beyond the core dimensions are called “loop” dimensions. In
the above example, this corresponds to (3, 5).

The signature determines how the dimensions of each input/output array are
split into core and loop dimensions:

	Each dimension in the signature is matched to a dimension of the
corresponding passed-in array, starting from the end of the shape tuple.
These are the core dimensions, and they must be present in the arrays, or
an error will be raised.

	Core dimensions assigned to the same label in the signature (e.g. the
i in inner1d‘s (i),(i)->()) must have exactly matching sizes,
no broadcasting is performed.

	The core dimensions are removed from all inputs and the remaining
dimensions are broadcast together, defining the loop dimensions.

	The shape of each output is determined from the loop dimensions plus the
output’s core dimensions

Typically, the size of all core dimensions in an output will be determined by
the size of a core dimension with the same label in an input array. This is
not a requirement, and it is possible to define a signature where a label
comes up for the first time in an output, although some precautions must be
taken when calling such a function. An example would be the function
euclidean_pdist(a), with signature (n,d)->(p), that given an array of
n d-dimensional vectors, computes all unique pairwise Euclidean
distances among them. The output dimension p must therefore be equal to
n * (n - 1) / 2, but it is the caller’s responsibility to pass in an
output array of the right size. If the size of a core dimension of an output
cannot be determined from a passed in input or output array, an error will be
raised.

Note: Prior to Numpy 1.10.0, less strict checks were in place: missing core
dimensions were created by prepending 1’s to the shape as necessary, core
dimensions with the same label were broadcast together, and undetermined
dimensions were created with size 1.

Definitions

	Elementary Function

	Each ufunc consists of an elementary function that performs the
most basic operation on the smallest portion of array arguments
(e.g. adding two numbers is the most basic operation in adding two
arrays). The ufunc applies the elementary function multiple times
on different parts of the arrays. The input/output of elementary
functions can be vectors; e.g., the elementary function of inner1d
takes two vectors as input.

	Signature

	A signature is a string describing the input/output dimensions of
the elementary function of a ufunc. See section below for more
details.

	Core Dimension

	The dimensionality of each input/output of an elementary function
is defined by its core dimensions (zero core dimensions correspond
to a scalar input/output). The core dimensions are mapped to the
last dimensions of the input/output arrays.

	Dimension Name

	A dimension name represents a core dimension in the signature.
Different dimensions may share a name, indicating that they are of
the same size.

	Dimension Index

	A dimension index is an integer representing a dimension name. It
enumerates the dimension names according to the order of the first
occurrence of each name in the signature.

Details of Signature

The signature defines “core” dimensionality of input and output
variables, and thereby also defines the contraction of the
dimensions. The signature is represented by a string of the
following format:

	Core dimensions of each input or output array are represented by a
list of dimension names in parentheses, (i_1,...,i_N); a scalar
input/output is denoted by (). Instead of i_1, i_2,
etc, one can use any valid Python variable name.

	Dimension lists for different arguments are separated by ",".
Input/output arguments are separated by "->".

	If one uses the same dimension name in multiple locations, this
enforces the same size of the corresponding dimensions.

The formal syntax of signatures is as follows:

<Signature> ::= <Input arguments> "->" <Output arguments>
<Input arguments> ::= <Argument list>
<Output arguments> ::= <Argument list>
<Argument list> ::= nil | <Argument> | <Argument> "," <Argument list>
<Argument> ::= "(" <Core dimension list> ")"
<Core dimension list> ::= nil | <Dimension name> |
 <Dimension name> "," <Core dimension list>
<Dimension name> ::= valid Python variable name

Notes:

	All quotes are for clarity.

	Core dimensions that share the same name must have the exact same size.
Each dimension name typically corresponds to one level of looping in the
elementary function’s implementation.

	White spaces are ignored.

Here are some examples of signatures:

	add
	(),()->()
	

	inner1d
	(i),(i)->()
	

	sum1d
	(i)->()
	

	dot2d
	(m,n),(n,p)->(m,p)
	matrix multiplication

	outer_inner
	(i,t),(j,t)->(i,j)
	inner over the last dimension,
outer over the second to last,
and loop/broadcast over the rest.

C-API for implementing Elementary Functions

The current interface remains unchanged, and PyUFunc_FromFuncAndData
can still be used to implement (specialized) ufuncs, consisting of
scalar elementary functions.

One can use PyUFunc_FromFuncAndDataAndSignature to declare a more
general ufunc. The argument list is the same as
PyUFunc_FromFuncAndData, with an additional argument specifying the
signature as C string.

Furthermore, the callback function is of the same type as before,
void (*foo)(char **args, intp *dimensions, intp *steps, void *func).
When invoked, args is a list of length nargs containing
the data of all input/output arguments. For a scalar elementary
function, steps is also of length nargs, denoting the strides used
for the arguments. dimensions is a pointer to a single integer
defining the size of the axis to be looped over.

For a non-trivial signature, dimensions will also contain the sizes
of the core dimensions as well, starting at the second entry. Only
one size is provided for each unique dimension name and the sizes are
given according to the first occurrence of a dimension name in the
signature.

The first nargs elements of steps remain the same as for scalar
ufuncs. The following elements contain the strides of all core
dimensions for all arguments in order.

For example, consider a ufunc with signature (i,j),(i)->(). In
this case, args will contain three pointers to the data of the
input/output arrays a, b, c. Furthermore, dimensions will be
[N, I, J] to define the size of N of the loop and the sizes I and J
for the core dimensions i and j. Finally, steps will be
[a_N, b_N, c_N, a_i, a_j, b_i], containing all necessary strides.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

Numpy core libraries

New in version 1.3.0.

Starting from numpy 1.3.0, we are working on separating the pure C,
“computational” code from the python dependent code. The goal is twofolds:
making the code cleaner, and enabling code reuse by other extensions outside
numpy (scipy, etc...).

Numpy core math library

The numpy core math library (‘npymath’) is a first step in this direction. This
library contains most math-related C99 functionality, which can be used on
platforms where C99 is not well supported. The core math functions have the
same API as the C99 ones, except for the npy_* prefix.

The available functions are defined in <numpy/npy_math.h> - please refer to this header when
in doubt.

Floating point classification

	
NPY_NAN

	This macro is defined to a NaN (Not a Number), and is guaranteed to have
the signbit unset (‘positive’ NaN). The corresponding single and extension
precision macro are available with the suffix F and L.

	
NPY_INFINITY

	This macro is defined to a positive inf. The corresponding single and
extension precision macro are available with the suffix F and L.

	
NPY_PZERO

	This macro is defined to positive zero. The corresponding single and
extension precision macro are available with the suffix F and L.

	
NPY_NZERO

	This macro is defined to negative zero (that is with the sign bit set). The
corresponding single and extension precision macro are available with the
suffix F and L.

	
int npy_isnan(x)

	This is a macro, and is equivalent to C99 isnan: works for single, double
and extended precision, and return a non 0 value is x is a NaN.

	
int npy_isfinite(x)

	This is a macro, and is equivalent to C99 isfinite: works for single,
double and extended precision, and return a non 0 value is x is neither a
NaN nor an infinity.

	
int npy_isinf(x)

	This is a macro, and is equivalent to C99 isinf: works for single, double
and extended precision, and return a non 0 value is x is infinite (positive
and negative).

	
int npy_signbit(x)

	This is a macro, and is equivalent to C99 signbit: works for single, double
and extended precision, and return a non 0 value is x has the signbit set
(that is the number is negative).

	
double npy_copysign(doublex, doubley)

	This is a function equivalent to C99 copysign: return x with the same sign
as y. Works for any value, including inf and nan. Single and extended
precisions are available with suffix f and l.

New in version 1.4.0.

Useful math constants

The following math constants are available in npy_math.h. Single and extended
precision are also available by adding the F and L suffixes respectively.

	
NPY_E

	Base of natural logarithm ([image: e])

	
NPY_LOG2E

	Logarithm to base 2 of the Euler constant ([image: \frac{\ln(e)}{\ln(2)}])

	
NPY_LOG10E

	Logarithm to base 10 of the Euler constant ([image: \frac{\ln(e)}{\ln(10)}])

	
NPY_LOGE2

	Natural logarithm of 2 ([image: \ln(2)])

	
NPY_LOGE10

	Natural logarithm of 10 ([image: \ln(10)])

	
NPY_PI

	Pi ([image: \pi])

	
NPY_PI_2

	Pi divided by 2 ([image: \frac{\pi}{2}])

	
NPY_PI_4

	Pi divided by 4 ([image: \frac{\pi}{4}])

	
NPY_1_PI

	Reciprocal of pi ([image: \frac{1}{\pi}])

	
NPY_2_PI

	Two times the reciprocal of pi ([image: \frac{2}{\pi}])

	
NPY_EULER

	
	The Euler constant

	[image: \lim_{n\rightarrow\infty}({\sum_{k=1}^n{\frac{1}{k}}-\ln n})]

Low-level floating point manipulation

Those can be useful for precise floating point comparison.

	
double npy_nextafter(doublex, doubley)

	This is a function equivalent to C99 nextafter: return next representable
floating point value from x in the direction of y. Single and extended
precisions are available with suffix f and l.

New in version 1.4.0.

	
double npy_spacing(doublex)

	This is a function equivalent to Fortran intrinsic. Return distance between
x and next representable floating point value from x, e.g. spacing(1) ==
eps. spacing of nan and +/- inf return nan. Single and extended precisions
are available with suffix f and l.

New in version 1.4.0.

	
void npy_set_floatstatus_divbyzero()

	Set the divide by zero floating point exception

New in version 1.6.0.

	
void npy_set_floatstatus_overflow()

	Set the overflow floating point exception

New in version 1.6.0.

	
void npy_set_floatstatus_underflow()

	Set the underflow floating point exception

New in version 1.6.0.

	
void npy_set_floatstatus_invalid()

	Set the invalid floating point exception

New in version 1.6.0.

	
int npy_get_floatstatus()

	Get floating point status. Returns a bitmask with following possible flags:

	NPY_FPE_DIVIDEBYZERO

	NPY_FPE_OVERFLOW

	NPY_FPE_UNDERFLOW

	NPY_FPE_INVALID

New in version 1.9.0.

	
int npy_clear_floatstatus()

	Clears the floating point status. Returns the previous status mask.

New in version 1.9.0.

Complex functions

New in version 1.4.0.

C99-like complex functions have been added. Those can be used if you wish to
implement portable C extensions. Since we still support platforms without C99
complex type, you need to restrict to C90-compatible syntax, e.g.:

/* a = 1 + 2i */
npy_complex a = npy_cpack(1, 2);
npy_complex b;

b = npy_log(a);

Linking against the core math library in an extension

New in version 1.4.0.

To use the core math library in your own extension, you need to add the npymath
compile and link options to your extension in your setup.py:

>>> from numpy.distutils.misc_util import get_info
>>> info = get_info('npymath')
>>> config.add_extension('foo', sources=['foo.c'], extra_info=info)

In other words, the usage of info is exactly the same as when using blas_info
and co.

Half-precision functions

New in version 2.0.0.

The header file <numpy/halffloat.h> provides functions to work with
IEEE 754-2008 16-bit floating point values. While this format is
not typically used for numerical computations, it is useful for
storing values which require floating point but do not need much precision.
It can also be used as an educational tool to understand the nature
of floating point round-off error.

Like for other types, NumPy includes a typedef npy_half for the 16 bit
float. Unlike for most of the other types, you cannot use this as a
normal type in C, since is is a typedef for npy_uint16. For example,
1.0 looks like 0x3c00 to C, and if you do an equality comparison
between the different signed zeros, you will get -0.0 != 0.0
(0x8000 != 0x0000), which is incorrect.

For these reasons, NumPy provides an API to work with npy_half values
accessible by including <numpy/halffloat.h> and linking to ‘npymath’.
For functions that are not provided directly, such as the arithmetic
operations, the preferred method is to convert to float
or double and back again, as in the following example.

npy_half sum(int n, npy_half *array) {
 float ret = 0;
 while(n--) {
 ret += npy_half_to_float(*array++);
 }
 return npy_float_to_half(ret);
}

External Links:

	754-2008 IEEE Standard for Floating-Point Arithmetic [http://ieeexplore.ieee.org/servlet/opac?punumber=4610933]

	Half-precision Float Wikipedia Article [http://en.wikipedia.org/wiki/Half_precision_floating-point_format].

	OpenGL Half Float Pixel Support [http://www.opengl.org/registry/specs/ARB/half_float_pixel.txt]

	The OpenEXR image format [http://www.openexr.com/about.html].

	
NPY_HALF_ZERO

	This macro is defined to positive zero.

	
NPY_HALF_PZERO

	This macro is defined to positive zero.

	
NPY_HALF_NZERO

	This macro is defined to negative zero.

	
NPY_HALF_ONE

	This macro is defined to 1.0.

	
NPY_HALF_NEGONE

	This macro is defined to -1.0.

	
NPY_HALF_PINF

	This macro is defined to +inf.

	
NPY_HALF_NINF

	This macro is defined to -inf.

	
NPY_HALF_NAN

	This macro is defined to a NaN value, guaranteed to have its sign bit unset.

	
float npy_half_to_float(npy_halfh)

	Converts a half-precision float to a single-precision float.

	
double npy_half_to_double(npy_halfh)

	Converts a half-precision float to a double-precision float.

	
npy_half npy_float_to_half(floatf)

	Converts a single-precision float to a half-precision float. The
value is rounded to the nearest representable half, with ties going
to the nearest even. If the value is too small or too big, the
system’s floating point underflow or overflow bit will be set.

	
npy_half npy_double_to_half(doubled)

	Converts a double-precision float to a half-precision float. The
value is rounded to the nearest representable half, with ties going
to the nearest even. If the value is too small or too big, the
system’s floating point underflow or overflow bit will be set.

	
int npy_half_eq(npy_halfh1, npy_halfh2)

	Compares two half-precision floats (h1 == h2).

	
int npy_half_ne(npy_halfh1, npy_halfh2)

	Compares two half-precision floats (h1 != h2).

	
int npy_half_le(npy_halfh1, npy_halfh2)

	Compares two half-precision floats (h1 <= h2).

	
int npy_half_lt(npy_halfh1, npy_halfh2)

	Compares two half-precision floats (h1 < h2).

	
int npy_half_ge(npy_halfh1, npy_halfh2)

	Compares two half-precision floats (h1 >= h2).

	
int npy_half_gt(npy_halfh1, npy_halfh2)

	Compares two half-precision floats (h1 > h2).

	
int npy_half_eq_nonan(npy_halfh1, npy_halfh2)

	Compares two half-precision floats that are known to not be NaN (h1 == h2). If
a value is NaN, the result is undefined.

	
int npy_half_lt_nonan(npy_halfh1, npy_halfh2)

	Compares two half-precision floats that are known to not be NaN (h1 < h2). If
a value is NaN, the result is undefined.

	
int npy_half_le_nonan(npy_halfh1, npy_halfh2)

	Compares two half-precision floats that are known to not be NaN (h1 <= h2). If
a value is NaN, the result is undefined.

	
int npy_half_iszero(npy_halfh)

	Tests whether the half-precision float has a value equal to zero. This may be slightly
faster than calling npy_half_eq(h, NPY_ZERO).

	
int npy_half_isnan(npy_halfh)

	Tests whether the half-precision float is a NaN.

	
int npy_half_isinf(npy_halfh)

	Tests whether the half-precision float is plus or minus Inf.

	
int npy_half_isfinite(npy_halfh)

	Tests whether the half-precision float is finite (not NaN or Inf).

	
int npy_half_signbit(npy_halfh)

	Returns 1 is h is negative, 0 otherwise.

	
npy_half npy_half_copysign(npy_halfx, npy_halfy)

	Returns the value of x with the sign bit copied from y. Works for any value,
including Inf and NaN.

	
npy_half npy_half_spacing(npy_halfh)

	This is the same for half-precision float as npy_spacing and npy_spacingf
described in the low-level floating point section.

	
npy_half npy_half_nextafter(npy_halfx, npy_halfy)

	This is the same for half-precision float as npy_nextafter and npy_nextafterf
described in the low-level floating point section.

	
npy_uint16 npy_floatbits_to_halfbits(npy_uint32f)

	Low-level function which converts a 32-bit single-precision float, stored
as a uint32, into a 16-bit half-precision float.

	
npy_uint16 npy_doublebits_to_halfbits(npy_uint64d)

	Low-level function which converts a 64-bit double-precision float, stored
as a uint64, into a 16-bit half-precision float.

	
npy_uint32 npy_halfbits_to_floatbits(npy_uint16h)

	Low-level function which converts a 16-bit half-precision float
into a 32-bit single-precision float, stored as a uint32.

	
npy_uint64 npy_halfbits_to_doublebits(npy_uint16h)

	Low-level function which converts a 16-bit half-precision float
into a 64-bit double-precision float, stored as a uint64.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy C-API

C API Deprecations

Background

The API exposed by NumPy for third-party extensions has grown over
years of releases, and has allowed programmers to directly access
NumPy functionality from C. This API can be best described as
“organic”. It has emerged from multiple competing desires and from
multiple points of view over the years, strongly influenced by the
desire to make it easy for users to move to NumPy from Numeric and
Numarray. The core API originated with Numeric in 1995 and there are
patterns such as the heavy use of macros written to mimic Python’s
C-API as well as account for compiler technology of the late 90’s.
There is also only a small group of volunteers who have had very little
time to spend on improving this API.

There is an ongoing effort to improve the API.
It is important in this effort
to ensure that code that compiles for NumPy 1.X continues to
compile for NumPy 1.X. At the same time, certain API’s will be marked
as deprecated so that future-looking code can avoid these API’s and
follow better practices.

Another important role played by deprecation markings in the C API is to move
towards hiding internal details of the NumPy implementation. For those
needing direct, easy, access to the data of ndarrays, this will not
remove this ability. Rather, there are many potential performance
optimizations which require changing the implementation details, and
NumPy developers have been unable to try them because of the high
value of preserving ABI compatibility. By deprecating this direct
access, we will in the future be able to improve NumPy’s performance
in ways we cannot presently.

Deprecation Mechanism NPY_NO_DEPRECATED_API

In C, there is no equivalent to the deprecation warnings that Python
supports. One way to do deprecations is to flag them in the
documentation and release notes, then remove or change the deprecated
features in a future major version (NumPy 2.0 and beyond). Minor
versions of NumPy should not have major C-API changes, however, that
prevent code that worked on a previous minor release. For example, we
will do our best to ensure that code that compiled and worked on NumPy
1.4 should continue to work on NumPy 1.7 (but perhaps with compiler
warnings).

To use the NPY_NO_DEPRECATED_API mechanism, you need to #define it to
the target API version of NumPy before #including any NumPy headers.
If you want to confirm that your code is clean against 1.7, use:

#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION

On compilers which support a #warning mechanism, NumPy issues a
compiler warning if you do not define the symbol NPY_NO_DEPRECATED_API.
This way, the fact that there are deprecations will be flagged for
third-party developers who may not have read the release notes closely.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

Numpy internals

	Numpy C Code Explanations
	Memory model

	Data-type encapsulation

	N-D Iterators

	Broadcasting

	Array Scalars

	Advanced (“Fancy”) Indexing
	Fancy-indexing check

	Fancy-indexing implementation
	Creating the mapping object

	Binding the mapping object

	Getting (or Setting)

	Universal Functions
	Setup

	Function call
	One Loop

	Strided Loop

	Buffered Loop

	Final output manipulation

	Methods
	Setup

	Reduce

	Accumulate

	Reduceat

Internal organization of numpy arrays

It helps to understand a bit about how numpy arrays are handled under the covers to help understand numpy better. This section will not go into great detail. Those wishing to understand the full details are referred to Travis Oliphant’s book “Guide to Numpy”.

Numpy arrays consist of two major components, the raw array data (from now on,
referred to as the data buffer), and the information about the raw array data.
The data buffer is typically what people think of as arrays in C or Fortran,
a contiguous (and fixed) block of memory containing fixed sized data items.
Numpy also contains a significant set of data that describes how to interpret
the data in the data buffer. This extra information contains (among other things):

	The basic data element’s size in bytes

	The start of the data within the data buffer (an offset relative to the
beginning of the data buffer).

	The number of dimensions and the size of each dimension

	The separation between elements for each dimension (the ‘stride’). This
does not have to be a multiple of the element size

	The byte order of the data (which may not be the native byte order)

	Whether the buffer is read-only

	Information (via the dtype object) about the interpretation of the basic
data element. The basic data element may be as simple as a int or a float,
or it may be a compound object (e.g., struct-like), a fixed character field,
or Python object pointers.

	Whether the array is to interpreted as C-order or Fortran-order.

This arrangement allow for very flexible use of arrays. One thing that it allows
is simple changes of the metadata to change the interpretation of the array buffer.
Changing the byteorder of the array is a simple change involving no rearrangement
of the data. The shape of the array can be changed very easily without changing
anything in the data buffer or any data copying at all

Among other things that are made possible is one can create a new array metadata
object that uses the same data buffer
to create a new view of that data buffer that has a different interpretation
of the buffer (e.g., different shape, offset, byte order, strides, etc) but
shares the same data bytes. Many operations in numpy do just this such as
slices. Other operations, such as transpose, don’t move data elements
around in the array, but rather change the information about the shape and strides so that the indexing of the array changes, but the data in the doesn’t move.

Typically these new versions of the array metadata but the same data buffer are
new ‘views’ into the data buffer. There is a different ndarray object, but it
uses the same data buffer. This is why it is necessary to force copies through
use of the .copy() method if one really wants to make a new and independent
copy of the data buffer.

New views into arrays mean the the object reference counts for the data buffer
increase. Simply doing away with the original array object will not remove the
data buffer if other views of it still exist.

Multidimensional Array Indexing Order Issues

What is the right way to index
multi-dimensional arrays? Before you jump to conclusions about the one and
true way to index multi-dimensional arrays, it pays to understand why this is
a confusing issue. This section will try to explain in detail how numpy
indexing works and why we adopt the convention we do for images, and when it
may be appropriate to adopt other conventions.

The first thing to understand is
that there are two conflicting conventions for indexing 2-dimensional arrays.
Matrix notation uses the first index to indicate which row is being selected and
the second index to indicate which column is selected. This is opposite the
geometrically oriented-convention for images where people generally think the
first index represents x position (i.e., column) and the second represents y
position (i.e., row). This alone is the source of much confusion;
matrix-oriented users and image-oriented users expect two different things with
regard to indexing.

The second issue to understand is how indices correspond
to the order the array is stored in memory. In Fortran the first index is the
most rapidly varying index when moving through the elements of a two
dimensional array as it is stored in memory. If you adopt the matrix
convention for indexing, then this means the matrix is stored one column at a
time (since the first index moves to the next row as it changes). Thus Fortran
is considered a Column-major language. C has just the opposite convention. In
C, the last index changes most rapidly as one moves through the array as
stored in memory. Thus C is a Row-major language. The matrix is stored by
rows. Note that in both cases it presumes that the matrix convention for
indexing is being used, i.e., for both Fortran and C, the first index is the
row. Note this convention implies that the indexing convention is invariant
and that the data order changes to keep that so.

But that’s not the only way
to look at it. Suppose one has large two-dimensional arrays (images or
matrices) stored in data files. Suppose the data are stored by rows rather than
by columns. If we are to preserve our index convention (whether matrix or
image) that means that depending on the language we use, we may be forced to
reorder the data if it is read into memory to preserve our indexing
convention. For example if we read row-ordered data into memory without
reordering, it will match the matrix indexing convention for C, but not for
Fortran. Conversely, it will match the image indexing convention for Fortran,
but not for C. For C, if one is using data stored in row order, and one wants
to preserve the image index convention, the data must be reordered when
reading into memory.

In the end, which you do for Fortran or C depends on
which is more important, not reordering data or preserving the indexing
convention. For large images, reordering data is potentially expensive, and
often the indexing convention is inverted to avoid that.

The situation with
numpy makes this issue yet more complicated. The internal machinery of numpy
arrays is flexible enough to accept any ordering of indices. One can simply
reorder indices by manipulating the internal stride information for arrays
without reordering the data at all. Numpy will know how to map the new index
order to the data without moving the data.

So if this is true, why not choose
the index order that matches what you most expect? In particular, why not define
row-ordered images to use the image convention? (This is sometimes referred
to as the Fortran convention vs the C convention, thus the ‘C’ and ‘FORTRAN’
order options for array ordering in numpy.) The drawback of doing this is
potential performance penalties. It’s common to access the data sequentially,
either implicitly in array operations or explicitly by looping over rows of an
image. When that is done, then the data will be accessed in non-optimal order.
As the first index is incremented, what is actually happening is that elements
spaced far apart in memory are being sequentially accessed, with usually poor
memory access speeds. For example, for a two dimensional image ‘im’ defined so
that im[0, 10] represents the value at x=0, y=10. To be consistent with usual
Python behavior then im[0] would represent a column at x=0. Yet that data
would be spread over the whole array since the data are stored in row order.
Despite the flexibility of numpy’s indexing, it can’t really paper over the fact
basic operations are rendered inefficient because of data order or that getting
contiguous subarrays is still awkward (e.g., im[:,0] for the first row, vs
im[0]), thus one can’t use an idiom such as for row in im; for col in im does
work, but doesn’t yield contiguous column data.

As it turns out, numpy is
smart enough when dealing with ufuncs to determine which index is the most
rapidly varying one in memory and uses that for the innermost loop. Thus for
ufuncs there is no large intrinsic advantage to either approach in most cases.
On the other hand, use of .flat with an FORTRAN ordered array will lead to
non-optimal memory access as adjacent elements in the flattened array (iterator,
actually) are not contiguous in memory.

Indeed, the fact is that Python
indexing on lists and other sequences naturally leads to an outside-to inside
ordering (the first index gets the largest grouping, the next the next largest,
and the last gets the smallest element). Since image data are normally stored
by rows, this corresponds to position within rows being the last item indexed.

If you do want to use Fortran ordering realize that
there are two approaches to consider: 1) accept that the first index is just not
the most rapidly changing in memory and have all your I/O routines reorder
your data when going from memory to disk or visa versa, or use numpy’s
mechanism for mapping the first index to the most rapidly varying data. We
recommend the former if possible. The disadvantage of the latter is that many
of numpy’s functions will yield arrays without Fortran ordering unless you are
careful to use the ‘order’ keyword. Doing this would be highly inconvenient.

Otherwise we recommend simply learning to reverse the usual order of indices
when accessing elements of an array. Granted, it goes against the grain, but
it is more in line with Python semantics and the natural order of the data.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy internals

Numpy C Code Explanations

Fanaticism consists of redoubling your efforts when you have forgotten
your aim.
— George Santayana

An authority is a person who can tell you more about something than
you really care to know.
— Unknown

This Chapter attempts to explain the logic behind some of the new
pieces of code. The purpose behind these explanations is to enable
somebody to be able to understand the ideas behind the implementation
somewhat more easily than just staring at the code. Perhaps in this
way, the algorithms can be improved on, borrowed from, and/or
optimized.

Memory model

One fundamental aspect of the ndarray is that an array is seen as a
“chunk” of memory starting at some location. The interpretation of
this memory depends on the stride information. For each dimension in
an [image: N] -dimensional array, an integer (stride) dictates how many
bytes must be skipped to get to the next element in that dimension.
Unless you have a single-segment array, this stride information must
be consulted when traversing through an array. It is not difficult to
write code that accepts strides, you just have to use (char *)
pointers because strides are in units of bytes. Keep in mind also that
strides do not have to be unit-multiples of the element size. Also,
remember that if the number of dimensions of the array is 0 (sometimes
called a rank-0 array), then the strides and dimensions variables are
NULL.

Besides the structural information contained in the strides and
dimensions members of the PyArrayObject, the flags contain
important information about how the data may be accessed. In particular,
the NPY_ARRAY_ALIGNED flag is set when the memory is on a
suitable boundary according to the data-type array. Even if you have
a contiguous chunk of memory, you cannot just assume it is safe to
dereference a data- type-specific pointer to an element. Only if the
NPY_ARRAY_ALIGNED flag is set is this a safe operation (on
some platforms it will work but on others, like Solaris, it will cause
a bus error). The NPY_ARRAY_WRITEABLE should also be ensured
if you plan on writing to the memory area of the array. It is also
possible to obtain a pointer to an unwriteable memory area. Sometimes,
writing to the memory area when the NPY_ARRAY_WRITEABLE flag is not
set will just be rude. Other times it can cause program crashes (e.g.
a data-area that is a read-only memory-mapped file).

Data-type encapsulation

The data-type is an important abstraction of the ndarray. Operations
will look to the data-type to provide the key functionality that is
needed to operate on the array. This functionality is provided in the
list of function pointers pointed to by the ‘f’ member of the
PyArray_Descr structure. In this way, the number of data-types can be
extended simply by providing a PyArray_Descr structure with suitable
function pointers in the ‘f’ member. For built-in types there are some
optimizations that by-pass this mechanism, but the point of the data-
type abstraction is to allow new data-types to be added.

One of the built-in data-types, the void data-type allows for
arbitrary records containing 1 or more fields as elements of the
array. A field is simply another data-type object along with an offset
into the current record. In order to support arbitrarily nested
fields, several recursive implementations of data-type access are
implemented for the void type. A common idiom is to cycle through the
elements of the dictionary and perform a specific operation based on
the data-type object stored at the given offset. These offsets can be
arbitrary numbers. Therefore, the possibility of encountering mis-
aligned data must be recognized and taken into account if necessary.

N-D Iterators

A very common operation in much of NumPy code is the need to iterate
over all the elements of a general, strided, N-dimensional array. This
operation of a general-purpose N-dimensional loop is abstracted in the
notion of an iterator object. To write an N-dimensional loop, you only
have to create an iterator object from an ndarray, work with the
dataptr member of the iterator object structure and call the macro
PyArray_ITER_NEXT (it) on the iterator object to move to the next
element. The “next” element is always in C-contiguous order. The macro
works by first special casing the C-contiguous, 1-D, and 2-D cases
which work very simply.

For the general case, the iteration works by keeping track of a list
of coordinate counters in the iterator object. At each iteration, the
last coordinate counter is increased (starting from 0). If this
counter is smaller then one less than the size of the array in that
dimension (a pre-computed and stored value), then the counter is
increased and the dataptr member is increased by the strides in that
dimension and the macro ends. If the end of a dimension is reached,
the counter for the last dimension is reset to zero and the dataptr is
moved back to the beginning of that dimension by subtracting the
strides value times one less than the number of elements in that
dimension (this is also pre-computed and stored in the backstrides
member of the iterator object). In this case, the macro does not end,
but a local dimension counter is decremented so that the next-to-last
dimension replaces the role that the last dimension played and the
previously-described tests are executed again on the next-to-last
dimension. In this way, the dataptr is adjusted appropriately for
arbitrary striding.

The coordinates member of the PyArrayIterObject structure maintains
the current N-d counter unless the underlying array is C-contiguous in
which case the coordinate counting is by-passed. The index member of
the PyArrayIterObject keeps track of the current flat index of the
iterator. It is updated by the PyArray_ITER_NEXT macro.

Broadcasting

In Numeric, broadcasting was implemented in several lines of code
buried deep in ufuncobject.c. In NumPy, the notion of broadcasting has
been abstracted so that it can be performed in multiple places.
Broadcasting is handled by the function PyArray_Broadcast. This
function requires a PyArrayMultiIterObject (or something that is a
binary equivalent) to be passed in. The PyArrayMultiIterObject keeps
track of the broadcasted number of dimensions and size in each
dimension along with the total size of the broadcasted result. It also
keeps track of the number of arrays being broadcast and a pointer to
an iterator for each of the arrays being broadcasted.

The PyArray_Broadcast function takes the iterators that have already
been defined and uses them to determine the broadcast shape in each
dimension (to create the iterators at the same time that broadcasting
occurs then use the PyMultiIter_New function). Then, the iterators are
adjusted so that each iterator thinks it is iterating over an array
with the broadcasted size. This is done by adjusting the iterators
number of dimensions, and the shape in each dimension. This works
because the iterator strides are also adjusted. Broadcasting only
adjusts (or adds) length-1 dimensions. For these dimensions, the
strides variable is simply set to 0 so that the data-pointer for the
iterator over that array doesn’t move as the broadcasting operation
operates over the extended dimension.

Broadcasting was always implemented in Numeric using 0-valued strides
for the extended dimensions. It is done in exactly the same way in
NumPy. The big difference is that now the array of strides is kept
track of in a PyArrayIterObject, the iterators involved in a
broadcasted result are kept track of in a PyArrayMultiIterObject,
and the PyArray_BroadCast call implements the broad-casting rules.

Array Scalars

The array scalars offer a hierarchy of Python types that allow a one-
to-one correspondence between the data-type stored in an array and the
Python-type that is returned when an element is extracted from the
array. An exception to this rule was made with object arrays. Object
arrays are heterogeneous collections of arbitrary Python objects. When
you select an item from an object array, you get back the original
Python object (and not an object array scalar which does exist but is
rarely used for practical purposes).

The array scalars also offer the same methods and attributes as arrays
with the intent that the same code can be used to support arbitrary
dimensions (including 0-dimensions). The array scalars are read-only
(immutable) with the exception of the void scalar which can also be
written to so that record-array field setting works more naturally
(a[0][‘f1’] = value).

Advanced (“Fancy”) Indexing

The implementation of advanced indexing represents some of the most
difficult code to write and explain. In fact, there are two
implementations of advanced indexing. The first works only with 1-D
arrays and is implemented to handle expressions involving a.flat[obj].
The second is general-purpose that works for arrays of “arbitrary
dimension” (up to a fixed maximum). The one-dimensional indexing
approaches were implemented in a rather straightforward fashion, and
so it is the general-purpose indexing code that will be the focus of
this section.

There is a multi-layer approach to indexing because the indexing code
can at times return an array scalar and at other times return an
array. The functions with “_nice” appended to their name do this
special handling while the function without the _nice appendage always
return an array (perhaps a 0-dimensional array). Some special-case
optimizations (the index being an integer scalar, and the index being
a tuple with as many dimensions as the array) are handled in
array_subscript_nice function which is what Python calls when
presented with the code “a[obj].” These optimizations allow fast
single-integer indexing, and also ensure that a 0-dimensional array is
not created only to be discarded as the array scalar is returned
instead. This provides significant speed-up for code that is selecting
many scalars out of an array (such as in a loop). However, it is still
not faster than simply using a list to store standard Python scalars,
because that is optimized by the Python interpreter itself.

After these optimizations, the array_subscript function itself is
called. This function first checks for field selection which occurs
when a string is passed as the indexing object. Then, 0-D arrays are
given special-case consideration. Finally, the code determines whether
or not advanced, or fancy, indexing needs to be performed. If fancy
indexing is not needed, then standard view-based indexing is performed
using code borrowed from Numeric which parses the indexing object and
returns the offset into the data-buffer and the dimensions necessary
to create a new view of the array. The strides are also changed by
multiplying each stride by the step-size requested along the
corresponding dimension.

Fancy-indexing check

The fancy_indexing_check routine determines whether or not to use
standard view-based indexing or new copy-based indexing. If the
indexing object is a tuple, then view-based indexing is assumed by
default. Only if the tuple contains an array object or a sequence
object is fancy-indexing assumed. If the indexing object is an array,
then fancy indexing is automatically assumed. If the indexing object
is any other kind of sequence, then fancy-indexing is assumed by
default. This is over-ridden to simple indexing if the sequence
contains any slice, newaxis, or Ellipsis objects, and no arrays or
additional sequences are also contained in the sequence. The purpose
of this is to allow the construction of “slicing” sequences which is a
common technique for building up code that works in arbitrary numbers
of dimensions.

Fancy-indexing implementation

The concept of indexing was also abstracted using the idea of an
iterator. If fancy indexing is performed, then a PyArrayMapIterObject
is created. This internal object is not exposed to Python. It is
created in order to handle the fancy-indexing at a high-level. Both
get and set fancy-indexing operations are implemented using this
object. Fancy indexing is abstracted into three separate operations:
(1) creating the PyArrayMapIterObject from the indexing object, (2)
binding the PyArrayMapIterObject to the array being indexed, and (3)
getting (or setting) the items determined by the indexing object.
There is an optimization implemented so that the PyArrayIterObject
(which has it’s own less complicated fancy-indexing) is used for
indexing when possible.

Creating the mapping object

The first step is to convert the indexing objects into a standard form
where iterators are created for all of the index array inputs and all
Boolean arrays are converted to equivalent integer index arrays (as if
nonzero(arr) had been called). Finally, all integer arrays are
replaced with the integer 0 in the indexing object and all of the
index-array iterators are “broadcast” to the same shape.

Binding the mapping object

When the mapping object is created it does not know which array it
will be used with so once the index iterators are constructed during
mapping-object creation, the next step is to associate these iterators
with a particular ndarray. This process interprets any ellipsis and
slice objects so that the index arrays are associated with the
appropriate axis (the axis indicated by the iteraxis entry
corresponding to the iterator for the integer index array). This
information is then used to check the indices to be sure they are
within range of the shape of the array being indexed. The presence of
ellipsis and/or slice objects implies a sub-space iteration that is
accomplished by extracting a sub-space view of the array (using the
index object resulting from replacing all the integer index arrays
with 0) and storing the information about where this sub-space starts
in the mapping object. This is used later during mapping-object
iteration to select the correct elements from the underlying array.

Getting (or Setting)

After the mapping object is successfully bound to a particular array,
the mapping object contains the shape of the resulting item as well as
iterator objects that will walk through the currently-bound array and
either get or set its elements as needed. The walk is implemented
using the PyArray_MapIterNext function. This function sets the
coordinates of an iterator object into the current array to be the
next coordinate location indicated by all of the indexing-object
iterators while adjusting, if necessary, for the presence of a sub-
space. The result of this function is that the dataptr member of the
mapping object structure is pointed to the next position in the array
that needs to be copied out or set to some value.

When advanced indexing is used to extract an array, an iterator for
the new array is constructed and advanced in phase with the mapping
object iterator. When advanced indexing is used to place values in an
array, a special “broadcasted” iterator is constructed from the object
being placed into the array so that it will only work if the values
used for setting have a shape that is “broadcastable” to the shape
implied by the indexing object.

Universal Functions

Universal functions are callable objects that take [image: N] inputs
and produce [image: M] outputs by wrapping basic 1-D loops that work
element-by-element into full easy-to use functions that seamlessly
implement broadcasting, type-checking and buffered coercion, and
output-argument handling. New universal functions are normally created
in C, although there is a mechanism for creating ufuncs from Python
functions (frompyfunc). The user must supply a 1-D loop that
implements the basic function taking the input scalar values and
placing the resulting scalars into the appropriate output slots as
explaine n implementation.

Setup

Every ufunc calculation involves some overhead related to setting up
the calculation. The practical significance of this overhead is that
even though the actual calculation of the ufunc is very fast, you will
be able to write array and type-specific code that will work faster
for small arrays than the ufunc. In particular, using ufuncs to
perform many calculations on 0-D arrays will be slower than other
Python-based solutions (the silently-imported scalarmath module exists
precisely to give array scalars the look-and-feel of ufunc-based
calculations with significantly reduced overhead).

When a ufunc is called, many things must be done. The information
collected from these setup operations is stored in a loop-object. This
loop object is a C-structure (that could become a Python object but is
not initialized as such because it is only used internally). This loop
object has the layout needed to be used with PyArray_Broadcast so that
the broadcasting can be handled in the same way as it is handled in
other sections of code.

The first thing done is to look-up in the thread-specific global
dictionary the current values for the buffer-size, the error mask, and
the associated error object. The state of the error mask controls what
happens when an error-condiction is found. It should be noted that
checking of the hardware error flags is only performed after each 1-D
loop is executed. This means that if the input and output arrays are
contiguous and of the correct type so that a single 1-D loop is
performed, then the flags may not be checked until all elements of the
array have been calcluated. Looking up these values in a thread-
specific dictionary takes time which is easily ignored for all but
very small arrays.

After checking, the thread-specific global variables, the inputs are
evaluated to determine how the ufunc should proceed and the input and
output arrays are constructed if necessary. Any inputs which are not
arrays are converted to arrays (using context if necessary). Which of
the inputs are scalars (and therefore converted to 0-D arrays) is
noted.

Next, an appropriate 1-D loop is selected from the 1-D loops available
to the ufunc based on the input array types. This 1-D loop is selected
by trying to match the signature of the data-types of the inputs
against the available signatures. The signatures corresponding to
built-in types are stored in the types member of the ufunc structure.
The signatures corresponding to user-defined types are stored in a
linked-list of function-information with the head element stored as a
CObject in the userloops dictionary keyed by the data-type number
(the first user-defined type in the argument list is used as the key).
The signatures are searched until a signature is found to which the
input arrays can all be cast safely (ignoring any scalar arguments
which are not allowed to determine the type of the result). The
implication of this search procedure is that “lesser types” should be
placed below “larger types” when the signatures are stored. If no 1-D
loop is found, then an error is reported. Otherwise, the argument_list
is updated with the stored signature — in case casting is necessary
and to fix the output types assumed by the 1-D loop.

If the ufunc has 2 inputs and 1 output and the second input is an
Object array then a special-case check is performed so that
NotImplemented is returned if the second input is not an ndarray, has
the __array_priority__ attribute, and has an __r{op}__ special
method. In this way, Python is signaled to give the other object a
chance to complete the operation instead of using generic object-array
calculations. This allows (for example) sparse matrices to override
the multiplication operator 1-D loop.

For input arrays that are smaller than the specified buffer size,
copies are made of all non-contiguous, mis-aligned, or out-of-
byteorder arrays to ensure that for small arrays, a single-loop is
used. Then, array iterators are created for all the input arrays and
the resulting collection of iterators is broadcast to a single shape.

The output arguments (if any) are then processed and any missing
return arrays are constructed. If any provided output array doesn’t
have the correct type (or is mis-aligned) and is smaller than the
buffer size, then a new output array is constructed with the special
UPDATEIFCOPY flag set so that when it is DECREF’d on completion of the
function, it’s contents will be copied back into the output array.
Iterators for the output arguments are then processed.

Finally, the decision is made about how to execute the looping
mechanism to ensure that all elements of the input arrays are combined
to produce the output arrays of the correct type. The options for loop
execution are one-loop (for contiguous, aligned, and correct data-
type), strided-loop (for non-contiguous but still aligned and correct
data-type), and a buffered loop (for mis-aligned or incorrect data-
type situations). Depending on which execution method is called for,
the loop is then setup and computed.

Function call

This section describes how the basic universal function computation
loop is setup and executed for each of the three different kinds of
execution possibilities. If NPY_ALLOW_THREADS is defined during
compilation, then the Python Global Interpreter Lock (GIL) is released
prior to calling all of these loops (as long as they don’t involve
object arrays). It is re-acquired if necessary to handle error
conditions. The hardware error flags are checked only after the 1-D
loop is calcluated.

One Loop

This is the simplest case of all. The ufunc is executed by calling the
underlying 1-D loop exactly once. This is possible only when we have
aligned data of the correct type (including byte-order) for both input
and output and all arrays have uniform strides (either contiguous,
0-D, or 1-D). In this case, the 1-D computational loop is called once
to compute the calculation for the entire array. Note that the
hardware error flags are only checked after the entire calculation is
complete.

Strided Loop

When the input and output arrays are aligned and of the correct type,
but the striding is not uniform (non-contiguous and 2-D or larger),
then a second looping structure is employed for the calculation. This
approach converts all of the iterators for the input and output
arguments to iterate over all but the largest dimension. The inner
loop is then handled by the underlying 1-D computational loop. The
outer loop is a standard iterator loop on the converted iterators. The
hardware error flags are checked after each 1-D loop is completed.

Buffered Loop

This is the code that handles the situation whenever the input and/or
output arrays are either misaligned or of the wrong data-type
(including being byte-swapped) from what the underlying 1-D loop
expects. The arrays are also assumed to be non-contiguous. The code
works very much like the strided loop except for the inner 1-D loop is
modified so that pre-processing is performed on the inputs and post-
processing is performed on the outputs in bufsize chunks (where
bufsize is a user-settable parameter). The underlying 1-D
computational loop is called on data that is copied over (if it needs
to be). The setup code and the loop code is considerably more
complicated in this case because it has to handle:

	memory allocation of the temporary buffers

	deciding whether or not to use buffers on the input and output data
(mis-aligned and/or wrong data-type)

	copying and possibly casting data for any inputs or outputs for which
buffers are necessary.

	special-casing Object arrays so that reference counts are properly
handled when copies and/or casts are necessary.

	breaking up the inner 1-D loop into bufsize chunks (with a possible
remainder).

Again, the hardware error flags are checked at the end of each 1-D
loop.

Final output manipulation

Ufuncs allow other array-like classes to be passed seamlessly through
the interface in that inputs of a particular class will induce the
outputs to be of that same class. The mechanism by which this works is
the following. If any of the inputs are not ndarrays and define the
__array_wrap__ method, then the class with the largest
__array_priority__ attribute determines the type of all the
outputs (with the exception of any output arrays passed in). The
__array_wrap__ method of the input array will be called with the
ndarray being returned from the ufunc as it’s input. There are two
calling styles of the __array_wrap__ function supported. The first
takes the ndarray as the first argument and a tuple of “context” as
the second argument. The context is (ufunc, arguments, output argument
number). This is the first call tried. If a TypeError occurs, then the
function is called with just the ndarray as the first argument.

Methods

Their are three methods of ufuncs that require calculation similar to
the general-purpose ufuncs. These are reduce, accumulate, and
reduceat. Each of these methods requires a setup command followed by a
loop. There are four loop styles possible for the methods
corresponding to no-elements, one-element, strided-loop, and buffered-
loop. These are the same basic loop styles as implemented for the
general purpose function call except for the no-element and one-
element cases which are special-cases occurring when the input array
objects have 0 and 1 elements respectively.

Setup

The setup function for all three methods is construct_reduce.
This function creates a reducing loop object and fills it with
parameters needed to complete the loop. All of the methods only work
on ufuncs that take 2-inputs and return 1 output. Therefore, the
underlying 1-D loop is selected assuming a signature of [otype,
otype, otype] where otype is the requested reduction
data-type. The buffer size and error handling is then retrieved from
(per-thread) global storage. For small arrays that are mis-aligned or
have incorrect data-type, a copy is made so that the un-buffered
section of code is used. Then, the looping strategy is selected. If
there is 1 element or 0 elements in the array, then a simple looping
method is selected. If the array is not mis-aligned and has the
correct data-type, then strided looping is selected. Otherwise,
buffered looping must be performed. Looping parameters are then
established, and the return array is constructed. The output array is
of a different shape depending on whether the method is reduce,
accumulate, or reduceat. If an output array is already provided, then
it’s shape is checked. If the output array is not C-contiguous,
aligned, and of the correct data type, then a temporary copy is made
with the UPDATEIFCOPY flag set. In this way, the methods will be able
to work with a well-behaved output array but the result will be copied
back into the true output array when the method computation is
complete. Finally, iterators are set up to loop over the correct axis
(depending on the value of axis provided to the method) and the setup
routine returns to the actual computation routine.

Reduce

All of the ufunc methods use the same underlying 1-D computational
loops with input and output arguments adjusted so that the appropriate
reduction takes place. For example, the key to the functioning of
reduce is that the 1-D loop is called with the output and the second
input pointing to the same position in memory and both having a step-
size of 0. The first input is pointing to the input array with a step-
size given by the appropriate stride for the selected axis. In this
way, the operation performed is

[image: \begin{align*} o & = & i[0] \\ o & = & i[k]\textrm{<op>}o\quad k=1\ldots N \end{align*}]

where [image: N+1] is the number of elements in the input, [image: i],
[image: o] is the output, and [image: i[k]] is the
[image: k^{\textrm{th}}] element of [image: i] along the selected axis.
This basic operations is repeated for arrays with greater than 1
dimension so that the reduction takes place for every 1-D sub-array
along the selected axis. An iterator with the selected dimension
removed handles this looping.

For buffered loops, care must be taken to copy and cast data before
the loop function is called because the underlying loop expects
aligned data of the correct data-type (including byte-order). The
buffered loop must handle this copying and casting prior to calling
the loop function on chunks no greater than the user-specified
bufsize.

Accumulate

The accumulate function is very similar to the reduce function in that
the output and the second input both point to the output. The
difference is that the second input points to memory one stride behind
the current output pointer. Thus, the operation performed is

[image: \begin{align*} o[0] & = & i[0] \\ o[k] & = & i[k]\textrm{<op>}o[k-1]\quad k=1\ldots N. \end{align*}]

The output has the same shape as the input and each 1-D loop operates
over [image: N] elements when the shape in the selected axis is [image: N+1].
Again, buffered loops take care to copy and cast the data before
calling the underlying 1-D computational loop.

Reduceat

The reduceat function is a generalization of both the reduce and
accumulate functions. It implements a reduce over ranges of the input
array specified by indices. The extra indices argument is checked to
be sure that every input is not too large for the input array along
the selected dimension before the loop calculations take place. The
loop implementation is handled using code that is very similar to the
reduce code repeated as many times as there are elements in the
indices input. In particular: the first input pointer passed to the
underlying 1-D computational loop points to the input array at the
correct location indicated by the index array. In addition, the output
pointer and the second input pointer passed to the underlying 1-D loop
point to the same position in memory. The size of the 1-D
computational loop is fixed to be the difference between the current
index and the next index (when the current index is the last index,
then the next index is assumed to be the length of the array along the
selected dimension). In this way, the 1-D loop will implement a reduce
over the specified indices.

Mis-aligned or a loop data-type that does not match the input and/or
output data-type is handled using buffered code where-in data is
copied to a temporary buffer and cast to the correct data-type if
necessary prior to calling the underlying 1-D function. The temporary
buffers are created in (element) sizes no bigger than the user
settable buffer-size value. Thus, the loop must be flexible enough to
call the underlying 1-D computational loop enough times to complete
the total calculation in chunks no bigger than the buffer-size.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

Numpy and SWIG

	Numpy.i: a SWIG Interface File for NumPy
	Introduction

	Using numpy.i

	Available Typemaps

	NumPy Array Scalars and SWIG

	Helper Functions

	Beyond the Provided Typemaps

	Summary

	Testing the numpy.i Typemaps
	Introduction

	Testing Organization

	Testing Header Files

	Testing Source Files

	Testing SWIG Interface Files

	Testing Python Scripts

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy and SWIG

Numpy.i: a SWIG Interface File for NumPy

Introduction

The Simple Wrapper and Interface Generator (or SWIG [http://www.swig.org]) is a powerful tool for generating wrapper
code for interfacing to a wide variety of scripting languages.
SWIG [http://www.swig.org] can parse header files, and using only the code prototypes,
create an interface to the target language. But SWIG [http://www.swig.org] is not
omnipotent. For example, it cannot know from the prototype:

double rms(double* seq, int n);

what exactly seq is. Is it a single value to be altered in-place?
Is it an array, and if so what is its length? Is it input-only?
Output-only? Input-output? SWIG [http://www.swig.org] cannot determine these details,
and does not attempt to do so.

If we designed rms, we probably made it a routine that takes an
input-only array of length n of double values called seq
and returns the root mean square. The default behavior of SWIG [http://www.swig.org],
however, will be to create a wrapper function that compiles, but is
nearly impossible to use from the scripting language in the way the C
routine was intended.

For Python, the preferred way of handling contiguous (or technically,
strided) blocks of homogeneous data is with NumPy, which provides full
object-oriented access to multidimensial arrays of data. Therefore, the most
logical Python interface for the rms function would be (including doc
string):

def rms(seq):
 """
 rms: return the root mean square of a sequence
 rms(numpy.ndarray) -> double
 rms(list) -> double
 rms(tuple) -> double
 """

where seq would be a NumPy array of double values, and its
length n would be extracted from seq internally before being
passed to the C routine. Even better, since NumPy supports
construction of arrays from arbitrary Python sequences, seq
itself could be a nearly arbitrary sequence (so long as each element
can be converted to a double) and the wrapper code would
internally convert it to a NumPy array before extracting its data
and length.

SWIG [http://www.swig.org] allows these types of conversions to be defined via a
mechanism called typemaps. This document provides information on
how to use numpy.i, a SWIG [http://www.swig.org] interface file that defines a series
of typemaps intended to make the type of array-related conversions
described above relatively simple to implement. For example, suppose
that the rms function prototype defined above was in a header file
named rms.h. To obtain the Python interface discussed above, your
SWIG [http://www.swig.org] interface file would need the following:

%{
#define SWIG_FILE_WITH_INIT
#include "rms.h"
%}

%include "numpy.i"

%init %{
import_array();
%}

%apply (double* IN_ARRAY1, int DIM1) {(double* seq, int n)};
%include "rms.h"

Typemaps are keyed off a list of one or more function arguments,
either by type or by type and name. We will refer to such lists as
signatures. One of the many typemaps defined by numpy.i is used
above and has the signature (double* IN_ARRAY1, int DIM1). The
argument names are intended to suggest that the double* argument
is an input array of one dimension and that the int represents the
size of that dimension. This is precisely the pattern in the rms
prototype.

Most likely, no actual prototypes to be wrapped will have the argument
names IN_ARRAY1 and DIM1. We use the SWIG [http://www.swig.org] %apply
directive to apply the typemap for one-dimensional input arrays of
type double to the actual prototype used by rms. Using
numpy.i effectively, therefore, requires knowing what typemaps are
available and what they do.

A SWIG [http://www.swig.org] interface file that includes the SWIG [http://www.swig.org] directives given
above will produce wrapper code that looks something like:

 1 PyObject *_wrap_rms(PyObject *args) {
 2 PyObject *resultobj = 0;
 3 double *arg1 = (double *) 0 ;
 4 int arg2 ;
 5 double result;
 6 PyArrayObject *array1 = NULL ;
 7 int is_new_object1 = 0 ;
 8 PyObject * obj0 = 0 ;
 9
10 if (!PyArg_ParseTuple(args,(char *)"O:rms",&obj0)) SWIG_fail;
11 {
12 array1 = obj_to_array_contiguous_allow_conversion(
13 obj0, NPY_DOUBLE, &is_new_object1);
14 npy_intp size[1] = {
15 -1
16 };
17 if (!array1 || !require_dimensions(array1, 1) ||
18 !require_size(array1, size, 1)) SWIG_fail;
19 arg1 = (double*) array1->data;
20 arg2 = (int) array1->dimensions[0];
21 }
22 result = (double)rms(arg1,arg2);
23 resultobj = SWIG_From_double((double)(result));
24 {
25 if (is_new_object1 && array1) Py_DECREF(array1);
26 }
27 return resultobj;
28 fail:
29 {
30 if (is_new_object1 && array1) Py_DECREF(array1);
31 }
32 return NULL;
33 }

The typemaps from numpy.i are responsible for the following lines
of code: 12–20, 25 and 30. Line 10 parses the input to the rms
function. From the format string "O:rms", we can see that the
argument list is expected to be a single Python object (specified
by the O before the colon) and whose pointer is stored in
obj0. A number of functions, supplied by numpy.i, are called
to make and check the (possible) conversion from a generic Python
object to a NumPy array. These functions are explained in the
section Helper Functions, but hopefully their names are
self-explanatory. At line 12 we use obj0 to construct a NumPy
array. At line 17, we check the validity of the result: that it is
non-null and that it has a single dimension of arbitrary length. Once
these states are verified, we extract the data buffer and length in
lines 19 and 20 so that we can call the underlying C function at line
22. Line 25 performs memory management for the case where we have
created a new array that is no longer needed.

This code has a significant amount of error handling. Note the
SWIG_fail is a macro for goto fail, refering to the label at
line 28. If the user provides the wrong number of arguments, this
will be caught at line 10. If construction of the NumPy array
fails or produces an array with the wrong number of dimensions, these
errors are caught at line 17. And finally, if an error is detected,
memory is still managed correctly at line 30.

Note that if the C function signature was in a different order:

double rms(int n, double* seq);

that SWIG [http://www.swig.org] would not match the typemap signature given above with
the argument list for rms. Fortunately, numpy.i has a set of
typemaps with the data pointer given last:

%apply (int DIM1, double* IN_ARRAY1) {(int n, double* seq)};

This simply has the effect of switching the definitions of arg1
and arg2 in lines 3 and 4 of the generated code above, and their
assignments in lines 19 and 20.

Using numpy.i

The numpy.i file is currently located in the tools/swig
sub-directory under the numpy installation directory. Typically,
you will want to copy it to the directory where you are developing
your wrappers.

A simple module that only uses a single SWIG [http://www.swig.org] interface file should
include the following:

%{
#define SWIG_FILE_WITH_INIT
%}
%include "numpy.i"
%init %{
import_array();
%}

Within a compiled Python module, import_array() should only get
called once. This could be in a C/C++ file that you have written and
is linked to the module. If this is the case, then none of your
interface files should #define SWIG_FILE_WITH_INIT or call
import_array(). Or, this initialization call could be in a
wrapper file generated by SWIG [http://www.swig.org] from an interface file that has the
%init block as above. If this is the case, and you have more than
one SWIG [http://www.swig.org] interface file, then only one interface file should
#define SWIG_FILE_WITH_INIT and call import_array().

Available Typemaps

The typemap directives provided by numpy.i for arrays of different
data types, say double and int, and dimensions of different
types, say int or long, are identical to one another except
for the C and NumPy type specifications. The typemaps are
therefore implemented (typically behind the scenes) via a macro:

%numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE)

that can be invoked for appropriate (DATA_TYPE, DATA_TYPECODE,
DIM_TYPE) triplets. For example:

%numpy_typemaps(double, NPY_DOUBLE, int)
%numpy_typemaps(int, NPY_INT , int)

The numpy.i interface file uses the %numpy_typemaps macro to
implement typemaps for the following C data types and int
dimension types:

	signed char

	unsigned char

	short

	unsigned short

	int

	unsigned int

	long

	unsigned long

	long long

	unsigned long long

	float

	double

In the following descriptions, we reference a generic DATA_TYPE, which
could be any of the C data types listed above, and DIM_TYPE which
should be one of the many types of integers.

The typemap signatures are largely differentiated on the name given to
the buffer pointer. Names with FARRAY are for Fortran-ordered
arrays, and names with ARRAY are for C-ordered (or 1D arrays).

Input Arrays

Input arrays are defined as arrays of data that are passed into a
routine but are not altered in-place or returned to the user. The
Python input array is therefore allowed to be almost any Python
sequence (such as a list) that can be converted to the requested type
of array. The input array signatures are

1D:

	(DATA_TYPE IN_ARRAY1[ANY])

	(DATA_TYPE* IN_ARRAY1, int DIM1)

	(int DIM1, DATA_TYPE* IN_ARRAY1)

2D:

	(DATA_TYPE IN_ARRAY2[ANY][ANY])

	(DATA_TYPE* IN_ARRAY2, int DIM1, int DIM2)

	(int DIM1, int DIM2, DATA_TYPE* IN_ARRAY2)

	(DATA_TYPE* IN_FARRAY2, int DIM1, int DIM2)

	(int DIM1, int DIM2, DATA_TYPE* IN_FARRAY2)

3D:

	(DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])

	(DATA_TYPE* IN_ARRAY3, int DIM1, int DIM2, int DIM3)

	(int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_ARRAY3)

	(DATA_TYPE* IN_FARRAY3, int DIM1, int DIM2, int DIM3)

	(int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_FARRAY3)

4D:

	(DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY])

	(DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4)

	(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE* IN_ARRAY4)

	(DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4)

	(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* IN_FARRAY4)

The first signature listed, (DATA_TYPE IN_ARRAY[ANY]) is for
one-dimensional arrays with hard-coded dimensions. Likewise,
(DATA_TYPE IN_ARRAY2[ANY][ANY]) is for two-dimensional arrays
with hard-coded dimensions, and similarly for three-dimensional.

In-Place Arrays

In-place arrays are defined as arrays that are modified in-place. The
input values may or may not be used, but the values at the time the
function returns are significant. The provided Python argument
must therefore be a NumPy array of the required type. The in-place
signatures are

1D:

	(DATA_TYPE INPLACE_ARRAY1[ANY])

	(DATA_TYPE* INPLACE_ARRAY1, int DIM1)

	(int DIM1, DATA_TYPE* INPLACE_ARRAY1)

2D:

	(DATA_TYPE INPLACE_ARRAY2[ANY][ANY])

	(DATA_TYPE* INPLACE_ARRAY2, int DIM1, int DIM2)

	(int DIM1, int DIM2, DATA_TYPE* INPLACE_ARRAY2)

	(DATA_TYPE* INPLACE_FARRAY2, int DIM1, int DIM2)

	(int DIM1, int DIM2, DATA_TYPE* INPLACE_FARRAY2)

3D:

	(DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])

	(DATA_TYPE* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3)

	(int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_ARRAY3)

	(DATA_TYPE* INPLACE_FARRAY3, int DIM1, int DIM2, int DIM3)

	(int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_FARRAY3)

4D:

	(DATA_TYPE INPLACE_ARRAY4[ANY][ANY][ANY][ANY])

	(DATA_TYPE* INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4)

	(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE* INPLACE_ARRAY4)

	(DATA_TYPE* INPLACE_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4)

	(DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE* INPLACE_FARRAY4)

These typemaps now check to make sure that the INPLACE_ARRAY
arguments use native byte ordering. If not, an exception is raised.

Argout Arrays

Argout arrays are arrays that appear in the input arguments in C, but
are in fact output arrays. This pattern occurs often when there is
more than one output variable and the single return argument is
therefore not sufficient. In Python, the convential way to return
multiple arguments is to pack them into a sequence (tuple, list, etc.)
and return the sequence. This is what the argout typemaps do. If a
wrapped function that uses these argout typemaps has more than one
return argument, they are packed into a tuple or list, depending on
the version of Python. The Python user does not pass these
arrays in, they simply get returned. For the case where a dimension
is specified, the python user must provide that dimension as an
argument. The argout signatures are

1D:

	(DATA_TYPE ARGOUT_ARRAY1[ANY])

	(DATA_TYPE* ARGOUT_ARRAY1, int DIM1)

	(int DIM1, DATA_TYPE* ARGOUT_ARRAY1)

2D:

	(DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])

3D:

	(DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])

4D:

	(DATA_TYPE ARGOUT_ARRAY4[ANY][ANY][ANY][ANY])

These are typically used in situations where in C/C++, you would
allocate a(n) array(s) on the heap, and call the function to fill the
array(s) values. In Python, the arrays are allocated for you and
returned as new array objects.

Note that we support DATA_TYPE* argout typemaps in 1D, but not 2D
or 3D. This is because of a quirk with the SWIG [http://www.swig.org] typemap syntax and
cannot be avoided. Note that for these types of 1D typemaps, the
Python function will take a single argument representing DIM1.

Argout View Arrays

Argoutview arrays are for when your C code provides you with a view of
its internal data and does not require any memory to be allocated by
the user. This can be dangerous. There is almost no way to guarantee
that the internal data from the C code will remain in existence for
the entire lifetime of the NumPy array that encapsulates it. If
the user destroys the object that provides the view of the data before
destroying the NumPy array, then using that array may result in bad
memory references or segmentation faults. Nevertheless, there are
situations, working with large data sets, where you simply have no
other choice.

The C code to be wrapped for argoutview arrays are characterized by
pointers: pointers to the dimensions and double pointers to the data,
so that these values can be passed back to the user. The argoutview
typemap signatures are therefore

1D:

	(DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)

	(DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)

2D:

	(DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)

	(DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)

3D:

	(DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3)

	(DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3)

4D:

	(DATA_TYPE** ARGOUTVIEW_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEW_ARRAY4)

	(DATA_TYPE** ARGOUTVIEW_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEW_FARRAY4)

Note that arrays with hard-coded dimensions are not supported. These
cannot follow the double pointer signatures of these typemaps.

Memory Managed Argout View Arrays

A recent addition to numpy.i are typemaps that permit argout
arrays with views into memory that is managed. See the discussion here [http://blog.enthought.com/python/numpy-arrays-with-pre-allocated-memory].

1D:

	(DATA_TYPE** ARGOUTVIEWM_ARRAY1, DIM_TYPE* DIM1)

	(DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEWM_ARRAY1)

2D:

	(DATA_TYPE** ARGOUTVIEWM_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_ARRAY2)

	(DATA_TYPE** ARGOUTVIEWM_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_FARRAY2)

3D:

	(DATA_TYPE** ARGOUTVIEWM_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEWM_ARRAY3)

	(DATA_TYPE** ARGOUTVIEWM_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEWM_FARRAY3)

4D:

	(DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEWM_ARRAY4)

	(DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4)

	(DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE** ARGOUTVIEWM_FARRAY4)

Output Arrays

The numpy.i interface file does not support typemaps for output
arrays, for several reasons. First, C/C++ return arguments are
limited to a single value. This prevents obtaining dimension
information in a general way. Second, arrays with hard-coded lengths
are not permitted as return arguments. In other words:

double[3] newVector(double x, double y, double z);

is not legal C/C++ syntax. Therefore, we cannot provide typemaps of
the form:

%typemap(out) (TYPE[ANY]);

If you run into a situation where a function or method is returning a
pointer to an array, your best bet is to write your own version of the
function to be wrapped, either with %extend for the case of class
methods or %ignore and %rename for the case of functions.

Other Common Types: bool

Note that C++ type bool is not supported in the list in the
Available Typemaps section. NumPy bools are a single byte, while
the C++ bool is four bytes (at least on my system). Therefore:

%numpy_typemaps(bool, NPY_BOOL, int)

will result in typemaps that will produce code that reference
improper data lengths. You can implement the following macro
expansion:

%numpy_typemaps(bool, NPY_UINT, int)

to fix the data length problem, and Input Arrays will work fine,
but In-Place Arrays might fail type-checking.

Other Common Types: complex

Typemap conversions for complex floating-point types is also not
supported automatically. This is because Python and NumPy are
written in C, which does not have native complex types. Both
Python and NumPy implement their own (essentially equivalent)
struct definitions for complex variables:

/* Python */
typedef struct {double real; double imag;} Py_complex;

/* NumPy */
typedef struct {float real, imag;} npy_cfloat;
typedef struct {double real, imag;} npy_cdouble;

We could have implemented:

%numpy_typemaps(Py_complex , NPY_CDOUBLE, int)
%numpy_typemaps(npy_cfloat , NPY_CFLOAT , int)
%numpy_typemaps(npy_cdouble, NPY_CDOUBLE, int)

which would have provided automatic type conversions for arrays of
type Py_complex, npy_cfloat and npy_cdouble. However, it
seemed unlikely that there would be any independent (non-Python,
non-NumPy) application code that people would be using SWIG [http://www.swig.org] to
generate a Python interface to, that also used these definitions
for complex types. More likely, these application codes will define
their own complex types, or in the case of C++, use std::complex.
Assuming these data structures are compatible with Python and
NumPy complex types, %numpy_typemap expansions as above (with
the user’s complex type substituted for the first argument) should
work.

NumPy Array Scalars and SWIG

SWIG [http://www.swig.org] has sophisticated type checking for numerical types. For
example, if your C/C++ routine expects an integer as input, the code
generated by SWIG [http://www.swig.org] will check for both Python integers and
Python long integers, and raise an overflow error if the provided
Python integer is too big to cast down to a C integer. With the
introduction of NumPy scalar arrays into your Python code, you
might conceivably extract an integer from a NumPy array and attempt
to pass this to a SWIG [http://www.swig.org]-wrapped C/C++ function that expects an
int, but the SWIG [http://www.swig.org] type checking will not recognize the NumPy
array scalar as an integer. (Often, this does in fact work – it
depends on whether NumPy recognizes the integer type you are using
as inheriting from the Python integer type on the platform you are
using. Sometimes, this means that code that works on a 32-bit machine
will fail on a 64-bit machine.)

If you get a Python error that looks like the following:

TypeError: in method 'MyClass_MyMethod', argument 2 of type 'int'

and the argument you are passing is an integer extracted from a
NumPy array, then you have stumbled upon this problem. The
solution is to modify the SWIG [http://www.swig.org] type conversion system to accept
Numpy array scalars in addition to the standard integer types.
Fortunately, this capabilitiy has been provided for you. Simply copy
the file:

pyfragments.swg

to the working build directory for you project, and this problem will
be fixed. It is suggested that you do this anyway, as it only
increases the capabilities of your Python interface.

Why is There a Second File?

The SWIG [http://www.swig.org] type checking and conversion system is a complicated
combination of C macros, SWIG [http://www.swig.org] macros, SWIG [http://www.swig.org] typemaps and SWIG [http://www.swig.org]
fragments. Fragments are a way to conditionally insert code into your
wrapper file if it is needed, and not insert it if not needed. If
multiple typemaps require the same fragment, the fragment only gets
inserted into your wrapper code once.

There is a fragment for converting a Python integer to a C
long. There is a different fragment that converts a Python
integer to a C int, that calls the rountine defined in the
long fragment. We can make the changes we want here by changing
the definition for the long fragment. SWIG [http://www.swig.org] determines the
active definition for a fragment using a “first come, first served”
system. That is, we need to define the fragment for long
conversions prior to SWIG [http://www.swig.org] doing it internally. SWIG [http://www.swig.org] allows us
to do this by putting our fragment definitions in the file
pyfragments.swg. If we were to put the new fragment definitions
in numpy.i, they would be ignored.

Helper Functions

The numpy.i file containes several macros and routines that it
uses internally to build its typemaps. However, these functions may
be useful elsewhere in your interface file. These macros and routines
are implemented as fragments, which are described briefly in the
previous section. If you try to use one or more of the following
macros or functions, but your compiler complains that it does not
recognize the symbol, then you need to force these fragments to appear
in your code using:

%fragment("NumPy_Fragments");

in your SWIG [http://www.swig.org] interface file.

Macros

	is_array(a)

	Evaluates as true if a is non-NULL and can be cast to a
PyArrayObject*.

	array_type(a)

	Evaluates to the integer data type code of a, assuming a can
be cast to a PyArrayObject*.

	array_numdims(a)

	Evaluates to the integer number of dimensions of a, assuming
a can be cast to a PyArrayObject*.

	array_dimensions(a)

	Evaluates to an array of type npy_intp and length
array_numdims(a), giving the lengths of all of the dimensions
of a, assuming a can be cast to a PyArrayObject*.

	array_size(a,i)

	Evaluates to the i-th dimension size of a, assuming a
can be cast to a PyArrayObject*.

	array_strides(a)

	Evaluates to an array of type npy_intp and length
array_numdims(a), giving the stridess of all of the dimensions
of a, assuming a can be cast to a PyArrayObject*. A
stride is the distance in bytes between an element and its
immediate neighbor along the same axis.

	array_stride(a,i)

	Evaluates to the i-th stride of a, assuming a can be
cast to a PyArrayObject*.

	array_data(a)

	Evaluates to a pointer of type void* that points to the data
buffer of a, assuming a can be cast to a PyArrayObject*.

	array_descr(a)

	Returns a borrowed reference to the dtype property
(PyArray_Descr*) of a, assuming a can be cast to a
PyArrayObject*.

	array_flags(a)

	Returns an integer representing the flags of a, assuming a
can be cast to a PyArrayObject*.

	array_enableflags(a,f)

	Sets the flag represented by f of a, assuming a can be
cast to a PyArrayObject*.

	array_is_contiguous(a)

	Evaluates as true if a is a contiguous array. Equivalent to
(PyArray_ISCONTIGUOUS(a)).

	array_is_native(a)

	Evaluates as true if the data buffer of a uses native byte
order. Equivalent to (PyArray_ISNOTSWAPPED(a)).

	array_is_fortran(a)

	Evaluates as true if a is FORTRAN ordered.

Routines

pytype_string()

Return type: const char*

Arguments:

	PyObject* py_obj, a general Python object.

Return a string describing the type of py_obj.

typecode_string()

Return type: const char*

Arguments:

	int typecode, a NumPy integer typecode.

Return a string describing the type corresponding to the NumPy
typecode.

type_match()

Return type: int

Arguments:

	int actual_type, the NumPy typecode of a NumPy array.

	int desired_type, the desired NumPy typecode.

Make sure that actual_type is compatible with
desired_type. For example, this allows character and
byte types, or int and long types, to match. This is now
equivalent to PyArray_EquivTypenums().

obj_to_array_no_conversion()

Return type: PyArrayObject*

Arguments:

	PyObject* input, a general Python object.

	int typecode, the desired NumPy typecode.

Cast input to a PyArrayObject* if legal, and ensure that
it is of type typecode. If input cannot be cast, or the
typecode is wrong, set a Python error and return NULL.

obj_to_array_allow_conversion()

Return type: PyArrayObject*

Arguments:

	PyObject* input, a general Python object.

	int typecode, the desired NumPy typecode of the resulting
array.

	int* is_new_object, returns a value of 0 if no conversion
performed, else 1.

Convert input to a NumPy array with the given typecode.
On success, return a valid PyArrayObject* with the correct
type. On failure, the Python error string will be set and the
routine returns NULL.

make_contiguous()

Return type: PyArrayObject*

Arguments:

	PyArrayObject* ary, a NumPy array.

	int* is_new_object, returns a value of 0 if no conversion
performed, else 1.

	int min_dims, minimum allowable dimensions.

	int max_dims, maximum allowable dimensions.

Check to see if ary is contiguous. If so, return the input
pointer and flag it as not a new object. If it is not contiguous,
create a new PyArrayObject* using the original data, flag it
as a new object and return the pointer.

make_fortran()

Return type: PyArrayObject*

Arguments

	PyArrayObject* ary, a NumPy array.

	int* is_new_object, returns a value of 0 if no conversion
performed, else 1.

Check to see if ary is Fortran contiguous. If so, return the
input pointer and flag it as not a new object. If it is not
Fortran contiguous, create a new PyArrayObject* using the
original data, flag it as a new object and return the pointer.

obj_to_array_contiguous_allow_conversion()

Return type: PyArrayObject*

Arguments:

	PyObject* input, a general Python object.

	int typecode, the desired NumPy typecode of the resulting
array.

	int* is_new_object, returns a value of 0 if no conversion
performed, else 1.

Convert input to a contiguous PyArrayObject* of the
specified type. If the input object is not a contiguous
PyArrayObject*, a new one will be created and the new object
flag will be set.

obj_to_array_fortran_allow_conversion()

Return type: PyArrayObject*

Arguments:

	PyObject* input, a general Python object.

	int typecode, the desired NumPy typecode of the resulting
array.

	int* is_new_object, returns a value of 0 if no conversion
performed, else 1.

Convert input to a Fortran contiguous PyArrayObject* of
the specified type. If the input object is not a Fortran
contiguous PyArrayObject*, a new one will be created and the
new object flag will be set.

require_contiguous()

Return type: int

Arguments:

	PyArrayObject* ary, a NumPy array.

Test whether ary is contiguous. If so, return 1. Otherwise,
set a Python error and return 0.

require_native()

Return type: int

Arguments:

	PyArray_Object* ary, a NumPy array.

Require that ary is not byte-swapped. If the array is not
byte-swapped, return 1. Otherwise, set a Python error and
return 0.

require_dimensions()

Return type: int

Arguments:

	PyArrayObject* ary, a NumPy array.

	int exact_dimensions, the desired number of dimensions.

Require ary to have a specified number of dimensions. If the
array has the specified number of dimensions, return 1.
Otherwise, set a Python error and return 0.

require_dimensions_n()

Return type: int

Arguments:

	PyArrayObject* ary, a NumPy array.

	int* exact_dimensions, an array of integers representing
acceptable numbers of dimensions.

	int n, the length of exact_dimensions.

Require ary to have one of a list of specified number of
dimensions. If the array has one of the specified number of
dimensions, return 1. Otherwise, set the Python error string
and return 0.

require_size()

Return type: int

Arguments:

	PyArrayObject* ary, a NumPy array.

	npy_int* size, an array representing the desired lengths of
each dimension.

	int n, the length of size.

Require ary to have a specified shape. If the array has the
specified shape, return 1. Otherwise, set the Python error
string and return 0.

require_fortran()

Return type: int

Arguments:

	PyArrayObject* ary, a NumPy array.

Require the given PyArrayObject to to be Fortran ordered. If
the the PyArrayObject is already Fortran ordered, do nothing.
Else, set the Fortran ordering flag and recompute the strides.

Beyond the Provided Typemaps

There are many C or C++ array/NumPy array situations not covered by
a simple %include "numpy.i" and subsequent %apply directives.

A Common Example

Consider a reasonable prototype for a dot product function:

double dot(int len, double* vec1, double* vec2);

The Python interface that we want is:

def dot(vec1, vec2):
 """
 dot(PyObject,PyObject) -> double
 """

The problem here is that there is one dimension argument and two array
arguments, and our typemaps are set up for dimensions that apply to a
single array (in fact, SWIG [http://www.swig.org] does not provide a mechanism for
associating len with vec2 that takes two Python input
arguments). The recommended solution is the following:

%apply (int DIM1, double* IN_ARRAY1) {(int len1, double* vec1),
 (int len2, double* vec2)}
%rename (dot) my_dot;
%exception my_dot {
 $action
 if (PyErr_Occurred()) SWIG_fail;
}
%inline %{
double my_dot(int len1, double* vec1, int len2, double* vec2) {
 if (len1 != len2) {
 PyErr_Format(PyExc_ValueError,
 "Arrays of lengths (%d,%d) given",
 len1, len2);
 return 0.0;
 }
 return dot(len1, vec1, vec2);
}
%}

If the header file that contains the prototype for double dot()
also contains other prototypes that you want to wrap, so that you need
to %include this header file, then you will also need a %ignore
dot; directive, placed after the %rename and before the
%include directives. Or, if the function in question is a class
method, you will want to use %extend rather than %inline in
addition to %ignore.

A note on error handling: Note that my_dot returns a
double but that it can also raise a Python error. The
resulting wrapper function will return a Python float
representation of 0.0 when the vector lengths do not match. Since
this is not NULL, the Python interpreter will not know to check
for an error. For this reason, we add the %exception directive
above for my_dot to get the behavior we want (note that
$action is a macro that gets expanded to a valid call to
my_dot). In general, you will probably want to write a SWIG [http://www.swig.org]
macro to perform this task.

Other Situations

There are other wrapping situations in which numpy.i may be
helpful when you encounter them.

	In some situations, it is possible that you could use the
%numpy_typemaps macro to implement typemaps for your own
types. See the Other Common Types: bool or Other Common
Types: complex sections for examples. Another situation is if
your dimensions are of a type other than int (say long for
example):

%numpy_typemaps(double, NPY_DOUBLE, long)

	You can use the code in numpy.i to write your own typemaps.
For example, if you had a five-dimensional array as a function
argument, you could cut-and-paste the appropriate four-dimensional
typemaps into your interface file. The modifications for the
fourth dimension would be trivial.

	Sometimes, the best approach is to use the %extend directive
to define new methods for your classes (or overload existing ones)
that take a PyObject* (that either is or can be converted to a
PyArrayObject*) instead of a pointer to a buffer. In this
case, the helper routines in numpy.i can be very useful.

	Writing typemaps can be a bit nonintuitive. If you have specific
questions about writing SWIG [http://www.swig.org] typemaps for NumPy, the
developers of numpy.i do monitor the
Numpy-discussion and
Swig-user mail lists.

A Final Note

When you use the %apply directive, as is usually necessary to use
numpy.i, it will remain in effect until you tell SWIG [http://www.swig.org] that it
shouldn’t be. If the arguments to the functions or methods that you
are wrapping have common names, such as length or vector,
these typemaps may get applied in situations you do not expect or
want. Therefore, it is always a good idea to add a %clear
directive after you are done with a specific typemap:

%apply (double* IN_ARRAY1, int DIM1) {(double* vector, int length)}
%include "my_header.h"
%clear (double* vector, int length);

In general, you should target these typemap signatures specifically
where you want them, and then clear them after you are done.

Summary

Out of the box, numpy.i provides typemaps that support conversion
between NumPy arrays and C arrays:

	That can be one of 12 different scalar types: signed char,
unsigned char, short, unsigned short, int,
unsigned int, long, unsigned long, long long,
unsigned long long, float and double.

	That support 74 different argument signatures for each data type,
including:
	One-dimensional, two-dimensional, three-dimensional and
four-dimensional arrays.

	Input-only, in-place, argout, argoutview, and memory managed
argoutview behavior.

	Hard-coded dimensions, data-buffer-then-dimensions
specification, and dimensions-then-data-buffer specification.

	Both C-ordering (“last dimension fastest”) or Fortran-ordering
(“first dimension fastest”) support for 2D, 3D and 4D arrays.

The numpy.i interface file also provides additional tools for
wrapper developers, including:

	A SWIG [http://www.swig.org] macro (%numpy_typemaps) with three arguments for
implementing the 74 argument signatures for the user’s choice of
(1) C data type, (2) NumPy data type (assuming they match), and
(3) dimension type.

	Fourteen C macros and fifteen C functions that can be used to
write specialized typemaps, extensions, or inlined functions that
handle cases not covered by the provided typemaps. Note that the
macros and functions are coded specifically to work with the NumPy
C/API regardless of NumPy version number, both before and after
the deprecation of some aspects of the API after version 1.6.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	NumPy Reference

 	Numpy and SWIG

Testing the numpy.i Typemaps

Introduction

Writing tests for the numpy.i SWIG [http://www.swig.org]
interface file is a combinatorial headache. At present, 12 different
data types are supported, each with 74 different argument signatures,
for a total of 888 typemaps supported “out of the box”. Each of these
typemaps, in turn, might require several unit tests in order to verify
expected behavior for both proper and improper inputs. Currently,
this results in 1,427 individual unit tests that are performed when
make test is run in the numpy/docs/swig subdirectory.

To facilitate this many similar unit tests, some high-level
programming techniques are employed, including C and SWIG [http://www.swig.org] macros,
as well as Python inheritance. The purpose of this document is to describe
the testing infrastructure employed to verify that the numpy.i
typemaps are working as expected.

Testing Organization

There are three indepedent testing frameworks supported, for one-,
two-, and three-dimensional arrays respectively. For one-dimensional
arrays, there are two C++ files, a header and a source, named:

Vector.h
Vector.cxx

that contain prototypes and code for a variety of functions that have
one-dimensional arrays as function arguments. The file:

Vector.i

is a SWIG [http://www.swig.org] interface file that defines a python module Vector
that wraps the functions in Vector.h while utilizing the typemaps
in numpy.i to correctly handle the C arrays.

The Makefile calls swig to generate Vector.py and
Vector_wrap.cxx, and also executes the setup.py script that
compiles Vector_wrap.cxx and links together the extension module
_Vector.so or _Vector.dylib, depending on the platform. This
extension module and the proxy file Vector.py are both placed in a
subdirectory under the build directory.

The actual testing takes place with a Python script named:

testVector.py

that uses the standard Python library module unittest, which
performs several tests of each function defined in Vector.h for
each data type supported.

Two-dimensional arrays are tested in exactly the same manner. The
above description applies, but with Matrix substituted for
Vector. For three-dimensional tests, substitute Tensor for
Vector. For four-dimensional tests, substitute SuperTensor
for Vector.
For the descriptions that follow, we will reference the
Vector tests, but the same information applies to Matrix,
Tensor and SuperTensor tests.

The command make test will ensure that all of the test software is
built and then run all three test scripts.

Testing Header Files

Vector.h is a C++ header file that defines a C macro called
TEST_FUNC_PROTOS that takes two arguments: TYPE, which is a
data type name such as unsigned int; and SNAME, which is a
short name for the same data type with no spaces, e.g. uint. This
macro defines several function prototypes that have the prefix
SNAME and have at least one argument that is an array of type
TYPE. Those functions that have return arguments return a
TYPE value.

TEST_FUNC_PROTOS is then implemented for all of the data types
supported by numpy.i:

	signed char

	unsigned char

	short

	unsigned short

	int

	unsigned int

	long

	unsigned long

	long long

	unsigned long long

	float

	double

Testing Source Files

Vector.cxx is a C++ source file that implements compilable code
for each of the function prototypes specified in Vector.h. It
defines a C macro TEST_FUNCS that has the same arguments and works
in the same way as TEST_FUNC_PROTOS does in Vector.h.
TEST_FUNCS is implemented for each of the 12 data types as above.

Testing SWIG Interface Files

Vector.i is a SWIG [http://www.swig.org] interface file that defines python module
Vector. It follows the conventions for using numpy.i as
described in this chapter. It defines a SWIG [http://www.swig.org] macro
%apply_numpy_typemaps that has a single argument TYPE.
It uses the SWIG [http://www.swig.org] directive %apply to apply the provided
typemaps to the argument signatures found in Vector.h. This macro
is then implemented for all of the data types supported by
numpy.i. It then does a %include "Vector.h" to wrap all of
the function prototypes in Vector.h using the typemaps in
numpy.i.

Testing Python Scripts

After make is used to build the testing extension modules,
testVector.py can be run to execute the tests. As with other
scripts that use unittest to facilitate unit testing,
testVector.py defines a class that inherits from
unittest.TestCase:

class VectorTestCase(unittest.TestCase):

However, this class is not run directly. Rather, it serves as a base
class to several other python classes, each one specific to a
particular data type. The VectorTestCase class stores two strings
for typing information:

	self.typeStr

	A string that matches one of the SNAME prefixes used in
Vector.h and Vector.cxx. For example, "double".

	self.typeCode

	A short (typically single-character) string that represents a
data type in numpy and corresponds to self.typeStr. For
example, if self.typeStr is "double", then
self.typeCode should be "d".

Each test defined by the VectorTestCase class extracts the python
function it is trying to test by accessing the Vector module’s
dictionary:

length = Vector.__dict__[self.typeStr + "Length"]

In the case of double precision tests, this will return the python
function Vector.doubleLength.

We then define a new test case class for each supported data type with
a short definition such as:

class doubleTestCase(VectorTestCase):
 def __init__(self, methodName="runTest"):
 VectorTestCase.__init__(self, methodName)
 self.typeStr = "double"
 self.typeCode = "d"

Each of these 12 classes is collected into a unittest.TestSuite,
which is then executed. Errors and failures are summed together and
returned as the exit argument. Any non-zero result indicates that at
least one test did not pass.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

F2PY Users Guide and Reference Manual

	Author:	Pearu Peterson

	Contact:	pearu@cens.ioc.ee

	Web site:	http://cens.ioc.ee/projects/f2py2e/

	Date:	2005/04/02 10:03:26

Introduction

The purpose of the F2PY [http://cens.ioc.ee/projects/f2py2e/] –Fortran to Python interface generator–
project is to provide a connection between Python and Fortran
languages. F2PY is a Python [http://www.python.org/] package (with a command line tool
f2py and a module f2py2e) that facilitates creating/building
Python C/API extension modules that make it possible

	to call Fortran 77/90/95 external subroutines and Fortran 90/95
module subroutines as well as C functions;

	to access Fortran 77 COMMON blocks and Fortran 90/95 module data,
including allocatable arrays

from Python. See F2PY [http://cens.ioc.ee/projects/f2py2e/] web site for more information and installation
instructions.

	Three ways to wrap - getting started
	The quick way

	The smart way

	The quick and smart way

	Signature file
	Python module block

	Fortran/C routine signatures

	Extensions

	Using F2PY bindings in Python
	Scalar arguments

	String arguments

	Array arguments

	Call-back arguments

	Common blocks

	Fortran 90 module data

	Using F2PY
	Command f2py

	Python module f2py2e

	Using via numpy.distutils

	Advanced F2PY usages
	Adding self-written functions to F2PY generated modules

	Modifying the dictionary of a F2PY generated module

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	F2PY Users Guide and Reference Manual

Three ways to wrap - getting started

Wrapping Fortran or C functions to Python using F2PY consists of the
following steps:

	Creating the so-called signature file that contains descriptions of
wrappers to Fortran or C functions, also called as signatures of the
functions. In the case of Fortran routines, F2PY can create initial
signature file by scanning Fortran source codes and
catching all relevant information needed to create wrapper
functions.

	Optionally, F2PY created signature files can be edited to optimize
wrappers functions, make them “smarter” and more “Pythonic”.

	F2PY reads a signature file and writes a Python C/API module containing
Fortran/C/Python bindings.

	F2PY compiles all sources and builds an extension module containing
the wrappers. In building extension modules, F2PY uses
numpy_distutils that supports a number of Fortran 77/90/95
compilers, including Gnu, Intel,
Sun Fortre, SGI MIPSpro, Absoft, NAG, Compaq etc. compilers.

Depending on a particular situation, these steps can be carried out
either by just in one command or step-by-step, some steps can be
omitted or combined with others.

Below I’ll describe three typical approaches of using F2PY.
The following example Fortran 77 code will be used for
illustration:

C FILE: FIB1.F
 SUBROUTINE FIB(A,N)
C
C CALCULATE FIRST N FIBONACCI NUMBERS
C
 INTEGER N
 REAL*8 A(N)
 DO I=1,N
 IF (I.EQ.1) THEN
 A(I) = 0.0D0
 ELSEIF (I.EQ.2) THEN
 A(I) = 1.0D0
 ELSE
 A(I) = A(I-1) + A(I-2)
 ENDIF
 ENDDO
 END
C END FILE FIB1.F

The quick way

The quickest way to wrap the Fortran subroutine FIB to Python is
to run

f2py -c fib1.f -m fib1

This command builds (see -c flag, execute f2py without
arguments to see the explanation of command line options) an extension
module fib1.so (see -m flag) to the current directory. Now, in
Python the Fortran subroutine FIB is accessible via fib1.fib:

>>> import numpy
>>> import fib1
>>> print fib1.fib.__doc__
fib - Function signature:
 fib(a,[n])
Required arguments:
 a : input rank-1 array('d') with bounds (n)
Optional arguments:
 n := len(a) input int

>>> a = numpy.zeros(8,'d')
>>> fib1.fib(a)
>>> print a
[0. 1. 1. 2. 3. 5. 8. 13.]

Note

	Note that F2PY found that the second argument n is the
dimension of the first array argument a. Since by default all
arguments are input-only arguments, F2PY concludes that n can
be optional with the default value len(a).

	One can use different values for optional n:

>>> a1 = numpy.zeros(8,'d')
>>> fib1.fib(a1,6)
>>> print a1
[0. 1. 1. 2. 3. 5. 0. 0.]

but an exception is raised when it is incompatible with the input
array a:

>>> fib1.fib(a,10)
fib:n=10
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
fib.error: (len(a)>=n) failed for 1st keyword n
>>>

This demonstrates one of the useful features in F2PY, that it,
F2PY implements basic compatibility checks between related
arguments in order to avoid any unexpected crashes.

	When a Numpy array, that is Fortran contiguous and has a dtype
corresponding to presumed Fortran type, is used as an input array
argument, then its C pointer is directly passed to Fortran.

Otherwise F2PY makes a contiguous copy (with a proper dtype) of
the input array and passes C pointer of the copy to Fortran
subroutine. As a result, any possible changes to the (copy of)
input array have no effect to the original argument, as
demonstrated below:

>>> a = numpy.ones(8,'i')
>>> fib1.fib(a)
>>> print a
[1 1 1 1 1 1 1 1]

Clearly, this is not an expected behaviour. The fact that the
above example worked with dtype=float is considered
accidental.

F2PY provides intent(inplace) attribute that would modify
the attributes of an input array so that any changes made by
Fortran routine will be effective also in input argument. For example,
if one specifies intent(inplace) a (see below, how), then
the example above would read:

>>> a = numpy.ones(8,'i')
>>> fib1.fib(a)
>>> print a
[0. 1. 1. 2. 3. 5. 8. 13.]

However, the recommended way to get changes made by Fortran
subroutine back to python is to use intent(out) attribute. It
is more efficient and a cleaner solution.

	The usage of fib1.fib in Python is very similar to using
FIB in Fortran. However, using in situ output arguments in
Python indicates a poor style as there is no safety mechanism
in Python with respect to wrong argument types. When using Fortran
or C, compilers naturally discover any type mismatches during
compile time but in Python the types must be checked in
runtime. So, using in situ output arguments in Python may cause
difficult to find bugs, not to mention that the codes will be less
readable when all required type checks are implemented.

Though the demonstrated way of wrapping Fortran routines to Python
is very straightforward, it has several drawbacks (see the comments
above). These drawbacks are due to the fact that there is no way
that F2PY can determine what is the actual intention of one or the
other argument, is it input or output argument, or both, or
something else. So, F2PY conservatively assumes that all arguments
are input arguments by default.

However, there are ways (see below) how to “teach” F2PY about the
true intentions (among other things) of function arguments; and then
F2PY is able to generate more Pythonic (more explicit, easier to
use, and less error prone) wrappers to Fortran functions.

The smart way

Let’s apply the steps of wrapping Fortran functions to Python one by
one.

	First, we create a signature file from fib1.f by running

f2py fib1.f -m fib2 -h fib1.pyf

The signature file is saved to fib1.pyf (see -h flag) and
its contents is shown below.

! -*- f90 -*-
python module fib2 ! in
 interface ! in :fib2
 subroutine fib(a,n) ! in :fib2:fib1.f
 real*8 dimension(n) :: a
 integer optional,check(len(a)>=n),depend(a) :: n=len(a)
 end subroutine fib
 end interface
end python module fib2

! This file was auto-generated with f2py (version:2.28.198-1366).
! See http://cens.ioc.ee/projects/f2py2e/

	Next, we’ll teach F2PY that the argument n is a input argument
(use intent(in) attribute) and that the result, i.e. the
contents of a after calling Fortran function FIB, should be
returned to Python (use intent(out) attribute). In addition, an
array a should be created dynamically using the size given by
the input argument n (use depend(n) attribute to indicate
dependence relation).

The content of a modified version of fib1.pyf (saved as
fib2.pyf) is as follows:

! -*- f90 -*-
python module fib2
 interface
 subroutine fib(a,n)
 real*8 dimension(n),intent(out),depend(n) :: a
 integer intent(in) :: n
 end subroutine fib
 end interface
end python module fib2

	And finally, we build the extension module by running

f2py -c fib2.pyf fib1.f

In Python:

>>> import fib2
>>> print fib2.fib.__doc__
fib - Function signature:
 a = fib(n)
Required arguments:
 n : input int
Return objects:
 a : rank-1 array('d') with bounds (n)

>>> print fib2.fib(8)
[0. 1. 1. 2. 3. 5. 8. 13.]

Note

	Clearly, the signature of fib2.fib now corresponds to the
intention of Fortran subroutine FIB more closely: given the
number n, fib2.fib returns the first n Fibonacci numbers
as a Numpy array. Also, the new Python signature fib2.fib
rules out any surprises that we experienced with fib1.fib.

	Note that by default using single intent(out) also implies
intent(hide). Argument that has intent(hide) attribute
specified, will not be listed in the argument list of a wrapper
function.

The quick and smart way

The “smart way” of wrapping Fortran functions, as explained above, is
suitable for wrapping (e.g. third party) Fortran codes for which
modifications to their source codes are not desirable nor even
possible.

However, if editing Fortran codes is acceptable, then the generation
of an intermediate signature file can be skipped in most
cases. Namely, F2PY specific attributes can be inserted directly to
Fortran source codes using the so-called F2PY directive. A F2PY
directive defines special comment lines (starting with Cf2py, for
example) which are ignored by Fortran compilers but F2PY interprets
them as normal lines.

Here is shown a modified version of the example Fortran code, saved
as fib3.f:

C FILE: FIB3.F
 SUBROUTINE FIB(A,N)
C
C CALCULATE FIRST N FIBONACCI NUMBERS
C
 INTEGER N
 REAL*8 A(N)
Cf2py intent(in) n
Cf2py intent(out) a
Cf2py depend(n) a
 DO I=1,N
 IF (I.EQ.1) THEN
 A(I) = 0.0D0
 ELSEIF (I.EQ.2) THEN
 A(I) = 1.0D0
 ELSE
 A(I) = A(I-1) + A(I-2)
 ENDIF
 ENDDO
 END
C END FILE FIB3.F

Building the extension module can be now carried out in one command:

f2py -c -m fib3 fib3.f

Notice that the resulting wrapper to FIB is as “smart” as in
previous case:

>>> import fib3
>>> print fib3.fib.__doc__
fib - Function signature:
 a = fib(n)
Required arguments:
 n : input int
Return objects:
 a : rank-1 array('d') with bounds (n)

>>> print fib3.fib(8)
[0. 1. 1. 2. 3. 5. 8. 13.]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	F2PY Users Guide and Reference Manual

Signature file

The syntax specification for signature files (.pyf files) is borrowed
from the Fortran 90/95 language specification. Almost all Fortran
90/95 standard constructs are understood, both in free and fixed
format (recall that Fortran 77 is a subset of Fortran 90/95). F2PY
introduces also some extensions to Fortran 90/95 language
specification that help designing Fortran to Python interface, make it
more “Pythonic”.

Signature files may contain arbitrary Fortran code (so that Fortran
codes can be considered as signature files). F2PY silently ignores
Fortran constructs that are irrelevant for creating the interface.
However, this includes also syntax errors. So, be careful not making
ones;-).

In general, the contents of signature files is case-sensitive. When
scanning Fortran codes and writing a signature file, F2PY lowers all
cases automatically except in multiline blocks or when --no-lower
option is used.

The syntax of signature files is overvied below.

Python module block

A signature file may contain one (recommended) or more python
module blocks. python module block describes the contents of
a Python/C extension module <modulename>module.c that F2PY
generates.

Exception: if <modulename> contains a substring __user__, then
the corresponding python module block describes the signatures of
so-called call-back functions (see Call-back arguments).

A python module block has the following structure:

python module <modulename>
 [<usercode statement>]...
 [
 interface
 <usercode statement>
 <Fortran block data signatures>
 <Fortran/C routine signatures>
 end [interface]
]...
 [
 interface
 module <F90 modulename>
 [<F90 module data type declarations>]
 [<F90 module routine signatures>]
 end [module [<F90 modulename>]]
 end [interface]
]...
end [python module [<modulename>]]

Here brackets [] indicate a optional part, dots ... indicate
one or more of a previous part. So, []... reads zero or more of a
previous part.

Fortran/C routine signatures

The signature of a Fortran routine has the following structure:

[<typespec>] function | subroutine <routine name> \
 [([<arguments>])] [result (<entityname>)]
 [<argument/variable type declarations>]
 [<argument/variable attribute statements>]
 [<use statements>]
 [<common block statements>]
 [<other statements>]
end [function | subroutine [<routine name>]]

From a Fortran routine signature F2PY generates a Python/C extension
function that has the following signature:

def <routine name>(<required arguments>[,<optional arguments>]):
 ...
 return <return variables>

The signature of a Fortran block data has the following structure:

block data [<block data name>]
 [<variable type declarations>]
 [<variable attribute statements>]
 [<use statements>]
 [<common block statements>]
 [<include statements>]
end [block data [<block data name>]]

Type declarations

The definition of the <argument/variable type declaration> part
is

<typespec> [[<attrspec>] ::] <entitydecl>

where

<typespec> := byte | character [<charselector>]
 | complex [<kindselector>] | real [<kindselector>]
 | double complex | double precision
 | integer [<kindselector>] | logical [<kindselector>]

<charselector> := * <charlen>
 | ([len=] <len> [, [kind=] <kind>])
 | (kind= <kind> [, len= <len>])
<kindselector> := * <intlen> | ([kind=] <kind>)

<entitydecl> := <name> [[* <charlen>] [(<arrayspec>)]
 | [(<arrayspec>)] * <charlen>]
 | [/ <init_expr> / | = <init_expr>] \
 [, <entitydecl>]

and

	<attrspec> is a comma separated list of attributes;

	<arrayspec> is a comma separated list of dimension bounds;

	<init_expr> is a C expression.

	<intlen> may be negative integer for integer type
specifications. In such cases integer*<negintlen> represents
unsigned C integers.

If an argument has no <argument type declaration>, its type is
determined by applying implicit rules to its name.

Statements

	Attribute statements:

	The <argument/variable attribute statement> is
<argument/variable type declaration> without <typespec>.
In addition, in an attribute statement one cannot use other
attributes, also <entitydecl> can be only a list of names.

	Use statements:

	The definition of the <use statement> part is

use <modulename> [, <rename_list> | , ONLY : <only_list>]

where

<rename_list> := <local_name> => <use_name> [, <rename_list>]

Currently F2PY uses use statement only for linking call-back
modules and external arguments (call-back functions), see
Call-back arguments.

	Common block statements:

	The definition of the <common block statement> part is

common / <common name> / <shortentitydecl>

where

<shortentitydecl> := <name> [(<arrayspec>)] [, <shortentitydecl>]

One python module block should not contain two or more
common blocks with the same name. Otherwise, the latter ones are
ignored. The types of variables in <shortentitydecl> are defined
using <argument type declarations>. Note that the corresponding
<argument type declarations> may contain array specifications;
then you don’t need to specify these in <shortentitydecl>.

	Other statements:

	The <other statement> part refers to any other Fortran language
constructs that are not described above. F2PY ignores most of them
except

	call statements and function calls of external arguments
(more details?);

	
	include statements

	include '<filename>'
include "<filename>"

If a file <filename> does not exist, the include
statement is ignored. Otherwise, the file <filename> is
included to a signature file. include statements can be used
in any part of a signature file, also outside the Fortran/C
routine signature blocks.

	
	implicit statements

	implicit none
implicit <list of implicit maps>

where

<implicit map> := <typespec> (<list of letters or range of letters>)

Implicit rules are used to determine the type specification of
a variable (from the first-letter of its name) if the variable
is not defined using <variable type declaration>. Default
implicit rule is given by

implicit real (a-h,o-z,$_), integer (i-m)

	
	entry statements

	entry <entry name> [([<arguments>])]

F2PY generates wrappers to all entry names using the signature
of the routine block.

Tip: entry statement can be used to describe the signature
of an arbitrary routine allowing F2PY to generate a number of
wrappers from only one routine block signature. There are few
restrictions while doing this: fortranname cannot be used,
callstatement and callprotoargument can be used only if
they are valid for all entry routines, etc.

In addition, F2PY introduces the following statements:

	
	threadsafe

	Use Py_BEGIN_ALLOW_THREADS .. Py_END_ALLOW_THREADS block
around the call to Fortran/C function.

	
	callstatement <C-expr|multi-line block>

	Replace F2PY generated call statement to Fortran/C function with
<C-expr|multi-line block>. The wrapped Fortran/C function
is available as (*f2py_func). To raise an exception, set
f2py_success = 0 in <C-expr|multi-line block>.

	
	callprotoargument <C-typespecs>

	When callstatement statement is used then F2PY may not
generate proper prototypes for Fortran/C functions (because
<C-expr> may contain any function calls and F2PY has no way
to determine what should be the proper prototype). With this
statement you can explicitly specify the arguments of the
corresponding prototype:

extern <return type> FUNC_F(<routine name>,<ROUTINE NAME>)(<callprotoargument>);

	
	fortranname [<actual Fortran/C routine name>]

	You can use arbitrary <routine name> for a given Fortran/C
function. Then you have to specify
<actual Fortran/C routine name> with this statement.

If fortranname statement is used without
<actual Fortran/C routine name> then a dummy wrapper is
generated.

	
	usercode <multi-line block>

	When used inside python module block, then given C code
will be inserted to generated C/API source just before
wrapper function definitions. Here you can define arbitrary
C functions to be used in initialization of optional arguments,
for example. If usercode is used twice inside python
module block then the second multiline block is inserted
after the definition of external routines.

When used inside <routine singature>, then given C code will
be inserted to the corresponding wrapper function just after
declaring variables but before any C statements. So, usercode
follow-up can contain both declarations and C statements.

When used inside the first interface block, then given C
code will be inserted at the end of the initialization
function of the extension module. Here you can modify extension
modules dictionary. For example, for defining additional
variables etc.

	
	pymethoddef <multiline block>

	Multiline block will be inserted to the definition of
module methods PyMethodDef-array. It must be a
comma-separated list of C arrays (see Extending and Embedding [http://www.python.org/doc/current/ext/ext.html]
Python documentation for details).
pymethoddef statement can be used only inside
python module block.

Attributes

The following attributes are used by F2PY:

	optional

	The corresponding argument is moved to the end of <optional
arguments> list. A default value for an optional argument can be
specified <init_expr>, see entitydecl definition. Note that
the default value must be given as a valid C expression.

Note that whenever <init_expr> is used, optional attribute
is set automatically by F2PY.

For an optional array argument, all its dimensions must be bounded.

	required

	The corresponding argument is considered as a required one. This is
default. You need to specify required only if there is a need to
disable automatic optional setting when <init_expr> is used.

If Python None object is used as an required argument, the
argument is treated as optional. That is, in the case of array
argument, the memory is allocated. And if <init_expr> is given,
the corresponding initialization is carried out.

	dimension(<arrayspec>)

	The corresponding variable is considered as an array with given
dimensions in <arrayspec>.

	intent(<intentspec>)

	This specifies the “intention” of the corresponding
argument. <intentspec> is a comma separated list of the
following keys:

	
	in

	The argument is considered as an input-only argument. It means
that the value of the argument is passed to Fortran/C function and
that function is expected not to change the value of an argument.

	
	inout

	The argument is considered as an input/output or in situ
output argument. intent(inout) arguments can be only
“contiguous” Numpy arrays with proper type and size. Here
“contiguous” can be either in Fortran or C sense. The latter one
coincides with the contiguous concept used in Numpy and is
effective only if intent(c) is used. Fortran contiguity
is assumed by default.

Using intent(inout) is generally not recommended, use
intent(in,out) instead. See also intent(inplace) attribute.

	
	inplace

	The argument is considered as an input/output or in situ
output argument. intent(inplace) arguments must be
Numpy arrays with proper size. If the type of an array is
not “proper” or the array is non-contiguous then the array
will be changed in-place to fix the type and make it contiguous.

Using intent(inplace) is generally not recommended either.
For example, when slices have been taken from an
intent(inplace) argument then after in-place changes,
slices data pointers may point to unallocated memory area.

	
	out

	The argument is considered as an return variable. It is appended
to the <returned variables> list. Using intent(out)
sets intent(hide) automatically, unless also
intent(in) or intent(inout) were used.

By default, returned multidimensional arrays are
Fortran-contiguous. If intent(c) is used, then returned
multidimensional arrays are C-contiguous.

	
	hide

	The argument is removed from the list of required or optional
arguments. Typically intent(hide) is used with intent(out)
or when <init_expr> completely determines the value of the
argument like in the following example:

integer intent(hide),depend(a) :: n = len(a)
real intent(in),dimension(n) :: a

	
	c

	The argument is treated as a C scalar or C array argument. In
the case of a scalar argument, its value is passed to C function
as a C scalar argument (recall that Fortran scalar arguments are
actually C pointer arguments). In the case of an array
argument, the wrapper function is assumed to treat
multidimensional arrays as C-contiguous arrays.

There is no need to use intent(c) for one-dimensional
arrays, no matter if the wrapped function is either a Fortran or
a C function. This is because the concepts of Fortran- and
C contiguity overlap in one-dimensional cases.

If intent(c) is used as an statement but without entity
declaration list, then F2PY adds intent(c) attibute to all
arguments.

Also, when wrapping C functions, one must use intent(c)
attribute for <routine name> in order to disable Fortran
specific F_FUNC(..,..) macros.

	
	cache

	The argument is treated as a junk of memory. No Fortran nor C
contiguity checks are carried out. Using intent(cache)
makes sense only for array arguments, also in connection with
intent(hide) or optional attributes.

	
	copy

	Ensure that the original contents of intent(in) argument is
preserved. Typically used in connection with intent(in,out)
attribute. F2PY creates an optional argument
overwrite_<argument name> with the default value 0.

	
	overwrite

	The original contents of the intent(in) argument may be
altered by the Fortran/C function. F2PY creates an optional
argument overwrite_<argument name> with the default value
1.

	
	out=<new name>

	Replace the return name with <new name> in the __doc__
string of a wrapper function.

	
	callback

	Construct an external function suitable for calling Python function
from Fortran. intent(callback) must be specified before the
corresponding external statement. If ‘argument’ is not in
argument list then it will be added to Python wrapper but only
initializing external function.

Use intent(callback) in situations where a Fortran/C code
assumes that a user implements a function with given prototype
and links it to an executable. Don’t use intent(callback)
if function appears in the argument list of a Fortran routine.

With intent(hide) or optional attributes specified and
using a wrapper function without specifying the callback argument
in argument list then call-back function is looked in the
namespace of F2PY generated extension module where it can be
set as a module attribute by a user.

	
	aux

	Define auxiliary C variable in F2PY generated wrapper function.
Useful to save parameter values so that they can be accessed
in initialization expression of other variables. Note that
intent(aux) silently implies intent(c).

The following rules apply:

	If no intent(in | inout | out | hide) is specified,
intent(in) is assumed.

	intent(in,inout) is intent(in).

	intent(in,hide) or intent(inout,hide) is
intent(hide).

	intent(out) is intent(out,hide) unless intent(in) or
intent(inout) is specified.

	If intent(copy) or intent(overwrite) is used, then an
additional optional argument is introduced with a name
overwrite_<argument name> and a default value 0 or 1, respectively.

	intent(inout,inplace) is intent(inplace).

	intent(in,inplace) is intent(inplace).

	intent(hide) disables optional and required.

	check([<C-booleanexpr>])

	Perform consistency check of arguments by evaluating
<C-booleanexpr>; if <C-booleanexpr> returns 0, an exception
is raised.

If check(..) is not used then F2PY generates few standard checks
(e.g. in a case of an array argument, check for the proper shape
and size) automatically. Use check() to disable checks generated
by F2PY.

	depend([<names>])

	This declares that the corresponding argument depends on the values
of variables in the list <names>. For example, <init_expr>
may use the values of other arguments. Using information given by
depend(..) attributes, F2PY ensures that arguments are
initialized in a proper order. If depend(..) attribute is not
used then F2PY determines dependence relations automatically. Use
depend() to disable dependence relations generated by F2PY.

When you edit dependence relations that were initially generated by
F2PY, be careful not to break the dependence relations of other
relevant variables. Another thing to watch out is cyclic
dependencies. F2PY is able to detect cyclic dependencies
when constructing wrappers and it complains if any are found.

	allocatable

	The corresponding variable is Fortran 90 allocatable array defined
as Fortran 90 module data.

	external

	The corresponding argument is a function provided by user. The
signature of this so-called call-back function can be defined

	in __user__ module block,

	or by demonstrative (or real, if the signature file is a real Fortran
code) call in the <other statements> block.

For example, F2PY generates from

external cb_sub, cb_fun
integer n
real a(n),r
call cb_sub(a,n)
r = cb_fun(4)

the following call-back signatures:

subroutine cb_sub(a,n)
 real dimension(n) :: a
 integer optional,check(len(a)>=n),depend(a) :: n=len(a)
end subroutine cb_sub
function cb_fun(e_4_e) result (r)
 integer :: e_4_e
 real :: r
end function cb_fun

The corresponding user-provided Python function are then:

def cb_sub(a,[n]):
 ...
 return
def cb_fun(e_4_e):
 ...
 return r

See also intent(callback) attribute.

	parameter

	The corresponding variable is a parameter and it must have a fixed
value. F2PY replaces all parameter occurrences by their
corresponding values.

Extensions

F2PY directives

The so-called F2PY directives allow using F2PY signature file
constructs also in Fortran 77/90 source codes. With this feature you
can skip (almost) completely intermediate signature file generations
and apply F2PY directly to Fortran source codes.

F2PY directive has the following form:

<comment char>f2py ...

where allowed comment characters for fixed and free format Fortran
codes are cC*!# and !, respectively. Everything that follows
<comment char>f2py is ignored by a compiler but read by F2PY as a
normal Fortran, non-comment line:

When F2PY finds a line with F2PY directive, the directive is first
replaced by 5 spaces and then the line is reread.

For fixed format Fortran codes, <comment char> must be at the
first column of a file, of course. For free format Fortran codes,
F2PY directives can appear anywhere in a file.

C expressions

C expressions are used in the following parts of signature files:

	<init_expr> of variable initialization;

	<C-booleanexpr> of the check attribute;

	<arrayspec> of the ``dimension attribute;

	callstatement statement, here also a C multiline block can be used.

A C expression may contain:

	standard C constructs;

	functions from math.h and Python.h;

	variables from the argument list, presumably initialized before
according to given dependence relations;

	the following CPP macros:

	rank(<name>)

	Returns the rank of an array <name>.

	shape(<name>,<n>)

	Returns the <n>-th dimension of an array <name>.

	len(<name>)

	Returns the lenght of an array <name>.

	size(<name>)

	Returns the size of an array <name>.

	slen(<name>)

	Returns the length of a string <name>.

For initializing an array <array name>, F2PY generates a loop over
all indices and dimensions that executes the following
pseudo-statement:

<array name>(_i[0],_i[1],...) = <init_expr>;

where _i[<i>] refers to the <i>-th index value and that runs
from 0 to shape(<array name>,<i>)-1.

For example, a function myrange(n) generated from the following
signature

subroutine myrange(a,n)
 fortranname ! myrange is a dummy wrapper
 integer intent(in) :: n
 real*8 intent(c,out),dimension(n),depend(n) :: a = _i[0]
end subroutine myrange

is equivalent to numpy.arange(n,dtype=float).

Warning

F2PY may lower cases also in C expressions when scanning Fortran codes
(see --[no]-lower option).

Multiline blocks

A multiline block starts with ''' (triple single-quotes) and ends
with ''' in some strictly subsequent line. Multiline blocks can
be used only within .pyf files. The contents of a multiline block can
be arbitrary (except that it cannot contain ''') and no
transformations (e.g. lowering cases) are applied to it.

Currently, multiline blocks can be used in the following constructs:

	as a C expression of the callstatement statement;

	as a C type specification of the callprotoargument statement;

	as a C code block of the usercode statement;

	as a list of C arrays of the pymethoddef statement;

	as documentation string.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	F2PY Users Guide and Reference Manual

Using F2PY bindings in Python

All wrappers for Fortran/C routines, common blocks, or for Fortran
90 module data generated by F2PY are exposed to Python as fortran
type objects. Routine wrappers are callable fortran type objects
while wrappers to Fortran data have attributes referring to data
objects.

All fortran type object have attribute _cpointer that contains
CObject referring to the C pointer of the corresponding Fortran/C
function or variable in C level. Such CObjects can be used as an
callback argument of F2PY generated functions to bypass Python C/API
layer of calling Python functions from Fortran or C when the
computational part of such functions is implemented in C or Fortran
and wrapped with F2PY (or any other tool capable of providing CObject
of a function).

Consider a Fortran 77 file ftype.f:

C FILE: FTYPE.F
 SUBROUTINE FOO(N)
 INTEGER N
Cf2py integer optional,intent(in) :: n = 13
 REAL A,X
 COMMON /DATA/ A,X(3)
 PRINT*, "IN FOO: N=",N," A=",A," X=[",X(1),X(2),X(3),"]"
 END
C END OF FTYPE.F

and build a wrapper using f2py -c ftype.f -m ftype.

In Python:

>>> import ftype
>>> print ftype.__doc__
This module 'ftype' is auto-generated with f2py (version:2.28.198-1366).
Functions:
 foo(n=13)
COMMON blocks:
 /data/ a,x(3)
.
>>> type(ftype.foo),type(ftype.data)
(<type 'fortran'>, <type 'fortran'>)
>>> ftype.foo()
 IN FOO: N= 13 A= 0. X=[0. 0. 0.]
>>> ftype.data.a = 3
>>> ftype.data.x = [1,2,3]
>>> ftype.foo()
 IN FOO: N= 13 A= 3. X=[1. 2. 3.]
>>> ftype.data.x[1] = 45
>>> ftype.foo(24)
 IN FOO: N= 24 A= 3. X=[1. 45. 3.]
>>> ftype.data.x
array([1., 45., 3.],'f')

Scalar arguments

In general, a scalar argument of a F2PY generated wrapper function can
be ordinary Python scalar (integer, float, complex number) as well as
an arbitrary sequence object (list, tuple, array, string) of
scalars. In the latter case, the first element of the sequence object
is passed to Fortran routine as a scalar argument.

Note that when type-casting is required and there is possible loss of
information (e.g. when type-casting float to integer or complex to
float), F2PY does not raise any exception. In complex to real
type-casting only the real part of a complex number is used.

intent(inout) scalar arguments are assumed to be array objects in
order to in situ changes to be effective. It is recommended to use
arrays with proper type but also other types work.

Consider the following Fortran 77 code:

C FILE: SCALAR.F
 SUBROUTINE FOO(A,B)
 REAL*8 A, B
Cf2py intent(in) a
Cf2py intent(inout) b
 PRINT*, " A=",A," B=",B
 PRINT*, "INCREMENT A AND B"
 A = A + 1D0
 B = B + 1D0
 PRINT*, "NEW A=",A," B=",B
 END
C END OF FILE SCALAR.F

and wrap it using f2py -c -m scalar scalar.f.

In Python:

>>> import scalar
>>> print scalar.foo.__doc__
foo - Function signature:
 foo(a,b)
Required arguments:
 a : input float
 b : in/output rank-0 array(float,'d')

>>> scalar.foo(2,3)
 A= 2. B= 3.
 INCREMENT A AND B
 NEW A= 3. B= 4.
>>> import numpy
>>> a=numpy.array(2) # these are integer rank-0 arrays
>>> b=numpy.array(3)
>>> scalar.foo(a,b)
 A= 2. B= 3.
 INCREMENT A AND B
 NEW A= 3. B= 4.
>>> print a,b # note that only b is changed in situ
2 4

String arguments

F2PY generated wrapper functions accept (almost) any Python object as
a string argument, str is applied for non-string objects.
Exceptions are Numpy arrays that must have type code 'c' or
'1' when used as string arguments.

A string can have arbitrary length when using it as a string argument
to F2PY generated wrapper function. If the length is greater than
expected, the string is truncated. If the length is smaller that
expected, additional memory is allocated and filled with \0.

Because Python strings are immutable, an intent(inout) argument
expects an array version of a string in order to in situ changes to
be effective.

Consider the following Fortran 77 code:

C FILE: STRING.F
 SUBROUTINE FOO(A,B,C,D)
 CHARACTER*5 A, B
 CHARACTER*(*) C,D
Cf2py intent(in) a,c
Cf2py intent(inout) b,d
 PRINT*, "A=",A
 PRINT*, "B=",B
 PRINT*, "C=",C
 PRINT*, "D=",D
 PRINT*, "CHANGE A,B,C,D"
 A(1:1) = 'A'
 B(1:1) = 'B'
 C(1:1) = 'C'
 D(1:1) = 'D'
 PRINT*, "A=",A
 PRINT*, "B=",B
 PRINT*, "C=",C
 PRINT*, "D=",D
 END
C END OF FILE STRING.F

and wrap it using f2py -c -m mystring string.f.

Python session:

>>> import mystring
>>> print mystring.foo.__doc__
foo - Function signature:
 foo(a,b,c,d)
Required arguments:
 a : input string(len=5)
 b : in/output rank-0 array(string(len=5),'c')
 c : input string(len=-1)
 d : in/output rank-0 array(string(len=-1),'c')

>>> import numpy
>>> a=numpy.array('123')
>>> b=numpy.array('123')
>>> c=numpy.array('123')
>>> d=numpy.array('123')
>>> mystring.foo(a,b,c,d)
 A=123
 B=123
 C=123
 D=123
 CHANGE A,B,C,D
 A=A23
 B=B23
 C=C23
 D=D23
>>> a.tostring(),b.tostring(),c.tostring(),d.tostring()
('123', 'B23', '123', 'D23')

Array arguments

In general, array arguments of F2PY generated wrapper functions accept
arbitrary sequences that can be transformed to Numpy array objects.
An exception is intent(inout) array arguments that always must be
proper-contiguous and have proper type, otherwise an exception is
raised. Another exception is intent(inplace) array arguments that
attributes will be changed in-situ if the argument has different type
than expected (see intent(inplace) attribute for more
information).

In general, if a Numpy array is proper-contiguous and has a proper
type then it is directly passed to wrapped Fortran/C function.
Otherwise, an element-wise copy of an input array is made and the
copy, being proper-contiguous and with proper type, is used as an
array argument.

There are two types of proper-contiguous Numpy arrays:

	Fortran-contiguous arrays when data is stored column-wise,
i.e. indexing of data as stored in memory starts from the lowest
dimension;

	C-contiguous or simply contiguous arrays when data is stored
row-wise, i.e. indexing of data as stored in memory starts from the
highest dimension.

For one-dimensional arrays these notions coincide.

For example, an 2x2 array A is Fortran-contiguous if its elements
are stored in memory in the following order:

A[0,0] A[1,0] A[0,1] A[1,1]

and C-contiguous if the order is as follows:

A[0,0] A[0,1] A[1,0] A[1,1]

To test whether an array is C-contiguous, use .iscontiguous()
method of Numpy arrays. To test for Fortran contiguity, all
F2PY generated extension modules provide a function
has_column_major_storage(<array>). This function is equivalent to
<array>.flags.f_contiguous but more efficient.

Usually there is no need to worry about how the arrays are stored in
memory and whether the wrapped functions, being either Fortran or C
functions, assume one or another storage order. F2PY automatically
ensures that wrapped functions get arguments with proper storage
order; the corresponding algorithm is designed to make copies of
arrays only when absolutely necessary. However, when dealing with very
large multidimensional input arrays with sizes close to the size of
the physical memory in your computer, then a care must be taken to use
always proper-contiguous and proper type arguments.

To transform input arrays to column major storage order before passing
them to Fortran routines, use a function
as_column_major_storage(<array>) that is provided by all F2PY
generated extension modules.

Consider Fortran 77 code:

C FILE: ARRAY.F
 SUBROUTINE FOO(A,N,M)
C
C INCREMENT THE FIRST ROW AND DECREMENT THE FIRST COLUMN OF A
C
 INTEGER N,M,I,J
 REAL*8 A(N,M)
Cf2py intent(in,out,copy) a
Cf2py integer intent(hide),depend(a) :: n=shape(a,0), m=shape(a,1)
 DO J=1,M
 A(1,J) = A(1,J) + 1D0
 ENDDO
 DO I=1,N
 A(I,1) = A(I,1) - 1D0
 ENDDO
 END
C END OF FILE ARRAY.F

and wrap it using f2py -c -m arr array.f -DF2PY_REPORT_ON_ARRAY_COPY=1.

In Python:

>>> import arr
>>> from numpy import array
>>> print arr.foo.__doc__
foo - Function signature:
 a = foo(a,[overwrite_a])
Required arguments:
 a : input rank-2 array('d') with bounds (n,m)
Optional arguments:
 overwrite_a := 0 input int
Return objects:
 a : rank-2 array('d') with bounds (n,m)

>>> a=arr.foo([[1,2,3],
... [4,5,6]])
copied an array using PyArray_CopyFromObject: size=6, elsize=8
>>> print a
[[1. 3. 4.]
 [3. 5. 6.]]
>>> a.iscontiguous(), arr.has_column_major_storage(a)
(0, 1)
>>> b=arr.foo(a) # even if a is proper-contiguous
... # and has proper type, a copy is made
... # forced by intent(copy) attribute
... # to preserve its original contents
...
copied an array using copy_ND_array: size=6, elsize=8
>>> print a
[[1. 3. 4.]
 [3. 5. 6.]]
>>> print b
[[1. 4. 5.]
 [2. 5. 6.]]
>>> b=arr.foo(a,overwrite_a=1) # a is passed directly to Fortran
... # routine and its contents is discarded
...
>>> print a
[[1. 4. 5.]
 [2. 5. 6.]]
>>> print b
[[1. 4. 5.]
 [2. 5. 6.]]
>>> a is b # a and b are acctually the same objects
1
>>> print arr.foo([1,2,3]) # different rank arrays are allowed
copied an array using PyArray_CopyFromObject: size=3, elsize=8
[1. 1. 2.]
>>> print arr.foo([[[1],[2],[3]]])
copied an array using PyArray_CopyFromObject: size=3, elsize=8
[[[1.]
 [3.]
 [4.]]]
>>>
>>> # Creating arrays with column major data storage order:
...
>>> s = arr.as_column_major_storage(array([[1,2,3],[4,5,6]]))
copied an array using copy_ND_array: size=6, elsize=4
>>> arr.has_column_major_storage(s)
1
>>> print s
[[1 2 3]
 [4 5 6]]
>>> s2 = arr.as_column_major_storage(s)
>>> s2 is s # an array with column major storage order
 # is returned immediately
1

Call-back arguments

F2PY supports calling Python functions from Fortran or C codes.

Consider the following Fortran 77 code:

C FILE: CALLBACK.F
 SUBROUTINE FOO(FUN,R)
 EXTERNAL FUN
 INTEGER I
 REAL*8 R
Cf2py intent(out) r
 R = 0D0
 DO I=-5,5
 R = R + FUN(I)
 ENDDO
 END
C END OF FILE CALLBACK.F

and wrap it using f2py -c -m callback callback.f.

In Python:

>>> import callback
>>> print callback.foo.__doc__
foo - Function signature:
 r = foo(fun,[fun_extra_args])
Required arguments:
 fun : call-back function
Optional arguments:
 fun_extra_args := () input tuple
Return objects:
 r : float
Call-back functions:
 def fun(i): return r
 Required arguments:
 i : input int
 Return objects:
 r : float

>>> def f(i): return i*i
...
>>> print callback.foo(f)
110.0
>>> print callback.foo(lambda i:1)
11.0

In the above example F2PY was able to guess accurately the signature
of a call-back function. However, sometimes F2PY cannot establish the
signature as one would wish and then the signature of a call-back
function must be modified in the signature file manually. Namely,
signature files may contain special modules (the names of such modules
contain a substring __user__) that collect various signatures of
call-back functions. Callback arguments in routine signatures have
attribute external (see also intent(callback) attribute). To
relate a callback argument and its signature in __user__ module
block, use use statement as illustrated below. The same signature
of a callback argument can be referred in different routine
signatures.

We use the same Fortran 77 code as in previous example but now
we’ll pretend that F2PY was not able to guess the signatures of
call-back arguments correctly. First, we create an initial signature
file callback2.pyf using F2PY:

f2py -m callback2 -h callback2.pyf callback.f

Then modify it as follows

! -*- f90 -*-
python module __user__routines
 interface
 function fun(i) result (r)
 integer :: i
 real*8 :: r
 end function fun
 end interface
end python module __user__routines

python module callback2
 interface
 subroutine foo(f,r)
 use __user__routines, f=>fun
 external f
 real*8 intent(out) :: r
 end subroutine foo
 end interface
end python module callback2

Finally, build the extension module using f2py -c callback2.pyf callback.f.

An example Python session would be identical to the previous example
except that argument names would differ.

Sometimes a Fortran package may require that users provide routines
that the package will use. F2PY can construct an interface to such
routines so that Python functions could be called from Fortran.

Consider the following `Fortran 77 subroutine`__ that takes an array
and applies a function func to its elements.

 subroutine calculate(x,n)
cf2py intent(callback) func
 external func
c The following lines define the signature of func for F2PY:
cf2py real*8 y
cf2py y = func(y)
c
cf2py intent(in,out,copy) x
 integer n,i
 real*8 x(n)
 do i=1,n
 x(i) = func(x(i))
 end do
 end

It is expected that function func has been defined
externally. In order to use a Python function as func, it must
have an attribute intent(callback) (it must be specified before
the external statement).

Finally, build an extension module using f2py -c -m foo calculate.f

In Python:

>>> import foo
>>> foo.calculate(range(5), lambda x: x*x)
array([0., 1., 4., 9., 16.])
>>> import math
>>> foo.calculate(range(5), math.exp)
array([1. , 2.71828175, 7.38905621, 20.08553696, 54.59814835])

The function is included as an argument to the python function call to
the Fortran subroutine even though it was not in the Fortran subroutine argument
list. The “external” refers to the C function generated by f2py, not the python
function itself. The python function must be supplied to the C function.

The callback function may also be explicitly set in the module.
Then it is not necessary to pass the function in the argument list to
the Fortran function. This may be desired if the Fortran function calling
the python callback function is itself called by another Fortran function.

Consider the following Fortran 77 subroutine:

 subroutine f1()
 print *, "in f1, calling f2 twice.."
 call f2()
 call f2()
 return
 end

 subroutine f2()
cf2py intent(callback, hide) fpy
 external fpy
 print *, "in f2, calling f2py.."
 call fpy()
 return
 end

and wrap it using f2py -c -m pfromf extcallback.f.

In Python:

>>> import pfromf
>>> pfromf.f2()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
pfromf.error: Callback fpy not defined (as an argument or module pfromf attribute).

>>> def f(): print "python f"
...
>>> pfromf.fpy = f
>>> pfromf.f2()
 in f2, calling f2py..
python f
>>> pfromf.f1()
 in f1, calling f2 twice..
 in f2, calling f2py..
python f
 in f2, calling f2py..
python f
>>>

Resolving arguments to call-back functions

F2PY generated interface is very flexible with respect to call-back
arguments. For each call-back argument an additional optional
argument <name>_extra_args is introduced by F2PY. This argument
can be used to pass extra arguments to user provided call-back
arguments.

If a F2PY generated wrapper function expects the following call-back
argument:

def fun(a_1,...,a_n):
 ...
 return x_1,...,x_k

but the following Python function

def gun(b_1,...,b_m):
 ...
 return y_1,...,y_l

is provided by an user, and in addition,

fun_extra_args = (e_1,...,e_p)

is used, then the following rules are applied when a Fortran or C
function calls the call-back argument gun:

	If p == 0 then gun(a_1, ..., a_q) is called, here
q = min(m, n).

	If n + p <= m then gun(a_1, ..., a_n, e_1, ..., e_p) is called.

	If p <= m < n + p then gun(a_1, ..., a_q, e_1, ..., e_p) is called, here
q=m-p.

	If p > m then gun(e_1, ..., e_m) is called.

	If n + p is less than the number of required arguments to gun
then an exception is raised.

The function gun may return any number of objects as a tuple. Then
following rules are applied:

	If k < l, then y_{k + 1}, ..., y_l are ignored.

	If k > l, then only x_1, ..., x_l are set.

Common blocks

F2PY generates wrappers to common blocks defined in a routine
signature block. Common blocks are visible by all Fortran codes linked
with the current extension module, but not to other extension modules
(this restriction is due to how Python imports shared libraries). In
Python, the F2PY wrappers to common blocks are fortran type
objects that have (dynamic) attributes related to data members of
common blocks. When accessed, these attributes return as Numpy array
objects (multidimensional arrays are Fortran-contiguous) that
directly link to data members in common blocks. Data members can be
changed by direct assignment or by in-place changes to the
corresponding array objects.

Consider the following Fortran 77 code:

C FILE: COMMON.F
 SUBROUTINE FOO
 INTEGER I,X
 REAL A
 COMMON /DATA/ I,X(4),A(2,3)
 PRINT*, "I=",I
 PRINT*, "X=[",X,"]"
 PRINT*, "A=["
 PRINT*, "[",A(1,1),",",A(1,2),",",A(1,3),"]"
 PRINT*, "[",A(2,1),",",A(2,2),",",A(2,3),"]"
 PRINT*, "]"
 END
C END OF COMMON.F

and wrap it using f2py -c -m common common.f.

In Python:

>>> import common
>>> print common.data.__doc__
i - 'i'-scalar
x - 'i'-array(4)
a - 'f'-array(2,3)

>>> common.data.i = 5
>>> common.data.x[1] = 2
>>> common.data.a = [[1,2,3],[4,5,6]]
>>> common.foo()
 I= 5
 X=[0 2 0 0]
 A=[
 [1., 2., 3.]
 [4., 5., 6.]
]
>>> common.data.a[1] = 45
>>> common.foo()
 I= 5
 X=[0 2 0 0]
 A=[
 [1., 2., 3.]
 [45., 45., 45.]
]
>>> common.data.a # a is Fortran-contiguous
array([[1., 2., 3.],
 [45., 45., 45.]],'f')

Fortran 90 module data

The F2PY interface to Fortran 90 module data is similar to Fortran 77
common blocks.

Consider the following Fortran 90 code:

module mod
 integer i
 integer :: x(4)
 real, dimension(2,3) :: a
 real, allocatable, dimension(:,:) :: b
contains
 subroutine foo
 integer k
 print*, "i=",i
 print*, "x=[",x,"]"
 print*, "a=["
 print*, "[",a(1,1),",",a(1,2),",",a(1,3),"]"
 print*, "[",a(2,1),",",a(2,2),",",a(2,3),"]"
 print*, "]"
 print*, "Setting a(1,2)=a(1,2)+3"
 a(1,2) = a(1,2)+3
 end subroutine foo
end module mod

and wrap it using f2py -c -m moddata moddata.f90.

In Python:

>>> import moddata
>>> print moddata.mod.__doc__
i - 'i'-scalar
x - 'i'-array(4)
a - 'f'-array(2,3)
foo - Function signature:
 foo()

>>> moddata.mod.i = 5
>>> moddata.mod.x[:2] = [1,2]
>>> moddata.mod.a = [[1,2,3],[4,5,6]]
>>> moddata.mod.foo()
 i= 5
 x=[1 2 0 0]
 a=[
 [1.000000 , 2.000000 , 3.000000]
 [4.000000 , 5.000000 , 6.000000]
]
 Setting a(1,2)=a(1,2)+3
>>> moddata.mod.a # a is Fortran-contiguous
array([[1., 5., 3.],
 [4., 5., 6.]],'f')

Allocatable arrays

F2PY has basic support for Fortran 90 module allocatable arrays.

Consider the following Fortran 90 code:

module mod
 real, allocatable, dimension(:,:) :: b
contains
 subroutine foo
 integer k
 if (allocated(b)) then
 print*, "b=["
 do k = 1,size(b,1)
 print*, b(k,1:size(b,2))
 enddo
 print*, "]"
 else
 print*, "b is not allocated"
 endif
 end subroutine foo
end module mod

and wrap it using f2py -c -m allocarr allocarr.f90.

In Python:

>>> import allocarr
>>> print allocarr.mod.__doc__
b - 'f'-array(-1,-1), not allocated
foo - Function signature:
 foo()

>>> allocarr.mod.foo()
 b is not allocated
>>> allocarr.mod.b = [[1,2,3],[4,5,6]] # allocate/initialize b
>>> allocarr.mod.foo()
 b=[
 1.000000 2.000000 3.000000
 4.000000 5.000000 6.000000
]
>>> allocarr.mod.b # b is Fortran-contiguous
array([[1., 2., 3.],
 [4., 5., 6.]],'f')
>>> allocarr.mod.b = [[1,2,3],[4,5,6],[7,8,9]] # reallocate/initialize b
>>> allocarr.mod.foo()
 b=[
 1.000000 2.000000 3.000000
 4.000000 5.000000 6.000000
 7.000000 8.000000 9.000000
]
>>> allocarr.mod.b = None # deallocate array
>>> allocarr.mod.foo()
 b is not allocated

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	F2PY Users Guide and Reference Manual

Using F2PY

F2PY can be used either as a command line tool f2py or as a Python
module f2py2e.

Command f2py

When used as a command line tool, f2py has three major modes,
distinguished by the usage of -c and -h switches:

	To scan Fortran sources and generate a signature file, use

f2py -h <filename.pyf> <options> <fortran files> \
 [[only: <fortran functions> :] \
 [skip: <fortran functions> :]]... \
 [<fortran files> ...]

Note that a Fortran source file can contain many routines, and not
necessarily all routines are needed to be used from Python. So, you
can either specify which routines should be wrapped (in only: .. :
part) or which routines F2PY should ignored (in skip: .. : part).

If <filename.pyf> is specified as stdout then signatures
are send to standard output instead of a file.

Among other options (see below), the following options can be used
in this mode:

	--overwrite-signature

	Overwrite existing signature file.

	To construct an extension module, use

f2py <options> <fortran files> \
 [[only: <fortran functions> :] \
 [skip: <fortran functions> :]]... \
 [<fortran files> ...]

The constructed extension module is saved as
<modulename>module.c to the current directory.

Here <fortran files> may also contain signature files.
Among other options (see below), the following options can be used
in this mode:

	--debug-capi

	Add debugging hooks to the extension module. When using this
extension module, various information about the wrapper is printed
to standard output, for example, the values of variables, the
steps taken, etc.

	-include'<includefile>'

	Add a CPP #include statement to the extension module source.
<includefile> should be given in one of the following forms:

"filename.ext"
<filename.ext>

The include statement is inserted just before the wrapper
functions. This feature enables using arbitrary C functions
(defined in <includefile>) in F2PY generated wrappers.

This option is deprecated. Use usercode statement to specify
C code snippets directly in signature files

--[no-]wrap-functions

Create Fortran subroutine wrappers to Fortran functions.
--wrap-functions is default because it ensures maximum
portability and compiler independence.

	--include-paths <path1>:<path2>:..

	Search include files from given directories.

	--help-link [<list of resources names>]

	List system resources found by numpy_distutils/system_info.py.
For example, try f2py --help-link lapack_opt.

	To build an extension module, use

f2py -c <options> <fortran files> \
 [[only: <fortran functions> :] \
 [skip: <fortran functions> :]]... \
 [<fortran/c source files>] [<.o, .a, .so files>]

If <fortran files> contains a signature file, then a source for
an extension module is constructed, all Fortran and C sources are
compiled, and finally all object and library files are linked to the
extension module <modulename>.so which is saved into the current
directory.

If <fortran files> does not contain a signature file, then an
extension module is constructed by scanning all Fortran source codes
for routine signatures.

Among other options (see below) and options described in previous
mode, the following options can be used in this mode:

	--help-fcompiler

	List available Fortran compilers.

	--help-compiler [depreciated]

	List available Fortran compilers.

	--fcompiler=<Vendor>

	Specify Fortran compiler type by vendor.

	--f77exec=<path>

	Specify the path to F77 compiler

	--fcompiler-exec=<path> [depreciated]

	Specify the path to F77 compiler

	--f90exec=<path>

	Specify the path to F90 compiler

	--f90compiler-exec=<path> [depreciated]

	Specify the path to F90 compiler

	--f77flags=<string>

	Specify F77 compiler flags

	--f90flags=<string>

	Specify F90 compiler flags

	--opt=<string>

	Specify optimization flags

	--arch=<string>

	Specify architecture specific optimization flags

	--noopt

	Compile without optimization

	--noarch

	Compile without arch-dependent optimization

	--debug

	Compile with debugging information

	-l<libname>

	Use the library <libname> when linking.

	-D<macro>[=<defn=1>]

	Define macro <macro> as <defn>.

	-U<macro>

	Define macro <macro>

	-I<dir>

	Append directory <dir> to the list of directories searched for
include files.

	-L<dir>

	Add directory <dir> to the list of directories to be searched
for -l.

link-<resource>

Link extension module with <resource> as defined by
numpy_distutils/system_info.py. E.g. to link with optimized
LAPACK libraries (vecLib on MacOSX, ATLAS elsewhere), use
--link-lapack_opt. See also --help-link switch.

When building an extension module, a combination of the following
macros may be required for non-gcc Fortran compilers:

-DPREPEND_FORTRAN
-DNO_APPEND_FORTRAN
-DUPPERCASE_FORTRAN

To test the performance of F2PY generated interfaces, use
-DF2PY_REPORT_ATEXIT. Then a report of various timings is
printed out at the exit of Python. This feature may not work on
all platforms, currently only Linux platform is supported.

To see whether F2PY generated interface performs copies of array
arguments, use -DF2PY_REPORT_ON_ARRAY_COPY=<int>. When the size
of an array argument is larger than <int>, a message about
the coping is sent to stderr.

Other options:

	-m <modulename>

	Name of an extension module. Default is untitled. Don’t use this option
if a signature file (*.pyf) is used.

	--[no-]lower

	Do [not] lower the cases in <fortran files>. By default,
--lower is assumed with -h switch, and --no-lower
without the -h switch.

	--build-dir <dirname>

	All F2PY generated files are created in <dirname>. Default is
tempfile.mkdtemp().

	--quiet

	Run quietly.

	--verbose

	Run with extra verbosity.

	-v

	Print f2py version ID and exit.

Execute f2py without any options to get an up-to-date list of
available options.

Python module f2py2e

Warning

The current Python interface to f2py2e module is not mature and
may change in future depending on users needs.

The following functions are provided by the f2py2e module:

	run_main(<list>)

	Equivalent to running:

f2py <args>

where <args>=string.join(<list>,' '), but in Python. Unless
-h is used, this function returns a dictionary containing
information on generated modules and their dependencies on source
files. For example, the command f2py -m scalar scalar.f can be
executed from Python as follows

>>> import f2py2e
>>> r=f2py2e.run_main(['-m','scalar','docs/usersguide/scalar.f'])
Reading fortran codes...
 Reading file 'docs/usersguide/scalar.f'
Post-processing...
 Block: scalar
 Block: FOO
Building modules...
 Building module "scalar"...
 Wrote C/API module "scalar" to file "./scalarmodule.c"
>>> print r
{'scalar': {'h': ['/home/users/pearu/src_cvs/f2py2e/src/fortranobject.h'],
 'csrc': ['./scalarmodule.c',
 '/home/users/pearu/src_cvs/f2py2e/src/fortranobject.c']}}

You cannot build extension modules with this function, that is,
using -c is not allowed. Use compile command instead, see
below.

	compile(source, modulename='untitled', extra_args='', verbose=1, source_fn=None)

	Build extension module from Fortran 77 source string source.
Return 0 if successful.
Note that this function actually calls f2py -c .. from shell to
ensure safety of the current Python process.
For example,

>>> import f2py2e
>>> fsource = '''
... subroutine foo
... print*, "Hello world!"
... end
... '''
>>> f2py2e.compile(fsource,modulename='hello',verbose=0)
0
>>> import hello
>>> hello.foo()
 Hello world!

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	F2PY Users Guide and Reference Manual

Using via numpy.distutils

numpy.distutils is part of Numpy extending standard Python distutils
to deal with Fortran sources and F2PY signature files, e.g. compile Fortran
sources, call F2PY to construct extension modules, etc.

Example

Consider the following setup file:

from __future__ import division, absolute_import, print_function

from numpy.distutils.core import Extension

ext1 = Extension(name = 'scalar',
 sources = ['scalar.f'])
ext2 = Extension(name = 'fib2',
 sources = ['fib2.pyf', 'fib1.f'])

if __name__ == "__main__":
 from numpy.distutils.core import setup
 setup(name = 'f2py_example',
 description = "F2PY Users Guide examples",
 author = "Pearu Peterson",
 author_email = "pearu@cens.ioc.ee",
 ext_modules = [ext1, ext2]
)
End of setup_example.py

Running

python setup_example.py build

will build two extension modules scalar and fib2 to the
build directory.

numpy.distutils extends distutils with the following features:

	Extension class argument sources may contain Fortran source
files. In addition, the list sources may contain at most one
F2PY signature file, and then the name of an Extension module must
match with the <modulename> used in signature file. It is
assumed that an F2PY signature file contains exactly one python
module block.

If sources does not contain a signature files, then F2PY is used
to scan Fortran source files for routine signatures to construct the
wrappers to Fortran codes.

Additional options to F2PY process can be given using Extension
class argument f2py_options.

	The following new distutils commands are defined:

	build_src

	to construct Fortran wrapper extension modules, among many other things.

	config_fc

	to change Fortran compiler options

as well as build_ext and build_clib commands are enhanced
to support Fortran sources.

Run

python <setup.py file> config_fc build_src build_ext --help

to see available options for these commands.

	When building Python packages containing Fortran sources, then one
can choose different Fortran compilers by using build_ext
command option --fcompiler=<Vendor>. Here <Vendor> can be one of the
following names:

absoft sun mips intel intelv intele intelev nag compaq compaqv gnu vast pg hpux

See numpy_distutils/fcompiler.py for up-to-date list of
supported compilers or run

f2py -c --help-fcompiler

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	F2PY Users Guide and Reference Manual

Advanced F2PY usages

Adding self-written functions to F2PY generated modules

Self-written Python C/API functions can be defined inside
signature files using usercode and pymethoddef statements
(they must be used inside the python module block). For
example, the following signature file spam.pyf

! -*- f90 -*-
python module spam
 usercode '''
 static char doc_spam_system[] = "Execute a shell command.";
 static PyObject *spam_system(PyObject *self, PyObject *args)
 {
 char *command;
 int sts;

 if (!PyArg_ParseTuple(args, "s", &command))
 return NULL;
 sts = system(command);
 return Py_BuildValue("i", sts);
 }
 '''
 pymethoddef '''
 {"system", spam_system, METH_VARARGS, doc_spam_system},
 '''
end python module spam

wraps the C library function system():

f2py -c spam.pyf

In Python:

>>> import spam
>>> status = spam.system('whoami')
pearu
>> status = spam.system('blah')
sh: line 1: blah: command not found

Modifying the dictionary of a F2PY generated module

The following example illustrates how to add an user-defined
variables to a F2PY generated extension module. Given the following
signature file

! -*- f90 -*-
python module var
 usercode '''
 int BAR = 5;
 '''
 interface
 usercode '''
 PyDict_SetItemString(d,"BAR",PyInt_FromLong(BAR));
 '''
 end interface
end python module

compile it as f2py -c var.pyf.

Notice that the second usercode statement must be defined inside
an interface block and where the module dictionary is available through
the variable d (see f2py var.pyf-generated varmodule.c for
additional details).

In Python:

>>> import var
>>> var.BAR
5

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

Contributing to Numpy

	Working with NumPy source code
	Introduction
	Install git

	Following the latest source
	Get the local copy of the code

	Updating the code

	Git for development
	Getting started with Git development

	Git configuration

	Development workflow

	git resources
	Tutorials and summaries

	Advanced git workflow

	Manual pages online

For core developers: see Development workflow.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Contributing to Numpy

Working with NumPy source code

Contents:

	Introduction
	Install git

	Following the latest source
	Get the local copy of the code

	Updating the code

	Git for development
	Getting started with Git development

	Git configuration

	Development workflow

	git resources
	Tutorials and summaries

	Advanced git workflow

	Manual pages online

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Contributing to Numpy

 	Working with NumPy source code

Introduction

These pages describe a git [http://git-scm.com/] and github [http://github.com] workflow for the NumPy [http://www.numpy.org]
project.

There are several different workflows here, for different ways of
working with NumPy.

This is not a comprehensive git [http://git-scm.com/] reference, it’s just a workflow for our
own project. It’s tailored to the github [http://github.com] hosting service. You may well
find better or quicker ways of getting stuff done with git [http://git-scm.com/], but these
should get you started.

For general resources for learning git [http://git-scm.com/] see git resources.

Install git

Overview

	Debian / Ubuntu
	sudo apt-get install git-core

	Fedora
	sudo yum install git-core

	Windows
	Download and install msysGit [http://code.google.com/p/msysgit/downloads/list]

	OS X
	Use the git-osx-installer [http://code.google.com/p/git-osx-installer/downloads/list]

In detail

See the git [http://git-scm.com/] page for the most recent information.

Have a look at the github [http://github.com] install help pages available from github help [http://help.github.com]

There are good instructions here: http://book.git-scm.com/2_installing_git.html

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Contributing to Numpy

 	Working with NumPy source code

Following the latest source

These are the instructions if you just want to follow the latest
NumPy source, but you don’t need to do any development for now.
If you do want to contribute a patch (excellent!) or do more extensive
NumPy development, see Development workflow.

The steps are:

	Install git

	get local copy of the git repository from Github [https://github.com/numpy]

	update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/numpy/numpy.git

You now have a copy of the code tree in the new numpy directory.
If this doesn’t work you can try the alternative read-only url:

git clone https://github.com/numpy/numpy.git

Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd numpy
git fetch
git merge --ff-only

The tree in numpy will now have the latest changes from the initial
repository.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Contributing to Numpy

 	Working with NumPy source code

Git for development

Contents:

	Getting started with Git development
	Basic Git setup

	Making your own copy (fork) of NumPy

	Set up your fork

	Git configuration
	Overview

	In detail

	Development workflow
	Basic workflow

	Additional things you might want to do

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Contributing to Numpy

 	Working with NumPy source code

 	Git for development

Getting started with Git development

This section and the next describe in detail how to set up git for working
with the NumPy source code. If you have git already set up, skip to
Development workflow.

Basic Git setup

	Install git.

	Introduce yourself to Git:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

Making your own copy (fork) of NumPy

You need to do this only once. The instructions here are very similar
to the instructions at http://help.github.com/forking/ - please see that
page for more detail. We’re repeating some of it here just to give the
specifics for the NumPy [http://www.numpy.org] project, and to suggest some default names.

Set up and configure a github [http://github.com] account

If you don’t have a github [http://github.com] account, go to the github [http://github.com] page, and make one.

You then need to configure your account to allow write access - see the
Generating SSH keys help on github help [http://help.github.com].

Create your own forked copy of NumPy [http://www.numpy.org]

	Log into your github [http://github.com] account.

	Go to the NumPy [http://www.numpy.org] github home at NumPy github [http://github.com/numpy/numpy].

	Click on the fork button:

[image: ../../_images/forking_button.png]
After a short pause, you should find yourself at the home page for
your own forked copy of NumPy [http://www.numpy.org].

Set up your fork

First you follow the instructions for Making your own copy (fork) of NumPy.

Overview

git clone git@github.com:your-user-name/numpy.git
cd numpy
git remote add upstream git://github.com/numpy/numpy.git

In detail

Clone your fork

	Clone your fork to the local computer with git clone
git@github.com:your-user-name/numpy.git

	Investigate. Change directory to your new repo: cd numpy. Then
git branch -a to show you all branches. You’ll get something
like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and
that you also have a remote connection to origin/master.
What remote repository is remote/origin? Try git remote -v to
see the URLs for the remote. They will point to your github [http://github.com] fork.

Now you want to connect to the upstream NumPy github [http://github.com/numpy/numpy] repository, so
you can merge in changes from trunk.

Linking your repository to the upstream repo

cd numpy
git remote add upstream git://github.com/numpy/numpy.git

upstream here is just the arbitrary name we’re using to refer to the
main NumPy [http://www.numpy.org] repository at NumPy github [http://github.com/numpy/numpy].

Note that we’ve used git:// for the URL rather than git@. The
git:// URL is read only. This means we that we can’t accidentally
(or deliberately) write to the upstream repo, and we are only going to
use it to merge into our own code.

Just for your own satisfaction, show yourself that you now have a new
‘remote’, with git remote -v show, giving you something like:

upstream git://github.com/numpy/numpy.git (fetch)
upstream git://github.com/numpy/numpy.git (push)
origin git@github.com:your-user-name/numpy.git (fetch)
origin git@github.com:your-user-name/numpy.git (push)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Contributing to Numpy

 	Working with NumPy source code

 	Git for development

Git configuration

Overview

Your personal git [http://git-scm.com/] configurations are saved in the .gitconfig file in
your home directory.
Here is an example .gitconfig file:

[user]
 name = Your Name
 email = you@yourdomain.example.com

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

[core]
 editor = vim

[merge]
 summary = true

You can edit this file directly or you can use the git config --global
command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file,
or run the commands above.

In detail

user.name and user.email

It is good practice to tell git [http://git-scm.com/] who you are, for labeling any changes
you make to the code. The simplest way to do this is from the command
line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which
should now contain a user section with your name and email:

[user]
 name = Your Name
 email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com
with your actual name and email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout
to git co. Or you may want to alias git diff --color-words
(which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents
like this:

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
 log = true

Or from the command line:

git config --global merge.log true

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Contributing to Numpy

 	Working with NumPy source code

 	Git for development

Development workflow

You already have your own forked copy of the NumPy [http://www.numpy.org] repository, by
following Making your own copy (fork) of NumPy, Set up your fork, you have configured git [http://git-scm.com/]
by following Git configuration, and have linked the upstream
repository as explained in Linking your repository to the upstream repo.

What is described below is a recommended workflow with Git.

Basic workflow

In short:

	Update your master branch if it’s not up to date.
Then start a new feature branch for each set of edits that you do.
See below.

Avoid putting new commits in your master branch.

	Hack away! See below

	Avoid merging other branches into your feature branch while you are
working.

You can optionally rebase if really needed,
see below.

	When finished:

	Contributors: push your feature branch to your own Github repo, and
ask for code review or make a pull request.

	Core developers (if you want to push changes without
further review):

First, either (i) rebase on upstream -- if you have only few commits
git fetch upstream
git rebase upstream/master

or, (ii) merge to upstream -- if you have many related commits
git fetch upstream
git merge --no-ff upstream/master

Recheck that what is there is sensible
git log --oneline --graph
git log -p upstream/master..

Finally, push branch to upstream master
git push upstream my-new-feature:master

See below.

Note

It’s usually a good idea to use the -n flag to git push
to check first that you’re about to push the changes you want to
the place you want.

This way of working helps to keep work well organized and the history
as clear as possible.

Note

Do not use git pull — this avoids common mistakes if you are
new to Git. Instead, always do git fetch followed by git
rebase, git merge --ff-only or git merge --no-ff,
depending on what you intend.

See also

See discussions on linux git workflow [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html],
and ipython git workflow [http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html].

Making a new feature branch

To update your master branch, use:

git fetch upstream
git merge upstream/master --ff-only

To create a new branch and check it out, use:

git checkout -b my-new-feature upstream/master

Generally, you will want to keep this branch also on your public github [http://github.com] fork
of NumPy [http://www.numpy.org]. To do this, you git push [http://www.kernel.org/pub/software/scm/git/docs/git-push.html] this new branch up to your github [http://github.com]
repo. Generally (if you followed the instructions in these pages, and
by default), git will have a link to your github [http://github.com] repo, called
origin. You push up to your own repo on github [http://github.com] with:

git push origin my-new-feature

In git >= 1.7 you can ensure that the link is correctly set by using the
--set-upstream option:

git push --set-upstream origin my-new-feature

From now on git [http://git-scm.com/] will know that my-new-feature is related to the
my-new-feature branch in your own github [http://github.com] repo.

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am 'ENH: some message'

push the branch to your own Github repo
git push

In more detail

	Make some changes

	See which files have changed with git status (see git status [http://www.kernel.org/pub/software/scm/git/docs/git-status.html]).
You’ll see a listing like this one:

On branch my-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

	Check what the actual changes are with git diff (git diff [http://www.kernel.org/pub/software/scm/git/docs/git-diff.html]).

	Add any new files to version control git add new_file_name (see
git add [http://www.kernel.org/pub/software/scm/git/docs/git-add.html]).

	To commit all modified files into the local copy of your repo,, do
git commit -am 'A commit message'. Note the -am options to
commit. The m flag just signals that you’re going to type a
message on the command line. If you leave it out, an editor will open in
which you can compose your commit message. For non-trivial commits this is
often the better choice. The a flag - you can just take on faith - or
see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html] - and the helpful use-case description in the
tangled working copy problem [http://tomayko.com/writings/the-thing-about-git]. The section on
commit messages below might also be useful.

	To push the changes up to your forked repo on github [http://github.com], do a git
push (see git push).

Writing the commit message

Commit messages should be clear and follow a few basic rules. Example:

ENH: add functionality X to numpy.<submodule>.

The first line of the commit message starts with a capitalized acronym
(options listed below) indicating what type of commit this is. Then a blank
line, then more text if needed. Lines shouldn't be longer than 80
characters. If the commit is related to a ticket, indicate that with
"See #3456", "See ticket 3456", "Closes #3456" or similar.

Describing the motivation for a change, the nature of a bug for bug fixes or
some details on what an enhancement does are also good to include in a commit
message. Messages should be understandable without looking at the code
changes. A commit message like MAINT: fixed another one is an example of
what not to do; the reader has to go look for context elsewhere.

Standard acronyms to start the commit message with are:

API: an (incompatible) API change
BLD: change related to building numpy
BUG: bug fix
DEP: deprecate something, or remove a deprecated object
DEV: development tool or utility
DOC: documentation
ENH: enhancement
MAINT: maintenance commit (refactoring, typos, etc.)
REV: revert an earlier commit
STY: style fix (whitespace, PEP8)
TST: addition or modification of tests
REL: related to releasing numpy

Rebasing on master

This updates your feature branch with changes from the upstream NumPy
github [http://github.com/numpy/numpy] repo. If you do not absolutely need to do this, try to avoid
doing it, except perhaps when you are finished.

First, it can be useful to update your master branch:

go to the master branch
git checkout master
pull changes from github
git fetch upstream
update the master branch
git rebase upstream/master
push it to your Github repo
git push

Then, the feature branch:

go to the feature branch
git checkout my-new-feature
make a backup in case you mess up
git branch tmp my-new-feature
rebase on master
git rebase master

If you have made changes to files that have changed also upstream,
this may generate merge conflicts that you need to resolve.
Finally, remove the backup branch once the rebase succeeded:

git branch -D tmp

Recovering from mess-ups

Sometimes, you mess up merges or rebases. Luckily, in Git it is
relatively straightforward to recover from such mistakes.

If you mess up during a rebase:

git rebase --abort

If you notice you messed up after the rebase:

reset branch back to the saved point
git reset --hard tmp

If you forgot to make a backup branch:

look at the reflog of the branch
git reflog show my-feature-branch

8630830 my-feature-branch@{0}: commit: BUG: io: close file handles immediately
278dd2a my-feature-branch@{1}: rebase finished: refs/heads/my-feature-branch onto 11ee694744f2552d
26aa21a my-feature-branch@{2}: commit: BUG: lib: make seek_gzip_factory not leak gzip obj
...

reset the branch to where it was before the botched rebase
git reset --hard my-feature-branch@{2}

If you didn’t actually mess up but there are merge conflicts, you need to
resolve those. This can be one of the trickier things to get right. For a
good description of how to do this, see
http://git-scm.com/book/en/Git-Branching-Basic-Branching-and-Merging#Basic-Merge-Conflicts

Asking for your changes to be merged with the main repo

When you feel your work is finished, you can ask for code review, or
directly file a pull request.

Asking for code review

	Go to your repo URL - e.g. http://github.com/your-user-name/numpy.

	Click on the Branch list button:

[image: ../../_images/branch_list.png]

	Click on the Compare button for your feature branch - here my-new-feature:

[image: ../../_images/branch_list_compare.png]

	If asked, select the base and comparison branch names you want to
compare. Usually these will be master and my-new-feature
(where that is your feature branch name).

	At this point you should get a nice summary of the changes. Copy the
URL for this, and post it to the NumPy mailing list [http://scipy.org/Mailing_Lists], asking for
review. The URL will look something like:
http://github.com/your-user-name/numpy/compare/master...my-new-feature.
There’s an example at
http://github.com/matthew-brett/nipy/compare/master...find-install-data
See: http://github.com/blog/612-introducing-github-compare-view for
more detail.

The generated comparison, is between your feature branch
my-new-feature, and the place in master from which you branched
my-new-feature. In other words, you can keep updating master
without interfering with the output from the comparison. More detail?
Note the three dots in the URL above (master...my-new-feature) and
see Two and three dots in difference specs.

Filing a pull request

When you are ready to ask for the merge of your code:

	Go to the URL of your forked repo, say
http://github.com/your-user-name/numpy.git.

	Click on the ‘Pull request’ button:

[image: ../../_images/pull_button.png]
Enter a message; we suggest you select only NumPy as the
recipient. The message will go to the NumPy core developers. Please
feel free to add others from the list as you like.

Pushing changes to the main repo

When you have a set of “ready” changes in a feature branch ready for
Numpy’s master or maintenance/1.5.x branches, you can push
them to upstream as follows:

	First, merge or rebase on the target branch.

	Only a few commits: prefer rebasing:

git fetch upstream
git rebase upstream/master

See above.

	Many related commits: consider creating a merge commit:

git fetch upstream
git merge --no-ff upstream/master

	Check that what you are going to push looks sensible:

git log -p upstream/master..
git log --oneline --graph

	Push to upstream:

git push upstream my-feature-branch:master

Note

Avoid using git pull here.

Additional things you might want to do

Rewriting commit history

Note

Do this only for your own feature branches.

There’s an embarrassing typo in a commit you made? Or perhaps the you
made several false starts you would like the posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log --oneline
eadc391 Fix some remaining bugs
a815645 Modify it so that it works
2dec1ac Fix a few bugs + disable
13d7934 First implementation
6ad92e5 * masked is now an instance of a new object, MaskedConstant
29001ed Add pre-nep for a copule of structured_array_extensions.
...

and 6ad92e5 is the last commit in the master branch. Suppose we
want to make the following changes:

	Rewrite the commit message for 13d7934 to something more sensible.

	Combine the commits 2dec1ac, a815645, eadc391 into a single one.

We do as follows:

make a backup of the current state
git branch tmp HEAD
interactive rebase
git rebase -i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92e5..eadc391 onto 6ad92e5
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for
13d7934, and (ii) collapse the last three commits into one. Now we
save and quit the editor.

Git will then immediately bring up an editor for editing the commit
message. After revising it, we get the output:

[detached HEAD 721fc64] FOO: First implementation
 2 files changed, 199 insertions(+), 66 deletions(-)
[detached HEAD 0f22701] Fix a few bugs + disable
 1 files changed, 79 insertions(+), 61 deletions(-)
Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

0f22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 * masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

Deleting a branch on github [http://github.com]

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also:
http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all
committing into the same repository, or even the same branch, then just
share it via github [http://github.com].

First fork NumPy into your account, as from Making your own copy (fork) of NumPy.

Then, go to your forked repository github page, say
http://github.com/your-user-name/numpy

Click on the ‘Admin’ button, and add anyone else to the repo as a
collaborator:

[image: ../../_images/pull_button.png]

Now all those people can do:

git clone git@githhub.com:your-user-name/numpy.git

Remember that links starting with git@ use the ssh protocol and are
read-write; links starting with git:// are read-only.

Your collaborators can then commit directly into that repo with the
usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Exploring your repository

To see a graphical representation of the repository branches and
commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer [http://github.com/blog/39-say-hello-to-the-network-graph-visualizer] for your github [http://github.com]
repo.

Backporting

Backporting is the process of copying new feature/fixes committed in
numpy/master [https://github.com/numpy/numpy] back to stable release branches. To do this you make a branch
off the branch you are backporting to, cherry pick the commits you want from
numpy/master, and then submit a pull request for the branch containing the
backport.

	Assuming you already have a fork of NumPy on Github. We need to
update it from upstream:

Add upstream.
git remote add upstream https://github.com/numpy/numpy.git

Get the latest updates.
git fetch upstream

Make sure you are on master.
git checkout master

Apply the updates locally.
git rebase upstream/master

Push the updated code to your github repo.
git push origin

	Next you need to make the branch you will work on. This needs to be
based on the older version of NumPy (not master):

Make a new branch based on numpy/maintenance/1.8.x,
backport-3324 is our new name for the branch.
git checkout -b backport-3324 upstream/maintenance/1.8.x

	Now you need to apply the changes from master to this branch using
git cherry-pick [https://www.kernel.org/pub/software/scm/git/docs/git-cherry-pick.html]:

This pull request included commits aa7a047 to c098283 (inclusive)
so you use the .. syntax (for a range of commits), the ^ makes the
range inclusive.
git cherry-pick aa7a047^..c098283
...
Fix any conflicts, then if needed:
git cherry-pick --continue

	You might run into some conflicts cherry picking here. These are
resolved the same way as merge/rebase conflicts. Except here you can
use git blame [https://www.kernel.org/pub/software/scm/git/docs/git-blame.html] to see the difference between master and the
backported branch to make sure nothing gets screwed up.

	Push the new branch to your Github repository:

git push -u origin backport-3324

	Finally make a pull request using Github. Make sure it is against the
maintenance branch and not master, Github will usually suggest you
make the pull request against master.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Contributing to Numpy

 	Working with NumPy source code

git [http://git-scm.com/] resources

Tutorials and summaries

	github help [http://help.github.com] has an excellent series of how-to guides.

	learn.github [http://learn.github.com/] has an excellent series of tutorials

	The pro git book [http://progit.org/] is a good in-depth book on git.

	A git cheat sheet [http://github.com/guides/git-cheat-sheet] is a page giving summaries of common commands.

	The git user manual [http://www.kernel.org/pub/software/scm/git/docs/user-manual.html]

	The git tutorial [http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html]

	The git community book [http://book.git-scm.com/]

	git ready [http://www.gitready.com/] - a nice series of tutorials

	git casts [http://www.gitcasts.com/] - video snippets giving git how-tos.

	git magic [http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html] - extended introduction with intermediate detail

	The git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html] is an easy read explaining the concepts behind git.

	Our own git foundation [http://matthew-brett.github.com/pydagogue/foundation.html] expands on the git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html].

	Fernando Perez’ git page - Fernando’s git page [http://www.fperez.org/py4science/git.html] - many links and tips

	A good but technical page on git concepts [http://www.eecs.harvard.edu/~cduan/technical/git/]

	git svn crash course [http://git-scm.com/course/svn.html]: git [http://git-scm.com/] for those of us used to subversion [http://subversion.tigris.org/]

Advanced git workflow

There are many ways of working with git [http://git-scm.com/]; here are some posts on the
rules of thumb that other projects have come up with:

	Linus Torvalds on git management [http://kerneltrap.org/Linux/Git_Management]

	Linus Torvalds on linux git workflow [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] . Summary; use the git tools
to make the history of your edits as clean as possible; merge from
upstream edits as little as possible in branches where you are doing
active development.

Manual pages online

You can get these on your own machine with (e.g) git help push or
(same thing) git push --help, but, for convenience, here are the
online manual pages for some common commands:

	git add [http://www.kernel.org/pub/software/scm/git/docs/git-add.html]

	git branch [http://www.kernel.org/pub/software/scm/git/docs/git-branch.html]

	git checkout [http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html]

	git clone [http://www.kernel.org/pub/software/scm/git/docs/git-clone.html]

	git commit [http://www.kernel.org/pub/software/scm/git/docs/git-commit.html]

	git config [http://www.kernel.org/pub/software/scm/git/docs/git-config.html]

	git diff [http://www.kernel.org/pub/software/scm/git/docs/git-diff.html]

	git log [http://www.kernel.org/pub/software/scm/git/docs/git-log.html]

	git pull [http://www.kernel.org/pub/software/scm/git/docs/git-pull.html]

	git push [http://www.kernel.org/pub/software/scm/git/docs/git-push.html]

	git remote [http://www.kernel.org/pub/software/scm/git/docs/git-remote.html]

	git status [http://www.kernel.org/pub/software/scm/git/docs/git-status.html]

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

Numpy Enhancement Proposals

Numpy Enhancement Proposals (NEPs) describe proposed changes to Numpy.
NEPs are modeled on Python Enhancement Proposals (PEPs), and are typically
written up when large changes to Numpy are proposed.

This page provides an overview of all NEPs, making only a distinction between
the ones that have been implemented and those that have not been implemented.

Implemented NEPs

	A Mechanism for Overriding Ufuncs

	Generalized Universal Functions

	Optimizing Iterator/UFunc Performance

	A Simple File Format for NumPy Arrays

Other NEPs

	Missing Data Functionality in NumPy

	Cleaning the math configuration of numpy.core

	A proposal for adding groupby functionality to NumPy

	A proposal to build numpy without warning with a big set of warning flags

	Replacing Trac with a different bug tracker

	Deferred UFunc Evaluation

	Structured array extensions

	A proposal for implementing some date/time types in NumPy

	A (third) proposal for implementing some date/time types in NumPy

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

A Mechanism for Overriding Ufuncs

	Author:	Blake Griffith

	Contact:	blake.g@utexa.edu

	Date:	2013-07-10

	Author:	Pauli Virtanen

	Author:	Nathaniel Smith

Executive summary

NumPy’s universal functions (ufuncs) currently have some limited
functionality for operating on user defined subclasses of ndarray using
__array_prepare__ and __array_wrap__ [1], and there is little
to no support for arbitrary objects. e.g. SciPy’s sparse matrices [2]
[3].

Here we propose adding a mechanism to override ufuncs based on the ufunc
checking each of it’s arguments for a __numpy_ufunc__ method.
On discovery of __numpy_ufunc__ the ufunc will hand off the
operation to the method.

This covers some of the same ground as Travis Oliphant’s proposal to
retro-fit NumPy with multi-methods [4], which would solve the same
problem. The mechanism here follows more closely the way Python enables
classes to override __mul__ and other binary operations.

	[1]	http://docs.scipy.org/doc/numpy/user/basics.subclassing.html

	[2]	https://github.com/scipy/scipy/issues/2123

	[3]	https://github.com/scipy/scipy/issues/1569

	[4]	http://technicaldiscovery.blogspot.com/2013/07/thoughts-after-scipy-2013-and-specific.html

Motivation

The current machinery for dispatching Ufuncs is generally agreed to be
insufficient. There have been lengthy discussions and other proposed
solutions [5].

Using ufuncs with subclasses of ndarray is limited to __array_prepare__ and
__array_wrap__ to prepare the arguments, but these don’t allow you to for
example change the shape or the data of the arguments. Trying to ufunc things
that don’t subclass ndarray is even more difficult, as the input arguments tend
to be cast to object arrays, which ends up producing surprising results.

Take this example of ufuncs interoperability with sparse matrices.:

In [1]: import numpy as np
import scipy.sparse as sp

a = np.random.randint(5, size=(3,3))
b = np.random.randint(5, size=(3,3))

asp = sp.csr_matrix(a)
bsp = sp.csr_matrix(b)

In [2]: a, b
Out[2]:(array([[0, 4, 4],
 [1, 3, 2],
 [1, 3, 1]]),
 array([[0, 1, 0],
 [0, 0, 1],
 [4, 0, 1]]))

In [3]: np.multiply(a, b) # The right answer
Out[3]: array([[0, 4, 0],
 [0, 0, 2],
 [4, 0, 1]])

In [4]: np.multiply(asp, bsp).todense() # calls __mul__ which does matrix multi
Out[4]: matrix([[16, 0, 8],
 [8, 1, 5],
 [4, 1, 4]], dtype=int64)

In [5]: np.multiply(a, bsp) # Returns NotImplemented to user, bad!
Out[5]: NotImplemted

Returning NotImplemented to user should not happen. Moreover:

In [6]: np.multiply(asp, b)
Out[6]: array([[<3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>,
 <3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>,
 <3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>],
 [<3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>,
 <3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>,
 <3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>],
 [<3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>,
 <3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>,
 <3x3 sparse matrix of type '<class 'numpy.int64'>'
 with 8 stored elements in Compressed Sparse Row format>]], dtype=object)

Here, it appears that the sparse matrix was converted to a object array
scalar, which was then multiplied with all elements of the b array.
However, this behavior is more confusing than useful, and having a
TypeError would be preferable.

Adding the __numpy_ufunc__ functionality fixes this and would
deprecate the other ufunc modifying functions.

	[5]	http://mail.scipy.org/pipermail/numpy-discussion/2011-June/056945.html

Proposed interface

Objects that want to override Ufuncs can define a __numpy_ufunc__ method.
The method signature is:

def __numpy_ufunc__(self, ufunc, method, i, inputs, **kwargs)

Here:

	ufunc is the ufunc object that was called.

	method is a string indicating which Ufunc method was called
(one of "__call__", "reduce", "reduceat",
"accumulate", "outer", "inner").

	i is the index of self in inputs.

	inputs is a tuple of the input arguments to the ufunc

	kwargs are the keyword arguments passed to the function. The out
arguments are always contained in kwargs, how positional variables
are passed is discussed below.

The ufunc’s arguments are first normalized into a tuple of input data
(inputs), and dict of keyword arguments. If there are output
arguments they are handeled as follows:

	One positional output variable x is passed in the kwargs dict as out :
x.

	Multiple positional output variables x0, x1, ... are passed as a tuple
in the kwargs dict as out : (x0, x1, ...).

	Keyword output variables like out = x and out = (x0, x1, ...) are
passed unchanged to the kwargs dict like out : x and out : (x0, x1,
...) respectively.

	Combinations of positional and keyword output variables are not
supported.

The function dispatch proceeds as follows:

	If one of the input arguments implements __numpy_ufunc__ it is
executed instead of the Ufunc.

	If more than one of the input arguments implements __numpy_ufunc__,
they are tried in the following order: subclasses before superclasses,
otherwise left to right. The first __numpy_ufunc__ method returning
something else than NotImplemented determines the return value of
the Ufunc.

	If all __numpy_ufunc__ methods of the input arguments return
NotImplemented, a TypeError is raised.

	If a __numpy_ufunc__ method raises an error, the error is propagated
immediately.

If none of the input arguments has a __numpy_ufunc__ method, the
execution falls back on the default ufunc behaviour.

In combination with Python’s binary operations

The __numpy_ufunc__ mechanism is fully independent of Python’s
standard operator override mechanism, and the two do not interact
directly.

They however have indirect interactions, because Numpy’s ndarray
type implements its binary operations via Ufuncs. Effectively, we have:

class ndarray(object):
 ...
 def __mul__(self, other):
 return np.multiply(self, other)

Suppose now we have a second class:

class MyObject(object):
 def __numpy_ufunc__(self, *a, **kw):
 return "ufunc"
 def __mul__(self, other):
 return 1234
 def __rmul__(self, other):
 return 4321

In this case, standard Python override rules combined with the above
discussion imply:

a = MyObject()
b = np.array([0])

a * b # == 1234 OK
b * a # == "ufunc" surprising

This is not what would be naively expected, and is therefore somewhat
undesirable behavior.

The reason why this occurs is: because MyObject is not an ndarray
subclass, Python resolves the expression b * a by calling first
b.__mul__. Since Numpy implements this via an Ufunc, the call is
forwarded to __numpy_ufunc__ and not to __rmul__. Note that if
MyObject is a subclass of ndarray, Python calls a.__rmul__
first. The issue is therefore that __numpy_ufunc__ implements
“virtual subclassing” of ndarray behavior, without actual subclassing.

This issue can be resolved by a modification of the binary operation
methods in Numpy:

class ndarray(object):
 ...
 def __mul__(self, other):
 if (not isinstance(other, self.__class__)
 and hasattr(other, '__numpy_ufunc__')
 and hasattr(other, '__rmul__')):
 return NotImplemented
 return np.multiply(self, other)

 def __imul__(self, other):
 if (other.__class__ is not self.__class__
 and hasattr(other, '__numpy_ufunc__')
 and hasattr(other, '__rmul__')):
 return NotImplemented
 return np.multiply(self, other, out=self)

b * a # == 4321 OK

The rationale here is the following: since the user class explicitly
defines both __numpy_ufunc__ and __rmul__, the implementor has
very likely made sure that the __rmul__ method can process ndarrays.
If not, the special case is simple to deal with (just call
np.multiply).

The exclusion of subclasses of self can be made because Python itself
calls the right-hand method first in this case. Moreover, it is
desirable that ndarray subclasses are able to inherit the right-hand
binary operation methods from ndarray.

The same priority shuffling needs to be done also for the in-place
operations, so that MyObject.__rmul__ is prioritized over
ndarray.__imul__.

Demo

A pull request[6]_ has been made including the changes proposed in this NEP.
Here is a demo highlighting the functionality.:

In [1]: import numpy as np;

In [2]: a = np.array([1])

In [3]: class B():
 ...: def __numpy_ufunc__(self, func, method, pos, inputs, **kwargs):
 ...: return "B"
 ...:

In [4]: b = B()

In [5]: np.dot(a, b)
Out[5]: 'B'

In [6]: np.multiply(a, b)
Out[6]: 'B'

A simple __numpy_ufunc__ has been added to SciPy’s sparse matrices
Currently this only handles np.dot and np.multiply because it was the
two most common cases where users would attempt to use sparse matrices with ufuncs.
The method is defined below:

def __numpy_ufunc__(self, func, method, pos, inputs, **kwargs):
 """Method for compatibility with NumPy's ufuncs and dot
 functions.
 """

 without_self = list(inputs)
 del without_self[pos]
 without_self = tuple(without_self)

 if func == np.multiply:
 return self.multiply(*without_self)

 elif func == np.dot:
 if pos == 0:
 return self.__mul__(inputs[1])
 if pos == 1:
 return self.__rmul__(inputs[0])
 else:
 return NotImplemented

So we now get the expected behavior when using ufuncs with sparse matrices.:

In [1]: import numpy as np; import scipy.sparse as sp

In [2]: a = np.random.randint(3, size=(3,3))

In [3]: b = np.random.randint(3, size=(3,3))

In [4]: asp = sp.csr_matrix(a); bsp = sp.csr_matrix(b)

In [5]: np.dot(a,b)
Out[5]:
array([[2, 4, 8],
 [2, 4, 8],
 [2, 2, 3]])

In [6]: np.dot(asp,b)
Out[6]:
array([[2, 4, 8],
 [2, 4, 8],
 [2, 2, 3]], dtype=int64)

In [7]: np.dot(asp, bsp).A
Out[7]:
array([[2, 4, 8],
 [2, 4, 8],
 [2, 2, 3]], dtype=int64)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

Generalized Universal Functions

There is a general need for looping over not only functions on scalars
but also over functions on vectors (or arrays), as explained on
http://scipy.org/scipy/numpy/wiki/GeneralLoopingFunctions. We propose
to realize this concept by generalizing the universal functions
(ufuncs), and provide a C implementation that adds ~500 lines
to the numpy code base. In current (specialized) ufuncs, the elementary
function is limited to element-by-element operations, whereas the
generalized version supports “sub-array” by “sub-array” operations.
The Perl vector library PDL provides a similar functionality and its
terms are re-used in the following.

Each generalized ufunc has information associated with it that states
what the “core” dimensionality of the inputs is, as well as the
corresponding dimensionality of the outputs (the element-wise ufuncs
have zero core dimensions). The list of the core dimensions for all
arguments is called the “signature” of a ufunc. For example, the
ufunc numpy.add has signature (),()->() defining two scalar inputs
and one scalar output.

Another example is (see the GeneralLoopingFunctions page) the function
inner1d(a,b) with a signature of (i),(i)->(). This applies the
inner product along the last axis of each input, but keeps the
remaining indices intact. For example, where a is of shape (3,5,N)
and b is of shape (5,N), this will return an output of shape (3,5).
The underlying elementary function is called 3*5 times. In the
signature, we specify one core dimension (i) for each input and zero core
dimensions () for the output, since it takes two 1-d arrays and
returns a scalar. By using the same name i, we specify that the two
corresponding dimensions should be of the same size (or one of them is
of size 1 and will be broadcasted).

The dimensions beyond the core dimensions are called “loop” dimensions. In
the above example, this corresponds to (3,5).

The usual numpy “broadcasting” rules apply, where the signature
determines how the dimensions of each input/output object are split
into core and loop dimensions:

	While an input array has a smaller dimensionality than the corresponding
number of core dimensions, 1’s are pre-pended to its shape.

	The core dimensions are removed from all inputs and the remaining
dimensions are broadcasted; defining the loop dimensions.

	The output is given by the loop dimensions plus the output core dimensions.

Definitions

	Elementary Function

	Each ufunc consists of an elementary function that performs the
most basic operation on the smallest portion of array arguments
(e.g. adding two numbers is the most basic operation in adding two
arrays). The ufunc applies the elementary function multiple times
on different parts of the arrays. The input/output of elementary
functions can be vectors; e.g., the elementary function of inner1d
takes two vectors as input.

	Signature

	A signature is a string describing the input/output dimensions of
the elementary function of a ufunc. See section below for more
details.

	Core Dimension

	The dimensionality of each input/output of an elementary function
is defined by its core dimensions (zero core dimensions correspond
to a scalar input/output). The core dimensions are mapped to the
last dimensions of the input/output arrays.

	Dimension Name

	A dimension name represents a core dimension in the signature.
Different dimensions may share a name, indicating that they are of
the same size (or are broadcastable).

	Dimension Index

	A dimension index is an integer representing a dimension name. It
enumerates the dimension names according to the order of the first
occurrence of each name in the signature.

Details of Signature

The signature defines “core” dimensionality of input and output
variables, and thereby also defines the contraction of the
dimensions. The signature is represented by a string of the
following format:

	Core dimensions of each input or output array are represented by a
list of dimension names in parentheses, (i_1,...,i_N); a scalar
input/output is denoted by (). Instead of i_1, i_2,
etc, one can use any valid Python variable name.

	Dimension lists for different arguments are separated by ",".
Input/output arguments are separated by "->".

	If one uses the same dimension name in multiple locations, this
enforces the same size (or broadcastable size) of the corresponding
dimensions.

The formal syntax of signatures is as follows:

<Signature> ::= <Input arguments> "->" <Output arguments>
<Input arguments> ::= <Argument list>
<Output arguments> ::= <Argument list>
<Argument list> ::= nil | <Argument> | <Argument> "," <Argument list>
<Argument> ::= "(" <Core dimension list> ")"
<Core dimension list> ::= nil | <Dimension name> |
 <Dimension name> "," <Core dimension list>
<Dimension name> ::= valid Python variable name

Notes:

	All quotes are for clarity.

	Core dimensions that share the same name must be broadcastable, as
the two i in our example above. Each dimension name typically
corresponding to one level of looping in the elementary function’s
implementation.

	White spaces are ignored.

Here are some examples of signatures:

	add
	(),()->()
	

	inner1d
	(i),(i)->()
	

	sum1d
	(i)->()
	

	dot2d
	(m,n),(n,p)->(m,p)
	matrix multiplication

	outer_inner
	(i,t),(j,t)->(i,j)
	inner over the last dimension,
outer over the second to last,
and loop/broadcast over the rest.

C-API for implementing Elementary Functions

The current interface remains unchanged, and PyUFunc_FromFuncAndData
can still be used to implement (specialized) ufuncs, consisting of
scalar elementary functions.

One can use PyUFunc_FromFuncAndDataAndSignature to declare a more
general ufunc. The argument list is the same as
PyUFunc_FromFuncAndData, with an additional argument specifying the
signature as C string.

Furthermore, the callback function is of the same type as before,
void (*foo)(char **args, intp *dimensions, intp *steps, void *func).
When invoked, args is a list of length nargs containing
the data of all input/output arguments. For a scalar elementary
function, steps is also of length nargs, denoting the strides used
for the arguments. dimensions is a pointer to a single integer
defining the size of the axis to be looped over.

For a non-trivial signature, dimensions will also contain the sizes
of the core dimensions as well, starting at the second entry. Only
one size is provided for each unique dimension name and the sizes are
given according to the first occurrence of a dimension name in the
signature.

The first nargs elements of steps remain the same as for scalar
ufuncs. The following elements contain the strides of all core
dimensions for all arguments in order.

For example, consider a ufunc with signature (i,j),(i)->(). In
this case, args will contain three pointers to the data of the
input/output arrays a, b, c. Furthermore, dimensions will be
[N, I, J] to define the size of N of the loop and the sizes I and J
for the core dimensions i and j. Finally, steps will be
[a_N, b_N, c_N, a_i, a_j, b_i], containing all necessary strides.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

Optimizing Iterator/UFunc Performance

	Author:	Mark Wiebe <mwwiebe@gmail.com>

	Content-Type:	text/x-rst

	Created:	25-Nov-2010

Table of Contents

Contents

	Optimizing Iterator/UFunc Performance
	Table of Contents

	Abstract

	Motivation
	Image Compositing Example

	Improving Cache-Coherency
	Output Layout Selection Algorithm

	Coalescing Dimensions

	Inner Loop Specialization

	Implementation Details
	Iterator Rewrite

	Proposed Iterator Memory Layout

	Proposed Iterator API
	Old -> New Iterator API Conversion

	Iterator Pointer Type

	Construction and Destruction

	Functions For Iteration

	Examples

	Python Lambda UFunc Example

	Python Addition Example

	Image Compositing Example Revisited

	Image Compositing With NumExpr

Abstract

This NEP proposes to replace the NumPy iterator and multi-iterator
with a single new iterator, designed to be more flexible and allow for
more cache-friendly data access. The new iterator also subsumes much
of the core ufunc functionality, making it easy to get the current
ufunc benefits in contexts which don’t precisely fit the ufunc mold.
Key benefits include:

	automatic reordering to find a cache-friendly access pattern

	standard and customizable broadcasting

	automatic type/byte-order/alignment conversions

	optional buffering to minimize conversion memory usage

	optional output arrays, with automatic allocation when unsupplied

	automatic output or common type selection

A large fraction of this iterator design has already been implemented with
promising results. Construction overhead is slightly greater (a.flat:
0.5 us, nditer(a): 1.4 us and broadcast(a,b): 1.4 us, nditer([a,b]):
2.2 us), but, as shown in an example, it is already possible to improve
on the performance of the built-in NumPy mechanisms in pure Python code
together with the iterator. One example rewrites np.add, getting a
four times improvement with some Fortran-contiguous arrays, and
another improves image compositing code from 1.4s to 180ms.

The implementation attempts to take into account
the design decisions made in the NumPy 2.0 refactor, to make its future
integration into libndarray relatively simple.

Motivation

NumPy defaults to returning C-contiguous arrays from UFuncs. This can
result in extremely poor memory access patterns when dealing with data
that is structured differently. A simple timing example illustrates
this with a more than eight times performance hit from adding
Fortran-contiguous arrays together. All timings are done using Numpy
2.0dev (Nov 22, 2010) on an Athlon 64 X2 4200+, with a 64-bit OS.:

In [1]: import numpy as np
In [2]: a = np.arange(1000000,dtype=np.float32).reshape(10,10,10,10,10,10)
In [3]: b, c, d = a.copy(), a.copy(), a.copy()

In [4]: timeit a+b+c+d
10 loops, best of 3: 28.5 ms per loop

In [5]: timeit a.T+b.T+c.T+d.T
1 loops, best of 3: 237 ms per loop

In [6]: timeit a.T.ravel('A')+b.T.ravel('A')+c.T.ravel('A')+d.T.ravel('A')
10 loops, best of 3: 29.6 ms per loop

In this case, it is simple to recover the performance by switching to
a view of the memory, adding, then reshaping back. To further examine
the problem and see how it isn’t always as trivial to work around,
let’s consider simple code for working with image buffers in NumPy.

Image Compositing Example

For a more realistic example, consider an image buffer. Images are
generally stored in a Fortran-contiguous order, and the colour
channel can be treated as either a structured ‘RGB’ type or an extra
dimension of length three. The resulting memory layout is neither C-
nor Fortran-contiguous, but is easy to work with directly in NumPy,
because of the flexibility of the ndarray. This appears ideal, because
it makes the memory layout compatible with typical C or C++ image code,
while simultaneously giving natural access in Python. Getting the color
of pixel (x,y) is just ‘image[x,y]’.

The performance of this layout in NumPy turns out to be very poor.
Here is code which creates two black images, and does an ‘over’
compositing operation on them.:

In [9]: image1 = np.zeros((1080,1920,3), dtype=np.float32).swapaxes(0,1)
In [10]: alpha1 = np.zeros((1080,1920,1), dtype=np.float32).swapaxes(0,1)
In [11]: image2 = np.zeros((1080,1920,3), dtype=np.float32).swapaxes(0,1)
In [12]: alpha2 = np.zeros((1080,1920,1), dtype=np.float32).swapaxes(0,1)
In [13]: def composite_over(im1, al1, im2, al2):
 : return (im1 + (1-al1)*im2, al1 + (1-al1)*al2)

In [14]: timeit composite_over(image1,alpha1,image2,alpha2)
1 loops, best of 3: 3.51 s per loop

If we give up the convenient layout, and use the C-contiguous default,
the performance is about seven times better.:

In [16]: image1 = np.zeros((1080,1920,3), dtype=np.float32)
In [17]: alpha1 = np.zeros((1080,1920,1), dtype=np.float32)
In [18]: image2 = np.zeros((1080,1920,3), dtype=np.float32)
In [19]: alpha2 = np.zeros((1080,1920,1), dtype=np.float32)

In [20]: timeit composite_over(image1,alpha1,image2,alpha2)
1 loops, best of 3: 581 ms per loop

But this is not all, since it turns out that broadcasting the alpha
channel is exacting a performance price as well. If we use an alpha
channel with 3 values instead of one, we get:

In [21]: image1 = np.zeros((1080,1920,3), dtype=np.float32)
In [22]: alpha1 = np.zeros((1080,1920,3), dtype=np.float32)
In [23]: image2 = np.zeros((1080,1920,3), dtype=np.float32)
In [24]: alpha2 = np.zeros((1080,1920,3), dtype=np.float32)

In [25]: timeit composite_over(image1,alpha1,image2,alpha2)
1 loops, best of 3: 313 ms per loop

For a final comparison, let’s see how it performs when we use
one-dimensional arrays to ensure just a single loop does the
calculation.:

In [26]: image1 = np.zeros((1080*1920*3), dtype=np.float32)
In [27]: alpha1 = np.zeros((1080*1920*3), dtype=np.float32)
In [28]: image2 = np.zeros((1080*1920*3), dtype=np.float32)
In [29]: alpha2 = np.zeros((1080*1920*3), dtype=np.float32)

In [30]: timeit composite_over(image1,alpha1,image2,alpha2)
1 loops, best of 3: 312 ms per loop

To get a reference performance number, I implemented this simple operation
straightforwardly in C (careful to use the same compile options as NumPy).
If I emulated the memory allocation and layout of the Python code, the
performance was roughly 0.3 seconds, very much in line with NumPy’s
performance. Combining the operations into one pass reduced the time
to roughly 0.15 seconds.

A slight variation of this example is to use a single memory block
with four channels (1920,1080,4) instead of separate image and alpha.
This is more typical in image processing applications, and here’s how
that looks with a C-contiguous layout.:

In [31]: image1 = np.zeros((1080,1920,4), dtype=np.float32)
In [32]: image2 = np.zeros((1080,1920,4), dtype=np.float32)
In [33]: def composite_over(im1, im2):
 : ret = (1-im1[:,:,-1])[:,:,np.newaxis]*im2
 : ret += im1
 : return ret

In [34]: timeit composite_over(image1,image2)
1 loops, best of 3: 481 ms per loop

To see the improvements that implementation of the new iterator as
proposed can produce, go to the example continued after the
proposed API, near the bottom of the document.

Improving Cache-Coherency

In order to get the best performance from UFunc calls, the pattern of
memory reads should be as regular as possible. Modern CPUs attempt to
predict the memory read/write pattern and fill the cache ahead of time.
The most predictable pattern is for all the inputs and outputs to be
sequentially processed in the same order.

I propose that by default, the memory layout of the UFunc outputs be as
close to that of the inputs as possible. Whenever there is an ambiguity
or a mismatch, it defaults to a C-contiguous layout.

To understand how to accomplish this, we first consider the strides of
all the inputs after the shapes have been normalized for broadcasting.
By determining whether a set of strides are compatible and/or ambiguous,
we can determine an output memory layout which maximizes coherency.

In broadcasting, the input shapes are first transformed to broadcast
shapes by prepending singular dimensions, then the broadcast strides
are created, where any singular dimension’s stride is set to zero.

Strides may be negative as well, and in certain cases this can be
normalized to fit the following discussion. If all the strides for a
particular axis are negative or zero, the strides for that dimension
can be negated after adjusting the base data pointers appropriately.

Here’s an example of how three inputs with C-contiguous layouts result in
broadcast strides. To simplify things, the examples use an itemsize of 1.

	Input shapes:
	(5,3,7)
	(5,3,1)
	(1,7)

	Broadcast shapes:
	(5,3,7)
	(5,3,1)
	(1,1,7)

	Broadcast strides:
	(21,7,1)
	(3,1,0)
	(0,0,1)

Compatible Strides - A set of strides are compatible if there exists
a permutation of the axes such that the strides are decreasing for every
stride in the set, excluding entries that are zero.

The example above satisfies the definition with the identity permutation.
In the motivation image example, the strides are slightly different if
we separate the colour and alpha information or not. The permutation
which demonstrates compatibility here is the transposition (0,1).

	Input/Broadcast shapes:
	Image (1920, 1080, 3)
	Alpha (1920, 1080, 1)

	Broadcast strides (separate):
	(3,5760,1)
	(1,1920,0)

	Broadcast strides (together):
	(4,7680,1)
	(4,7680,0)

Ambiguous Strides - A set of compatible strides are ambiguous if
more than one permutation of the axes exists such that the strides are
decreasing for every stride in the set, excluding entries that are zero.

This typically occurs when every axis has a 0-stride somewhere in the
set of strides. The simplest example is in two dimensions, as follows.

	Broadcast shapes:
	(1,3)
	(5,1)

	Broadcast strides:
	(0,1)
	(1,0)

There may, however, be unambiguous compatible strides without a single
input forcing the entire layout, as in this example:

	Broadcast shapes:
	(1,3,4)
	(5,3,1)

	Broadcast strides:
	(0,4,1)
	(3,1,0)

In the face of ambiguity, we have a choice to either completely throw away
the fact that the strides are compatible, or try to resolve the ambiguity
by adding an additional constraint. I think the appropriate choice
is to resolve it by picking the memory layout closest to C-contiguous,
but still compatible with the input strides.

Output Layout Selection Algorithm

The output ndarray memory layout we would like to produce is as follows:

	Consistent/Unambiguous strides:
	The single consistent layout

	Consistent/Ambiguous strides:
	The consistent layout closest to C-contiguous

	Inconsistent strides:
	C-contiguous

Here is pseudo-code for an algorithm to compute the permutation for the
output layout.:

perm = range(ndim) # Identity, i.e. C-contiguous
Insertion sort, ignoring 0-strides
Note that the sort must be stable, and 0-strides may
be reordered if necessary, but should be moved as little
as possible.
for i0 = 1 to ndim-1:
 # ipos is where perm[i0] will get inserted
 ipos = i0
 j0 = perm[i0]
 for i1 = i0-1 to 0:
 j1 = perm[i1]
 ambig, shouldswap = True, False
 # Check whether any strides are ordered wrong
 for strides in broadcast_strides:
 if strides[j0] != 0 and strides[j1] != 0:
 if strides[j0] > strides[j1]:
 # Only set swap if it's still ambiguous.
 if ambig:
 shouldswap = True
 else:
 # Set swap even if it's not ambiguous,
 # because not swapping is the choice
 # for conflicts as well.
 shouldswap = False
 ambig = False
 # If there was an unambiguous comparison, either shift ipos
 # to i1 or stop looking for the comparison
 if not ambig:
 if shouldswap:
 ipos = i1
 else:
 break
 # Insert perm[i0] into the right place
 if ipos != i0:
 for i1 = i0-1 to ipos:
 perm[i1+1] = perm[i1]
 perm[ipos] = j0
perm is now the closest consistent ordering to C-contiguous
return perm

Coalescing Dimensions

In many cases, the memory layout allows for the use of a one-dimensional
loop instead of tracking multiple coordinates within the iterator.
The existing code already exploits this when the data is C-contiguous,
but since we’re reordering the axes, we can apply this optimization
more generally.

Once the iteration strides have been sorted to be monotonically
decreasing, any dimensions which could be coalesced are side by side.
If for all the operands, incrementing by strides[i+1] shape[i+1] times
is the same as incrementing by strides[i], or strides[i+1]*shape[i+1] ==
strides[i], dimensions i and i+1 can be coalesced into a single dimension.

Here is pseudo-code for coalescing.:

Figure out which pairs of dimensions can be coalesced
can_coalesce = [False]*ndim
for strides, shape in zip(broadcast_strides, broadcast_shape):
 for i = 0 to ndim-2:
 if strides[i+1]*shape[i+1] == strides[i]:
 can_coalesce[i] = True
Coalesce the types
new_ndim = ndim - count_nonzero(can_coalesce)
for strides, shape in zip(broadcast_strides, broadcast_shape):
 j = 0
 for i = 0 to ndim-1:
 # Note that can_coalesce[ndim-1] is always False, so
 # there is no out-of-bounds access here.
 if can_coalesce[i]:
 shape[i+1] = shape[i]*shape[i+1]
 else:
 strides[j] = strides[i]
 shape[j] = shape[i]
 j += 1

Inner Loop Specialization

Specialization is handled purely by the inner loop function, so this
optimization is independent of the others. Some specialization is
already done, like for the reduce operation. The idea is mentioned in
http://projects.scipy.org/numpy/wiki/ProjectIdeas, “use intrinsics
(SSE-instructions) to speed up low-level loops in NumPy.”

Here are some possibilities for two-argument functions,
covering the important cases of add/subtract/multiply/divide.

	The first or second argument is a single value (i.e. a 0 stride
value) and does not alias the output. arr = arr + 1; arr = 1 + arr
	Can load the constant once instead of reloading it from memory every time

	The strides match the size of the data type. C- or
Fortran-contiguous data, for example
	Can do a simple loop without using strides

	The strides match the size of the data type, and they are
both 16-byte aligned (or differ from 16-byte aligned by the same offset)
	Can use SSE to process multiple values at once

	The first input and the output are the same single value
(i.e. a reduction operation).
	This is already specialized for many UFuncs in the existing code

The above cases are not generally mutually exclusive, for example a
constant argument may be combined with SSE when the strides match the
data type size, and reductions can be optimized with SSE as well.

Implementation Details

Except for inner loop specialization, the discussed
optimizations significantly affect ufunc_object.c and the
PyArrayIterObject/PyArrayMultiIterObject used to do the broadcasting.
In general, it should be possible to emulate the current behavior where it
is desired, but I believe the default should be to produce and manipulate
memory layouts which will give the best performance.

To support the new cache-friendly behavior, we introduce a new
option ‘K’ (for “keep”) for any order= parameter.

The proposed ‘order=’ flags become as follows:

	‘C’
	C-contiguous layout

	‘F’
	Fortran-contiguous layout

	‘A’
	‘F’ if the input(s) have a Fortran-contiguous layout, ‘C’ otherwise (“Any Contiguous”)

	‘K’
	a layout equivalent to ‘C’ followed by some permutation of the axes, as close to the layout of the input(s) as possible (“Keep Layout”)

Or as an enum:

/* For specifying array memory layout or iteration order */
typedef enum {
 /* Fortran order if inputs are all Fortran, C otherwise */
 NPY_ANYORDER=-1,
 /* C order */
 NPY_CORDER=0,
 /* Fortran order */
 NPY_FORTRANORDER=1,
 /* An order as close to the inputs as possible */
 NPY_KEEPORDER=2
} NPY_ORDER;

Perhaps a good strategy is to first implement the capabilities discussed
here without changing the defaults. Once they are implemented and
well-tested, the defaults can change from order='C' to order='K'
everywhere appropriate. UFuncs additionally should gain an order=
parameter to control the layout of their output(s).

The iterator can do automatic casting, and I have created a sequence
of progressively more permissive casting rules. Perhaps for 2.0, NumPy
could adopt this enum as its prefered way of dealing with casting.:

/* For specifying allowed casting in operations which support it */
typedef enum {
 /* Only allow identical types */
 NPY_NO_CASTING=0,
 /* Allow identical and byte swapped types */
 NPY_EQUIV_CASTING=1,
 /* Only allow safe casts */
 NPY_SAFE_CASTING=2,
 /* Allow safe casts and casts within the same kind */
 NPY_SAME_KIND_CASTING=3,
 /* Allow any casts */
 NPY_UNSAFE_CASTING=4
} NPY_CASTING;

Iterator Rewrite

Based on an analysis of the code, it appears that refactoring the existing
iteration objects to implement these optimizations is prohibitively
difficult. Additionally, some usage of the iterator requires modifying
internal values or flags, so code using the iterator would have to
change anyway. Thus we propose creating a new iterator object which
subsumes the existing iterator functionality and expands it to account
for the optimizations.

High level goals for the replacement iterator include:

	Small memory usage and a low number of memory allocations.

	Simple cases (like flat arrays) should have very little overhead.

	Combine single and multiple iteration into one object.

Capabilities that should be provided to user code:

	Iterate in C, Fortran, or “Fastest” (default) order.

	Track a C-style or Fortran-style flat index if requested
(existing iterator always tracks a C-style index). This can be done
independently of the iteration order.

	Track the coordinates if requested (the existing iterator requires
manually changing an internal iterator flag to guarantee this).

	Skip iteration of the last internal dimension so that it can be
processed with an inner loop.

	Jump to a specific coordinate in the array.

	Iterate an arbitrary subset of axes (to support, for example, reduce
with multiple axes at once).

	Ability to automatically allocate output parameters if a NULL input
is provided, These outputs should have a memory layout matching
the iteration order, and are the mechanism for the order='K'
support.

	Automatic copying and/or buffering of inputs which do not satisfy
type/byte-order/alignment requirements. The caller’s iteration inner
loop should be the same no matter what buffering or copying is done.

Notes for implementation:

	User code must never touch the inside of the iterator. This allows
for drastic changes of the internal memory layout in the future, if
higher-performance implementation strategies are found.

	Use a function pointer instead of a macro for iteration.
This way, specializations can be created for the common cases,
like when ndim is small, for different flag settings, and when the
number of arrays iterated is small. Also, an iteration pattern
can be prescribed that makes a copy of the function pointer first
to allow the compiler to keep the function pointer
in a register.

	Dynamically create the memory layout, to minimize the number of
cache lines taken up by the iterator (for LP64,
sizeof(PyArrayIterObject) is about 2.5KB, and a binary operation
like plus needs three of these for the Multi-Iterator).

	Isolate the C-API object from Python reference counting, so that
it can be used naturally from C. The Python object then becomes
a wrapper around the C iterator. This is analogous to the
PEP 3118 design separation of Py_buffer and memoryview.

Proposed Iterator Memory Layout

The following struct describes the iterator memory. All items
are packed together, which means that different values of the flags,
ndim, and niter will produce slightly different layouts.

struct {
 /* Flags indicate what optimizations have been applied, and
 * affect the layout of this struct. */
 uint32 itflags;
 /* Number of iteration dimensions. If FLAGS_HASCOORDS is set,
 * it matches the creation ndim, otherwise it may be smaller. */
 uint16 ndim;
 /* Number of objects being iterated. This is fixed at creation time. */
 uint16 niter;

 /* The number of times the iterator will iterate */
 intp itersize;

 /* The permutation is only used when FLAGS_HASCOORDS is set,
 * and is placed here so its position depends on neither ndim
 * nor niter. */
 intp perm[ndim];

 /* The data types of all the operands */
 PyArray_Descr *dtypes[niter];
 /* Backups of the starting axisdata 'ptr' values, to support Reset */
 char *resetdataptr[niter];
 /* Backup of the starting index value, to support Reset */
 npy_intp resetindex;

 /* When the iterator is destroyed, Py_XDECREF is called on all
 these objects */
 PyObject *objects[niter];

 /* Flags indicating read/write status and buffering
 * for each operand. */
 uint8 opitflags[niter];
 /* Padding to make things intp-aligned again */
 uint8 padding[];

 /* If some or all of the inputs are being buffered */
 #if (flags&FLAGS_BUFFERED)
 struct buffer_data {
 /* The size of the buffer, and which buffer we're on.
 * the i-th iteration has i = buffersize*bufferindex+pos
 */
 intp buffersize;
 /* For tracking position inside the buffer */
 intp size, pos;
 /* The strides for the pointers */
 intp stride[niter];
 /* Pointers to the data for the current iterator position.
 * The buffer_data.value ptr[i] equals either
 * axis_data[0].ptr[i] or buffer_data.buffers[i] depending
 * on whether copying to the buffer was necessary.
 */
 char* ptr[niter];
 /* Functions to do the copyswap and casting necessary */
 transferfn_t readtransferfn[niter];
 void *readtransferdata[niter];
 transferfn_t writetransferfn[niter];
 void *writetransferdata[niter];
 /* Pointers to the allocated buffers for operands
 * which the iterator determined needed buffering
 */
 char *buffers[niter];
 };
 #endif /* FLAGS_BUFFERED */

 /* Data per axis, starting with the most-frequently
 * updated, and in decreasing order after that. */
 struct axis_data {
 /* The shape of this axis */
 intp shape;
 /* The current coordinate along this axis */
 intp coord;
 /* The operand and index strides for this axis
 intp stride[niter];
 {intp indexstride;} #if (flags&FLAGS_HASINDEX);
 /* The operand pointers and index values for this axis */
 char* ptr[niter];
 {intp index;} #if (flags&FLAGS_HASINDEX);
 }[ndim];
};

The array of axis_data structs is ordered to be in increasing rapidity
of increment updates. If the perm is the identity, this means it’s
reversed from the C-order. This is done so data items touched
most often are closest to the beginning of the struct, where the
common properties are, resulting in increased cache coherency.
It also simplifies the iternext call, while making getcoord and
related functions slightly more complicated.

Proposed Iterator API

The existing iterator API includes functions like PyArrayIter_Check,
PyArray_Iter* and PyArray_ITER_*. The multi-iterator array includes
PyArray_MultiIter*, PyArray_Broadcast, and PyArray_RemoveSmallest. The
new iterator design replaces all of this functionality with a single object
and associated API. One goal of the new API is that all uses of the
existing iterator should be replaceable with the new iterator without
significant effort.

The C-API naming convention chosen is based on the one in the numpy-refactor
branch, where libndarray has the array named NpyArray and functions
named NpyArray_*. The iterator is named NpyIter and functions are
named NpyIter_*.

The Python exposure has the iterator named np.nditer. One possible
release strategy for this iterator would be to release a 1.X (1.6?) version
with the iterator added, but not used by the NumPy code. Then, 2.0 can
be release with it fully integrated. If this strategy is chosen, the
naming convention and API should be finalized as much as possible before
the 1.X release. The name np.iter can’t be used because it conflicts
with the Python built-in iter. I would suggest the name np.nditer
within Python, as it is currently unused.

In addition to the performance goals set out for the new iterator,
it appears the API can be refactored to better support some common
NumPy programming idioms.

By moving some functionality currently in the UFunc code into the
iterator, it should make it easier for extension code which wants
to emulate UFunc behavior in cases which don’t quite fit the
UFunc paradigm. In particular, emulating the UFunc buffering behavior
is not a trivial enterprise.

Old -> New Iterator API Conversion

For the regular iterator:

	PyArray_IterNew
	NpyIter_New

	PyArray_IterAllButAxis
	NpyIter_New + axes parameter or
Iterator flag NPY_ITER_NO_INNER_ITERATION

	PyArray_BroadcastToShape
	NOT SUPPORTED (but could be, if needed)

	PyArrayIter_Check
	Will need to add this in Python exposure

	PyArray_ITER_RESET
	NpyIter_Reset

	PyArray_ITER_NEXT
	Function pointer from NpyIter_GetIterNext

	PyArray_ITER_DATA
	NpyIter_GetDataPtrArray

	PyArray_ITER_GOTO
	NpyIter_GotoCoords

	PyArray_ITER_GOTO1D
	NpyIter_GotoIndex

	PyArray_ITER_NOTDONE
	Return value of iternext function pointer

For the multi-iterator:

	PyArray_MultiIterNew
	NpyIter_MultiNew

	PyArray_MultiIter_RESET
	NpyIter_Reset

	PyArray_MultiIter_NEXT
	Function pointer from NpyIter_GetIterNext

	PyArray_MultiIter_DATA
	NpyIter_GetDataPtrArray

	PyArray_MultiIter_NEXTi
	NOT SUPPORTED (always lock-step iteration)

	PyArray_MultiIter_GOTO
	NpyIter_GotoCoords

	PyArray_MultiIter_GOTO1D
	NpyIter_GotoIndex

	PyArray_MultiIter_NOTDONE
	Return value of iternext function pointer

	PyArray_Broadcast
	Handled by NpyIter_MultiNew

	PyArray_RemoveSmallest
	Iterator flag NPY_ITER_NO_INNER_ITERATION

For other API calls:

	PyArray_ConvertToCommonType
	Iterator flag NPY_ITER_COMMON_DTYPE

Iterator Pointer Type

The iterator structure is internally generated, but a type is still needed
to provide warnings and/or errors when the wrong type is passed to
the API. We do this with a typedef of an incomplete struct

typedef struct NpyIter_InternalOnly NpyIter;

Construction and Destruction

NpyIter* NpyIter_New(PyArrayObject* op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting, PyArray_Descr* dtype, npy_intp a_ndim, npy_intp *axes, npy_intp buffersize)

Creates an iterator for the given numpy array object op.

Flags that may be passed in flags are any combination
of the global and per-operand flags documented in
NpyIter_MultiNew, except for NPY_ITER_ALLOCATE.

Any of the NPY_ORDER enum values may be passed to order. For
efficient iteration, NPY_KEEPORDER is the best option, and the other
orders enforce the particular iteration pattern.

Any of the NPY_CASTING enum values may be passed to casting.
The values include NPY_NO_CASTING, NPY_EQUIV_CASTING,
NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING. To allow the casts to occur, copying or
buffering must also be enabled.

If dtype isn’t NULL, then it requires that data type.
If copying is allowed, it will make a temporary copy if the data
is castable. If UPDATEIFCOPY is enabled, it will also copy
the data back with another cast upon iterator destruction.

If a_ndim is greater than zero, axes must also be provided.
In this case, axes is an a_ndim-sized array of op‘s axes.
A value of -1 in axes means newaxis. Within the axes
array, axes may not be repeated.

If buffersize is zero, a default buffer size is used,
otherwise it specifies how big of a buffer to use. Buffers
which are powers of 2 such as 512 or 1024 are recommended.

Returns NULL if there is an error, otherwise returns the allocated
iterator.

To make an iterator similar to the old iterator, this should work.:

iter = NpyIter_New(op, NPY_ITER_READWRITE,
 NPY_CORDER, NPY_NO_CASTING, NULL, 0, NULL);

If you want to edit an array with aligned double code,
but the order doesn’t matter, you would use this.:

dtype = PyArray_DescrFromType(NPY_DOUBLE);
iter = NpyIter_New(op, NPY_ITER_READWRITE |
 NPY_ITER_BUFFERED |
 NPY_ITER_NBO,
 NPY_ITER_ALIGNED,
 NPY_KEEPORDER,
 NPY_SAME_KIND_CASTING,
 dtype, 0, NULL);
Py_DECREF(dtype);

NpyIter* NpyIter_MultiNew(npy_intp niter, PyArrayObject** op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting, npy_uint32 *op_flags, PyArray_Descr** op_dtypes, npy_intp oa_ndim, npy_intp **op_axes, npy_intp buffersize)

Creates an iterator for broadcasting the niter array objects provided
in op.

For normal usage, use 0 for oa_ndim and NULL for op_axes.
See below for a description of these parameters, which allow for
custom manual broadcasting as well as reordering and leaving out axes.

Any of the NPY_ORDER enum values may be passed to order. For
efficient iteration, NPY_KEEPORDER is the best option, and the other
orders enforce the particular iteration pattern. When using
NPY_KEEPORDER, if you also want to ensure that the iteration is
not reversed along an axis, you should pass the flag
NPY_ITER_DONT_NEGATE_STRIDES.

Any of the NPY_CASTING enum values may be passed to casting.
The values include NPY_NO_CASTING, NPY_EQUIV_CASTING,
NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING. To allow the casts to occur, copying or
buffering must also be enabled.

If op_dtypes isn’t NULL, it specifies a data type or NULL
for each op[i].

The parameter oa_ndim, when non-zero, specifies the number of
dimensions that will be iterated with customized broadcasting.
If it is provided, op_axes must also be provided.
These two parameters let you control in detail how the
axes of the operand arrays get matched together and iterated.
In op_axes, you must provide an array of niter pointers
to oa_ndim-sized arrays of type npy_intp. If an entry
in op_axes is NULL, normal broadcasting rules will apply.
In op_axes[j][i] is stored either a valid axis of op[j], or
-1 which means newaxis. Within each op_axes[j] array, axes
may not be repeated. The following example is how normal broadcasting
applies to a 3-D array, a 2-D array, a 1-D array and a scalar.:

npy_intp oa_ndim = 3; /* # iteration axes */
npy_intp op0_axes[] = {0, 1, 2}; /* 3-D operand */
npy_intp op1_axes[] = {-1, 0, 1}; /* 2-D operand */
npy_intp op2_axes[] = {-1, -1, 0}; /* 1-D operand */
npy_intp op3_axes[] = {-1, -1, -1} /* 0-D (scalar) operand */
npy_intp *op_axes[] = {op0_axes, op1_axes, op2_axes, op3_axes};

If buffersize is zero, a default buffer size is used,
otherwise it specifies how big of a buffer to use. Buffers
which are powers of 2 such as 512 or 1024 are recommended.

Returns NULL if there is an error, otherwise returns the allocated
iterator.

Flags that may be passed in flags, applying to the whole
iterator, are:

NPY_ITER_C_INDEX, NPY_ITER_F_INDEX

Causes the iterator to track an index matching C or
Fortran order. These options are mutually exclusive.

NPY_ITER_COORDS

Causes the iterator to track array coordinates.
This prevents the iterator from coalescing axes to
produce bigger inner loops.

NPY_ITER_NO_INNER_ITERATION

Causes the iterator to skip iteration of the innermost
loop, allowing the user of the iterator to handle it.

This flag is incompatible with NPY_ITER_C_INDEX,
NPY_ITER_F_INDEX, and NPY_ITER_COORDS.

NPY_ITER_DONT_NEGATE_STRIDES

This only affects the iterator when NPY_KEEPORDER is specified
for the order parameter. By default with NPY_KEEPORDER, the
iterator reverses axes which have negative strides, so that
memory is traversed in a forward direction. This disables
this step. Use this flag if you want to use the underlying
memory-ordering of the axes, but don’t want an axis reversed.
This is the behavior of numpy.ravel(a, order='K'), for
instance.

NPY_ITER_COMMON_DTYPE

Causes the iterator to convert all the operands to a common
data type, calculated based on the ufunc type promotion rules.
The flags for each operand must be set so that the appropriate
casting is permitted, and copying or buffering must be enabled.

If the common data type is known ahead of time, don’t use this
flag. Instead, set the requested dtype for all the operands.

NPY_ITER_REFS_OK

Indicates that arrays with reference types (object
arrays or structured arrays containing an object type)
may be accepted and used in the iterator. If this flag
is enabled, the caller must be sure to check whether
NpyIter_IterationNeedsAPI(iter) is true, in which case
it may not release the GIL during iteration.

NPY_ITER_ZEROSIZE_OK

Indicates that arrays with a size of zero should be permitted.
Since the typical iteration loop does not naturally work with
zero-sized arrays, you must check that the IterSize is non-zero
before entering the iteration loop.

NPY_ITER_REDUCE_OK

Permits writeable operands with a dimension with zero
stride and size greater than one. Note that such operands
must be read/write.

When buffering is enabled, this also switches to a special
buffering mode which reduces the loop length as necessary to
not trample on values being reduced.

Note that if you want to do a reduction on an automatically
allocated output, you must use NpyIter_GetOperandArray
to get its reference, then set every value to the reduction
unit before doing the iteration loop. In the case of a
buffered reduction, this means you must also specify the
flag NPY_ITER_DELAY_BUFALLOC, then reset the iterator
after initializing the allocated operand to prepare the
buffers.

NPY_ITER_RANGED

Enables support for iteration of sub-ranges of the full
iterindex range [0, NpyIter_IterSize(iter)). Use
the function NpyIter_ResetToIterIndexRange to specify
a range for iteration.

This flag can only be used with NPY_ITER_NO_INNER_ITERATION
when NPY_ITER_BUFFERED is enabled. This is because
without buffering, the inner loop is always the size of the
innermost iteration dimension, and allowing it to get cut up
would require special handling, effectively making it more
like the buffered version.

NPY_ITER_BUFFERED

Causes the iterator to store buffering data, and use buffering
to satisfy data type, alignment, and byte-order requirements.
To buffer an operand, do not specify the NPY_ITER_COPY
or NPY_ITER_UPDATEIFCOPY flags, because they will
override buffering. Buffering is especially useful for Python
code using the iterator, allowing for larger chunks
of data at once to amortize the Python interpreter overhead.

If used with NPY_ITER_NO_INNER_ITERATION, the inner loop
for the caller may get larger chunks than would be possible
without buffering, because of how the strides are laid out.

Note that if an operand is given the flag NPY_ITER_COPY
or NPY_ITER_UPDATEIFCOPY, a copy will be made in preference
to buffering. Buffering will still occur when the array was
broadcast so elements need to be duplicated to get a constant
stride.

In normal buffering, the size of each inner loop is equal
to the buffer size, or possibly larger if NPY_ITER_GROWINNER
is specified. If NPY_ITER_REDUCE_OK is enabled and
a reduction occurs, the inner loops may become smaller depending
on the structure of the reduction.

NPY_ITER_GROWINNER

When buffering is enabled, this allows the size of the inner
loop to grow when buffering isn’t necessary. This option
is best used if you’re doing a straight pass through all the
data, rather than anything with small cache-friendly arrays
of temporary values for each inner loop.

NPY_ITER_DELAY_BUFALLOC

When buffering is enabled, this delays allocation of the
buffers until one of the NpyIter_Reset* functions is
called. This flag exists to avoid wasteful copying of
buffer data when making multiple copies of a buffered
iterator for multi-threaded iteration.

Another use of this flag is for setting up reduction operations.
After the iterator is created, and a reduction output
is allocated automatically by the iterator (be sure to use
READWRITE access), its value may be initialized to the reduction
unit. Use NpyIter_GetOperandArray to get the object.
Then, call NpyIter_Reset to allocate and fill the buffers
with their initial values.

Flags that may be passed in op_flags[i], where 0 <= i < niter:

NPY_ITER_READWRITE, NPY_ITER_READONLY, NPY_ITER_WRITEONLY

Indicate how the user of the iterator will read or write
to op[i]. Exactly one of these flags must be specified
per operand.

NPY_ITER_COPY

Allow a copy of op[i] to be made if it does not
meet the data type or alignment requirements as specified
by the constructor flags and parameters.

NPY_ITER_UPDATEIFCOPY

Triggers NPY_ITER_COPY, and when an array operand
is flagged for writing and is copied, causes the data
in a copy to be copied back to op[i] when the iterator
is destroyed.

If the operand is flagged as write-only and a copy is needed,
an uninitialized temporary array will be created and then copied
to back to op[i] on destruction, instead of doing
the unecessary copy operation.

NPY_ITER_NBO, NPY_ITER_ALIGNED, NPY_ITER_CONTIG

Causes the iterator to provide data for op[i]
that is in native byte order, aligned according to
the dtype requirements, contiguous, or any combination.

By default, the iterator produces pointers into the
arrays provided, which may be aligned or unaligned, and
with any byte order. If copying or buffering is not
enabled and the operand data doesn’t satisfy the constraints,
an error will be raised.

The contiguous constraint applies only to the inner loop,
successive inner loops may have arbitrary pointer changes.

If the requested data type is in non-native byte order,
the NBO flag overrides it and the requested data type is
converted to be in native byte order.

NPY_ITER_ALLOCATE

This is for output arrays, and requires that the flag
NPY_ITER_WRITEONLY be set. If op[i] is NULL,
creates a new array with the final broadcast dimensions,
and a layout matching the iteration order of the iterator.

When op[i] is NULL, the requested data type
op_dtypes[i] may be NULL as well, in which case it is
automatically generated from the dtypes of the arrays which
are flagged as readable. The rules for generating the dtype
are the same is for UFuncs. Of special note is handling
of byte order in the selected dtype. If there is exactly
one input, the input’s dtype is used as is. Otherwise,
if more than one input dtypes are combined together, the
output will be in native byte order.

After being allocated with this flag, the caller may retrieve
the new array by calling NpyIter_GetOperandArray and
getting the i-th object in the returned C array. The caller
must call Py_INCREF on it to claim a reference to the array.

NPY_ITER_NO_SUBTYPE

For use with NPY_ITER_ALLOCATE, this flag disables
allocating an array subtype for the output, forcing
it to be a straight ndarray.

TODO: Maybe it would be better to introduce a function
NpyIter_GetWrappedOutput and remove this flag?

NPY_ITER_NO_BROADCAST

Ensures that the input or output matches the iteration
dimensions exactly.

NPY_ITER_WRITEABLE_REFERENCES

By default, the iterator fails on creation if the iterator
has a writeable operand where the data type involves Python
references. Adding this flag indicates that the code using
the iterator is aware of this possibility and handles it
correctly.

NpyIter *NpyIter_Copy(NpyIter *iter)

Makes a copy of the given iterator. This function is provided
primarily to enable multi-threaded iteration of the data.

TODO: Move this to a section about multithreaded iteration.

The recommended approach to multithreaded iteration is to
first create an iterator with the flags
NPY_ITER_NO_INNER_ITERATION, NPY_ITER_RANGED,
NPY_ITER_BUFFERED, NPY_ITER_DELAY_BUFALLOC, and
possibly NPY_ITER_GROWINNER. Create a copy of this iterator
for each thread (minus one for the first iterator). Then, take
the iteration index range [0, NpyIter_GetIterSize(iter)) and
split it up into tasks, for example using a TBB parallel_for loop.
When a thread gets a task to execute, it then uses its copy of
the iterator by calling NpyIter_ResetToIterIndexRange and
iterating over the full range.

When using the iterator in multi-threaded code or in code not
holding the Python GIL, care must be taken to only call functions
which are safe in that context. NpyIter_Copy cannot be safely
called without the Python GIL, because it increments Python
references. The Reset* and some other functions may be safely
called by passing in the errmsg parameter as non-NULL, so that
the functions will pass back errors through it instead of setting
a Python exception.

int NpyIter_UpdateIter(NpyIter *iter, npy_intp i, npy_uint32 op_flags, NPY_CASTING casting, PyArray_Descr *dtype) UNIMPLEMENTED

Updates the i-th operand within the iterator to possibly have a new
data type or more restrictive flag attributes. A use-case for
this is to allow the automatic allocation to determine an
output data type based on the standard NumPy type promotion rules,
then use this function to convert the inputs and possibly the
automatic output to a different data type during processing.

This operation can only be done if NPY_ITER_COORDS was passed
as a flag to the iterator. If coordinates are not needed,
call the function NpyIter_RemoveCoords() once no more calls to
NpyIter_UpdateIter are needed.

If the i-th operand has already been copied, an error is thrown. To
avoid this, leave all the flags out except the read/write indicators
for any operand that later has NpyIter_UpdateIter called on it.

The flags that may be passed in op_flags are
NPY_ITER_COPY, NPY_ITER_UPDATEIFCOPY,
NPY_ITER_NBO, NPY_ITER_ALIGNED, NPY_ITER_CONTIG.

int NpyIter_RemoveAxis(NpyIter *iter, npy_intp axis)

Removes an axis from iteration. This requires that
NPY_ITER_COORDS was set for iterator creation, and does not work
if buffering is enabled or an index is being tracked. This function
also resets the iterator to its initial state.

This is useful for setting up an accumulation loop, for example.
The iterator can first be created with all the dimensions, including
the accumulation axis, so that the output gets created correctly.
Then, the accumulation axis can be removed, and the calculation
done in a nested fashion.

WARNING: This function may change the internal memory layout of
the iterator. Any cached functions or pointers from the iterator
must be retrieved again!

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_RemoveCoords(NpyIter *iter)

If the iterator has coordinates, this strips support for them, and
does further iterator optimizations that are possible if coordinates
are not needed. This function also resets the iterator to its initial
state.

WARNING: This function may change the internal memory layout of
the iterator. Any cached functions or pointers from the iterator
must be retrieved again!

After calling this function, NpyIter_HasCoords(iter) will
return false.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_RemoveInnerLoop(NpyIter *iter)

If UpdateIter/RemoveCoords was used, you may want to specify the
flag NPY_ITER_NO_INNER_ITERATION. This flag is not permitted
together with NPY_ITER_COORDS, so this function is provided
to enable the feature after NpyIter_RemoveCoords is called.
This function also resets the iterator to its initial state.

WARNING: This function changes the internal logic of the iterator.
Any cached functions or pointers from the iterator must be retrieved
again!

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_Deallocate(NpyIter *iter)

Deallocates the iterator object. This additionally frees any
copies made, triggering UPDATEIFCOPY behavior where necessary.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_Reset(NpyIter *iter, char **errmsg)

Resets the iterator back to its initial state, at the beginning
of the iteration range.

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

int NpyIter_ResetToIterIndexRange(NpyIter *iter, npy_intp istart, npy_intp iend, char **errmsg)

Resets the iterator and restricts it to the iterindex range
[istart, iend). See NpyIter_Copy for an explanation of
how to use this for multi-threaded iteration. This requires that
the flag NPY_ITER_RANGED was passed to the iterator constructor.

If you want to reset both the iterindex range and the base
pointers at the same time, you can do the following to avoid
extra buffer copying (be sure to add the return code error checks
when you copy this code).:

/* Set to a trivial empty range */
NpyIter_ResetToIterIndexRange(iter, 0, 0);
/* Set the base pointers */
NpyIter_ResetBasePointers(iter, baseptrs);
/* Set to the desired range */
NpyIter_ResetToIterIndexRange(iter, istart, iend);

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

int NpyIter_ResetBasePointers(NpyIter *iter, char **baseptrs, char **errmsg)

Resets the iterator back to its initial state, but using the values
in baseptrs for the data instead of the pointers from the arrays
being iterated. This functions is intended to be used, together with
the op_axes parameter, by nested iteration code with two or more
iterators.

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

TODO: Move the following into a special section on nested iterators.

Creating iterators for nested iteration requires some care. All
the iterator operands must match exactly, or the calls to
NpyIter_ResetBasePointers will be invalid. This means that
automatic copies and output allocation should not be used haphazardly.
It is possible to still use the automatic data conversion and casting
features of the iterator by creating one of the iterators with
all the conversion parameters enabled, then grabbing the allocated
operands with the NpyIter_GetOperandArray function and passing
them into the constructors for the rest of the iterators.

WARNING: When creating iterators for nested iteration,
the code must not use a dimension more than once in the different
iterators. If this is done, nested iteration will produce
out-of-bounds pointers during iteration.

WARNING: When creating iterators for nested iteration, buffering
can only be applied to the innermost iterator. If a buffered iterator
is used as the source for baseptrs, it will point into a small buffer
instead of the array and the inner iteration will be invalid.

The pattern for using nested iterators is as follows.:

NpyIter *iter1, *iter1;
NpyIter_IterNext_Fn iternext1, iternext2;
char **dataptrs1;

/*
 * With the exact same operands, no copies allowed, and
 * no axis in op_axes used both in iter1 and iter2.
 * Buffering may be enabled for iter2, but not for iter1.
 */
iter1 = ...; iter2 = ...;

iternext1 = NpyIter_GetIterNext(iter1);
iternext2 = NpyIter_GetIterNext(iter2);
dataptrs1 = NpyIter_GetDataPtrArray(iter1);

do {
 NpyIter_ResetBasePointers(iter2, dataptrs1);
 do {
 /* Use the iter2 values */
 } while (iternext2(iter2));
} while (iternext1(iter1));

int NpyIter_GotoCoords(NpyIter *iter, npy_intp *coords)

Adjusts the iterator to point to the ndim coordinates
pointed to by coords. Returns an error if coordinates
are not being tracked, the coordinates are out of bounds,
or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_GotoIndex(NpyIter *iter, npy_intp index)

Adjusts the iterator to point to the index specified.
If the iterator was constructed with the flag
NPY_ITER_C_INDEX, index is the C-order index,
and if the iterator was constructed with the flag
NPY_ITER_F_INDEX, index is the Fortran-order
index. Returns an error if there is no index being tracked,
the index is out of bounds, or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

npy_intp NpyIter_GetIterSize(NpyIter *iter)

Returns the number of elements being iterated. This is the product
of all the dimensions in the shape.

npy_intp NpyIter_GetReduceBlockSizeFactor(NpyIter *iter) UNIMPLEMENTED

This provides a factor that must divide into the blocksize used
for ranged iteration to safely multithread a reduction. If
the iterator has no reduction, it returns 1.

When using ranged iteration to multithread a reduction, there are
two possible ways to do the reduction:

If there is a big reduction to a small output, make a temporary
array initialized to the reduction unit for each thread, then have
each thread reduce into its temporary. When that is complete,
combine the temporaries together. You can detect this case by
observing that NpyIter_GetReduceBlockSizeFactor returns a
large value, for instance half or a third of NpyIter_GetIterSize.
You should also check that the output is small just to be sure.

If there are many small reductions to a big output, and the reduction
dimensions are inner dimensions, NpyIter_GetReduceBlockSizeFactor
will return a small number, and as long as the block size you choose
for multithreading is NpyIter_GetReduceBlockSizeFactor(iter)*n
for some n, the operation will be safe.

The bad case is when the a reduction dimension is the outermost
loop in the iterator. For example, if you have a C-order
array with shape (3,1000,1000), and you reduce on dimension 0,
NpyIter_GetReduceBlockSizeFactor will return a size equal to
NpyIter_GetIterSize for NPY_KEEPORDER or NPY_CORDER
iteration orders. While it is bad for the CPU cache, perhaps
in the future another order possibility could be provided, maybe
NPY_REDUCEORDER, which pushes the reduction axes to the inner
loop, but otherwise is the same as NPY_KEEPORDER.

npy_intp NpyIter_GetIterIndex(NpyIter *iter)

Gets the iterindex of the iterator, which is an index matching
the iteration order of the iterator.

void NpyIter_GetIterIndexRange(NpyIter *iter, npy_intp *istart, npy_intp *iend)

Gets the iterindex sub-range that is being iterated. If
NPY_ITER_RANGED was not specified, this always returns the
range [0, NpyIter_IterSize(iter)).

int NpyIter_GotoIterIndex(NpyIter *iter, npy_intp iterindex)

Adjusts the iterator to point to the iterindex specified.
The IterIndex is an index matching the iteration order of the iterator.
Returns an error if the iterindex is out of bounds,
buffering is enabled, or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_HasInnerLoop(NpyIter *iter

Returns 1 if the iterator handles the inner loop,
or 0 if the caller needs to handle it. This is controlled
by the constructor flag NPY_ITER_NO_INNER_ITERATION.

int NpyIter_HasCoords(NpyIter *iter)

Returns 1 if the iterator was created with the
NPY_ITER_COORDS flag, 0 otherwise.

int NpyIter_HasIndex(NpyIter *iter)

Returns 1 if the iterator was created with the
NPY_ITER_C_INDEX or NPY_ITER_F_INDEX
flag, 0 otherwise.

int NpyIter_IsBuffered(NpyIter *iter)

Returns 1 if the iterator was created with the
NPY_ITER_BUFFERED flag, 0 otherwise.

int NpyIter_IsGrowInner(NpyIter *iter)

Returns 1 if the iterator was created with the
NPY_ITER_GROWINNER flag, 0 otherwise.

npy_intp NpyIter_GetBufferSize(NpyIter *iter)

If the iterator is buffered, returns the size of the buffer
being used, otherwise returns 0.

npy_intp NpyIter_GetNDim(NpyIter *iter)

Returns the number of dimensions being iterated. If coordinates
were not requested in the iterator constructor, this value
may be smaller than the number of dimensions in the original
objects.

npy_intp NpyIter_GetNIter(NpyIter *iter)

Returns the number of objects being iterated.

npy_intp *NpyIter_GetAxisStrideArray(NpyIter *iter, npy_intp axis)

Gets the array of strides for the specified axis. Requires that
the iterator be tracking coordinates, and that buffering not
be enabled.

This may be used when you want to match up operand axes in
some fashion, then remove them with NpyIter_RemoveAxis to
handle their processing manually. By calling this function
before removing the axes, you can get the strides for the
manual processing.

Returns NULL on error.

int NpyIter_GetShape(NpyIter *iter, npy_intp *outshape)

Returns the broadcast shape of the iterator in outshape.
This can only be called on an iterator which supports coordinates.

Returns NPY_SUCCEED or NPY_FAIL.

PyArray_Descr **NpyIter_GetDescrArray(NpyIter *iter)

This gives back a pointer to the niter data type Descrs for
the objects being iterated. The result points into iter,
so the caller does not gain any references to the Descrs.

This pointer may be cached before the iteration loop, calling
iternext will not change it.

PyObject **NpyIter_GetOperandArray(NpyIter *iter)

This gives back a pointer to the niter operand PyObjects
that are being iterated. The result points into iter,
so the caller does not gain any references to the PyObjects.

PyObject *NpyIter_GetIterView(NpyIter *iter, npy_intp i)

This gives back a reference to a new ndarray view, which is a view
into the i-th object in the array NpyIter_GetOperandArray(),
whose dimensions and strides match the internal optimized
iteration pattern. A C-order iteration of this view is equivalent
to the iterator’s iteration order.

For example, if an iterator was created with a single array as its
input, and it was possible to rearrange all its axes and then
collapse it into a single strided iteration, this would return
a view that is a one-dimensional array.

void NpyIter_GetReadFlags(NpyIter *iter, char *outreadflags)

Fills niter flags. Sets outreadflags[i] to 1 if
op[i] can be read from, and to 0 if not.

void NpyIter_GetWriteFlags(NpyIter *iter, char *outwriteflags)

Fills niter flags. Sets outwriteflags[i] to 1 if
op[i] can be written to, and to 0 if not.

Functions For Iteration

NpyIter_IterNext_Fn NpyIter_GetIterNext(NpyIter *iter, char **errmsg)

Returns a function pointer for iteration. A specialized version
of the function pointer may be calculated by this function
instead of being stored in the iterator structure. Thus, to
get good performance, it is required that the function pointer
be saved in a variable rather than retrieved for each loop iteration.

Returns NULL if there is an error. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

The typical looping construct is as follows.:

NpyIter_IterNext_Fn iternext = NpyIter_GetIterNext(iter, NULL);
char **dataptr = NpyIter_GetDataPtrArray(iter);

do {
 /* use the addresses dataptr[0], ... dataptr[niter-1] */
} while(iternext(iter));

When NPY_ITER_NO_INNER_ITERATION is specified, the typical
inner loop construct is as follows.:

NpyIter_IterNext_Fn iternext = NpyIter_GetIterNext(iter, NULL);
char **dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp *stride = NpyIter_GetInnerStrideArray(iter);
npy_intp *size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp iiter, niter = NpyIter_GetNIter(iter);

do {
 size = *size_ptr;
 while (size--) {
 /* use the addresses dataptr[0], ... dataptr[niter-1] */
 for (iiter = 0; iiter < niter; ++iiter) {
 dataptr[iiter] += stride[iiter];
 }
 }
} while (iternext());

Observe that we are using the dataptr array inside the iterator, not
copying the values to a local temporary. This is possible because
when iternext() is called, these pointers will be overwritten
with fresh values, not incrementally updated.

If a compile-time fixed buffer is being used (both flags
NPY_ITER_BUFFERED and NPY_ITER_NO_INNER_ITERATION), the
inner size may be used as a signal as well. The size is guaranteed
to become zero when iternext() returns false, enabling the
following loop construct. Note that if you use this construct,
you should not pass NPY_ITER_GROWINNER as a flag, because it
will cause larger sizes under some circumstances.:

/* The constructor should have buffersize passed as this value */
#define FIXED_BUFFER_SIZE 1024

NpyIter_IterNext_Fn iternext = NpyIter_GetIterNext(iter, NULL);
char **dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp *stride = NpyIter_GetInnerStrideArray(iter);
npy_intp *size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp i, iiter, niter = NpyIter_GetNIter(iter);

/* One loop with a fixed inner size */
size = *size_ptr;
while (size == FIXED_BUFFER_SIZE) {
 /*
 * This loop could be manually unrolled by a factor
 * which divides into FIXED_BUFFER_SIZE
 */
 for (i = 0; i < FIXED_BUFFER_SIZE; ++i) {
 /* use the addresses dataptr[0], ... dataptr[niter-1] */
 for (iiter = 0; iiter < niter; ++iiter) {
 dataptr[iiter] += stride[iiter];
 }
 }
 iternext();
 size = *size_ptr;
}

/* Finish-up loop with variable inner size */
if (size > 0) do {
 size = *size_ptr;
 while (size--) {
 /* use the addresses dataptr[0], ... dataptr[niter-1] */
 for (iiter = 0; iiter < niter; ++iiter) {
 dataptr[iiter] += stride[iiter];
 }
 }
} while (iternext());

NpyIter_GetCoords_Fn NpyIter_GetGetCoords(NpyIter *iter, char **errmsg)

Returns a function pointer for getting the coordinates
of the iterator. Returns NULL if the iterator does not
support coordinates. It is recommended that this function
pointer be cached in a local variable before the iteration
loop.

Returns NULL if there is an error. If errmsg is non-NULL,
no Python exception is set when NPY_FAIL is returned.
Instead, *errmsg is set to an error message. When errmsg is
non-NULL, the function may be safely called without holding
the Python GIL.

char **NpyIter_GetDataPtrArray(NpyIter *iter)

This gives back a pointer to the niter data pointers. If
NPY_ITER_NO_INNER_ITERATION was not specified, each data
pointer points to the current data item of the iterator. If
no inner iteration was specified, it points to the first data
item of the inner loop.

This pointer may be cached before the iteration loop, calling
iternext will not change it. This function may be safely
called without holding the Python GIL.

npy_intp *NpyIter_GetIndexPtr(NpyIter *iter)

This gives back a pointer to the index being tracked, or NULL
if no index is being tracked. It is only useable if one of
the flags NPY_ITER_C_INDEX or NPY_ITER_F_INDEX
were specified during construction.

When the flag NPY_ITER_NO_INNER_ITERATION is used, the code
needs to know the parameters for doing the inner loop. These
functions provide that information.

npy_intp *NpyIter_GetInnerStrideArray(NpyIter *iter)

Returns a pointer to an array of the niter strides,
one for each iterated object, to be used by the inner loop.

This pointer may be cached before the iteration loop, calling
iternext will not change it. This function may be safely
called without holding the Python GIL.

npy_intp* NpyIter_GetInnerLoopSizePtr(NpyIter *iter)

Returns a pointer to the number of iterations the
inner loop should execute.

This address may be cached before the iteration loop, calling
iternext will not change it. The value itself may change during
iteration, in particular if buffering is enabled. This function
may be safely called without holding the Python GIL.

void NpyIter_GetInnerFixedStrideArray(NpyIter *iter, npy_intp *out_strides)

Gets an array of strides which are fixed, or will not change during
the entire iteration. For strides that may change, the value
NPY_MAX_INTP is placed in the stride.

Once the iterator is prepared for iteration (after a reset if
NPY_DELAY_BUFALLOC was used), call this to get the strides
which may be used to select a fast inner loop function. For example,
if the stride is 0, that means the inner loop can always load its
value into a variable once, then use the variable throughout the loop,
or if the stride equals the itemsize, a contiguous version for that
operand may be used.

This function may be safely called without holding the Python GIL.

Examples

A copy function using the iterator. The order parameter
is used to control the memory layout of the allocated
result.

If the input is a reference type, this function will fail.
To fix this, the code must be changed to specially handle writeable
references, and add NPY_ITER_WRITEABLE_REFERENCES to the flags.:

/* NOTE: This code has not been compiled/tested */
PyObject *CopyArray(PyObject *arr, NPY_ORDER order)
{
 NpyIter *iter;
 NpyIter_IterNext_Fn iternext;
 PyObject *op[2], *ret;
 npy_uint32 flags;
 npy_uint32 op_flags[2];
 npy_intp itemsize, *innersizeptr, innerstride;
 char **dataptrarray;

 /*
 * No inner iteration - inner loop is handled by CopyArray code
 */
 flags = NPY_ITER_NO_INNER_ITERATION;
 /*
 * Tell the constructor to automatically allocate the output.
 * The data type of the output will match that of the input.
 */
 op[0] = arr;
 op[1] = NULL;
 op_flags[0] = NPY_ITER_READONLY;
 op_flags[1] = NPY_ITER_WRITEONLY | NPY_ITER_ALLOCATE;

 /* Construct the iterator */
 iter = NpyIter_MultiNew(2, op, flags, order, NPY_NO_CASTING,
 op_flags, NULL, 0, NULL);
 if (iter == NULL) {
 return NULL;
 }

 /*
 * Make a copy of the iternext function pointer and
 * a few other variables the inner loop needs.
 */
 iternext = NpyIter_GetIterNext(iter);
 innerstride = NpyIter_GetInnerStrideArray(iter)[0];
 itemsize = NpyIter_GetDescrArray(iter)[0]->elsize;
 /*
 * The inner loop size and data pointers may change during the
 * loop, so just cache the addresses.
 */
 innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);
 dataptrarray = NpyIter_GetDataPtrArray(iter);

 /*
 * Note that because the iterator allocated the output,
 * it matches the iteration order and is packed tightly,
 * so we don't need to check it like the input.
 */
 if (innerstride == itemsize) {
 do {
 memcpy(dataptrarray[1], dataptrarray[0],
 itemsize * (*innersizeptr));
 } while (iternext(iter));
 } else {
 /* Should specialize this further based on item size... */
 npy_intp i;
 do {
 npy_intp size = *innersizeptr;
 char *src = dataaddr[0], *dst = dataaddr[1];
 for(i = 0; i < size; i++, src += innerstride, dst += itemsize) {
 memcpy(dst, src, itemsize);
 }
 } while (iternext(iter));
 }

 /* Get the result from the iterator object array */
 ret = NpyIter_GetOperandArray(iter)[1];
 Py_INCREF(ret);

 if (NpyIter_Deallocate(iter) != NPY_SUCCEED) {
 Py_DECREF(ret);
 return NULL;
 }

 return ret;
}

Python Lambda UFunc Example

To show how the new iterator allows the definition of efficient UFunc-like
functions in pure Python, we demonstrate the function luf, which
makes a lambda-expression act like a UFunc. This is very similar to the
numexpr library, but only takes a few lines of code.

First, here is the definition of the luf function.:

def luf(lamdaexpr, *args, **kwargs):
 """Lambda UFunc

 e.g.
 c = luf(lambda i,j:i+j, a, b, order='K',
 casting='safe', buffersize=8192)

 c = np.empty(...)
 luf(lambda i,j:i+j, a, b, out=c, order='K',
 casting='safe', buffersize=8192)
 """

 nargs = len(args)
 op = args + (kwargs.get('out',None),)
 it = np.nditer(op, ['buffered','no_inner_iteration'],
 [['readonly','nbo_aligned']]*nargs +
 [['writeonly','allocate','no_broadcast']],
 order=kwargs.get('order','K'),
 casting=kwargs.get('casting','safe'),
 buffersize=kwargs.get('buffersize',0))
 while not it.finished:
 it[-1] = lamdaexpr(*it[:-1])
 it.iternext()

 return it.operands[-1]

Then, by using luf instead of straight Python expressions, we
can gain some performance from better cache behavior.:

In [2]: a = np.random.random((50,50,50,10))
In [3]: b = np.random.random((50,50,1,10))
In [4]: c = np.random.random((50,50,50,1))

In [5]: timeit 3*a+b-(a/c)
1 loops, best of 3: 138 ms per loop

In [6]: timeit luf(lambda a,b,c:3*a+b-(a/c), a, b, c)
10 loops, best of 3: 60.9 ms per loop

In [7]: np.all(3*a+b-(a/c) == luf(lambda a,b,c:3*a+b-(a/c), a, b, c))
Out[7]: True

Python Addition Example

The iterator has been mostly written and exposed to Python. To
see how it behaves, let’s see what we can do with the np.add ufunc.
Even without changing the core of NumPy, we will be able to use
the iterator to make a faster add function.

The Python exposure supplies two iteration interfaces, one which
follows the Python iterator protocol, and another which mirrors the
C-style do-while pattern. The native Python approach is better
in most cases, but if you need the iterator’s coordinates or
index, use the C-style pattern.

Here is how we might write an iter_add function, using the
Python iterator protocol.:

def iter_add_py(x, y, out=None):
 addop = np.add

 it = np.nditer([x,y,out], [],
 [['readonly'],['readonly'],['writeonly','allocate']])

 for (a, b, c) in it:
 addop(a, b, c)

 return it.operands[2]

Here is the same function, but following the C-style pattern.:

def iter_add(x, y, out=None):
 addop = np.add

 it = np.nditer([x,y,out], [],
 [['readonly'],['readonly'],['writeonly','allocate']])

 while not it.finished:
 addop(it[0], it[1], it[2])
 it.iternext()

 return it.operands[2]

Some noteworthy points about this function:

	Cache np.add as a local variable to reduce namespace lookups

	Inputs are readonly, output is writeonly, and will be allocated
automatically if it is None.

	Uses np.add’s out parameter to avoid an extra copy.

Let’s create some test variables, and time this function as well as the
built-in np.add.:

In [1]: a = np.arange(1000000,dtype='f4').reshape(100,100,100)
In [2]: b = np.arange(10000,dtype='f4').reshape(1,100,100)
In [3]: c = np.arange(10000,dtype='f4').reshape(100,100,1)

In [4]: timeit iter_add(a, b)
1 loops, best of 3: 7.03 s per loop

In [5]: timeit np.add(a, b)
100 loops, best of 3: 6.73 ms per loop

At a thousand times slower, this is clearly not very good. One feature
of the iterator, designed to help speed up the inner loops, is the flag
no_inner_iteration. This is the same idea as the old iterator’s
PyArray_IterAllButAxis, but slightly smarter. Let’s modify
iter_add to use this feature.:

def iter_add_noinner(x, y, out=None):
 addop = np.add

 it = np.nditer([x,y,out], ['no_inner_iteration'],
 [['readonly'],['readonly'],['writeonly','allocate']])

 for (a, b, c) in it:
 addop(a, b, c)

 return it.operands[2]

The performance improves dramatically.:

In[6]: timeit iter_add_noinner(a, b)
100 loops, best of 3: 7.1 ms per loop

The performance is basically as good as the built-in function! It
turns out this is because the iterator was able to coalesce the last two
dimensions, resulting in 100 adds of 10000 elements each. If the
inner loop doesn’t become as large, the performance doesn’t improve
as dramatically. Let’s use c instead of b to see how this works.:

In[7]: timeit iter_add_noinner(a, c)
10 loops, best of 3: 76.4 ms per loop

It’s still a lot better than seven seconds, but still over ten times worse
than the built-in function. Here, the inner loop has 100 elements,
and it’s iterating 10000 times. If we were coding in C, our performance
would already be as good as the built-in performance, but in Python
there is too much overhead.

This leads us to another feature of the iterator, its ability to give
us views of the iterated memory. The views it gives us are structured
so that processing them in C-order, like the built-in NumPy code does,
gives the same access order as the iterator itself. Effectively, we
are using the iterator to solve for a good memory access pattern, then
using other NumPy machinery to efficiently execute it. Let’s
modify iter_add once again.:

def iter_add_itview(x, y, out=None):
 it = np.nditer([x,y,out], [],
 [['readonly'],['readonly'],['writeonly','allocate']])

 (a, b, c) = it.itviews
 np.add(a, b, c)

 return it.operands[2]

Now the performance pretty closely matches the built-in function’s.:

In [8]: timeit iter_add_itview(a, b)
100 loops, best of 3: 6.18 ms per loop

In [9]: timeit iter_add_itview(a, c)
100 loops, best of 3: 6.69 ms per loop

Let us now step back to a case similar to the original motivation for the
new iterator. Here are the same calculations in Fortran memory order instead
Of C memory order.:

In [10]: a = np.arange(1000000,dtype='f4').reshape(100,100,100).T
In [12]: b = np.arange(10000,dtype='f4').reshape(100,100,1).T
In [11]: c = np.arange(10000,dtype='f4').reshape(1,100,100).T

In [39]: timeit np.add(a, b)
10 loops, best of 3: 34.3 ms per loop

In [41]: timeit np.add(a, c)
10 loops, best of 3: 31.6 ms per loop

In [44]: timeit iter_add_itview(a, b)
100 loops, best of 3: 6.58 ms per loop

In [43]: timeit iter_add_itview(a, c)
100 loops, best of 3: 6.33 ms per loop

As you can see, the performance of the built-in function dropped
significantly, but our newly-written add function maintained essentially
the same performance. As one final test, let’s try several adds chained
together.:

In [4]: timeit np.add(np.add(np.add(a,b), c), a)
1 loops, best of 3: 99.5 ms per loop

In [9]: timeit iter_add_itview(iter_add_itview(iter_add_itview(a,b), c), a)
10 loops, best of 3: 29.3 ms per loop

Also, just to check that it’s doing the same thing,:

In [22]: np.all(
 : iter_add_itview(iter_add_itview(iter_add_itview(a,b), c), a) ==
 : np.add(np.add(np.add(a,b), c), a)
 :)

Out[22]: True

Image Compositing Example Revisited

For motivation, we had an example that did an ‘over’ composite operation
on two images. Now let’s see how we can write the function with
the new iterator.

Here is one of the original functions, for reference, and some
random image data.:

In [5]: rand1 = np.random.random_sample(1080*1920*4).astype(np.float32)
In [6]: rand2 = np.random.random_sample(1080*1920*4).astype(np.float32)
In [7]: image1 = rand1.reshape(1080,1920,4).swapaxes(0,1)
In [8]: image2 = rand2.reshape(1080,1920,4).swapaxes(0,1)

In [3]: def composite_over(im1, im2):
 : ret = (1-im1[:,:,-1])[:,:,np.newaxis]*im2
 : ret += im1
 : return ret

In [4]: timeit composite_over(image1,image2)
1 loops, best of 3: 1.39 s per loop

Here’s the same function, rewritten to use a new iterator. Note how
easy it was to add an optional output parameter.:

In [5]: def composite_over_it(im1, im2, out=None, buffersize=4096):
 : it = np.nditer([im1, im1[:,:,-1], im2, out],
 : ['buffered','no_inner_iteration'],
 : [['readonly']]*3+[['writeonly','allocate']],
 : op_axes=[None,[0,1,np.newaxis],None,None],
 : buffersize=buffersize)
 : while not it.finished:
 : np.multiply(1-it[1], it[2], it[3])
 : it[3] += it[0]
 : it.iternext()
 : return it.operands[3]

In [6]: timeit composite_over_it(image1, image2)
1 loops, best of 3: 197 ms per loop

A big speed improvement, over even the best previous attempt using
straight NumPy and a C-order array! By playing with the buffer size, we can
see how the speed improves until we hit the limits of the CPU cache
in the inner loop.:

In [7]: timeit composite_over_it(image1, image2, buffersize=2**7)
1 loops, best of 3: 1.23 s per loop

In [8]: timeit composite_over_it(image1, image2, buffersize=2**8)
1 loops, best of 3: 699 ms per loop

In [9]: timeit composite_over_it(image1, image2, buffersize=2**9)
1 loops, best of 3: 418 ms per loop

In [10]: timeit composite_over_it(image1, image2, buffersize=2**10)
1 loops, best of 3: 287 ms per loop

In [11]: timeit composite_over_it(image1, image2, buffersize=2**11)
1 loops, best of 3: 225 ms per loop

In [12]: timeit composite_over_it(image1, image2, buffersize=2**12)
1 loops, best of 3: 194 ms per loop

In [13]: timeit composite_over_it(image1, image2, buffersize=2**13)
1 loops, best of 3: 180 ms per loop

In [14]: timeit composite_over_it(image1, image2, buffersize=2**14)
1 loops, best of 3: 192 ms per loop

In [15]: timeit composite_over_it(image1, image2, buffersize=2**15)
1 loops, best of 3: 280 ms per loop

In [16]: timeit composite_over_it(image1, image2, buffersize=2**16)
1 loops, best of 3: 328 ms per loop

In [17]: timeit composite_over_it(image1, image2, buffersize=2**17)
1 loops, best of 3: 345 ms per loop

And finally, to double check that it’s working, we can compare the two
functions.:

In [18]: np.all(composite_over(image1, image2) ==
 ...: composite_over_it(image1, image2))
Out[18]: True

Image Compositing With NumExpr

As a test of the iterator, numexpr has been enhanced to allow use of
the iterator instead of its internal broadcasting code. First, let’s
implement the composite operation with numexpr.:

In [22]: def composite_over_ne(im1, im2, out=None):
 : ima = im1[:,:,-1][:,:,np.newaxis]
 : return ne.evaluate("im1+(1-ima)*im2")

In [23]: timeit composite_over_ne(image1,image2)
1 loops, best of 3: 1.25 s per loop

This beats the straight NumPy operation, but isn’t very good. Switching
to the iterator version of numexpr, we get a big improvement over the
straight Python function using the iterator. Note that this is on
a dual core machine.:

In [29]: def composite_over_ne_it(im1, im2, out=None):
 : ima = im1[:,:,-1][:,:,np.newaxis]
 : return ne.evaluate_iter("im1+(1-ima)*im2")

In [30]: timeit composite_over_ne_it(image1,image2)
10 loops, best of 3: 67.2 ms per loop

In [31]: ne.set_num_threads(1)
In [32]: timeit composite_over_ne_it(image1,image2)
10 loops, best of 3: 91.1 ms per loop

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

A Simple File Format for NumPy Arrays

Author: Robert Kern <robert.kern@gmail.com>
Status: Draft
Created: 20-Dec-2007

Abstract

We propose a standard binary file format (NPY) for persisting
a single arbitrary NumPy array on disk. The format stores all of
the shape and dtype information necessary to reconstruct the array
correctly even on another machine with a different architecture.
The format is designed to be as simple as possible while achieving
its limited goals. The implementation is intended to be pure
Python and distributed as part of the main numpy package.

Rationale

A lightweight, omnipresent system for saving NumPy arrays to disk
is a frequent need. Python in general has pickle [1] for saving
most Python objects to disk. This often works well enough with
NumPy arrays for many purposes, but it has a few drawbacks:

	Dumping or loading a pickle file require the duplication of the
data in memory. For large arrays, this can be a showstopper.

	The array data is not directly accessible through
memory-mapping. Now that numpy has that capability, it has
proved very useful for loading large amounts of data (or more to
the point: avoiding loading large amounts of data when you only
need a small part).

Both of these problems can be addressed by dumping the raw bytes
to disk using ndarray.tofile() and numpy.fromfile(). However,
these have their own problems:

	The data which is written has no information about the shape or
dtype of the array.

	It is incapable of handling object arrays.

The NPY file format is an evolutionary advance over these two
approaches. Its design is mostly limited to solving the problems
with pickles and tofile()/fromfile(). It does not intend to solve
more complicated problems for which more complicated formats like
HDF5 [2] are a better solution.

Use Cases

	Neville Newbie has just started to pick up Python and NumPy. He
has not installed many packages, yet, nor learned the standard
library, but he has been playing with NumPy at the interactive
prompt to do small tasks. He gets a result that he wants to
save.

	Annie Analyst has been using large nested record arrays to
represent her statistical data. She wants to convince her
R-using colleague, David Doubter, that Python and NumPy are
awesome by sending him her analysis code and data. She needs
the data to load at interactive speeds. Since David does not
use Python usually, needing to install large packages would turn
him off.

	Simon Seismologist is developing new seismic processing tools.
One of his algorithms requires large amounts of intermediate
data to be written to disk. The data does not really fit into
the industry-standard SEG-Y schema, but he already has a nice
record-array dtype for using it internally.

	Polly Parallel wants to split up a computation on her multicore
machine as simply as possible. Parts of the computation can be
split up among different processes without any communication
between processes; they just need to fill in the appropriate
portion of a large array with their results. Having several
child processes memory-mapping a common array is a good way to
achieve this.

Requirements

The format MUST be able to:

	Represent all NumPy arrays including nested record
arrays and object arrays.

	Represent the data in its native binary form.

	Be contained in a single file.

	Support Fortran-contiguous arrays directly.

	Store all of the necessary information to reconstruct the array
including shape and dtype on a machine of a different
architecture. Both little-endian and big-endian arrays must be
supported and a file with little-endian numbers will yield
a little-endian array on any machine reading the file. The
types must be described in terms of their actual sizes. For
example, if a machine with a 64-bit C “long int” writes out an
array with “long ints”, a reading machine with 32-bit C “long
ints” will yield an array with 64-bit integers.

	Be reverse engineered. Datasets often live longer than the
programs that created them. A competent developer should be
able to create a solution in his preferred programming language to
read most NPY files that he has been given without much
documentation.

	Allow memory-mapping of the data.

	Be read from a filelike stream object instead of an actual file.
This allows the implementation to be tested easily and makes the
system more flexible. NPY files can be stored in ZIP files and
easily read from a ZipFile object.

	Store object arrays. Since general Python objects are
complicated and can only be reliably serialized by pickle (if at
all), many of the other requirements are waived for files
containing object arrays. Files with object arrays do not have
to be mmapable since that would be technically impossible. We
cannot expect the pickle format to be reverse engineered without
knowledge of pickle. However, one should at least be able to
read and write object arrays with the same generic interface as
other arrays.

	Be read and written using APIs provided in the numpy package
itself without any other libraries. The implementation inside
numpy may be in C if necessary.

The format explicitly does not need to:

	Support multiple arrays in a file. Since we require filelike
objects to be supported, one could use the API to build an ad
hoc format that supported multiple arrays. However, solving the
general problem and use cases is beyond the scope of the format
and the API for numpy.

	Fully handle arbitrary subclasses of numpy.ndarray. Subclasses
will be accepted for writing, but only the array data will be
written out. A regular numpy.ndarray object will be created
upon reading the file. The API can be used to build a format
for a particular subclass, but that is out of scope for the
general NPY format.

Format Specification: Version 1.0

The first 6 bytes are a magic string: exactly “x93NUMPY”.

The next 1 byte is an unsigned byte: the major version number of
the file format, e.g. x01.

The next 1 byte is an unsigned byte: the minor version number of
the file format, e.g. x00. Note: the version of the file format
is not tied to the version of the numpy package.

The next 2 bytes form a little-endian unsigned short int: the
length of the header data HEADER_LEN.

The next HEADER_LEN bytes form the header data describing the
array’s format. It is an ASCII string which contains a Python
literal expression of a dictionary. It is terminated by a newline
(‘n’) and padded with spaces (‘x20’) to make the total length of
the magic string + 4 + HEADER_LEN be evenly divisible by 16 for
alignment purposes.

The dictionary contains three keys:

	“descr” : dtype.descr

	An object that can be passed as an argument to the
numpy.dtype() constructor to create the array’s dtype.

	“fortran_order” : bool

	Whether the array data is Fortran-contiguous or not.
Since Fortran-contiguous arrays are a common form of
non-C-contiguity, we allow them to be written directly to
disk for efficiency.

	“shape” : tuple of int

	The shape of the array.

For repeatability and readability, this dictionary is formatted
using pprint.pformat() so the keys are in alphabetic order.

Following the header comes the array data. If the dtype contains
Python objects (i.e. dtype.hasobject is True), then the data is
a Python pickle of the array. Otherwise the data is the
contiguous (either C- or Fortran-, depending on fortran_order)
bytes of the array. Consumers can figure out the number of bytes
by multiplying the number of elements given by the shape (noting
that shape=() means there is 1 element) by dtype.itemsize.

Conventions

We recommend using the ”.npy” extension for files following this
format. This is by no means a requirement; applications may wish
to use this file format but use an extension specific to the
application. In the absence of an obvious alternative, however,
we suggest using ”.npy”.

For a simple way to combine multiple arrays into a single file,
one can use ZipFile to contain multiple ”.npy” files. We
recommend using the file extension ”.npz” for these archives.

Alternatives

The author believes that this system (or one along these lines) is
about the simplest system that satisfies all of the requirements.
However, one must always be wary of introducing a new binary
format to the world.

HDF5 [2] is a very flexible format that should be able to
represent all of NumPy’s arrays in some fashion. It is probably
the only widely-used format that can faithfully represent all of
NumPy’s array features. It has seen substantial adoption by the
scientific community in general and the NumPy community in
particular. It is an excellent solution for a wide variety of
array storage problems with or without NumPy.

HDF5 is a complicated format that more or less implements
a hierarchical filesystem-in-a-file. This fact makes satisfying
some of the Requirements difficult. To the author’s knowledge, as
of this writing, there is no application or library that reads or
writes even a subset of HDF5 files that does not use the canonical
libhdf5 implementation. This implementation is a large library
that is not always easy to build. It would be infeasible to
include it in numpy.

It might be feasible to target an extremely limited subset of
HDF5. Namely, there would be only one object in it: the array.
Using contiguous storage for the data, one should be able to
implement just enough of the format to provide the same metadata
that the proposed format does. One could still meet all of the
technical requirements like mmapability.

We would accrue a substantial benefit by being able to generate
files that could be read by other HDF5 software. Furthermore, by
providing the first non-libhdf5 implementation of HDF5, we would
be able to encourage more adoption of simple HDF5 in applications
where it was previously infeasible because of the size of the
library. The basic work may encourage similar dead-simple
implementations in other languages and further expand the
community.

The remaining concern is about reverse engineerability of the
format. Even the simple subset of HDF5 would be very difficult to
reverse engineer given just a file by itself. However, given the
prominence of HDF5, this might not be a substantial concern.

In conclusion, we are going forward with the design laid out in
this document. If someone writes code to handle the simple subset
of HDF5 that would be useful to us, we may consider a revision of
the file format.

Implementation

The current implementation is included in the 1.0.5 release of numpy.

http://github.com/numpy/numpy/blob/v1.5.0/numpy/lib/format.py

Specifically, the file format.py in this directory implements the
format as described here.

References

[1] http://docs.python.org/lib/module-pickle.html

[2] http://hdf.ncsa.uiuc.edu/products/hdf5/index.html

Copyright

This document has been placed in the public domain.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

Missing Data Functionality in NumPy

	Author:	Mark Wiebe <mwwiebe@gmail.com>

	Copyright:	Copyright 2011 by Enthought, Inc

	License:	CC By-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)

	Date:	2011-06-23

Table of Contents

Contents

	Missing Data Functionality in NumPy
	Table of Contents

	Abstract

	Definition of Missing Data
	Unknown Yet Existing Data (NA)

	Data That Doesn’t Exist Or Is Being Skipped (IGNORE)

	Implementation Techniques For Missing Values
	Bit Patterns Signalling Missing Values (bitpattern)

	Boolean Masks Signalling Missing Values (mask)

	Glossary of Terms

	Missing Values as Seen in Python
	Working With Missing Values

	Accessing a Boolean Mask

	Creating NA-Masked Arrays

	NA-Masks When Constructing From Lists

	Mask Implementation Details

	New ndarray Methods

	Element-wise UFuncs With Missing Values

	Reduction UFuncs With Missing Values

	Parameterized NA Data Types

	Future Expansion to multi-NA Payloads

	Differences with numpy.ma

	Boolean Indexing

	PEP 3118

	Cython

	Hard Masks

	Shared Masks

	Interaction With Pre-existing C API Usage
	Numpy Documentation - How to extend NumPy

	Tutorial From Cython Website

	Numerical Python - JPL website

	C Implementation Details
	Mask Binary Format

	C Iterator API Changes: Iteration With Masks
	Iterator Mask Features

	Iterator NA-array Features

	Rejected Alternative
	Parameterized Data Type Which Adds Additional Memory for the NA Flag

	Acknowledgments

Abstract

Users interested in dealing with missing data within NumPy are generally
pointed to the masked array subclass of the ndarray, known
as ‘numpy.ma’. This class has a number of users who depend strongly
on its capabilities, but people who are accustomed to the deep integration
of the missing data placeholder “NA” in the R project and others who
find the programming interface challenging or inconsistent tend not
to use it.

This NEP proposes to integrate a mask-based missing data solution
into NumPy, with an additional bitpattern-based missing data solution
that can be implemented concurrently or later integrating seamlessly
with the mask-based solution.

The mask-based solution and the bitpattern-based solutions in this
proposal offer the exact same missing value abstraction, with several
differences in performance, memory overhead, and flexibility.

The mask-based solution is more flexible, supporting all behaviors of the
bitpattern-based solution, but leaving the hidden values untouched
whenever an element is masked.

The bitpattern-based solution requires less memory, is bit-level
compatible with the 64-bit floating point representation used in R, but
does not preserve the hidden values and in fact requires stealing at
least one bit pattern from the underlying dtype to represent the missing
value NA.

Both solutions are generic in the sense that they can be used with
custom data types very easily, with no effort in the case of the masked
solution, and with the requirement that a bit pattern to sacrifice be
chosen in the case of the bitpattern solution.

Definition of Missing Data

In order to be able to develop an intuition about what computation
will be done by various NumPy functions, a consistent conceptual
model of what a missing element means must be applied.
Ferreting out the behaviors people need or want when they are working
with “missing data” seems to be tricky, but I believe that it boils
down to two different ideas, each of which is internally self-consistent.

One of them, the “unknown yet existing data” interpretation, can be applied
rigorously to all computations, while the other makes sense for
some statistical operations like standard deviation but not for
linear algebra operations like matrix product.
Thus, making “unknown yet existing data” be the default interpretation
is superior, providing a consistent model across all computations,
and for those operations where the other interpretation makes sense,
an optional parameter “skipna=” can be added.

For people who want the other interpretation to be default, a mechanism
proposed elsewhere for customizing subclass ufunc behavior with a
_numpy_ufunc_ member function would allow a subclass with a different
default to be created.

Unknown Yet Existing Data (NA)

This is the approach taken in the R project, defining a missing element
as something which does have a valid value which isn’t known, or is
NA (not available). This proposal adopts this behavior as as the
default for all operations involving missing values.

In this interpretation, nearly any computation with a missing input produces
a missing output. For example, ‘sum(a)’ would produce a missing value
if ‘a’ contained just one missing element. When the output value does
not depend on one of the inputs, it is reasonable to output a value
that is not NA, such as logical_and(NA, False) == False.

Some more complex arithmetic operations, such as matrix products, are
well defined with this interpretation, and the result should be
the same as if the missing values were NaNs. Actually implementing
such things to the theoretical limit is probably not worth it,
and in many cases either raising an exception or returning all
missing values may be preferred to doing precise calculations.

Data That Doesn’t Exist Or Is Being Skipped (IGNORE)

Another useful interpretation is that the missing elements should be
treated as if they didn’t exist in the array, and the operation should
do its best to interpret what that means according to the data
that’s left. In this case, ‘mean(a)’ would compute the mean of just
the values that are available, adjusting both the sum and count it
uses based on which values are missing. To be consistent, the mean of
an array of all missing values must produce the same result as the
mean of a zero-sized array without missing value support.

This kind of data can arise when conforming sparsely sampled data
into a regular sampling pattern, and is a useful interpretation to
use when attempting to get best-guess answers for many statistical queries.

In R, many functions take a parameter “na.rm=T” which means to treat
the data as if the NA values are not part of the data set. This proposal
defines a standard parameter “skipna=True” for this same purpose.

Implementation Techniques For Missing Values

In addition to there being two different interpretations of missing values,
there are two different commonly used implementation techniques for
missing values. While there are some differing default behaviors between
existing implementations of the techniques, I believe that the design
choices made in a new implementation must be made based on their merits,
not by rote copying of previous designs.

Both masks and bitpatterns have different strong and weak points,
depending on the application context. This NEP thus proposes to implement
both. To enable the writing of generic “missing value” code which does
not have to worry about whether the arrays it is using have taken one
or the other approach, the missing value semantics will be identical
for the two implementations.

Bit Patterns Signalling Missing Values (bitpattern)

One or more patterns of bits, for example a NaN with
a particular payload, are chosen to represent the missing value
placeholder NA.

A consequence of this approach is that assigning NA changes the bits
holding the value, so that value is gone.

Additionally, for some types such as integers, a good and proper value
must be sacrificed to enable this functionality.

Boolean Masks Signalling Missing Values (mask)

A mask is a parallel array of booleans, either one byte per element or
one bit per element, allocated alongside the existing array data. In this
NEP, the convention is chosen that True means the element is valid
(unmasked), and False means the element is NA.

By taking care when writing any C algorithm that works with values
and masks together, it is possible to have the memory for a value
that is masked never be written to. This feature allows multiple
simultaneous views of the same data with different choices of what
is missing, a feature requested by many people on the mailing list.

This approach places no limitations on the values of the underlying
data type, it may take on any binary pattern without affecting the
NA behavior.

Glossary of Terms

Because the above discussions of the different concepts and their
relationships are tricky to understand, here are more succinct
definitions of the terms used in this NEP.

	NA (Not Available/Propagate)

	A placeholder for a value which is unknown to computations. That
value may be temporarily hidden with a mask, may have been lost
due to hard drive corruption, or gone for any number of reasons.
For sums and products this means to produce NA if any of the inputs
are NA. This is the same as NA in the R project.

	IGNORE (Ignore/Skip)

	A placeholder which should be treated by computations as if no value does
or could exist there. For sums, this means act as if the value
were zero, and for products, this means act as if the value were one.
It’s as if the array were compressed in some fashion to not include
that element.

	bitpattern

	A technique for implementing either NA or IGNORE, where a particular
set of bit patterns are chosen from all the possible bit patterns of the
value’s data type to signal that the element is NA or IGNORE.

	mask

	A technique for implementing either NA or IGNORE, where a
boolean or enum array parallel to the data array is used to signal
which elements are NA or IGNORE.

	numpy.ma

	The existing implementation of a particular form of masked arrays,
which is part of the NumPy codebase.

	Python API

	All the interface mechanisms that are exposed to Python code
for using missing values in NumPy. This API is designed to be
Pythonic and fit into the way NumPy works as much as possible.

	C API

	All the implementation mechanisms exposed for CPython extensions
written in C that want to support NumPy missing value support.
This API is designed to be as natural as possible in C, and
is usually prioritizes flexibility and high performance.

Missing Values as Seen in Python

Working With Missing Values

NumPy will gain a global singleton called numpy.NA, similar to None,
but with semantics reflecting its status as a missing value. In particular,
trying to treat it as a boolean will raise an exception, and comparisons
with it will produce numpy.NA instead of True or False. These basics are
adopted from the behavior of the NA value in the R project. To dig
deeper into the ideas, http://en.wikipedia.org/wiki/Ternary_logic#Kleene_logic
provides a starting point.

For example,:

>>> np.array([1.0, 2.0, np.NA, 7.0], maskna=True)
array([1., 2., NA, 7.], maskna=True)
>>> np.array([1.0, 2.0, np.NA, 7.0], dtype='NA')
array([1., 2., NA, 7.], dtype='NA[<f8]')
>>> np.array([1.0, 2.0, np.NA, 7.0], dtype='NA[f4]')
array([1., 2., NA, 7.], dtype='NA[<f4]')

produce arrays with values [1.0, 2.0, <inaccessible>, 7.0] /
mask [Exposed, Exposed, Hidden, Exposed], and
values [1.0, 2.0, <NA bitpattern>, 7.0] for the masked and
NA dtype versions respectively.

The np.NA singleton may accept a dtype= keyword parameter, indicating
that it should be treated as an NA of a particular data type. This is also
a mechanism for preserving the dtype in a NumPy scalar-like fashion.
Here’s what this looks like:

>>> np.sum(np.array([1.0, 2.0, np.NA, 7.0], maskna=True))
NA(dtype='<f8')
>>> np.sum(np.array([1.0, 2.0, np.NA, 7.0], dtype='NA[f8]'))
NA(dtype='NA[<f8]')

Assigning a value to an array always causes that element to not be NA,
transparently unmasking it if necessary. Assigning numpy.NA to the array
masks that element or assigns the NA bitpattern for the particular dtype.
In the mask-based implementation, the storage behind a missing value may never
be accessed in any way, other than to unmask it by assigning its value.

To test if a value is missing, the function “np.isna(arr[0])” will
be provided. One of the key reasons for the NumPy scalars is to allow
their values into dictionaries.

All operations which write to masked arrays will not affect the value
unless they also unmask that value. This allows the storage behind
masked elements to still be relied on if they are still accessible
from another view which doesn’t have them masked. For example, the
following was run on the missingdata work-in-progress branch:

>>> a = np.array([1,2])
>>> b = a.view(maskna=True)
>>> b
array([1, 2], maskna=True)
>>> b[0] = np.NA
>>> b
array([NA, 2], maskna=True)
>>> a
array([1, 2])
>>> # The underlying number 1 value in 'a[0]' was untouched

Copying values between the mask-based implementation and the
bitpattern implementation will transparently do the correct thing,
turning the bitpattern into a masked value, or a masked value
into the bitpattern where appropriate. The one exception is
if a valid value in a masked array happens to have the NA bitpattern,
copying this value to the NA form of the dtype will cause it to
become NA as well.

When operations are done between arrays with NA dtypes and masked arrays,
the result will be masked arrays. This is because in some cases the
NA dtypes cannot represent all the values in the masked array, so
going to masked arrays is the only way to preserve all aspects of the data.

If np.NA or masked values are copied to an array without support for
missing values enabled, an exception will be raised. Adding a mask to
the target array would be problematic, because then having a mask
would be a “viral” property consuming extra memory and reducing
performance in unexpected ways.

By default, the string “NA” will be used to represent missing values
in str and repr outputs. A global configuration will allow
this to be changed, exactly extending the way nan and inf are treated.
The following works in the current draft implementation:

>>> a = np.arange(6, maskna=True)
>>> a[3] = np.NA
>>> a
array([0, 1, 2, NA, 4, 5], maskna=True)
>>> np.set_printoptions(nastr='blah')
>>> a
array([0, 1, 2, blah, 4, 5], maskna=True)

For floating point numbers, Inf and NaN are separate concepts from
missing values. If a division by zero occurs in an array with default
missing value support, an unmasked Inf or NaN will be produced. To
mask those values, a further ‘a[np.logical_not(a.isfinite(a)] = np.NA’
can achieve that. For the bitpattern approach, the parameterized
dtype(‘NA[f8,InfNan]’) described in a later section can be used to get
these semantics without the extra manipulation.

A manual loop through a masked array like:

>>> a = np.arange(5., maskna=True)
>>> a[3] = np.NA
>>> a
array([0., 1., 2., NA, 4.], maskna=True)
>>> for i in range(len(a)):
... a[i] = np.log(a[i])
...
__main__:2: RuntimeWarning: divide by zero encountered in log
>>> a
array([-inf, 0. , 0.69314718, NA, 1.38629436], maskna=True)

works even with masked values, because ‘a[i]’ returns an NA object
with a data type associated, that can be treated properly by the ufuncs.

Accessing a Boolean Mask

The mask used to implement missing data in the masked approach is not
accessible from Python directly. This is partially due to differing
opinions on whether True in the mask should mean “missing” or “not missing”
Additionally, exposing the mask directly would preclude a potential
space optimization, where a bit-level instead of a byte-level mask
is used to get a factor of eight memory usage improvement.

To access a mask directly, there are two functions provided. They
work equivalently for both arrays with masks and NA bit
patterns, so they are specified in terms of NA and available values
instead of masked and unmasked values. The functions are
‘np.isna’ and ‘np.isavail’, which test for NA or available values
respectively.

Creating NA-Masked Arrays

The usual way to create an array with an NA mask is to pass the keyword
parameter maskna=True to one of the constructors. Most functions that
create a new array take this parameter, and produce an NA-masked
array with all its elements exposed when the parameter is set to True.

There are also two flags which indicate and control the nature of the mask
used in masked arrays. These flags can be used to add a mask, or ensure
the mask isn’t a view into another array’s mask.

First is ‘arr.flags.maskna’, which is True for all masked arrays and
may be set to True to add a mask to an array which does not have one.

Second is ‘arr.flags.ownmaskna’, which is True if the array owns the
memory to the mask, and False if the array has no mask, or has a view
into the mask of another array. If this is set to True in a masked
array, the array will create a copy of the mask so that further modifications
to the mask will not affect the original mask from which the view was taken.

NA-Masks When Constructing From Lists

The initial design of NA-mask construction was to make all construction
fully explicit. This turns out to be unwieldy when working interactively
with NA-masked arrays, and having an object array be created instead of
an NA-masked array can be very surprising.

Because of this, the design has been changed to enable an NA-mask whenever
creating an array from lists which have an NA object in them. There could
be some debate of whether one should create NA-masks or NA-bitpatterns
by default, but due to the time constraints it was only feasible to tackle
NA-masks, and extending the NA-mask support more fully throughout NumPy seems
much more reasonable than starting another system and ending up with two
incomplete systems.

Mask Implementation Details

The memory ordering of the mask will always match the ordering of
the array it is associated with. A Fortran-style array will have a
Fortran-style mask, etc.

When a view of an array with a mask is taken, the view will have
a mask which is also a view of the mask in the original
array. This means unmasking values in views will also unmask them
in the original array, and if a mask is added to an array, it will
not be possible to ever remove that mask except to create a new array
copying the data but not the mask.

It is still possible to temporarily treat an array with a mask without
giving it one, by first creating a view of the array and then adding a
mask to that view. A data set can be viewed with multiple different
masks simultaneously, by creating multiple views, and giving each view
a mask.

New ndarray Methods

New functions added to the numpy namespace are:

np.isna(arr) [IMPLEMENTED]
 Returns a boolean array with True whereever the array is masked
 or matches the NA bitpattern, and False elsewhere

np.isavail(arr)
 Returns a boolean array with False whereever the array is masked
 or matches the NA bitpattern, and True elsewhere

New functions added to the ndarray are:

arr.copy(..., replacena=np.NA)
 Modification to the copy function which replaces NA values,
 either masked or with the NA bitpattern, with the 'replacena='
 parameter suppled. When 'replacena' isn't NA, the copied
 array is unmasked and has the 'NA' part stripped from the
 parameterized dtype ('NA[f8]' becomes just 'f8').

 The default for replacena is chosen to be np.NA instead of None,
 because it may be desirable to replace NA with None in an
 NA-masked object array.

 For future multi-NA support, 'replacena' could accept a dictionary
 mapping the NA payload to the value to substitute for that
 particular NA. NAs with payloads not appearing in the dictionary
 would remain as NA unless a 'default' key was also supplied.

 Both the parameter to replacena and the values in the dictionaries
 can be either scalars or arrays which get broadcast onto 'arr'.

arr.view(maskna=True) [IMPLEMENTED]
 This is a shortcut for
 >>> a = arr.view()
 >>> a.flags.maskna = True

arr.view(ownmaskna=True) [IMPLEMENTED]
 This is a shortcut for
 >>> a = arr.view()
 >>> a.flags.maskna = True
 >>> a.flags.ownmaskna = True

Element-wise UFuncs With Missing Values

As part of the implementation, ufuncs and other operations will
have to be extended to support masked computation. Because this
is a useful feature in general, even outside the context of
a masked array, in addition to working with masked arrays ufuncs
will take an optional ‘where=’ parameter which allows the use
of boolean arrays to choose where a computation should be done.:

>>> np.add(a, b, out=b, where=(a > threshold))

A benefit of having this ‘where=’ parameter is that it provides a way
to temporarily treat an object with a mask without ever creating a
masked array object. In the example above, this would only do the
add for the array elements with True in the ‘where’ clause, and neither
‘a’ nor ‘b’ need to be masked arrays.

If the ‘out’ parameter isn’t specified, use of the ‘where=’ parameter
will produce an array with a mask as the result, with missing values
for everywhere the ‘where’ clause had the value False.

For boolean operations, the R project special cases logical_and and
logical_or so that logical_and(NA, False) is False, and
logical_or(NA, True) is True. On the other hand, 0 * NA isn’t 0, but
here the NA could represent Inf or NaN, in which case 0 * the backing
value wouldn’t be 0 anyway.

For NumPy element-wise ufuncs, the design won’t support this ability
for the mask of the output to depend simultaneously on the mask and
the value of the inputs. The NumPy 1.6 nditer, however, makes it
fairly easy to write standalone functions which look and feel just
like ufuncs, but deviate from their behavior. The functions logical_and
and logical_or can be moved into standalone function objects which are
backwards compatible with the current ufuncs.

Reduction UFuncs With Missing Values

Reduction operations like ‘sum’, ‘prod’, ‘min’, and ‘max’ will operate
consistently with the idea that a masked value exists, but its value
is unknown.

An optional parameter ‘skipna=’ will be added to those functions
which can interpret it appropriately to do the operation as if just
the unmasked values existed.

With ‘skipna=True’, when all the input values are masked,
‘sum’ and ‘prod’ will produce the additive and multiplicative identities
respectively, while ‘min’ and ‘max’ will produce masked values.
Statistics operations which require a count, like ‘mean’ and ‘std’
will also use the unmasked value counts for their calculations if
‘skipna=True’, and produce masked values when all the inputs are masked.

Some examples:

>>> a = np.array([1., 3., np.NA, 7.], maskna=True)
>>> np.sum(a)
array(NA, dtype='<f8', maskna=True)
>>> np.sum(a, skipna=True)
11.0
>>> np.mean(a)
NA(dtype='<f8')
>>> np.mean(a, skipna=True)
3.6666666666666665

>>> a = np.array([np.NA, np.NA], dtype='f8', maskna=True)
>>> np.sum(a, skipna=True)
0.0
>>> np.max(a, skipna=True)
array(NA, dtype='<f8', maskna=True)
>>> np.mean(a)
NA(dtype='<f8')
>>> np.mean(a, skipna=True)
/home/mwiebe/virtualenvs/dev/lib/python2.7/site-packages/numpy/core/fromnumeric.py:2374: RuntimeWarning: invalid value encountered in double_scalars
 return mean(axis, dtype, out)
nan

The functions ‘np.any’ and ‘np.all’ require some special consideration,
just as logical_and and logical_or do. Maybe the best way to describe
their behavior is through a series of examples:

>>> np.any(np.array([False, False, False], maskna=True))
False
>>> np.any(np.array([False, np.NA, False], maskna=True))
NA
>>> np.any(np.array([False, np.NA, True], maskna=True))
True

>>> np.all(np.array([True, True, True], maskna=True))
True
>>> np.all(np.array([True, np.NA, True], maskna=True))
NA
>>> np.all(np.array([False, np.NA, True], maskna=True))
False

Since ‘np.any’ is the reduction for ‘np.logical_or’, and ‘np.all’
is the reduction for ‘np.logical_and’, it makes sense for them to
have a ‘skipna=’ parameter like the other similar reduction functions.

Parameterized NA Data Types

A masked array isn’t the only way to deal with missing data, and
some systems deal with the problem by defining a special “NA” value,
for data which is missing. This is distinct from NaN floating point
values, which are the result of bad floating point calculation values,
but many people use NaNs for this purpose.

In the case of IEEE floating point values, it is possible to use a
particular NaN value, of which there are many, for “NA”, distinct
from NaN. For signed integers, a reasonable approach would be to use
the minimum storable value, which doesn’t have a corresponding positive
value. For unsigned integers, the maximum storage value seems most
reasonable.

With the goal of providing a general mechanism, a parameterized type
mechanism for this is much more attractive than creating separate
nafloat32, nafloat64, naint64, nauint64, etc dtypes. If this is viewed
as an alternative way of treating the mask except without value preservation,
this parameterized type can work together with the mask in a special
way to produce a value + mask combination on the fly, and use the
exact same computational infrastructure as the masked array system.
This allows one to avoid the need to write special case code for each
ufunc and for each na* dtype, something that is hard to avoid when
building a separate independent dtype implementation for each na* dtype.

Reliable conversions with the NA bitpattern preserved across primitive
types requires consideration as well. Even in the simple case of
double -> float, where this is supported by hardware, the NA value
will get lost because the NaN payload is typically not preserved.
The ability to have different bit masks specified for the same underlying
type also needs to convert properly. With a well-defined interface
converting to/from a (value,flag) pair, this becomes straightforward
to support generically.

This approach also provides some opportunities for some subtle variations
with IEEE floats. By default, one exact bit-pattern, a silent NaN with
a payload that won’t be generated by hardware floating point operations,
would be used. The choice R has made could be this default.

Additionally, it might be nice to sometimes treat all NaNs as missing values.
This requires a slightly more complex mapping to convert the floating point
values into mask/value combinations, and converting back would always
produce the default NaN used by NumPy. Finally, treating both NaNs
and Infs as missing values would be just a slight variation of the NaN
version.

Strings require a slightly different handling, because they
may be any size. One approach is to use a one-character signal consisting
of one of the first 32 ASCII/unicode values. There are many possible values
to use here, like 0x15 ‘Negative Acknowledgement’ or 0x10 ‘Data Link Escape’.

The Object dtype has an obvious signal, the np.NA singleton itself. Any
dtype with object semantics won’t be able to have this customized, since
specifying bit patterns applies only to plain binary data, not data
with object semantics of construction and destructions.

Struct dtypes are more of a core primitive dtype, in the same fashion that
this parameterized NA-capable dtype is. It won’t be possible to put
these as the parameter for the parameterized NA-dtype.

The dtype names would be parameterized similar to how the datetime64
is parameterized by the metadata unit. What name to use may require some
debate, but “NA” seems like a reasonable choice. With the default
missing value bit-pattern, these dtypes would look like
np.dtype(‘NA[float32]’), np.dtype(‘NA[f8]’), or np.dtype(‘NA[i64]’).

To override the bit pattern that signals a missing value, a raw
value in the format of a hexadecimal unsigned integer can be given,
and in the above special cases for floating point, special strings
can be provided. The defaults for some cases, written explicitly in this
form, are then:

np.dtype('NA[?,0x02]')
np.dtype('NA[i4,0x80000000]')
np.dtype('NA[u4,0xffffffff]')
np.dtype('NA[f4,0x7f8007a2')
np.dtype('NA[f8,0x7ff00000000007a2') (R-compatible bitpattern)
np.dtype('NA[S16,0x15]') (using the NAK character as the signal).

np.dtype('NA[f8,NaN]') (for any NaN)
np.dtype('NA[f8,InfNaN]') (for any NaN or Inf)

When no parameter is specified a flexible NA dtype is created, which itself
cannot hold values, but will conform to the input types in functions like
‘np.astype’. The dtype ‘f8’ maps to ‘NA[f8]’, and [(‘a’, ‘f4’), (‘b’, ‘i4’)]
maps to [(‘a’, ‘NA[f4]’), (‘b’, ‘NA[i4]’)]. Thus, to view the memory
of an ‘f8’ array ‘arr’ with ‘NA[f8]’, you can say arr.view(dtype=’NA’).

Future Expansion to multi-NA Payloads

The packages SAS and Stata both support multiple different “NA” values.
This allows one to specify different reasons for why a value, for
example homework that wasn’t done because the dog ate it or the student
was sick. In these packages, the different NA values have a linear ordering
which specifies how different NA values combine together.

In the sections on C implementation details, the mask has been designed
so that a mask with a payload is a strict superset of the NumPy boolean
type, and the boolean type has a payload of just zero. Different payloads
combine with the ‘min’ operation.

The important part of future-proofing the design is making sure
the C ABI-level choices and the Python API-level choices have a natural
transition to multi-NA support. Here is one way multi-NA support could look:

>>> a = np.array([np.NA(1), 3, np.NA(2)], maskna='multi')
>>> np.sum(a)
NA(1, dtype='<i4')
>>> np.sum(a[1:])
NA(2, dtype='<i4')
>>> b = np.array([np.NA, 2, 5], maskna=True)
>>> a + b
array([NA(0), 5, NA(2)], maskna='multi')

The design of this NEP does not distinguish between NAs that come
from an NA mask or NAs that come from an NA dtype. Both of these get
treated equivalently in computations, with masks dominating over NA
dtypes.:

>>> a = np.array([np.NA, 2, 5], maskna=True)
>>> b = np.array([1, np.NA, 7], dtype='NA')
>>> a + b
array([NA, NA, 12], maskna=True)

The multi-NA approach allows one to distinguish between these NAs,
through assigning different payloads to the different types. If we
extend the ‘skipna=’ parameter to accept a list of payloads in addition
to True/False, one could do this:

>>> a = np.array([np.NA(1), 2, 5], maskna='multi')
>>> b = np.array([1, np.NA(0), 7], dtype='NA[f4,multi]')
>>> a + b
array([NA(1), NA(0), 12], maskna='multi')
>>> np.sum(a, skipna=0)
NA(1, dtype='<i4')
>>> np.sum(a, skipna=1)
7
>>> np.sum(b, skipna=0)
8
>>> np.sum(b, skipna=1)
NA(0, dtype='<f4')
>>> np.sum(a+b, skipna=(0,1))
12

Differences with numpy.ma

The computational model that numpy.ma uses does not strictly adhere to
either the NA or the IGNORE model. This section exhibits some examples
of how these differences affect simple computations. This information
will be very important for helping users navigate between the systems,
so a summary probably should be put in a table in the documentation.:

>>> a = np.random.random((3, 2))
>>> mask = [[False, True], [True, True], [False, False]]
>>> b1 = np.ma.masked_array(a, mask=mask)
>>> b2 = a.view(maskna=True)
>>> b2[mask] = np.NA

>>> b1
masked_array(data =
 [[0.110804969841 --]
 [-- --]
 [0.955128477746 0.440430735546]],
 mask =
 [[False True]
 [True True]
 [False False]],
 fill_value = 1e+20)
>>> b2
array([[0.110804969841, NA],
 [NA, NA],
 [0.955128477746, 0.440430735546]],
 maskna=True)

>>> b1.mean(axis=0)
masked_array(data = [0.532966723794 0.440430735546],
 mask = [False False],
 fill_value = 1e+20)

>>> b2.mean(axis=0)
array([NA, NA], dtype='<f8', maskna=True)
>>> b2.mean(axis=0, skipna=True)
array([0.532966723794 0.440430735546], maskna=True)

For functions like np.mean, when ‘skipna=True’, the behavior
for all NAs is consistent with an empty array:

>>> b1.mean(axis=1)
masked_array(data = [0.110804969841 -- 0.697779606646],
 mask = [False True False],
 fill_value = 1e+20)

>>> b2.mean(axis=1)
array([NA, NA, 0.697779606646], maskna=True)
>>> b2.mean(axis=1, skipna=True)
RuntimeWarning: invalid value encountered in double_scalars
array([0.110804969841, nan, 0.697779606646], maskna=True)

>>> np.mean([])
RuntimeWarning: invalid value encountered in double_scalars
nan

In particular, note that numpy.ma generally skips masked values,
except returns masked when all the values are masked, while
the ‘skipna=’ parameter returns zero when all the values are NA,
to be consistent with the result of np.sum([]):

>>> b1[1]
masked_array(data = [-- --],
 mask = [True True],
 fill_value = 1e+20)
>>> b2[1]
array([NA, NA], dtype='<f8', maskna=True)
>>> b1[1].sum()
masked
>>> b2[1].sum()
NA(dtype='<f8')
>>> b2[1].sum(skipna=True)
0.0

>>> np.sum([])
0.0

Boolean Indexing

Indexing using a boolean array containing NAs does not have a consistent
interpretation according to the NA abstraction. For example:

>>> a = np.array([1, 2])
>>> mask = np.array([np.NA, True], maskna=True)
>>> a[mask]
What should happen here?

Since the NA represents a valid but unknown value, and it is a boolean,
it has two possible underlying values:

>>> a[np.array([True, True])]
array([1, 2])
>>> a[np.array([False, True])]
array([2])

The thing which changes is the length of the output array, nothing which
itself can be substituted for NA. For this reason, at least initially,
NumPy will raise an exception for this case.

Another possibility is to add an inconsistency, and follow the approach
R uses. That is, to produce the following:

>>> a[mask]
array([NA, 2], maskna=True)

If, in user testing, this is found necessary for pragmatic reasons,
the feature should be added even though it is inconsistent.

PEP 3118

PEP 3118 doesn’t have any mask mechanism, so arrays with masks will
not be accessible through this interface. Similarly, it doesn’t support
the specification of dtypes with NA or IGNORE bitpatterns, so the
parameterized NA dtypes will also not be accessible through this interface.

If NumPy did allow access through PEP 3118, this would circumvent the
missing value abstraction in a very damaging way. Other libraries would
try to use masked arrays, and silently get access to the data without
also getting access to the mask or being aware of the missing value
abstraction the mask and data together are following.

Cython

Cython uses PEP 3118 to work with NumPy arrays, so currently it will
simply refuse to work with them as described in the “PEP 3118” section.

In order to properly support NumPy missing values, Cython will need to
be modified in some fashion to add this support. Likely the best way
to do this will be to include it with supporting np.nditer, which
is most likely going to have an enhancement to make writing missing
value algorithms easier.

Hard Masks

The numpy.ma implementation has a “hardmask” feature,
which prevents values from ever being unmasked by assigning a value.
This would be an internal array flag, named something like
‘arr.flags.hardmask’.

If the hardmask feature is implemented, boolean indexing could
return a hardmasked array instead of a flattened array with the
arbitrary choice of C-ordering as it currently does. While this
improves the abstraction of the array significantly, it is not
a compatible change.

Shared Masks

One feature of numpy.ma is called ‘shared masks’.

http://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray.sharedmask

This feature cannot be supported by a masked implementation of
missing values without directly violating the missing value abstraction.
If the same mask memory is shared between two arrays ‘a’ and ‘b’, assigning
a value to a masked element in ‘a’ will simultaneously unmask the
element with matching index in ‘b’. Because this isn’t at the same time
assigning a valid value to that element in ‘b’, this has violated the
abstraction. For this reason, shared masks will not be supported
by the mask-based missing value implementation.

This is slightly different from what happens when taking a view
of an array with masked missing value support, where a view of
both the mask and the data are taken simultaneously. The result
is two views which share the same mask memory and the same data memory,
which still preserves the missing value abstraction.

Interaction With Pre-existing C API Usage

Making sure existing code using the C API, whether it’s written in C, C++,
or Cython, does something reasonable is an important goal of this implementation.
The general strategy is to make existing code which does not explicitly
tell numpy it supports NA masks fail with an exception saying so. There are
a few different access patterns people use to get ahold of the numpy array data,
here we examine a few of them to see what numpy can do. These examples are
found from doing google searches of numpy C API array access.

Numpy Documentation - How to extend NumPy

http://docs.scipy.org/doc/numpy/user/c-info.how-to-extend.html#dealing-with-array-objects

This page has a section “Dealing with array objects” which has some advice for how
to access numpy arrays from C. When accepting arrays, the first step it suggests is
to use PyArray_FromAny or a macro built on that function, so code following this
advice will properly fail when given an NA-masked array it doesn’t know how to handle.

The way this is handled is that PyArray_FromAny requires a special flag, NPY_ARRAY_ALLOWNA,
before it will allow NA-masked arrays to flow through.

http://docs.scipy.org/doc/numpy/reference/c-api.array.html#NPY_ARRAY_ALLOWNA

Code which does not follow this advice, and instead just calls PyArray_Check() to verify
its an ndarray and checks some flags, will silently produce incorrect results. This style
of code does not provide any opportunity for numpy to say “hey, this array is special”,
so also is not compatible with future ideas of lazy evaluation, derived dtypes, etc.

Tutorial From Cython Website

http://docs.cython.org/src/tutorial/numpy.html

This tutorial gives a convolution example, and all the examples fail with
Python exceptions when given inputs that contain NA values.

Before any Cython type annotation is introduced, the code functions just
as equivalent Python would in the interpreter.

When the type information is introduced, it is done via numpy.pxd which
defines a mapping between an ndarray declaration and PyArrayObject *.
Under the hood, this maps to __Pyx_ArgTypeTest, which does a direct
comparison of Py_TYPE(obj) against the PyTypeObject for the ndarray.

Then the code does some dtype comparisons, and uses regular python indexing
to access the array elements. This python indexing still goes through the
Python API, so the NA handling and error checking in numpy still can work
like normal and fail if the inputs have NAs which cannot fit in the output
array. In this case it fails when trying to convert the NA into an integer
to set in in the output.

The next version of the code introduces more efficient indexing. This
operates based on Python’s buffer protocol. This causes Cython to call
__Pyx_GetBufferAndValidate, which calls __Pyx_GetBuffer, which calls
PyObject_GetBuffer. This call gives numpy the opportunity to raise an
exception if the inputs are arrays with NA-masks, something not supported
by the Python buffer protocol.

Numerical Python - JPL website

http://dsnra.jpl.nasa.gov/software/Python/numpydoc/numpy-13.html

This document is from 2001, so does not reflect recent numpy, but it is the
second hit when searching for “numpy c api example” on google.

There first example, heading “A simple example”, is in fact already invalid for
recent numpy even without the NA support. In particular, if the data is misaligned
or in a different byteorder, it may crash or produce incorrect results.

The next thing the document does is introduce PyArray_ContiguousFromObject, which
gives numpy an opportunity to raise an exception when NA-masked arrays are used,
so the later code will raise exceptions as desired.

C Implementation Details

The first version to implement is the array masks, because it is
the more general approach. The mask itself is an array, but since
it is intended to never be directly accessible from Python, it won’t
be a full ndarray itself. The mask always has the same shape as
the array it’s attached to, so it doesn’t need its own shape. For
an array with a struct dtype, however, the mask will have a different
dtype than just a straight bool, so it does need its own dtype.
This gives us the following additions to the PyArrayObject:

/*
 * Descriptor for the mask dtype.
 * If no mask: NULL
 * If mask : bool/uint8/structured dtype of mask dtypes
 */
PyArray_Descr *maskna_dtype;
/*
 * Raw data buffer for mask. If the array has the flag
 * NPY_ARRAY_OWNMASKNA enabled, it owns this memory and
 * must call PyArray_free on it when destroyed.
 */
npy_mask *maskna_data;
/*
 * Just like dimensions and strides point into the same memory
 * buffer, we now just make the buffer 3x the nd instead of 2x
 * and use the same buffer.
 */
npy_intp *maskna_strides;

These fields can be accessed through the inline functions:

PyArray_Descr *
PyArray_MASKNA_DTYPE(PyArrayObject *arr);

npy_mask *
PyArray_MASKNA_DATA(PyArrayObject *arr);

npy_intp *
PyArray_MASKNA_STRIDES(PyArrayObject *arr);

npy_bool
PyArray_HASMASKNA(PyArrayObject *arr);

There are 2 or 3 flags which must be added to the array flags, both
for requesting NA masks and for testing for them:

NPY_ARRAY_MASKNA
NPY_ARRAY_OWNMASKNA
/* To possibly add in a later revision */
NPY_ARRAY_HARDMASKNA

To allow the easy detection of NA support, and whether an array
has any missing values, we add the following functions:

	PyDataType_HasNASupport(PyArray_Descr* dtype)

	Returns true if this is an NA dtype, or a struct
dtype where every field has NA support.

	PyArray_HasNASupport(PyArrayObject* obj)

	Returns true if the array dtype has NA support, or
the array has an NA mask.

	PyArray_ContainsNA(PyArrayObject* obj)

	Returns false if the array has no NA support. Returns
true if the array has NA support AND there is an
NA anywhere in the array.

	int PyArray_AllocateMaskNA(PyArrayObject* arr, npy_bool ownmaskna, npy_bool multina)

	Allocates an NA mask for the array, ensuring ownership if requested
and using NPY_MASK instead of NPY_BOOL for the dtype if multina is True.

Mask Binary Format

The format of the mask itself is designed to indicate whether an
element is masked or not, as well as contain a payload so that multiple
different NAs with different payloads can be used in the future.
Initially, we will simply use the payload 0.

The mask has type npy_uint8, and bit 0 is used to indicate whether
a value is masked. If ((m&0x01) == 0), the element is masked, otherwise
it is unmasked. The rest of the bits are the payload, which is (m>>1).
The convention for combining masks with payloads is that smaller
payloads propagate. This design gives 128 payload values to masked elements,
and 128 payload values to unmasked elements.

The big benefit of this approach is that npy_bool also
works as a mask, because it takes on the values 0 for False and 1
for True. Additionally, the payload for npy_bool, which is always
zero, dominates over all the other possible payloads.

Since the design involves giving the mask its own dtype, we can
distinguish between masking with a single NA value (npy_bool mask),
and masking with multi-NA (npy_uint8 mask). Initial implementations
will just support the npy_bool mask.

An idea that was discarded is to allow the combination of masks + payloads
to be a simple ‘min’ operation. This can be done by putting the payload
in bits 0 through 6, so that the payload is (m&0x7f), and using bit 7
for the masking flag, so ((m&0x80) == 0) means the element is masked.
The fact that this makes masks completely different from booleans, instead
of a strict superset, is the primary reason this choice was discarded.

C Iterator API Changes: Iteration With Masks

For iteration and computation with masks, both in the context of missing
values and when the mask is used like the ‘where=’ parameter in ufuncs,
extending the nditer is the most natural way to expose this functionality.

Masked operations need to work with casting, alignment, and anything else
which causes values to be copied into a temporary buffer, something which
is handled nicely by the nditer but difficult to do outside that context.

First we describe iteration designed for use of masks outside the
context of missing values, then the features which include missing
value support.

Iterator Mask Features

We add several new per-operand flags:

	NPY_ITER_WRITEMASKED

	Indicates that any copies done from a buffer to the array are
masked. This is necessary because READWRITE mode could destroy
data if a float array was being treated like an int array, so
copying to the buffer and back would truncate to integers. No
similar flag is provided for reading, because it may not be possible
to know the mask ahead of time, and copying everything into
the buffer will never destroy data.

The code using the iterator should only write to values which
are not masked by the mask specified, otherwise the result will
be different depending on whether buffering is enabled or not.

	NPY_ITER_ARRAYMASK

	Indicates that this array is a boolean mask to use when copying
any WRITEMASKED argument from a buffer back to the array. There
can be only one such mask, and there cannot also be a virtual
mask.

As a special case, if the flag NPY_ITER_USE_MASKNA is specified
at the same time, the mask for the operand is used instead
of the operand itself. If the operand has no mask but is
based on an NA dtype, that mask exposed by the iterator converts
into the NA bitpattern when copying from the buffer to the
array.

	NPY_ITER_VIRTUAL

	Indicates that this operand is not an array, but rather created on
the fly for the inner iteration code. This allocates enough buffer
space for the code to read/write data, but does not have
an actual array backing the data. When combined with NPY_ITER_ARRAYMASK,
allows for creating a “virtual mask”, specifying which values
are unmasked without ever creating a full mask array.

Iterator NA-array Features

We add several new per-operand flags:

	NPY_ITER_USE_MASKNA

	If the operand has an NA dtype, an NA mask, or both, this adds a new
virtual operand to the end of the operand list which iterates
over the mask for the particular operand.

	NPY_ITER_IGNORE_MASKNA

	If an operand has an NA mask, by default the iterator will raise
an exception unless NPY_ITER_USE_MASKNA is specified. This flag
disables that check, and is intended for cases where one has first
checked that all the elements in the array are not NA using the
PyArray_ContainsNA function.

If the dtype is an NA dtype, this also strips the NA-ness from the
dtype, showing a dtype that does not support NA.

Rejected Alternative

Parameterized Data Type Which Adds Additional Memory for the NA Flag

Another alternative to having a separate mask added to the array is
to introduced a parameterized type, which takes a primitive dtype
as an argument. The dtype “i8” would turn into “maybe[i8]”, and
a byte flag would be appended to the dtype to indicate whether the
value was NA or not.

This approach adds memory overhead greater or equal to keeping a separate
mask, but has better locality. To keep the dtype aligned, an ‘i8’ would
need to have 16 bytes to retain proper alignment, a 100% overhead compared
to 12.5% overhead for a separately kept mask.

Acknowledgments

In addition to feedback from Travis Oliphant and others at Enthought,
this NEP has been revised based on a great deal of feedback from
the NumPy-Discussion mailing list. The people participating in
the discussion are:

Nathaniel Smith
Robert Kern
Charles Harris
Gael Varoquaux
Eric Firing
Keith Goodman
Pierre GM
Christopher Barker
Josef Perktold
Ben Root
Laurent Gautier
Neal Becker
Bruce Southey
Matthew Brett
Wes McKinney
Lluís
Olivier Delalleau
Alan G Isaac
E. Antero Tammi
Jason Grout
Dag Sverre Seljebotn
Joe Harrington
Gary Strangman
Chris Jordan-Squire
Peter

I apologize if I missed anyone.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

Cleaning the math configuration of numpy.core

	Author:	David Cournapeau

	Contact:	david@ar.media.kyoto-u.ac.jp

	Date:	2008-09-04

Executive summary

Before building numpy.core, we use some configuration tests to gather some
information about available math functions. Over the years, the configuration
became convoluted, to the point it became difficult to support new platforms
easily.

The goal of this proposal is to clean the configuration of the math
capabilities for easier maintenance.

Current problems

Currently, the math configuration mainly test for some math functions, and
configure numpy accordingly. But instead of testing each desired function
independantly, the current system has been developed more as workarounds
particular platform oddities, using platform implicit knowledge. This is
against the normal philosophy of testing for capabilities only, which is the
autoconf philosophy, which showed the path toward portability (on Unix at
least) [1] This causes problems because modifying or adding configuration on
existing platforms break the implicit assumption, without a clear solution.

For example, on windows, when numpy is built with mingw, it would be nice to
enforce the configuration sizeof(long double) == sizeof(double) because mingw
uses the MS runtime, and the MS runtime does not support long double.
Unfortunately, doing so breaks the mingw math function detection, because of
the implicit assumption that mingw has a configuration sizeof(long double) !=
sizeof(double).

Another example is the testing for set of functions using only one function: if
expf is found, it is assumed that all basic float functions are available.
Instead, each function should be tested independantly (expf, sinf, etc...).

Requirements

	We have two strong requirements:

	
	it should not break any currently supported platform

	it should not make the configuration much slower (1-2 seconds are
acceptable)

Proposal

We suggest to break any implicit assumption, and test each math function
independantly from each other, as usually done by autoconf. Since testing for a
vast set of functions can be time consuming, we will use a scheme similar to
AC_CHECK_FUNCS_ONCE in autoconf, that is test for a set of function at once,
and only in the case it breaks, do the per function check. When the first check
works, it should be as fast as the current scheme, except that the assumptions
are explicitely checked (all functions implied by HAVE_LONGDOUBLE_FUNCS would
be checked together, for example).

Issues

Static vs non static ? For basic functions, shall we define them static or not ?

License

This document has been placed in the public domain.

[1]: Autobook here

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

A proposal for adding groupby functionality to NumPy

	Author:	Travis Oliphant

	Contact:	oliphant@enthought.com

	Date:	2010-04-27

Executive summary

NumPy provides tools for handling data and doing calculations in much
the same way as relational algebra allows. However, the common group-by
functionality is not easily handled. The reduce methods of NumPy’s
ufuncs are a natural place to put this groupby behavior. This NEP
describes two additional methods for ufuncs (reduceby and reducein) and
two additional functions (segment and edges) which can help add this
functionality.

Example Use Case

Suppose you have a NumPy structured array containing information about
the number of purchases at several stores over multiple days. To be clear, the
structured array data-type is:

	dt = [(‘year’, i2), (‘month’, i1), (‘day’, i1), (‘time’, float),

	(‘store’, i4), (‘SKU’, ‘S6’), (‘number’, i4)]

Suppose there is a 1-d NumPy array of this data-type and you would like
to compute various statistics (max, min, mean, sum, etc.) on the number
of products sold, by product, by month, by store, etc.

Currently, this could be done by using reduce methods on the number
field of the array, coupled with in-place sorting, unique with
return_inverse=True and bincount, etc. However, for such a common
data-analysis need, it would be nice to have standard and more direct
ways to get the results.

Ufunc methods proposed

It is proposed to add two new reduce-style methods to the ufuncs:
reduceby and reducein. The reducein method is intended to be a simpler
to use version of reduceat, while the reduceby method is intended to
provide group-by capability on reductions.

reducein:

<ufunc>.reducein(arr, indices, axis=0, dtype=None, out=None)

Perform a local reduce with slices specified by pairs of indices.

The reduction occurs along the provided axis, using the provided
data-type to calculate intermediate results, storing the result into
the array out (if provided).

The indices array provides the start and end indices for the
reduction. If the length of the indices array is odd, then the
final index provides the beginning point for the final reduction
and the ending point is the end of arr.

This generalizes along the given axis, the behavior:

[<ufunc>.reduce(arr[indices[2*i]:indices[2*i+1]])
 for i in range(len(indices)/2)]

This assumes indices is of even length

Example:
 >>> a = [0,1,2,4,5,6,9,10]
 >>> add.reducein(a,[0,3,2,5,-2])
 [3, 11, 19]

 Notice that sum(a[0:3]) = 3; sum(a[2:5]) = 11; and sum(a[-2:]) = 19

reduceby:

<ufunc>.reduceby(arr, by, dtype=None, out=None)

Perform a reduction in arr over unique non-negative integers in by.

Let N=arr.ndim and M=by.ndim. Then, by.shape[:N] == arr.shape.
In addition, let I be an N-length index tuple, then by[I]
contains the location in the output array for the reduction to
be stored. Notice that if N == M, then by[I] is a non-negative
integer, while if N < M, then by[I] is an array of indices into
the output array.

The reduction is computed on groups specified by unique indices
into the output array. The index is either the single
non-negative integer if N == M or if N < M, the entire
(M-N+1)-length index by[I] considered as a whole.

Functions proposed

segment:

edges:

.. Local Variables:
.. mode: rst
.. coding: utf-8
.. fill-column: 72
.. End:

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

A proposal to build numpy without warning with a big set of warning flags

	Author:	David Cournapeau

	Contact:	david@ar.media.kyoto-u.ac.jp

	Date:	2008-09-04

Executive summary

When building numpy and scipy, we are limited to a quite restricted set of
warning compilers, thus missing a large class of potential bugs which could be
detected with stronger warning flags. The goal of this NEP is present the
various methods used to clean the code and implement some policy to make numpy
buildable with a bigger set of warning flags, while keeping the build warnings
free.

Warning flags

Each compiler detects a diffferent set of potential errors. The baseline will
be gcc -Wall -W -Wextra. Ideally, a complete set would be nice:

-W -Wall -Wextra -Wstrict-prototypes -Wmissing-prototypes -Waggregate-return
-Wcast-align -Wcast-qual -Wnested-externs -Wshadow -Wbad-function-cast
-Wwrite-strings “

Intel compiler, VS with /W3 /Wall, Sun compilers have extra warnings too.

Kind of warnings

C Python extension code tends to naturally generate a lot of spurious warnings.
The goal is to have some facilities to tag some typical C-Python code so that
the compilers do not generate warnings in those cases; the tag process has to
be clean, readable, and be robust. In particular, it should not make the code
more obscure or worse, break working code.

unused parameter

This one appears often: any python-callable C function takes two arguments,
of which the first is not used for functions (only for methods). One way to
solve it is to tag the function argument with a macro NPY_UNUSED. This macro
uses compiler specific code to tag the variable, and mangle it such as it is
not possible to use it accidentally once it is tagged.

The code to apply compiler specific option could be:

	#if defined(__GNUC__)

	#define __COMP_NPY_UNUSED __attribute__ ((__unused__))

	# elif defined(__ICC)

	#define __COMP_NPY_UNUSED __attribute__ ((__unused__))

	#else

	#define __COMP_NPY_UNUSED

#endif

The variable mangling would be:

#define NPY_UNUSED(x) (__NPY_UNUSED_TAGGED ## x) __COMP_NPY_UNUSED

When applied to a variable, one would get:

int foo(int * NPY_UNUSED(dummy))

expanded to

int foo(int * __NPY_UNUSED_TAGGEDdummy __COMP_NPY_UNUSED)

Thus avoiding any accidental use of the variable. The mangling is pure C, and
thuse portable. The per-variable warning disabling is compiler specific.

signed/unsigned comparison

More tricky: not always clear what to do

half-initialized structures

Just put the elements with NULL in it.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

Replacing Trac with a different bug tracker

	Author:	David Cournapeau, Stefan van der Walt

Some release managers of both numpy and scipy are becoming more and more
disatisfied with the current development workflow, in particular for bug
tracking. This document is a tentative to explain some problematic scenario,
current trac limitations, and what can be done about it.

Scenario

new release

The workflow for a release is roughly as follows:

	find all known regressions from last release, and fix them

	get an idea of all bugs reported since last release

	triage bugs in regressions/blocker issues/etc..., and assign them in
the according roadmap, subpackage and maintainers

	pinging subpackage maintainers

Most of those tasks are quite inefficient in the current trac as used on scipy:

	it is hard to keep track of issues. In particular, everytime one goes
to trac, we don’t really know what’s new from what’s not. If you
think of issues as emails, the current situation would be like not
having read/unread feature.

	Batch handling of issues: changing characteristics of several issues
at the same time is difficult, because the only available UI is
web-based. Command-line based UI are much more efficient for this
kind of scenario

More generally, making useful reports is very awkward with the currently
deployed trac. Trac 0.11 may solve of those problems, but it has to be much
better than the actually deployed version on scipy website. Finding issues with
patches, old patches, etc... and making reports has to be much more streamlined
that it is now.

subcomponent maintainer

Say you are the maintainer of scipy.foo, then you are mostly interested in
getting bugs concerning scipy.foo only. But it should be easy for the general
team to follow your work - it should also be easy for casual users (e.g. not
developers) to follow some new features development pace.

Review, newcoming code

The goal is simple: make the bar as low as possible, and make sure people know
what to do at every step to contribute to numpy or scipy:

	Right now, patches languish for too long in trac. Of course, lack of
time is one big reason; but the process of following new contributes
could be made much simpler

	It should be possible to be pinged only for reviews one a subset of
numpy/scipy.

	It should be possible for people interested in the patches to follow
its progression. Comments, but also ‘mini’ timelines could be useful,
particularly for massive issues (massive from a coding POV).

Current trac limitation

Note: by trac, we mean the currently deployed one. Some more recent versions
may solve some of the issues.

	Multi-project support: we have three trac instances, one for scipy,
one for numpy, one for scikits. Creating accounts, maintaining and
updating each of them is a maintainance burden. Nobody likes to do
this kind of work, so anything which can reduce the burden is a plus.
Also, it happens quite frequently that a bug against numpy is filled
on scipy trac and vice and versa. You have to handle this manually,
currently.

	Clients not based on the web-ui. This can be made through the xmlrpc
plugin + some clients. In particular, something like
http://tracexplorer.devjavu.com/ can be interesting for people who
like IDE. At least one person expressed his desire to have as much
integration as possible with Eclipse.

	Powerful queries: it should be possible to quickly find issues
between two releases, the new issues from a given date, issues with
patch, issues waiting for reviews, etc... The issues data have to be
customizable, because most bug-tracker do not support things like
review, etc... so we need to handle this ourselves (through tags,
etc...)

	Marking issues as read/unread. It should also be possible for any
user to ‘mask’ issues to ignore them.

	ticket dependency. This is quite helpful in my experience for big
features which can be split into several issues. Roadmap can only be
created by trac admin, and they are kind of heavy-weight.

Possible candidates

Updated trac + plugins

Pros:

	Same system

	In python, so we can hack it if we want

Cons:

	Trac is aimed at being basic, and extended with plugins. But most
plugins are broken, or not up to date. The information on which
plugins are mature is not easily available.

	At least the scipy.org trac was slow, and needed to be restarted
constantly. This is simply not acceptable.

Redmine

Pros:

	Support most features (except xmlrpc ?). Multi-project, etc...

	(subjective): I (cdavid) find the out-of-the-box experience with
redmine much more enjoyable. More informations are available easily,
less clicks, more streamlined. See
http://www.redmine.org/wiki/redmine/TheyAreUsingRedmine for examples

	Conversion scripts from trac (no experience with it yet for numpy/scipy).

	Community seems friendly and gets a lof of features done

Cons:

	new system, less mature ?

	in Ruby: since we are a python project, most of dev are familiar with
python.

	Wiki integration, etc... ?

Unknown:

	xmlrpc API

	performances

	maintenance cost

Roundup

TODO

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

Deferred UFunc Evaluation

	Author:	Mark Wiebe <mwwiebe@gmail.com>

	Content-Type:	text/x-rst

	Created:	30-Nov-2010

Abstract

This NEP describes a proposal to add deferred evaluation to NumPy’s
UFuncs. This will allow Python expressions like
“a[:] = b + c + d + e” to be evaluated in a single pass through all
the variables at once, with no temporary arrays. The resulting
performance will likely be comparable to the numexpr library,
but with a more natural syntax.

This idea has some interaction with UFunc error handling and
the UPDATEIFCOPY flag, affecting the design and implementation,
but the result allows for the usage of deferred evaluation
with minimal effort from the Python user’s perspective.

Motivation

NumPy’s style of UFunc execution causes suboptimal performance for
large expressions, because multiple temporaries are allocated and
the inputs are swept through in multiple passes. The numexpr library
can outperform NumPy for such large expressions, by doing the execution
in small cache-friendly blocks, and evaluating the whole expression
per element. This results in one sweep through each input, which
is significantly better for the cache.

For an idea of how to get this kind of behavior in NumPy without
changing the Python code, consider the C++ technique of
expression templates. These can be used to quite arbitrarily
rearrange expressions using
vectors or other data structures, example,:

A = B + C + D;

can be transformed into something equivalent to:

for(i = 0; i < A.size; ++i) {
 A[i] = B[i] + C[i] + D[i];
}

This is done by returning a proxy object that knows how to calculate
the result instead of returning the actual object. With modern C++
optimizing compilers, the resulting machine code is often the same
as hand-written loops. For an example of this, see the
Blitz++ Library [http://www.oonumerics.org/blitz/docs/blitz_3.html].
A more recently created library for helping write expression templates
is Boost Proto [http://beta.boost.org/doc/libs/1_44_0/doc/html/proto.html].

By using the same idea of returning a proxy object in Python, we
can accomplish the same thing dynamically. The return object is
an ndarray without its buffer allocated, and with enough knowledge
to calculate itself when needed. When a “deferred array” is
finally evaluated, we can use the expression tree made up of
all the operand deferred arrays, effectively creating a single new
UFunc to evaluate on the fly.

Example Python Code

Here’s how it might be used in NumPy.:

a, b, c are large ndarrays

with np.deferredstate(True):

 d = a + b + c
 # Now d is a 'deferred array,' a, b, and c are marked READONLY
 # similar to the existing UPDATEIFCOPY mechanism.

 print d
 # Since the value of d was required, it is evaluated so d becomes
 # a regular ndarray and gets printed.

 d[:] = a*b*c
 # Here, the automatically combined "ufunc" that computes
 # a*b*c effectively gets an out= parameter, so no temporary
 # arrays are needed whatsoever.

 e = a+b+c*d
 # Now e is a 'deferred array,' a, b, c, and d are marked READONLY

 d[:] = a
 # d was marked readonly, but the assignment could see that
 # this was due to it being a deferred expression operand.
 # This triggered the deferred evaluation so it could assign
 # the value of a to d.

There may be some surprising behavior, though.:

with np.deferredstate(True):

 d = a + b + c
 # d is deferred

 e[:] = d
 f[:] = d
 g[:] = d
 # d is still deferred, and its deferred expression
 # was evaluated three times, once for each assignment.
 # This could be detected, with d being converted to
 # a regular ndarray the second time it is evaluated.

I believe the usage that should be recommended in the documentation
is to leave the deferred state at its default, except when
evaluating a large expression that can benefit from it.:

calculations

with np.deferredstate(True):
 x = <big expression>

more calculations

This will avoid surprises which would be cause by always keeping
deferred usage True, like floating point warnings or exceptions
at surprising times when deferred expression are used later.
User questions like “Why does my print statement throw a
divide by zero error?” can hopefully be avoided by recommending
this approach.

Proposed Deferred Evaluation API

For deferred evaluation to work, the C API needs to be aware of its
existence, and be able to trigger evaluation when necessary. The
ndarray would gain two new flag.

NPY_ISDEFERRED

Indicates the expression evaluation for this ndarray instance
has been deferred.

NPY_DEFERRED_WASWRITEABLE

Can only be set when PyArray_GetDeferredUsageCount(arr) > 0.
It indicates that when arr was first used in a deferred
expression, it was a writeable array. If this flag is set,
calling PyArray_CalculateAllDeferred() will make arr
writeable again.

Note

QUESTION

Should NPY_DEFERRED and NPY_DEFERRED_WASWRITEABLE be visible
to Python, or should accessing the flags from python trigger
PyArray_CalculateAllDeferred if necessary?

The API would be expanded with a number of functions.

int PyArray_CalculateAllDeferred()

This function forces all currently deferred calculations to occur.

For example, if the error state is set to ignore all, and
np.seterr({all=’raise’}), this would change what happens
to already deferred expressions. Thus, all the existing
deferred arrays should be evaluated before changing the
error state.

int PyArray_CalculateDeferred(PyArrayObject* arr)

If ‘arr’ is a deferred array, allocates memory for it and
evaluates the deferred expression. If ‘arr’ is not a deferred
array, simply returns success. Returns NPY_SUCCESS or NPY_FAILURE.

int PyArray_CalculateDeferredAssignment(PyArrayObject* arr, PyArrayObject* out)

If ‘arr’ is a deferred array, evaluates the deferred expression
into ‘out’, and ‘arr’ remains a deferred array. If ‘arr’ is not
a deferred array, copies its value into out. Returns NPY_SUCCESS
or NPY_FAILURE.

int PyArray_GetDeferredUsageCount(PyArrayObject* arr)

Returns a count of how many deferred expressions use this array
as an operand.

The Python API would be expanded as follows.

numpy.setdeferred(state)

Enables or disables deferred evaluation. True means to always
use deferred evaluation. False means to never use deferred
evaluation. None means to use deferred evaluation if the error
handling state is set to ignore everything. At NumPy initialization,
the deferred state is None.

Returns the previous deferred state.

numpy.getdeferred()

Returns the current deferred state.

numpy.deferredstate(state)

A context manager for deferred state handling, similar to
numpy.errstate.

Error Handling

Error handling is a thorny issue for deferred evaluation. If the
NumPy error state is {all=’ignore’}, it might be reasonable to
introduce deferred evaluation as the default, however if a UFunc
can raise an error, it would be very strange for the later ‘print’
statement to throw the exception instead of the actual operation which
caused the error.

What may be a good approach is to by default enable deferred evaluation
only when the error state is set to ignore all, but allow user control with
‘setdeferred’ and ‘getdeferred’ functions. True would mean always
use deferred evaluation, False would mean never use it, and None would
mean use it only when safe (i.e. the error state is set to ignore all).

Interaction With UPDATEIFCOPY

The NPY_UPDATEIFCOPY documentation states:

The data area represents a (well-behaved) copy whose information
should be transferred back to the original when this array is deleted.

This is a special flag that is set if this array represents a copy
made because a user required certain flags in PyArray_FromAny and a
copy had to be made of some other array (and the user asked for this
flag to be set in such a situation). The base attribute then points
to the “misbehaved” array (which is set read_only). When the array
with this flag set is deallocated, it will copy its contents back to
the “misbehaved” array (casting if necessary) and will reset the
“misbehaved” array to NPY_WRITEABLE. If the “misbehaved” array was
not NPY_WRITEABLE to begin with then PyArray_FromAny would have
returned an error because NPY_UPDATEIFCOPY would not have been possible.

The current implementation of UPDATEIFCOPY assumes that it is the only
mechanism mucking with the writeable flag in this manner. These mechanisms
must be aware of each other to work correctly. Here’s an example of how
they might go wrong:

	Make a temporary copy of ‘arr’ with UPDATEIFCOPY (‘arr’ becomes read only)

	Use ‘arr’ in a deferred expression (deferred usage count becomes one,
NPY_DEFERRED_WASWRITEABLE is not set, since ‘arr’ is read only)

	Destroy the temporary copy, causing ‘arr’ to become writeable

	Writing to ‘arr’ destroys the value of the deferred expression

To deal with this issue, we make these two states mutually exclusive.

	Usage of UPDATEIFCOPY checks the NPY_DEFERRED_WASWRITEABLE flag,
and if it’s set, calls PyArray_CalculateAllDeferred to flush
all deferred calculation before proceeding.

	The ndarray gets a new flag NPY_UPDATEIFCOPY_TARGET indicating
the array will be updated and made writeable at some point in the
future. If the deferred evaluation mechanism sees this flag in
any operand, it triggers immediate evaluation.

Other Implementation Details

When a deferred array is created, it gets references to all the
operands of the UFunc, along with the UFunc itself. The
‘DeferredUsageCount’ is incremented for each operand, and later
gets decremented when the deferred expression is calculated or
the deferred array is destroyed.

A global list of weak references to all the deferred arrays
is tracked, in order of creation. When PyArray_CalculateAllDeferred
gets called, the newest deferred array is calculated first.
This may release references to other deferred arrays contained
in the deferred expression tree, which then
never have to be calculated.

Further Optimization

Instead of conservatively disabling deferred evaluation when any
errors are not set to ‘ignore’, each UFunc could give a set
of possible errors it generates. Then, if all those errors
are set to ‘ignore’, deferred evaluation could be used even
if other errors are not set to ignore.

Once the expression tree is explicitly stored, it is possible to
do transformations on it. For example add(add(a,b),c) could
be transformed into add3(a,b,c), or add(multiply(a,b),c) could
become fma(a,b,c) using the CPU fused multiply-add instruction
where available.

While I’ve framed deferred evaluation as just for UFuncs, it could
be extended to other functions, such as dot(). For example, chained
matrix multiplications could be reordered to minimize the size
of intermediates, or peep-hole style optimizer passes could search
for patterns that match optimized BLAS/other high performance
library calls.

For operations on really large arrays, integrating a JIT like LLVM into
this system might be a big benefit. The UFuncs and other operations
would provide bitcode, which could be inlined together and optimized
by the LLVM optimizers, then executed. In fact, the iterator itself
could also be represented in bitcode, allowing LLVM to consider
the entire iteration while doing its optimization.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

Structured array extensions

	Create with-style context that makes “named-columns” available as names in the namespace.

	with np.columns(array):

	price = unit * quantityt

	Allow structured arrays to be sliced by their column (i.e. one additional indexing option for structured arrays) so that a[:4, ‘foo’:’bar’] would be allowed.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

A proposal for implementing some date/time types in NumPy

	Author:	Travis Oliphant

	Contact:	oliphant@enthought.com

	Date:	2009-06-09

Revised only slightly from the third proposal by

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivan@selidor.net

	Date:	2008-07-30

Executive summary

A date/time mark is something very handy to have in many fields where
one has to deal with data sets. While Python has several modules that
define a date/time type (like the integrated datetime [1] or
mx.DateTime [2]), NumPy has a lack of them.

We are proposing the addition of date/time types to fill this gap.
The requirements for the proposed types are two-fold: 1) they have
to be fast to operate with and 2) they have to be as compatible as
possible with the existing datetime module that comes with Python.

Types proposed

It is virtually impossible to come up with a single date/time type
that fills the needs of every use case. As a result, we propose two
general date-time types: 1) timedelta64 – a relative time and 2)
datetime64 – an absolute time.

Each of these times are represented internally as 64-bit signed
integers that refer to a particular unit (hour, minute, microsecond,
etc.). There are several pre-defined units as well as the ability to
create rational multiples of these units. A representation is also
supported such that the stored date-time integer can encode both the
number of a particular unit as well as a number of sequential events
tracked for each unit.

The datetime64 represents an absolute time. Internally it is
represented as the number of time units between the intended time and
the epoch (12:00am on January 1, 1970 — POSIX time including its
lack of leap seconds).

Time units

The 64-bit integer time can represent several different basic units as
well as derived units. The basic units are listed in the following
table:

	Time unit
	Time span
	Time span (years)

	Code
	Meaning
	Relative Time
	Absolute Time

	Y
	year
	+- 9.2e18 years
	[9.2e18 BC, 9.2e18 AD]

	M
	month
	+- 7.6e17 years
	[7.6e17 BC, 7.6e17 AD]

	W
	week
	+- 1.7e17 years
	[1.7e17 BC, 1.7e17 AD]

	B
	business day
	+- 3.5e16 years
	[3.5e16 BC, 3.5e16 AD]

	D
	day
	+- 2.5e16 years
	[2.5e16 BC, 2.5e16 AD]

	h
	hour
	+- 1.0e15 years
	[1.0e15 BC, 1.0e15 AD]

	m
	minute
	+- 1.7e13 years
	[1.7e13 BC, 1.7e13 AD]

	s
	second
	+- 2.9e12 years
	[2.9e9 BC, 2.9e9 AD]

	ms
	millisecond
	+- 2.9e9 years
	[2.9e6 BC, 2.9e6 AD]

	us
	microsecond
	+- 2.9e6 years
	[290301 BC, 294241 AD]

	ns
	nanosecond
	+- 292 years
	[1678 AD, 2262 AD]

	ps
	picosecond
	+- 106 days
	[1969 AD, 1970 AD]

	fs
	femtosecond
	+- 2.6 hours
	[1969 AD, 1970 AD]

	as
	attosecond
	+- 9.2 seconds
	[1969 AD, 1970 AD]

A time unit is specified by a string consisting of a base-type given in
the above table

Besides these basic code units, the user can create derived units
consisting of multiples of any basic unit: 100ns, 3M, 15m, etc.

A limited number of divisions of any basic unit can be used to create
multiples of a higher-resolution unit provided the divisor can be
divided evenly into the number of higher-resolution units available.
For example: Y/4 is just short-hand for -> (12M)/4 -> 3M and Y/4 will be
represented after creation as 3M. The first lower unit found to have an
even divisor will be chosen (up to 3 lower units). The following
standardized definitions are used in this specific case to find
acceptable divisors

	Code
	Interpreted as

	Y
	12M, 52W, 365D

	M
	4W, 30D, 720h

	W
	5B, 7D, 168h, 10080m

	B
	24h, 1440m, 86400s

	D
	24h, 1440m, 86400s

	h
	60m, 3600s

	m
	60s, 60000ms

s, ms, us, ns, ps, fs (use 1000 and 1000000 of the next two available
lower units respectively).

Finally, a date-time data-type can be created with support for tracking
sequential events within a basic unit: [D]//100, [Y]//4 (notice the
required brackets). These modulo event units provide the following
interpretation to the date-time integer:

	the divisor is the number of events in each period

	the (integer) quotient is the integer number representing the base units

	the remainder is the particular event in the period.

Modulo event-units can be combined with any derived units, but brackets
are required. Thus [100ns]//50 which allows recording 50 events for
every 100ns so that 0 represents the first event in the first 100ns
tick, 1 represents the second event in the first 100ns tick, while 50
represents the first event in the second 100ns tick, and 51 represents
the second event in the second 100ns tick.

To fully specify a date-time type, the time unit string must be
combined with either the string for a datetime64 (‘M8’) or a
timedelta64 (‘m8’) using brackets ‘[]’. Therefore, a fully-specified
string representing a date-time dtype is ‘M8[Y]’ or (for a more
complicated example) ‘M8[7s/9]//5’.

If a time unit is not specified, then it defaults to [us]. Thus ‘M8’ is
equivalent to ‘M8[us]’ (except when modulo event-units are desired –
i.e. you cannot specify ‘M8[us]//5’ as ‘M8//5’ or as ‘//5’

datetime64

This dtype represents a time that is absolute (i.e. not relative). It
is implemented internally as an int64 type. The integer represents
units from the internal POSIX epoch (see [3]). Like POSIX, the
representation of a date doesn’t take leap seconds into account.

In time unit conversions and time representations (but not in other
time computations), the value -2**63 (0x8000000000000000) is interpreted
as an invalid or unknown date, Not a Time or NaT. See the section
on time unit conversions for more information.

The value of an absolute date is thus an integer number of units of
the chosen time unit passed since the epoch. If the integer is a
negative number, then the magnitude of the integer represents the
number of units prior to the epoch. When working with business days,
Saturdays and Sundays are simply ignored from the count (i.e. day 3 in
business days is not Saturday 1970-01-03, but Monday 1970-01-05).

Building a datetime64 dtype

The proposed ways to specify the time unit in the dtype constructor are:

Using the long string notation:

dtype('datetime64[us]')

Using the short string notation:

dtype('M8[us]')

If a time unit is not specified, then it defaults to [us]. Thus ‘M8’
is equivalent to ‘M8[us]’.

Setting and getting values

The objects with this dtype can be set in a series of ways:

t = numpy.ones(3, dtype='M8[s]')
t[0] = 1199164176 # assign to July 30th, 2008 at 17:31:00
t[1] = datetime.datetime(2008, 7, 30, 17, 31, 01) # with datetime module
t[2] = '2008-07-30T17:31:02' # with ISO 8601

And can be get in different ways too:

str(t[0]) --> 2008-07-30T17:31:00
repr(t[1]) --> datetime64(1199164177, 's')
str(t[0].item()) --> 2008-07-30 17:31:00 # datetime module object
repr(t[0].item()) --> datetime.datetime(2008, 7, 30, 17, 31) # idem
str(t) --> [2008-07-30T17:31:00 2008-07-30T17:31:01 2008-07-30T17:31:02]
repr(t) --> array([1199164176, 1199164177, 1199164178],
 dtype='datetime64[s]')

Comparisons

The comparisons will be supported too:

numpy.array(['1980'], 'M8[Y]') == numpy.array(['1979'], 'M8[Y]')
--> [False]

including applying broadcasting:

numpy.array(['1979', '1980'], 'M8[Y]') == numpy.datetime64('1980', 'Y')
--> [False, True]

The following should also work:

numpy.array(['1979', '1980'], 'M8[Y]') == '1980-01-01'
--> [False, True]

because the right hand expression can be broadcasted into an array of 2
elements of dtype ‘M8[Y]’.

Compatibility issues

This will be fully compatible with the datetime class of the
datetime module of Python only when using a time unit of
microseconds. For other time units, the conversion process will lose
precision or will overflow as needed. The conversion from/to a
datetime object doesn’t take leap seconds into account.

timedelta64

It represents a time that is relative (i.e. not absolute). It is
implemented internally as an int64 type.

In time unit conversions and time representations (but not in other
time computations), the value -2**63 (0x8000000000000000) is interpreted
as an invalid or unknown time, Not a Time or NaT. See the section
on time unit conversions for more information.

The value of a time delta is an integer number of units of the
chosen time unit.

Building a timedelta64 dtype

The proposed ways to specify the time unit in the dtype constructor are:

Using the long string notation:

dtype('timedelta64[us]')

Using the short string notation:

dtype('m8[us]')

If a time unit is not specified, then a default of [us] is assumed.
Thus ‘m8’ and ‘m8[us]’ are equivalent.

Setting and getting values

The objects with this dtype can be set in a series of ways:

t = numpy.ones(3, dtype='m8[ms]')
t[0] = 12 # assign to 12 ms
t[1] = datetime.timedelta(0, 0, 13000) # 13 ms
t[2] = '0:00:00.014' # 14 ms

And can be get in different ways too:

str(t[0]) --> 0:00:00.012
repr(t[1]) --> timedelta64(13, 'ms')
str(t[0].item()) --> 0:00:00.012000 # datetime module object
repr(t[0].item()) --> datetime.timedelta(0, 0, 12000) # idem
str(t) --> [0:00:00.012 0:00:00.014 0:00:00.014]
repr(t) --> array([12, 13, 14], dtype="timedelta64[ms]")

Comparisons

The comparisons will be supported too:

numpy.array([12, 13, 14], 'm8[ms]') == numpy.array([12, 13, 13], 'm8[ms]')
--> [True, True, False]

or by applying broadcasting:

numpy.array([12, 13, 14], 'm8[ms]') == numpy.timedelta64(13, 'ms')
--> [False, True, False]

The following should work too:

numpy.array([12, 13, 14], 'm8[ms]') == '0:00:00.012'
--> [True, False, False]

because the right hand expression can be broadcasted into an array of 3
elements of dtype ‘m8[ms]’.

Compatibility issues

This will be fully compatible with the timedelta class of the
datetime module of Python only when using a time unit of
microseconds. For other units, the conversion process will lose
precision or will overflow as needed.

Examples of use

Here is an example of use for the datetime64:

In [5]: numpy.datetime64(42, 'us')
Out[5]: datetime64(42, 'us')

In [6]: print numpy.datetime64(42, 'us')
1970-01-01T00:00:00.000042 # representation in ISO 8601 format

In [7]: print numpy.datetime64(367.7, 'D') # decimal part is lost
1971-01-02 # still ISO 8601 format

In [8]: numpy.datetime('2008-07-18T12:23:18', 'm') # from ISO 8601
Out[8]: datetime64(20273063, 'm')

In [9]: print numpy.datetime('2008-07-18T12:23:18', 'm')
Out[9]: 2008-07-18T12:23

In [10]: t = numpy.zeros(5, dtype="datetime64[ms]")

In [11]: t[0] = datetime.datetime.now() # setter in action

In [12]: print t
[2008-07-16T13:39:25.315 1970-01-01T00:00:00.000
 1970-01-01T00:00:00.000 1970-01-01T00:00:00.000
 1970-01-01T00:00:00.000]

In [13]: repr(t)
Out[13]: array([267859210457, 0, 0, 0, 0], dtype="datetime64[ms]")

In [14]: t[0].item() # getter in action
Out[14]: datetime.datetime(2008, 7, 16, 13, 39, 25, 315000)

In [15]: print t.dtype
dtype('datetime64[ms]')

And here it goes an example of use for the timedelta64:

In [5]: numpy.timedelta64(10, 'us')
Out[5]: timedelta64(10, 'us')

In [6]: print numpy.timedelta64(10, 'us')
0:00:00.000010

In [7]: print numpy.timedelta64(3600.2, 'm') # decimal part is lost
2 days, 12:00

In [8]: t1 = numpy.zeros(5, dtype="datetime64[ms]")

In [9]: t2 = numpy.ones(5, dtype="datetime64[ms]")

In [10]: t = t2 - t1

In [11]: t[0] = datetime.timedelta(0, 24) # setter in action

In [12]: print t
[0:00:24.000 0:00:01.000 0:00:01.000 0:00:01.000 0:00:01.000]

In [13]: print repr(t)
Out[13]: array([24000, 1, 1, 1, 1], dtype="timedelta64[ms]")

In [14]: t[0].item() # getter in action
Out[14]: datetime.timedelta(0, 24)

In [15]: print t.dtype
dtype('timedelta64[s]')

Operating with date/time arrays

datetime64 vs datetime64

The only arithmetic operation allowed between absolute dates is
subtraction:

In [10]: numpy.ones(3, "M8[s]") - numpy.zeros(3, "M8[s]")
Out[10]: array([1, 1, 1], dtype=timedelta64[s])

But not other operations:

In [11]: numpy.ones(3, "M8[s]") + numpy.zeros(3, "M8[s]")
TypeError: unsupported operand type(s) for +: 'numpy.ndarray' and 'numpy.ndarray'

Comparisons between absolute dates are allowed.

Casting rules

When operating (basically, only the subtraction will be allowed) two
absolute times with different unit times, the outcome would be to raise
an exception. This is because the ranges and time-spans of the different
time units can be very different, and it is not clear at all what time
unit will be preferred for the user. For example, this should be
allowed:

>>> numpy.ones(3, dtype="M8[Y]") - numpy.zeros(3, dtype="M8[Y]")
array([1, 1, 1], dtype="timedelta64[Y]")

But the next should not:

>>> numpy.ones(3, dtype="M8[Y]") - numpy.zeros(3, dtype="M8[ns]")
raise numpy.IncompatibleUnitError # what unit to choose?

datetime64 vs timedelta64

It will be possible to add and subtract relative times from absolute
dates:

In [10]: numpy.zeros(5, "M8[Y]") + numpy.ones(5, "m8[Y]")
Out[10]: array([1971, 1971, 1971, 1971, 1971], dtype=datetime64[Y])

In [11]: numpy.ones(5, "M8[Y]") - 2 * numpy.ones(5, "m8[Y]")
Out[11]: array([1969, 1969, 1969, 1969, 1969], dtype=datetime64[Y])

But not other operations:

In [12]: numpy.ones(5, "M8[Y]") * numpy.ones(5, "m8[Y]")
TypeError: unsupported operand type(s) for *: 'numpy.ndarray' and 'numpy.ndarray'

Casting rules

In this case the absolute time should have priority for determining the
time unit of the outcome. That would represent what the people wants to
do most of the times. For example, this would allow to do:

>>> series = numpy.array(['1970-01-01', '1970-02-01', '1970-09-01'],
dtype='datetime64[D]')
>>> series2 = series + numpy.timedelta(1, 'Y') # Add 2 relative years
>>> series2
array(['1972-01-01', '1972-02-01', '1972-09-01'],
dtype='datetime64[D]') # the 'D'ay time unit has been chosen

timedelta64 vs timedelta64

Finally, it will be possible to operate with relative times as if they
were regular int64 dtypes as long as the result can be converted back
into a timedelta64:

In [10]: numpy.ones(3, 'm8[us]')
Out[10]: array([1, 1, 1], dtype="timedelta64[us]")

In [11]: (numpy.ones(3, 'm8[M]') + 2) ** 3
Out[11]: array([27, 27, 27], dtype="timedelta64[M]")

But:

In [12]: numpy.ones(5, 'm8') + 1j
TypeError: the result cannot be converted into a ``timedelta64``

Casting rules

When combining two timedelta64 dtypes with different time units the
outcome will be the shorter of both (“keep the precision” rule). For
example:

In [10]: numpy.ones(3, 'm8[s]') + numpy.ones(3, 'm8[m]')
Out[10]: array([61, 61, 61], dtype="timedelta64[s]")

However, due to the impossibility to know the exact duration of a
relative year or a relative month, when these time units appear in one
of the operands, the operation will not be allowed:

In [11]: numpy.ones(3, 'm8[Y]') + numpy.ones(3, 'm8[D]')
raise numpy.IncompatibleUnitError # how to convert relative years to days?

In order to being able to perform the above operation a new NumPy
function, called change_timeunit is proposed. Its signature will
be:

change_timeunit(time_object, new_unit, reference)

where ‘time_object’ is the time object whose unit is to be changed,
‘new_unit’ is the desired new time unit, and ‘reference’ is an absolute
date (NumPy datetime64 scalar) that will be used to allow the conversion
of relative times in case of using time units with an uncertain number
of smaller time units (relative years or months cannot be expressed in
days).

With this, the above operation can be done as follows:

In [10]: t_years = numpy.ones(3, 'm8[Y]')

In [11]: t_days = numpy.change_timeunit(t_years, 'D', '2001-01-01')

In [12]: t_days + numpy.ones(3, 'm8[D]')
Out[12]: array([366, 366, 366], dtype="timedelta64[D]")

dtype vs time units conversions

For changing the date/time dtype of an existing array, we propose to use
the .astype() method. This will be mainly useful for changing time
units.

For example, for absolute dates:

In[10]: t1 = numpy.zeros(5, dtype="datetime64[s]")

In[11]: print t1
[1970-01-01T00:00:00 1970-01-01T00:00:00 1970-01-01T00:00:00
 1970-01-01T00:00:00 1970-01-01T00:00:00]

In[12]: print t1.astype('datetime64[D]')
[1970-01-01 1970-01-01 1970-01-01 1970-01-01 1970-01-01]

For relative times:

In[10]: t1 = numpy.ones(5, dtype="timedelta64[s]")

In[11]: print t1
[1 1 1 1 1]

In[12]: print t1.astype('timedelta64[ms]')
[1000 1000 1000 1000 1000]

Changing directly from/to relative to/from absolute dtypes will not be
supported:

In[13]: numpy.zeros(5, dtype="datetime64[s]").astype('timedelta64')
TypeError: data type cannot be converted to the desired type

Business days have the peculiarity that they do not cover a continuous
line of time (they have gaps at weekends). Thus, when converting from
any ordinary time to business days, it can happen that the original time
is not representable. In that case, the result of the conversion is
Not a Time (NaT):

In[10]: t1 = numpy.arange(5, dtype="datetime64[D]")

In[11]: print t1
[1970-01-01 1970-01-02 1970-01-03 1970-01-04 1970-01-05]

In[12]: t2 = t1.astype("datetime64[B]")

In[13]: print t2 # 1970 begins in a Thursday
[1970-01-01 1970-01-02 NaT NaT 1970-01-05]

When converting back to ordinary days, NaT values are left untouched
(this happens in all time unit conversions):

In[14]: t3 = t2.astype("datetime64[D]")

In[13]: print t3
[1970-01-01 1970-01-02 NaT NaT 1970-01-05]

Necessary changes to NumPy

In order to facilitate the addition of the date-time data-types a few changes
to NumPy were made:

Addition of metadata to dtypes

All data-types now have a metadata dictionary. It can be set using the
metadata keyword during construction of the object.

Date-time data-types will place the word “__frequency__” in the meta-data
dictionary containing a 4-tuple with the following parameters.

	(basic unit string (str),

	number of multiples (int),
number of sub-divisions (int),
number of events (int)).

Simple time units like ‘D’ for days will thus be specified by (‘D’, 1, 1, 1) in
the “__frequency__” key of the metadata. More complicated time units (like ‘[2W/5]//50’) will be indicated by (‘D’, 2, 5, 50).

The “__frequency__” key is reserved for metadata and cannot be set with a
dtype constructor.

Ufunc interface extension

ufuncs that have datetime and timedelta arguments can use the Python API
during ufunc calls (to raise errors).

There is a new ufunc C-API call to set the data for a particular
function pointer (for a particular set of data-types) to be the list of arrays
passed in to the ufunc.

Array Intervace Extensions

The array interface is extended to both handle datetime and timedelta
typestr (including extended notation).

In addition, the typestr element of the __array_interface__ can be a tuple
as long as the version string is 4. The tuple is
(‘typestr’, metadata dictionary).

This extension to the typestr concept extends to the descr portion of
the __array_interface__. Thus, the second element in the tuple of a
list of tuples describing a data-format can itself be a tuple of
(‘typestr’, metadata dictionary).

Final considerations

Why the fractional time and events: [3Y/12]//50

It is difficult to come up with enough units to satisfy every need. For
example, in C# on Windows the fundamental tick of time is 100ns.
Multiple of basic units are simple to handle. Divisors of basic units
are harder to handle arbitrarily, but it is common to mentally think of
a month as 1/12 of a year, or a day as 1/7 of a week. Therefore, the
ability to specify a unit in terms of a fraction of a “larger” unit was
implemented.

The event notion (//50) was added to solve a use-case of a commercial
sponsor of this NEP. The idea is to allow timestamp to carry both event
number and timestamp information. The remainder carries the event
number information, while the quotient carries the timestamp
information.

Why the origin metadata disappeared

During the discussion of the date/time dtypes in the NumPy list, the
idea of having an origin metadata that complemented the definition
of the absolute datetime64 was initially found to be useful.

However, after thinking more about this, we found that the combination
of an absolute datetime64 with a relative timedelta64 does offer
the same functionality while removing the need for the additional
origin metadata. This is why we have removed it from this proposal.

Operations with mixed time units

Whenever an operation between two time values of the same dtype with the
same unit is accepted, the same operation with time values of different
units should be possible (e.g. adding a time delta in seconds and one in
microseconds), resulting in an adequate time unit. The exact semantics
of this kind of operations is defined int the “Casting rules”
subsections of the “Operating with date/time arrays” section.

Due to the peculiarities of business days, it is most probable that
operations mixing business days with other time units will not be
allowed.

	[1]	http://docs.python.org/lib/module-datetime.html

	[2]	http://www.egenix.com/products/python/mxBase/mxDateTime

	[3]	http://en.wikipedia.org/wiki/Unix_time

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

 	Numpy Enhancement Proposals

A (third) proposal for implementing some date/time types in NumPy

	Author:	Francesc Alted i Abad

	Contact:	faltet@pytables.com

	Author:	Ivan Vilata i Balaguer

	Contact:	ivan@selidor.net

	Date:	2008-07-30

Executive summary

A date/time mark is something very handy to have in many fields where
one has to deal with data sets. While Python has several modules that
define a date/time type (like the integrated datetime [1] or
mx.DateTime [2]), NumPy has a lack of them.

In this document, we are proposing the addition of a series of date/time
types to fill this gap. The requirements for the proposed types are
two-folded: 1) they have to be fast to operate with and 2) they have to
be as compatible as possible with the existing datetime module that
comes with Python.

Types proposed

To start with, it is virtually impossible to come up with a single
date/time type that fills the needs of every case of use. So, after
pondering about different possibilities, we have stuck with two
different types, namely datetime64 and timedelta64 (these names
are preliminary and can be changed), that can have different time units
so as to cover different needs.

Important

the time unit is conceived here as metadata that
complements a date/time dtype, without changing the base type. It
provides information about the meaning of the stored numbers, not
about their structure.

Now follows a detailed description of the proposed types.

datetime64

It represents a time that is absolute (i.e. not relative). It is
implemented internally as an int64 type. The internal epoch is the
POSIX epoch (see [3]). Like POSIX, the representation of a date
doesn’t take leap seconds into account.

In time unit conversions and time representations (but not in other
time computations), the value -2**63 (0x8000000000000000) is interpreted
as an invalid or unknown date, Not a Time or NaT. See the section
on time unit conversions for more information.

Time units

It accepts different time units, each of them implying a different time
span. The table below describes the time units supported with their
corresponding time spans.

	Time unit
	Time span (years)

	Code
	Meaning
	

	Y
	year
	[9.2e18 BC, 9.2e18 AD]

	M
	month
	[7.6e17 BC, 7.6e17 AD]

	W
	week
	[1.7e17 BC, 1.7e17 AD]

	B
	business day
	[3.5e16 BC, 3.5e16 AD]

	D
	day
	[2.5e16 BC, 2.5e16 AD]

	h
	hour
	[1.0e15 BC, 1.0e15 AD]

	m
	minute
	[1.7e13 BC, 1.7e13 AD]

	s
	second
	[2.9e9 BC, 2.9e9 AD]

	ms
	millisecond
	[2.9e6 BC, 2.9e6 AD]

	us
	microsecond
	[290301 BC, 294241 AD]

	c#
	ticks (100ns)
	[2757 BC, 31197 AD]

	ns
	nanosecond
	[1678 AD, 2262 AD]

The value of an absolute date is thus an integer number of units of the
chosen time unit passed since the internal epoch. When working with
business days, Saturdays and Sundays are simply ignored from the count
(i.e. day 3 in business days is not Saturday 1970-01-03, but Monday
1970-01-05).

Building a datetime64 dtype

The proposed ways to specify the time unit in the dtype constructor are:

Using the long string notation:

dtype('datetime64[us]')

Using the short string notation:

dtype('M8[us]')

The default is microseconds if no time unit is specified. Thus, ‘M8’ is equivalent to ‘M8[us]’

Setting and getting values

The objects with this dtype can be set in a series of ways:

t = numpy.ones(3, dtype='M8[s]')
t[0] = 1199164176 # assign to July 30th, 2008 at 17:31:00
t[1] = datetime.datetime(2008, 7, 30, 17, 31, 01) # with datetime module
t[2] = '2008-07-30T17:31:02' # with ISO 8601

And can be get in different ways too:

str(t[0]) --> 2008-07-30T17:31:00
repr(t[1]) --> datetime64(1199164177, 's')
str(t[0].item()) --> 2008-07-30 17:31:00 # datetime module object
repr(t[0].item()) --> datetime.datetime(2008, 7, 30, 17, 31) # idem
str(t) --> [2008-07-30T17:31:00 2008-07-30T17:31:01 2008-07-30T17:31:02]
repr(t) --> array([1199164176, 1199164177, 1199164178],
 dtype='datetime64[s]')

Comparisons

The comparisons will be supported too:

numpy.array(['1980'], 'M8[Y]') == numpy.array(['1979'], 'M8[Y]')
--> [False]

or by applying broadcasting:

numpy.array(['1979', '1980'], 'M8[Y]') == numpy.datetime64('1980', 'Y')
--> [False, True]

The next should work too:

numpy.array(['1979', '1980'], 'M8[Y]') == '1980-01-01'
--> [False, True]

because the right hand expression can be broadcasted into an array of 2
elements of dtype ‘M8[Y]’.

Compatibility issues

This will be fully compatible with the datetime class of the
datetime module of Python only when using a time unit of
microseconds. For other time units, the conversion process will lose
precision or will overflow as needed. The conversion from/to a
datetime object doesn’t take leap seconds into account.

timedelta64

It represents a time that is relative (i.e. not absolute). It is
implemented internally as an int64 type.

In time unit conversions and time representations (but not in other
time computations), the value -2**63 (0x8000000000000000) is interpreted
as an invalid or unknown time, Not a Time or NaT. See the section
on time unit conversions for more information.

Time units

It accepts different time units, each of them implying a different time
span. The table below describes the time units supported with their
corresponding time spans.

	Time unit
	Time span

	Code
	Meaning
	

	Y
	year
	+- 9.2e18 years

	M
	month
	+- 7.6e17 years

	W
	week
	+- 1.7e17 years

	B
	business day
	+- 3.5e16 years

	D
	day
	+- 2.5e16 years

	h
	hour
	+- 1.0e15 years

	m
	minute
	+- 1.7e13 years

	s
	second
	+- 2.9e12 years

	ms
	millisecond
	+- 2.9e9 years

	us
	microsecond
	+- 2.9e6 years

	c#
	ticks (100ns)
	+- 2.9e4 years

	ns
	nanosecond
	+- 292 years

	ps
	picosecond
	+- 106 days

	fs
	femtosecond
	+- 2.6 hours

	as
	attosecond
	+- 9.2 seconds

The value of a time delta is thus an integer number of units of the
chosen time unit.

Building a timedelta64 dtype

The proposed ways to specify the time unit in the dtype constructor are:

Using the long string notation:

dtype('timedelta64[us]')

Using the short string notation:

dtype('m8[us]')

The default is micro-seconds if no default is specified: ‘m8’ is equivalent to ‘m8[us]’

Setting and getting values

The objects with this dtype can be set in a series of ways:

t = numpy.ones(3, dtype='m8[ms]')
t[0] = 12 # assign to 12 ms
t[1] = datetime.timedelta(0, 0, 13000) # 13 ms
t[2] = '0:00:00.014' # 14 ms

And can be get in different ways too:

str(t[0]) --> 0:00:00.012
repr(t[1]) --> timedelta64(13, 'ms')
str(t[0].item()) --> 0:00:00.012000 # datetime module object
repr(t[0].item()) --> datetime.timedelta(0, 0, 12000) # idem
str(t) --> [0:00:00.012 0:00:00.014 0:00:00.014]
repr(t) --> array([12, 13, 14], dtype="timedelta64[ms]")

Comparisons

The comparisons will be supported too:

numpy.array([12, 13, 14], 'm8[ms]') == numpy.array([12, 13, 13], 'm8[ms]')
--> [True, True, False]

or by applying broadcasting:

numpy.array([12, 13, 14], 'm8[ms]') == numpy.timedelta64(13, 'ms')
--> [False, True, False]

The next should work too:

numpy.array([12, 13, 14], 'm8[ms]') == '0:00:00.012'
--> [True, False, False]

because the right hand expression can be broadcasted into an array of 3
elements of dtype ‘m8[ms]’.

Compatibility issues

This will be fully compatible with the timedelta class of the
datetime module of Python only when using a time unit of
microseconds. For other units, the conversion process will lose
precision or will overflow as needed.

Examples of use

Here it is an example of use for the datetime64:

In [5]: numpy.datetime64(42, 'us')
Out[5]: datetime64(42, 'us')

In [6]: print numpy.datetime64(42, 'us')
1970-01-01T00:00:00.000042 # representation in ISO 8601 format

In [7]: print numpy.datetime64(367.7, 'D') # decimal part is lost
1971-01-02 # still ISO 8601 format

In [8]: numpy.datetime('2008-07-18T12:23:18', 'm') # from ISO 8601
Out[8]: datetime64(20273063, 'm')

In [9]: print numpy.datetime('2008-07-18T12:23:18', 'm')
Out[9]: 2008-07-18T12:23

In [10]: t = numpy.zeros(5, dtype="datetime64[ms]")

In [11]: t[0] = datetime.datetime.now() # setter in action

In [12]: print t
[2008-07-16T13:39:25.315 1970-01-01T00:00:00.000
 1970-01-01T00:00:00.000 1970-01-01T00:00:00.000
 1970-01-01T00:00:00.000]

In [13]: repr(t)
Out[13]: array([267859210457, 0, 0, 0, 0], dtype="datetime64[ms]")

In [14]: t[0].item() # getter in action
Out[14]: datetime.datetime(2008, 7, 16, 13, 39, 25, 315000)

In [15]: print t.dtype
dtype('datetime64[ms]')

And here it goes an example of use for the timedelta64:

In [5]: numpy.timedelta64(10, 'us')
Out[5]: timedelta64(10, 'us')

In [6]: print numpy.timedelta64(10, 'us')
0:00:00.000010

In [7]: print numpy.timedelta64(3600.2, 'm') # decimal part is lost
2 days, 12:00

In [8]: t1 = numpy.zeros(5, dtype="datetime64[ms]")

In [9]: t2 = numpy.ones(5, dtype="datetime64[ms]")

In [10]: t = t2 - t1

In [11]: t[0] = datetime.timedelta(0, 24) # setter in action

In [12]: print t
[0:00:24.000 0:00:01.000 0:00:01.000 0:00:01.000 0:00:01.000]

In [13]: print repr(t)
Out[13]: array([24000, 1, 1, 1, 1], dtype="timedelta64[ms]")

In [14]: t[0].item() # getter in action
Out[14]: datetime.timedelta(0, 24)

In [15]: print t.dtype
dtype('timedelta64[s]')

Operating with date/time arrays

datetime64 vs datetime64

The only arithmetic operation allowed between absolute dates is the
subtraction:

In [10]: numpy.ones(3, "M8[s]") - numpy.zeros(3, "M8[s]")
Out[10]: array([1, 1, 1], dtype=timedelta64[s])

But not other operations:

In [11]: numpy.ones(3, "M8[s]") + numpy.zeros(3, "M8[s]")
TypeError: unsupported operand type(s) for +: 'numpy.ndarray' and 'numpy.ndarray'

Comparisons between absolute dates are allowed.

Casting rules

When operating (basically, only the subtraction will be allowed) two
absolute times with different unit times, the outcome would be to raise
an exception. This is because the ranges and time-spans of the different
time units can be very different, and it is not clear at all what time
unit will be preferred for the user. For example, this should be
allowed:

>>> numpy.ones(3, dtype="M8[Y]") - numpy.zeros(3, dtype="M8[Y]")
array([1, 1, 1], dtype="timedelta64[Y]")

But the next should not:

>>> numpy.ones(3, dtype="M8[Y]") - numpy.zeros(3, dtype="M8[ns]")
raise numpy.IncompatibleUnitError # what unit to choose?

datetime64 vs timedelta64

It will be possible to add and subtract relative times from absolute
dates:

In [10]: numpy.zeros(5, "M8[Y]") + numpy.ones(5, "m8[Y]")
Out[10]: array([1971, 1971, 1971, 1971, 1971], dtype=datetime64[Y])

In [11]: numpy.ones(5, "M8[Y]") - 2 * numpy.ones(5, "m8[Y]")
Out[11]: array([1969, 1969, 1969, 1969, 1969], dtype=datetime64[Y])

But not other operations:

In [12]: numpy.ones(5, "M8[Y]") * numpy.ones(5, "m8[Y]")
TypeError: unsupported operand type(s) for *: 'numpy.ndarray' and 'numpy.ndarray'

Casting rules

In this case the absolute time should have priority for determining the
time unit of the outcome. That would represent what the people wants to
do most of the times. For example, this would allow to do:

>>> series = numpy.array(['1970-01-01', '1970-02-01', '1970-09-01'],
dtype='datetime64[D]')
>>> series2 = series + numpy.timedelta(1, 'Y') # Add 2 relative years
>>> series2
array(['1972-01-01', '1972-02-01', '1972-09-01'],
dtype='datetime64[D]') # the 'D'ay time unit has been chosen

timedelta64 vs timedelta64

Finally, it will be possible to operate with relative times as if they
were regular int64 dtypes as long as the result can be converted back
into a timedelta64:

In [10]: numpy.ones(3, 'm8[us]')
Out[10]: array([1, 1, 1], dtype="timedelta64[us]")

In [11]: (numpy.ones(3, 'm8[M]') + 2) ** 3
Out[11]: array([27, 27, 27], dtype="timedelta64[M]")

But:

In [12]: numpy.ones(5, 'm8') + 1j
TypeError: the result cannot be converted into a ``timedelta64``

Casting rules

When combining two timedelta64 dtypes with different time units the
outcome will be the shorter of both (“keep the precision” rule). For
example:

In [10]: numpy.ones(3, 'm8[s]') + numpy.ones(3, 'm8[m]')
Out[10]: array([61, 61, 61], dtype="timedelta64[s]")

However, due to the impossibility to know the exact duration of a
relative year or a relative month, when these time units appear in one
of the operands, the operation will not be allowed:

In [11]: numpy.ones(3, 'm8[Y]') + numpy.ones(3, 'm8[D]')
raise numpy.IncompatibleUnitError # how to convert relative years to days?

In order to being able to perform the above operation a new NumPy
function, called change_timeunit is proposed. Its signature will
be:

change_timeunit(time_object, new_unit, reference)

where ‘time_object’ is the time object whose unit is to be changed,
‘new_unit’ is the desired new time unit, and ‘reference’ is an absolute
date (NumPy datetime64 scalar) that will be used to allow the conversion
of relative times in case of using time units with an uncertain number
of smaller time units (relative years or months cannot be expressed in
days).

With this, the above operation can be done as follows:

In [10]: t_years = numpy.ones(3, 'm8[Y]')

In [11]: t_days = numpy.change_timeunit(t_years, 'D', '2001-01-01')

In [12]: t_days + numpy.ones(3, 'm8[D]')
Out[12]: array([366, 366, 366], dtype="timedelta64[D]")

dtype vs time units conversions

For changing the date/time dtype of an existing array, we propose to use
the .astype() method. This will be mainly useful for changing time
units.

For example, for absolute dates:

In[10]: t1 = numpy.zeros(5, dtype="datetime64[s]")

In[11]: print t1
[1970-01-01T00:00:00 1970-01-01T00:00:00 1970-01-01T00:00:00
 1970-01-01T00:00:00 1970-01-01T00:00:00]

In[12]: print t1.astype('datetime64[D]')
[1970-01-01 1970-01-01 1970-01-01 1970-01-01 1970-01-01]

For relative times:

In[10]: t1 = numpy.ones(5, dtype="timedelta64[s]")

In[11]: print t1
[1 1 1 1 1]

In[12]: print t1.astype('timedelta64[ms]')
[1000 1000 1000 1000 1000]

Changing directly from/to relative to/from absolute dtypes will not be
supported:

In[13]: numpy.zeros(5, dtype="datetime64[s]").astype('timedelta64')
TypeError: data type cannot be converted to the desired type

Business days have the peculiarity that they do not cover a continuous
line of time (they have gaps at weekends). Thus, when converting from
any ordinary time to business days, it can happen that the original time
is not representable. In that case, the result of the conversion is
Not a Time (NaT):

In[10]: t1 = numpy.arange(5, dtype="datetime64[D]")

In[11]: print t1
[1970-01-01 1970-01-02 1970-01-03 1970-01-04 1970-01-05]

In[12]: t2 = t1.astype("datetime64[B]")

In[13]: print t2 # 1970 begins in a Thursday
[1970-01-01 1970-01-02 NaT NaT 1970-01-05]

When converting back to ordinary days, NaT values are left untouched
(this happens in all time unit conversions):

In[14]: t3 = t2.astype("datetime64[D]")

In[13]: print t3
[1970-01-01 1970-01-02 NaT NaT 1970-01-05]

Final considerations

Why the origin metadata disappeared

During the discussion of the date/time dtypes in the NumPy list, the
idea of having an origin metadata that complemented the definition
of the absolute datetime64 was initially found to be useful.

However, after thinking more about this, we found that the combination
of an absolute datetime64 with a relative timedelta64 does offer
the same functionality while removing the need for the additional
origin metadata. This is why we have removed it from this proposal.

Operations with mixed time units

Whenever an operation between two time values of the same dtype with the
same unit is accepted, the same operation with time values of different
units should be possible (e.g. adding a time delta in seconds and one in
microseconds), resulting in an adequate time unit. The exact semantics
of this kind of operations is defined int the “Casting rules”
subsections of the “Operating with date/time arrays” section.

Due to the peculiarities of business days, it is most probable that
operations mixing business days with other time units will not be
allowed.

Why there is not a quarter time unit?

This proposal tries to focus on the most common used set of time units
to operate with, and the quarter can be considered more of a derived
unit. Besides, the use of a quarter normally requires that it can
start at whatever month of the year, and as we are not including support
for a time origin metadata, this is not a viable venue here.
Finally, if we were to add the quarter then people should expect to
find a biweekly, semester or biyearly just to put some
examples of other derived units, and we find this a bit too overwhelming
for this proposal purposes.

	[1]	http://docs.python.org/lib/module-datetime.html

	[2]	http://www.egenix.com/products/python/mxBase/mxDateTime

	[3]	http://en.wikipedia.org/wiki/Unix_time

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

Release Notes

NumPy 1.10.0 Release Notes

This release supports Python 2.6 - 2.7 and 3.2 - 3.4.

Highlights

	numpy.distutils now supports parallel compilation via the –jobs/-j argument
passed to setup.py build

	Addition of np.linalg.multi_dot: compute the dot product of two or more
arrays in a single function call, while automatically selecting the fastest
evaluation order.

Dropped Support

	The polytemplate.py file has been removed.

	The _dotblas module is no longer available.

	The testcalcs.py file has been removed.

Future Changes

	The SafeEval class will be removed.

	The alterdot and restoredot functions will be removed.

Compatibility notes

NPY_RELAXED_STRIDE_CHECKING is now true by default.

New Features

np.cbrt to compute cube root for real floats

np.cbrt wraps the C99 cube root function cbrt.
Compared to np.power(x, 1./3.) it is well defined for negative real floats
and a bit faster.

numpy.distutils now allows parallel compilation

By passing –jobs=n or -j n to setup.py build the compilation of
extensions is now performed in n parallel processes.
The parallelization is limited to files within one extension so projects using
Cython will not profit because it builds extensions from single files.

Improvements

np.digitize using binary search

np.digitize is now implemented in terms of np.searchsorted. This means
that a binary search is used to bin the values, which scales much better
for larger number of bins than the previous linear search. It also removes
the requirement for the input array to be 1-dimensional.

np.poly now casts integer inputs to float

np.poly will now cast 1-dimensional input arrays of integer type to double
precision floating point, to prevent integer overflow when computing the monic
polynomial. It is still possible to obtain higher precision results by
passing in an array of object type, filled e.g. with Python ints.

np.interp can now be used with periodic functions

np.interp now has a new parameter period that supplies the period of the
input data xp. In such case, the input data is properly normalized to the
given period and one end point is added to each extremity of xp in order to
close the previous and the next period cycles, resulting in the correct
interpolation behavior.

Changes

dotblas functionality moved to multiarray

The cblas versions of dot, inner, and vdot have been integrated into
the multiarray module. In particular, vdot is now a multiarray function,
which it was not before.

stricter check of gufunc signature compliance

Inputs to generalized universal functions are now more strictly checked
against the function’s signature: all core dimensions are now required to
be present in input arrays; core dimensions with the same label must have
the exact same size; and output core dimension’s must be specified, either
by a same label input core dimension or by a passed-in output array.

Deprecations

SafeEval

The SafeEval class in numpy/lib/utils.py is deprecated and will be removed
in the next release.

alterdot, restoredot

The alterdot and restoredot functions no longer do anything, and are
deprecated.

pkgload, PackageLoader

These ways of loading packages are now deprecated.

NumPy 1.9.1 Release Notes

This is a bugfix only release in the 1.9.x series.

Issues fixed

	gh-5184: restore linear edge behaviour of gradient to as it was in < 1.9.
The second order behaviour is available via the edge_order keyword

	gh-4007: workaround Accelerate sgemv crash on OSX 10.9

	gh-5100: restore object dtype inference from iterable objects without len()

	gh-5163: avoid gcc-4.1.2 (red hat 5) miscompilation causing a crash

	gh-5138: fix nanmedian on arrays containing inf

	gh-5240: fix not returning out array from ufuncs with subok=False set

	gh-5203: copy inherited masks in MaskedArray.__array_finalize__

	gh-2317: genfromtxt did not handle filling_values=0 correctly

	gh-5067: restore api of npy_PyFile_DupClose in python2

	gh-5063: cannot convert invalid sequence index to tuple

	gh-5082: Segmentation fault with argmin() on unicode arrays

	gh-5095: don’t propagate subtypes from np.where

	gh-5104: np.inner segfaults with SciPy’s sparse matrices

	gh-5251: Issue with fromarrays not using correct format for unicode arrays

	gh-5136: Import dummy_threading if importing threading fails

	gh-5148: Make numpy import when run with Python flag ‘-OO’

	gh-5147: Einsum double contraction in particular order causes ValueError

	gh-479: Make f2py work with intent(in out)

	gh-5170: Make python2 .npy files readable in python3

	gh-5027: Use ‘ll’ as the default length specifier for long long

	gh-4896: fix build error with MSVC 2013 caused by C99 complex support

	gh-4465: Make PyArray_PutTo respect writeable flag

	gh-5225: fix crash when using arange on datetime without dtype set

	gh-5231: fix build in c99 mode

NumPy 1.9.0 Release Notes

This release supports Python 2.6 - 2.7 and 3.2 - 3.4.

Highlights

	Numerous performance improvements in various areas, most notably indexing and
operations on small arrays are significantly faster.
Indexing operations now also release the GIL.

	Addition of nanmedian and nanpercentile rounds out the nanfunction set.

Dropped Support

	The oldnumeric and numarray modules have been removed.

	The doc/pyrex and doc/cython directories have been removed.

	The doc/numpybook directory has been removed.

	The numpy/testing/numpytest.py file has been removed together with
the importall function it contained.

Future Changes

	The numpy/polynomial/polytemplate.py file will be removed in NumPy 1.10.0.

	Default casting for inplace operations will change to ‘same_kind’ in
Numpy 1.10.0. This will certainly break some code that is currently
ignoring the warning.

	Relaxed stride checking will be the default in 1.10.0

	String version checks will break because, e.g., ‘1.9’ > ‘1.10’ is True. A
NumpyVersion class has been added that can be used for such comparisons.

	The diagonal and diag functions will return writeable views in 1.10.0

	The S and/or a dtypes may be changed to represent Python strings
instead of bytes, in Python 3 these two types are very different.

Compatibility notes

The diagonal and diag functions return readonly views.

In NumPy 1.8, the diagonal and diag functions returned readonly copies, in
NumPy 1.9 they return readonly views, and in 1.10 they will return writeable
views.

Special scalar float values don’t cause upcast to double anymore

In previous numpy versions operations involving floating point scalars
containing special values NaN, Inf and -Inf caused the result
type to be at least float64. As the special values can be represented
in the smallest available floating point type, the upcast is not performed
anymore.

For example the dtype of:

np.array([1.], dtype=np.float32) * float('nan')

now remains float32 instead of being cast to float64.
Operations involving non-special values have not been changed.

Percentile output changes

If given more than one percentile to compute numpy.percentile returns an
array instead of a list. A single percentile still returns a scalar. The
array is equivalent to converting the list returned in older versions
to an array via np.array.

If the overwrite_input option is used the input is only partially
instead of fully sorted.

ndarray.tofile exception type

All tofile exceptions are now IOError, some were previously
ValueError.

Invalid fill value exceptions

Two changes to numpy.ma.core._check_fill_value:

	When the fill value is a string and the array type is not one of
‘OSUV’, TypeError is raised instead of the default fill value being used.

	When the fill value overflows the array type, TypeError is raised instead
of OverflowError.

Polynomial Classes no longer derived from PolyBase

This may cause problems with folks who depended on the polynomial classes
being derived from PolyBase. They are now all derived from the abstract
base class ABCPolyBase. Strictly speaking, there should be a deprecation
involved, but no external code making use of the old baseclass could be
found.

Using numpy.random.binomial may change the RNG state vs. numpy < 1.9

A bug in one of the algorithms to generate a binomial random variate has
been fixed. This change will likely alter the number of random draws
performed, and hence the sequence location will be different after a
call to distribution.c::rk_binomial_btpe. Any tests which rely on the RNG
being in a known state should be checked and/or updated as a result.

Random seed enforced to be a 32 bit unsigned integer

np.random.seed and np.random.RandomState now throw a ValueError
if the seed cannot safely be converted to 32 bit unsigned integers.
Applications that now fail can be fixed by masking the higher 32 bit values to
zero: seed = seed & 0xFFFFFFFF. This is what is done silently in older
versions so the random stream remains the same.

Argmin and argmax out argument

The out argument to np.argmin and np.argmax and their
equivalent C-API functions is now checked to match the desired output shape
exactly. If the check fails a ValueError instead of TypeError is
raised.

Einsum

Remove unnecessary broadcasting notation restrictions.
np.einsum('ijk,j->ijk', A, B) can also be written as
np.einsum('ij...,j->ij...', A, B) (ellipsis is no longer required on ‘j’)

Indexing

The NumPy indexing has seen a complete rewrite in this version. This makes
most advanced integer indexing operations much faster and should have no
other implications. However some subtle changes and deprecations were
introduced in advanced indexing operations:

	Boolean indexing into scalar arrays will always return a new 1-d array.
This means that array(1)[array(True)] gives array([1]) and
not the original array.

	Advanced indexing into one dimensional arrays used to have
(undocumented) special handling regarding repeating the value array in
assignments when the shape of the value array was too small or did not
match. Code using this will raise an error. For compatibility you can
use arr.flat[index] = values, which uses the old code branch. (for
example a = np.ones(10); a[np.arange(10)] = [1, 2, 3])

	The iteration order over advanced indexes used to be always C-order.
In NumPy 1.9. the iteration order adapts to the inputs and is not
guaranteed (with the exception of a single advanced index which is
never reversed for compatibility reasons). This means that the result
is undefined if multiple values are assigned to the same element. An
example for this is arr[[0, 0], [1, 1]] = [1, 2], which may set
arr[0, 1] to either 1 or 2.

	Equivalent to the iteration order, the memory layout of the advanced
indexing result is adapted for faster indexing and cannot be predicted.

	All indexing operations return a view or a copy. No indexing operation
will return the original array object. (For example arr[...])

	In the future Boolean array-likes (such as lists of python bools) will
always be treated as Boolean indexes and Boolean scalars (including
python True) will be a legal boolean index. At this time, this is
already the case for scalar arrays to allow the general
positive = a[a > 0] to work when a is zero dimensional.

	In NumPy 1.8 it was possible to use array(True) and
array(False) equivalent to 1 and 0 if the result of the operation
was a scalar. This will raise an error in NumPy 1.9 and, as noted
above, treated as a boolean index in the future.

	All non-integer array-likes are deprecated, object arrays of custom
integer like objects may have to be cast explicitly.

	The error reporting for advanced indexing is more informative, however
the error type has changed in some cases. (Broadcasting errors of
indexing arrays are reported as IndexError)

	Indexing with more then one ellipsis (...) is deprecated.

Non-integer reduction axis indexes are deprecated

Non-integer axis indexes to reduction ufuncs like add.reduce or sum are
deprecated.

promote_types and string dtype

promote_types function now returns a valid string length when given an
integer or float dtype as one argument and a string dtype as another
argument. Previously it always returned the input string dtype, even if it
wasn’t long enough to store the max integer/float value converted to a
string.

can_cast and string dtype

can_cast function now returns False in “safe” casting mode for
integer/float dtype and string dtype if the string dtype length is not long
enough to store the max integer/float value converted to a string.
Previously can_cast in “safe” mode returned True for integer/float
dtype and a string dtype of any length.

astype and string dtype

The astype method now returns an error if the string dtype to cast to
is not long enough in “safe” casting mode to hold the max value of
integer/float array that is being casted. Previously the casting was
allowed even if the result was truncated.

npyio.recfromcsv keyword arguments change

npyio.recfromcsv no longer accepts the undocumented update keyword,
which used to override the dtype keyword.

The doc/swig directory moved

The doc/swig directory has been moved to tools/swig.

The npy_3kcompat.h header changed

The unused simple_capsule_dtor function has been removed from
npy_3kcompat.h. Note that this header is not meant to be used outside
of numpy; other projects should be using their own copy of this file when
needed.

Negative indices in C-Api sq_item and sq_ass_item sequence methods

When directly accessing the sq_item or sq_ass_item PyObject slots
for item getting, negative indices will not be supported anymore.
PySequence_GetItem and PySequence_SetItem however fix negative
indices so that they can be used there.

NDIter

When NpyIter_RemoveAxis is now called, the iterator range will be reset.

When a multi index is being tracked and an iterator is not buffered, it is
possible to use NpyIter_RemoveAxis. In this case an iterator can shrink
in size. Because the total size of an iterator is limited, the iterator
may be too large before these calls. In this case its size will be set to -1
and an error issued not at construction time but when removing the multi
index, setting the iterator range, or getting the next function.

This has no effect on currently working code, but highlights the necessity
of checking for an error return if these conditions can occur. In most
cases the arrays being iterated are as large as the iterator so that such
a problem cannot occur.

This change was already applied to the 1.8.1 release.

zeros_like for string dtypes now returns empty strings

To match the zeros function zeros_like now returns an array initialized
with empty strings instead of an array filled with ‘0’.

New Features

Percentile supports more interpolation options

np.percentile now has the interpolation keyword argument to specify in
which way points should be interpolated if the percentiles fall between two
values. See the documentation for the available options.

Generalized axis support for median and percentile

np.median and np.percentile now support generalized axis arguments like
ufunc reductions do since 1.7. One can now say axis=(index, index) to pick a
list of axes for the reduction. The keepdims keyword argument was also
added to allow convenient broadcasting to arrays of the original shape.

Dtype parameter added to np.linspace and np.logspace

The returned data type from the linspace and logspace functions can
now be specified using the dtype parameter.

More general np.triu and np.tril broadcasting

For arrays with ndim exceeding 2, these functions will now apply to the
final two axes instead of raising an exception.

tobytes alias for tostring method

ndarray.tobytes and MaskedArray.tobytes have been added as aliases
for tostring which exports arrays as bytes. This is more consistent
in Python 3 where str and bytes are not the same.

Build system

Added experimental support for the ppc64le and OpenRISC architecture.

Compatibility to python numbers module

All numerical numpy types are now registered with the type hierarchy in
the python numbers module.

increasing parameter added to np.vander

The ordering of the columns of the Vandermonde matrix can be specified with
this new boolean argument.

unique_counts parameter added to np.unique

The number of times each unique item comes up in the input can now be
obtained as an optional return value.

Support for median and percentile in nanfunctions

The np.nanmedian and np.nanpercentile functions behave like
the median and percentile functions except that NaNs are ignored.

NumpyVersion class added

The class may be imported from numpy.lib and can be used for version
comparison when the numpy version goes to 1.10.devel. For example:

>>> from numpy.lib import NumpyVersion
>>> if NumpyVersion(np.__version__) < '1.10.0'):
... print('Wow, that is an old NumPy version!')

Allow saving arrays with large number of named columns

The numpy storage format 1.0 only allowed the array header to have a total size
of 65535 bytes. This can be exceeded by structured arrays with a large number
of columns. A new format 2.0 has been added which extends the header size to 4
GiB. np.save will automatically save in 2.0 format if the data requires it,
else it will always use the more compatible 1.0 format.

Full broadcasting support for np.cross

np.cross now properly broadcasts its two input arrays, even if they
have different number of dimensions. In earlier versions this would result
in either an error being raised, or wrong results computed.

Improvements

Better numerical stability for sum in some cases

Pairwise summation is now used in the sum method, but only along the fast
axis and for groups of the values <= 8192 in length. This should also
improve the accuracy of var and std in some common cases.

Percentile implemented in terms of np.partition

np.percentile has been implemented in terms of np.partition which
only partially sorts the data via a selection algorithm. This improves the
time complexity from O(nlog(n)) to O(n).

Performance improvement for np.array

The performance of converting lists containing arrays to arrays using
np.array has been improved. It is now equivalent in speed to
np.vstack(list).

Performance improvement for np.searchsorted

For the built-in numeric types, np.searchsorted no longer relies on the
data type’s compare function to perform the search, but is now
implemented by type specific functions. Depending on the size of the
inputs, this can result in performance improvements over 2x.

Optional reduced verbosity for np.distutils

Set numpy.distutils.system_info.system_info.verbosity = 0 and then
calls to numpy.distutils.system_info.get_info('blas_opt') will not
print anything on the output. This is mostly for other packages using
numpy.distutils.

Covariance check in np.random.multivariate_normal

A RuntimeWarning warning is raised when the covariance matrix is not
positive-semidefinite.

Polynomial Classes no longer template based

The polynomial classes have been refactored to use an abstract base class
rather than a template in order to implement a common interface. This makes
importing the polynomial package faster as the classes do not need to be
compiled on import.

More GIL releases

Several more functions now release the Global Interpreter Lock allowing more
efficient parallization using the threading module. Most notably the GIL is
now released for fancy indexing, np.where and the random module now
uses a per-state lock instead of the GIL.

MaskedArray support for more complicated base classes

Built-in assumptions that the baseclass behaved like a plain array are being
removed. In particalur, repr and str should now work more reliably.

C-API

Deprecations

Non-integer scalars for sequence repetition

Using non-integer numpy scalars to repeat python sequences is deprecated.
For example np.float_(2) * [1] will be an error in the future.

select input deprecations

The integer and empty input to select is deprecated. In the future only
boolean arrays will be valid conditions and an empty condlist will be
considered an input error instead of returning the default.

rank function

The rank function has been deprecated to avoid confusion with
numpy.linalg.matrix_rank.

Object array equality comparisons

In the future object array comparisons both == and np.equal will not
make use of identity checks anymore. For example:

>>> a = np.array([np.array([1, 2, 3]), 1])
>>> b = np.array([np.array([1, 2, 3]), 1])
>>> a == b

will consistently return False (and in the future an error) even if the array
in a and b was the same object.

The equality operator == will in the future raise errors like np.equal
if broadcasting or element comparisons, etc. fails.

Comparison with arr == None will in the future do an elementwise comparison
instead of just returning False. Code should be using arr is None.

All of these changes will give Deprecation- or FutureWarnings at this time.

C-API

The utility function npy_PyFile_Dup and npy_PyFile_DupClose are broken by the
internal buffering python 3 applies to its file objects.
To fix this two new functions npy_PyFile_Dup2 and npy_PyFile_DupClose2 are
declared in npy_3kcompat.h and the old functions are deprecated.
Due to the fragile nature of these functions it is recommended to instead use
the python API when possible.

This change was already applied to the 1.8.1 release.

NumPy 1.8.2 Release Notes

This is a bugfix only release in the 1.8.x series.

Issues fixed

	gh-4836: partition produces wrong results for multiple selections in equal ranges

	gh-4656: Make fftpack._raw_fft threadsafe

	gh-4628: incorrect argument order to _copyto in in np.nanmax, np.nanmin

	gh-4642: Hold GIL for converting dtypes types with fields

	gh-4733: fix np.linalg.svd(b, compute_uv=False)

	gh-4853: avoid unaligned simd load on reductions on i386

	gh-4722: Fix seg fault converting empty string to object

	gh-4613: Fix lack of NULL check in array_richcompare

	gh-4774: avoid unaligned access for strided byteswap

	gh-650: Prevent division by zero when creating arrays from some buffers

	gh-4602: ifort has issues with optimization flag O2, use O1

NumPy 1.8.1 Release Notes

This is a bugfix only release in the 1.8.x series.

Issues fixed

	gh-4276: Fix mean, var, std methods for object arrays

	gh-4262: remove insecure mktemp usage

	gh-2385: absolute(complex(inf)) raises invalid warning in python3

	gh-4024: Sequence assignment doesn’t raise exception on shape mismatch

	gh-4027: Fix chunked reading of strings longer than BUFFERSIZE

	gh-4109: Fix object scalar return type of 0-d array indices

	gh-4018: fix missing check for memory allocation failure in ufuncs

	gh-4156: high order linalg.norm discards imaginary elements of complex arrays

	gh-4144: linalg: norm fails on longdouble, signed int

	gh-4094: fix NaT handling in _strided_to_strided_string_to_datetime

	gh-4051: fix uninitialized use in _strided_to_strided_string_to_datetime

	gh-4093: Loading compressed .npz file fails under Python 2.6.6

	gh-4138: segfault with non-native endian memoryview in python 3.4

	gh-4123: Fix missing NULL check in lexsort

	gh-4170: fix native-only long long check in memoryviews

	gh-4187: Fix large file support on 32 bit

	gh-4152: fromfile: ensure file handle positions are in sync in python3

	gh-4176: clang compatibility: Typos in conversion_utils

	gh-4223: Fetching a non-integer item caused array return

	gh-4197: fix minor memory leak in memoryview failure case

	gh-4206: fix build with single-threaded python

	gh-4220: add versionadded:: 1.8.0 to ufunc.at docstring

	gh-4267: improve handling of memory allocation failure

	gh-4267: fix use of capi without gil in ufunc.at

	gh-4261: Detect vendor versions of GNU Compilers

	gh-4253: IRR was returning nan instead of valid negative answer

	gh-4254: fix unnecessary byte order flag change for byte arrays

	gh-3263: numpy.random.shuffle clobbers mask of a MaskedArray

	gh-4270: np.random.shuffle not work with flexible dtypes

	gh-3173: Segmentation fault when ‘size’ argument to random.multinomial

	gh-2799: allow using unique with lists of complex

	gh-3504: fix linspace truncation for integer array scalar

	gh-4191: get_info(‘openblas’) does not read libraries key

	gh-3348: Access violation in _descriptor_from_pep3118_format

	gh-3175: segmentation fault with numpy.array() from bytearray

	gh-4266: histogramdd - wrong result for entries very close to last boundary

	gh-4408: Fix stride_stricks.as_strided function for object arrays

	gh-4225: fix log1p and exmp1 return for np.inf on windows compiler builds

	gh-4359: Fix infinite recursion in str.format of flex arrays

	gh-4145: Incorrect shape of broadcast result with the exponent operator

	gh-4483: Fix commutativity of {dot,multiply,inner}(scalar, matrix_of_objs)

	gh-4466: Delay npyiter size check when size may change

	gh-4485: Buffered stride was erroneously marked fixed

	gh-4354: byte_bounds fails with datetime dtypes

	gh-4486: segfault/error converting from/to high-precision datetime64 objects

	gh-4428: einsum(None, None, None, None) causes segfault

	gh-4134: uninitialized use for for size 1 object reductions

Changes

NDIter

When NpyIter_RemoveAxis is now called, the iterator range will be reset.

When a multi index is being tracked and an iterator is not buffered, it is
possible to use NpyIter_RemoveAxis. In this case an iterator can shrink
in size. Because the total size of an iterator is limited, the iterator
may be too large before these calls. In this case its size will be set to -1
and an error issued not at construction time but when removing the multi
index, setting the iterator range, or getting the next function.

This has no effect on currently working code, but highlights the necessity
of checking for an error return if these conditions can occur. In most
cases the arrays being iterated are as large as the iterator so that such
a problem cannot occur.

Optional reduced verbosity for np.distutils

Set numpy.distutils.system_info.system_info.verbosity = 0 and then
calls to numpy.distutils.system_info.get_info('blas_opt') will not
print anything on the output. This is mostly for other packages using
numpy.distutils.

Deprecations

C-API

The utility function npy_PyFile_Dup and npy_PyFile_DupClose are broken by the
internal buffering python 3 applies to its file objects.
To fix this two new functions npy_PyFile_Dup2 and npy_PyFile_DupClose2 are
declared in npy_3kcompat.h and the old functions are deprecated.
Due to the fragile nature of these functions it is recommended to instead use
the python API when possible.

NumPy 1.8.0 Release Notes

This release supports Python 2.6 -2.7 and 3.2 - 3.3.

Highlights

	New, no 2to3, Python 2 and Python 3 are supported by a common code base.

	New, gufuncs for linear algebra, enabling operations on stacked arrays.

	New, inplace fancy indexing for ufuncs with the .at method.

	New, partition function, partial sorting via selection for fast median.

	New, nanmean, nanvar, and nanstd functions skipping NaNs.

	New, full and full_like functions to create value initialized arrays.

	New, PyUFunc_RegisterLoopForDescr, better ufunc support for user dtypes.

	Numerous performance improvements in many areas.

Dropped Support

Support for Python versions 2.4 and 2.5 has been dropped,

Support for SCons has been removed.

Future Changes

The Datetime64 type remains experimental in this release. In 1.9 there will
probably be some changes to make it more useable.

The diagonal method currently returns a new array and raises a
FutureWarning. In 1.9 it will return a readonly view.

Multiple field selection from a array of structured type currently
returns a new array and raises a FutureWarning. In 1.9 it will return a
readonly view.

The numpy/oldnumeric and numpy/numarray compatibility modules will be
removed in 1.9.

Compatibility notes

The doc/sphinxext content has been moved into its own github repository,
and is included in numpy as a submodule. See the instructions in
doc/HOWTO_BUILD_DOCS.rst.txt for how to access the content.

The hash function of numpy.void scalars has been changed. Previously the
pointer to the data was hashed as an integer. Now, the hash function uses
the tuple-hash algorithm to combine the hash functions of the elements of
the scalar, but only if the scalar is read-only.

Numpy has switched its build system to using ‘separate compilation’ by
default. In previous releases this was supported, but not default. This
should produce the same results as the old system, but if you’re trying to
do something complicated like link numpy statically or using an unusual
compiler, then it’s possible you will encounter problems. If so, please
file a bug and as a temporary workaround you can re-enable the old build
system by exporting the shell variable NPY_SEPARATE_COMPILATION=0.

For the AdvancedNew iterator the oa_ndim flag should now be -1 to indicate
that no op_axes and itershape are passed in. The oa_ndim == 0
case, now indicates a 0-D iteration and op_axes being NULL and the old
usage is deprecated. This does not effect the NpyIter_New or
NpyIter_MultiNew functions.

The functions nanargmin and nanargmax now return np.iinfo[‘intp’].min for
the index in all-NaN slices. Previously the functions would raise a ValueError
for array returns and NaN for scalar returns.

NPY_RELAXED_STRIDES_CHECKING

There is a new compile time environment variable
NPY_RELAXED_STRIDES_CHECKING. If this variable is set to 1, then
numpy will consider more arrays to be C- or F-contiguous – for
example, it becomes possible to have a column vector which is
considered both C- and F-contiguous simultaneously. The new definition
is more accurate, allows for faster code that makes fewer unnecessary
copies, and simplifies numpy’s code internally. However, it may also
break third-party libraries that make too-strong assumptions about the
stride values of C- and F-contiguous arrays. (It is also currently
known that this breaks Cython code using memoryviews, which will be
fixed in Cython.) THIS WILL BECOME THE DEFAULT IN A FUTURE RELEASE, SO
PLEASE TEST YOUR CODE NOW AGAINST NUMPY BUILT WITH:

NPY_RELAXED_STRIDES_CHECKING=1 python setup.py install

You can check whether NPY_RELAXED_STRIDES_CHECKING is in effect by
running:

np.ones((10, 1), order="C").flags.f_contiguous

This will be True if relaxed strides checking is enabled, and
False otherwise. The typical problem we’ve seen so far is C code
that works with C-contiguous arrays, and assumes that the itemsize can
be accessed by looking at the last element in the PyArray_STRIDES(arr)
array. When relaxed strides are in effect, this is not true (and in
fact, it never was true in some corner cases). Instead, use
PyArray_ITEMSIZE(arr).

For more information check the “Internal memory layout of an ndarray”
section in the documentation.

Binary operations with non-arrays as second argument

Binary operations of the form <array-or-subclass> * <non-array-subclass>
where <non-array-subclass> declares an __array_priority__ higher than
that of <array-or-subclass> will now unconditionally return
NotImplemented, giving <non-array-subclass> a chance to handle the
operation. Previously, NotImplemented would only be returned if
<non-array-subclass> actually implemented the reversed operation, and after
a (potentially expensive) array conversion of <non-array-subclass> had been
attempted. (bug [https://github.com/numpy/numpy/issues/3375], pull request [https://github.com/numpy/numpy/pull/3501])

Function median used with overwrite_input only partially sorts array

If median is used with overwrite_input option the input array will now only
be partially sorted instead of fully sorted.

Fix to financial.npv

The npv function had a bug. Contrary to what the documentation stated, it
summed from indexes 1 to M instead of from 0 to M - 1. The
fix changes the returned value. The mirr function called the npv function,
but worked around the problem, so that was also fixed and the return value
of the mirr function remains unchanged.

Runtime warnings when comparing NaN numbers

Comparing NaN floating point numbers now raises the invalid runtime
warning. If a NaN is expected the warning can be ignored using np.errstate.
E.g.:

with np.errstate(invalid='ignore'):
 operation()

New Features

Support for linear algebra on stacked arrays

The gufunc machinery is now used for np.linalg, allowing operations on
stacked arrays and vectors. For example:

>>> a
array([[[1., 1.],
 [0., 1.]],

 [[1., 1.],
 [0., 1.]]])

>>> np.linalg.inv(a)
array([[[1., -1.],
 [0., 1.]],

 [[1., -1.],
 [0., 1.]]])

In place fancy indexing for ufuncs

The function at has been added to ufunc objects to allow in place
ufuncs with no buffering when fancy indexing is used. For example, the
following will increment the first and second items in the array, and will
increment the third item twice: numpy.add.at(arr, [0, 1, 2, 2], 1)

This is what many have mistakenly thought arr[[0, 1, 2, 2]] += 1 would do,
but that does not work as the incremented value of arr[2] is simply copied
into the third slot in arr twice, not incremented twice.

New functions partition and argpartition

New functions to partially sort arrays via a selection algorithm.

A partition by index k moves the k smallest element to the front of
an array. All elements before k are then smaller or equal than the value
in position k and all elements following k are then greater or equal
than the value in position k. The ordering of the values within these
bounds is undefined.
A sequence of indices can be provided to sort all of them into their sorted
position at once iterative partitioning.
This can be used to efficiently obtain order statistics like median or
percentiles of samples.
partition has a linear time complexity of O(n) while a full sort has
O(n log(n)).

New functions nanmean, nanvar and nanstd

New nan aware statistical functions are added. In these functions the
results are what would be obtained if nan values were ommited from all
computations.

New functions full and full_like

New convenience functions to create arrays filled with a specific value;
complementary to the existing zeros and zeros_like functions.

IO compatibility with large files

Large NPZ files >2GB can be loaded on 64-bit systems.

Building against OpenBLAS

It is now possible to build numpy against OpenBLAS by editing site.cfg.

New constant

Euler’s constant is now exposed in numpy as euler_gamma.

New modes for qr

New modes ‘complete’, ‘reduced’, and ‘raw’ have been added to the qr
factorization and the old ‘full’ and ‘economic’ modes are deprecated.
The ‘reduced’ mode replaces the old ‘full’ mode and is the default as was
the ‘full’ mode, so backward compatibility can be maintained by not
specifying the mode.

The ‘complete’ mode returns a full dimensional factorization, which can be
useful for obtaining a basis for the orthogonal complement of the range
space. The ‘raw’ mode returns arrays that contain the Householder
reflectors and scaling factors that can be used in the future to apply q
without needing to convert to a matrix. The ‘economic’ mode is simply
deprecated, there isn’t much use for it and it isn’t any more efficient
than the ‘raw’ mode.

New invert argument to in1d

The function in1d now accepts a invert argument which, when True,
causes the returned array to be inverted.

Advanced indexing using np.newaxis

It is now possible to use np.newaxis/None together with index
arrays instead of only in simple indices. This means that
array[np.newaxis, [0, 1]] will now work as expected and select the first
two rows while prepending a new axis to the array.

C-API

New ufuncs can now be registered with builtin input types and a custom
output type. Before this change, NumPy wouldn’t be able to find the right
ufunc loop function when the ufunc was called from Python, because the ufunc
loop signature matching logic wasn’t looking at the output operand type.
Now the correct ufunc loop is found, as long as the user provides an output
argument with the correct output type.

runtests.py

A simple test runner script runtests.py was added. It also builds Numpy via
setup.py build and can be used to run tests easily during development.

Improvements

IO performance improvements

Performance in reading large files was improved by chunking (see also IO compatibility).

Performance improvements to pad

The pad function has a new implementation, greatly improving performance for
all inputs except mode= (retained for backwards compatibility).
Scaling with dimensionality is dramatically improved for rank >= 4.

Performance improvements to isnan, isinf, isfinite and byteswap

isnan, isinf, isfinite and byteswap have been improved to take
advantage of compiler builtins to avoid expensive calls to libc.
This improves performance of these operations by about a factor of two on gnu
libc systems.

Performance improvements via SSE2 vectorization

Several functions have been optimized to make use of SSE2 CPU SIMD instructions.

	
	Float32 and float64:

	
	base math (add, subtract, divide, multiply)

	sqrt

	minimum/maximum

	absolute

	
	Bool:

	
	logical_or

	logical_and

	logical_not

This improves performance of these operations up to 4x/2x for float32/float64
and up to 10x for bool depending on the location of the data in the CPU caches.
The performance gain is greatest for in-place operations.

In order to use the improved functions the SSE2 instruction set must be enabled
at compile time. It is enabled by default on x86_64 systems. On x86_32 with a
capable CPU it must be enabled by passing the appropriate flag to the CFLAGS
build variable (-msse2 with gcc).

Performance improvements to median

median is now implemented in terms of partition instead of sort which
reduces its time complexity from O(n log(n)) to O(n).
If used with the overwrite_input option the array will now only be partially
sorted instead of fully sorted.

Overrideable operand flags in ufunc C-API

When creating a ufunc, the default ufunc operand flags can be overridden
via the new op_flags attribute of the ufunc object. For example, to set
the operand flag for the first input to read/write:

PyObject *ufunc = PyUFunc_FromFuncAndData(...);
ufunc->op_flags[0] = NPY_ITER_READWRITE;

This allows a ufunc to perform an operation in place. Also, global nditer flags
can be overridden via the new iter_flags attribute of the ufunc object.
For example, to set the reduce flag for a ufunc:

ufunc->iter_flags = NPY_ITER_REDUCE_OK;

Changes

General

The function np.take now allows 0-d arrays as indices.

The separate compilation mode is now enabled by default.

Several changes to np.insert and np.delete:

	Previously, negative indices and indices that pointed past the end of
the array were simply ignored. Now, this will raise a Future or Deprecation
Warning. In the future they will be treated like normal indexing treats
them – negative indices will wrap around, and out-of-bound indices will
generate an error.

	Previously, boolean indices were treated as if they were integers (always
referring to either the 0th or 1st item in the array). In the future, they
will be treated as masks. In this release, they raise a FutureWarning
warning of this coming change.

	In Numpy 1.7. np.insert already allowed the syntax
np.insert(arr, 3, [1,2,3]) to insert multiple items at a single position.
In Numpy 1.8. this is also possible for np.insert(arr, [3], [1, 2, 3]).

Padded regions from np.pad are now correctly rounded, not truncated.

C-API Array Additions

Four new functions have been added to the array C-API.

	PyArray_Partition

	PyArray_ArgPartition

	PyArray_SelectkindConverter

	PyDataMem_NEW_ZEROED

C-API Ufunc Additions

One new function has been added to the ufunc C-API that allows to register
an inner loop for user types using the descr.

	PyUFunc_RegisterLoopForDescr

C-API Developer Improvements

The PyArray_Type instance creation function tp_new now
uses tp_basicsize to determine how much memory to allocate.
In previous releases only sizeof(PyArrayObject) bytes of
memory were allocated, often requiring C-API subtypes to
reimplement tp_new.

Deprecations

The ‘full’ and ‘economic’ modes of qr factorization are deprecated.

General

The use of non-integer for indices and most integer arguments has been
deprecated. Previously float indices and function arguments such as axes or
shapes were truncated to integers without warning. For example
arr.reshape(3., -1) or arr[0.] will trigger a deprecation warning in
NumPy 1.8., and in some future version of NumPy they will raise an error.

Authors

This release contains work by the following people who contributed at least
one patch to this release. The names are in alphabetical order by first name:

	87

	Adam Ginsburg +

	Adam Griffiths +

	Alexander Belopolsky +

	Alex Barth +

	Alex Ford +

	Andreas Hilboll +

	Andreas Kloeckner +

	Andreas Schwab +

	Andrew Horton +

	argriffing +

	Arink Verma +

	Bago Amirbekian +

	Bartosz Telenczuk +

	bebert218 +

	Benjamin Root +

	Bill Spotz +

	Bradley M. Froehle

	Carwyn Pelley +

	Charles Harris

	Chris

	Christian Brueffer +

	Christoph Dann +

	Christoph Gohlke

	Dan Hipschman +

	Daniel +

	Dan Miller +

	daveydave400 +

	David Cournapeau

	David Warde-Farley

	Denis Laxalde

	dmuellner +

	Edward Catmur +

	Egor Zindy +

	endolith

	Eric Firing

	Eric Fode

	Eric Moore +

	Eric Price +

	Fazlul Shahriar +

	Félix Hartmann +

	Fernando Perez

	Frank B +

	Frank Breitling +

	Frederic

	Gabriel

	GaelVaroquaux

	Guillaume Gay +

	Han Genuit

	HaroldMills +

	hklemm +

	jamestwebber +

	Jason Madden +

	Jay Bourque

	jeromekelleher +

	Jesús Gómez +

	jmozmoz +

	jnothman +

	Johannes Schönberger +

	John Benediktsson +

	John Salvatier +

	John Stechschulte +

	Jonathan Waltman +

	Joon Ro +

	Jos de Kloe +

	Joseph Martinot-Lagarde +

	Josh Warner (Mac) +

	Jostein Bø Fløystad +

	Juan Luis Cano Rodríguez +

	Julian Taylor +

	Julien Phalip +

	K.-Michael Aye +

	Kumar Appaiah +

	Lars Buitinck

	Leon Weber +

	Luis Pedro Coelho

	Marcin Juszkiewicz

	Mark Wiebe

	Marten van Kerkwijk +

	Martin Baeuml +

	Martin Spacek

	Martin Teichmann +

	Matt Davis +

	Matthew Brett

	Maximilian Albert +

	m-d-w +

	Michael Droettboom

	mwtoews +

	Nathaniel J. Smith

	Nicolas Scheffer +

	Nils Werner +

	ochoadavid +

	Ondřej Čertík

	ovillellas +

	Paul Ivanov

	Pauli Virtanen

	peterjc

	Ralf Gommers

	Raul Cota +

	Richard Hattersley +

	Robert Costa +

	Robert Kern

	Rob Ruana +

	Ronan Lamy

	Sandro Tosi

	Sascha Peilicke +

	Sebastian Berg

	Skipper Seabold

	Stefan van der Walt

	Steve +

	Takafumi Arakaki +

	Thomas Robitaille +

	Tomas Tomecek +

	Travis E. Oliphant

	Valentin Haenel

	Vladimir Rutsky +

	Warren Weckesser

	Yaroslav Halchenko

	Yury V. Zaytsev +

A total of 119 people contributed to this release.
People with a “+” by their names contributed a patch for the first time.

NumPy 1.7.2 Release Notes

This is a bugfix only release in the 1.7.x series.
It supports Python 2.4 - 2.7 and 3.1 - 3.3 and is the last series that
supports Python 2.4 - 2.5.

Issues fixed

	gh-3153: Do not reuse nditer buffers when not filled enough

	gh-3192: f2py crashes with UnboundLocalError exception

	gh-442: Concatenate with axis=None now requires equal number of array elements

	gh-2485: Fix for astype(‘S’) string truncate issue

	gh-3312: bug in count_nonzero

	gh-2684: numpy.ma.average casts complex to float under certain conditions

	gh-2403: masked array with named components does not behave as expected

	gh-2495: np.ma.compress treated inputs in wrong order

	gh-576: add __len__ method to ma.mvoid

	gh-3364: reduce performance regression of mmap slicing

	gh-3421: fix non-swapping strided copies in GetStridedCopySwap

	gh-3373: fix small leak in datetime metadata initialization

	gh-2791: add platform specific python include directories to search paths

	gh-3168: fix undefined function and add integer divisions

	gh-3301: memmap does not work with TemporaryFile in python3

	gh-3057: distutils.misc_util.get_shared_lib_extension returns wrong debug extension

	gh-3472: add module extensions to load_library search list

	gh-3324: Make comparison function (gt, ge, ...) respect __array_priority__

	gh-3497: np.insert behaves incorrectly with argument ‘axis=-1’

	gh-3541: make preprocessor tests consistent in halffloat.c

	gh-3458: array_ass_boolean_subscript() writes ‘non-existent’ data to array

	gh-2892: Regression in ufunc.reduceat with zero-sized index array

	gh-3608: Regression when filling struct from tuple

	gh-3701: add support for Python 3.4 ast.NameConstant

	gh-3712: do not assume that GIL is enabled in xerbla

	gh-3712: fix LAPACK error handling in lapack_litemodule

	gh-3728: f2py fix decref on wrong object

	gh-3743: Hash changed signature in Python 3.3

	gh-3793: scalar int hashing broken on 64 bit python3

	gh-3160: SandboxViolation easyinstalling 1.7.0 on Mac OS X 10.8.3

	gh-3871: npy_math.h has invalid isinf for Solaris with SUNWspro12.2

	gh-2561: Disable check for oldstyle classes in python3

	gh-3900: Ensure NotImplemented is passed on in MaskedArray ufunc’s

	gh-2052: del scalar subscript causes segfault

	gh-3832: fix a few uninitialized uses and memleaks

	gh-3971: f2py changed string.lowercase to string.ascii_lowercase for python3

	gh-3480: numpy.random.binomial raised ValueError for n == 0

	gh-3992: hypot(inf, 0) shouldn’t raise a warning, hypot(inf, inf) wrong result

	gh-4018: Segmentation fault dealing with very large arrays

	gh-4094: fix NaT handling in _strided_to_strided_string_to_datetime

	gh-4051: fix uninitialized use in _strided_to_strided_string_to_datetime

	gh-4123: lexsort segfault

	gh-4141: Fix a few issues that show up with python 3.4b1

NumPy 1.7.1 Release Notes

This is a bugfix only release in the 1.7.x series.
It supports Python 2.4 - 2.7 and 3.1 - 3.3 and is the last series that
supports Python 2.4 - 2.5.

Issues fixed

	gh-2973: Fix 1 is printed during numpy.test()

	gh-2983: BUG: gh-2969: Backport memory leak fix 80b3a34.

	gh-3007: Backport gh-3006

	gh-2984: Backport fix complex polynomial fit

	gh-2982: BUG: Make nansum work with booleans.

	gh-2985: Backport large sort fixes

	gh-3039: Backport object take

	gh-3105: Backport nditer fix op axes initialization

	gh-3108: BUG: npy-pkg-config ini files were missing after Bento build.

	gh-3124: BUG: PyArray_LexSort allocates too much temporary memory.

	gh-3131: BUG: Exported f2py_size symbol prevents linking multiple f2py modules.

	gh-3117: Backport gh-2992

	gh-3135: DOC: Add mention of PyArray_SetBaseObject stealing a reference

	gh-3134: DOC: Fix typo in fft docs (the indexing variable is ‘m’, not ‘n’).

	gh-3136: Backport #3128

NumPy 1.7.0 Release Notes

This release includes several new features as well as numerous bug fixes and
refactorings. It supports Python 2.4 - 2.7 and 3.1 - 3.3 and is the last
release that supports Python 2.4 - 2.5.

Highlights

	where= parameter to ufuncs (allows the use of boolean arrays to choose
where a computation should be done)

	vectorize improvements (added ‘excluded’ and ‘cache’ keyword, general
cleanup and bug fixes)

	numpy.random.choice (random sample generating function)

Compatibility notes

In a future version of numpy, the functions np.diag, np.diagonal, and the
diagonal method of ndarrays will return a view onto the original array,
instead of producing a copy as they do now. This makes a difference if you
write to the array returned by any of these functions. To facilitate this
transition, numpy 1.7 produces a FutureWarning if it detects that you may
be attempting to write to such an array. See the documentation for
np.diagonal for details.

Similar to np.diagonal above, in a future version of numpy, indexing a
record array by a list of field names will return a view onto the original
array, instead of producing a copy as they do now. As with np.diagonal,
numpy 1.7 produces a FutureWarning if it detects that you may be attempting
to write to such an array. See the documentation for array indexing for
details.

In a future version of numpy, the default casting rule for UFunc out=
parameters will be changed from ‘unsafe’ to ‘same_kind’. (This also applies
to in-place operations like a += b, which is equivalent to np.add(a, b,
out=a).) Most usages which violate the ‘same_kind’ rule are likely bugs, so
this change may expose previously undetected errors in projects that depend
on NumPy. In this version of numpy, such usages will continue to succeed,
but will raise a DeprecationWarning.

Full-array boolean indexing has been optimized to use a different,
optimized code path. This code path should produce the same results,
but any feedback about changes to your code would be appreciated.

Attempting to write to a read-only array (one with arr.flags.writeable
set to False) used to raise either a RuntimeError, ValueError, or
TypeError inconsistently, depending on which code path was taken. It now
consistently raises a ValueError.

The <ufunc>.reduce functions evaluate some reductions in a different order
than in previous versions of NumPy, generally providing higher performance.
Because of the nature of floating-point arithmetic, this may subtly change
some results, just as linking NumPy to a different BLAS implementations
such as MKL can.

If upgrading from 1.5, then generally in 1.6 and 1.7 there have been
substantial code added and some code paths altered, particularly in the
areas of type resolution and buffered iteration over universal functions.
This might have an impact on your code particularly if you relied on
accidental behavior in the past.

New features

Reduction UFuncs Generalize axis= Parameter

Any ufunc.reduce function call, as well as other reductions like sum, prod,
any, all, max and min support the ability to choose a subset of the axes to
reduce over. Previously, one could say axis=None to mean all the axes or
axis=# to pick a single axis. Now, one can also say axis=(#,#) to pick a
list of axes for reduction.

Reduction UFuncs New keepdims= Parameter

There is a new keepdims= parameter, which if set to True, doesn’t throw
away the reduction axes but instead sets them to have size one. When this
option is set, the reduction result will broadcast correctly to the
original operand which was reduced.

Datetime support

Note

The datetime API is experimental in 1.7.0, and may undergo changes
in future versions of NumPy.

There have been a lot of fixes and enhancements to datetime64 compared
to NumPy 1.6:

	the parser is quite strict about only accepting ISO 8601 dates, with a few
convenience extensions

	converts between units correctly

	datetime arithmetic works correctly

	business day functionality (allows the datetime to be used in contexts where
only certain days of the week are valid)

The notes in doc/source/reference/arrays.datetime.rst [https://github.com/numpy/numpy/blob/maintenance/1.7.x/doc/source/reference/arrays.datetime.rst]
(also available in the online docs at arrays.datetime.html [http://docs.scipy.org/doc/numpy/reference/arrays.datetime.html]) should be
consulted for more details.

Custom formatter for printing arrays

See the new formatter parameter of the numpy.set_printoptions
function.

New function numpy.random.choice

A generic sampling function has been added which will generate samples from
a given array-like. The samples can be with or without replacement, and
with uniform or given non-uniform probabilities.

New function isclose

Returns a boolean array where two arrays are element-wise equal within a
tolerance. Both relative and absolute tolerance can be specified.

Preliminary multi-dimensional support in the polynomial package

Axis keywords have been added to the integration and differentiation
functions and a tensor keyword was added to the evaluation functions.
These additions allow multi-dimensional coefficient arrays to be used in
those functions. New functions for evaluating 2-D and 3-D coefficient
arrays on grids or sets of points were added together with 2-D and 3-D
pseudo-Vandermonde matrices that can be used for fitting.

Ability to pad rank-n arrays

A pad module containing functions for padding n-dimensional arrays has been
added. The various private padding functions are exposed as options to a
public ‘pad’ function. Example:

pad(a, 5, mode='mean')

Current modes are constant, edge, linear_ramp, maximum,
mean, median, minimum, reflect, symmetric, wrap, and
<function>.

New argument to searchsorted

The function searchsorted now accepts a ‘sorter’ argument that is a
permutation array that sorts the array to search.

Build system

Added experimental support for the AArch64 architecture.

C API

New function PyArray_RequireWriteable provides a consistent interface
for checking array writeability – any C code which works with arrays whose
WRITEABLE flag is not known to be True a priori, should make sure to call
this function before writing.

NumPy C Style Guide added (doc/C_STYLE_GUIDE.rst.txt).

Changes

General

The function np.concatenate tries to match the layout of its input arrays.
Previously, the layout did not follow any particular reason, and depended
in an undesirable way on the particular axis chosen for concatenation. A
bug was also fixed which silently allowed out of bounds axis arguments.

The ufuncs logical_or, logical_and, and logical_not now follow Python’s
behavior with object arrays, instead of trying to call methods on the
objects. For example the expression (3 and ‘test’) produces the string
‘test’, and now np.logical_and(np.array(3, ‘O’), np.array(‘test’, ‘O’))
produces ‘test’ as well.

The .base attribute on ndarrays, which is used on views to ensure that the
underlying array owning the memory is not deallocated prematurely, now
collapses out references when you have a view-of-a-view. For example:

a = np.arange(10)
b = a[1:]
c = b[1:]

In numpy 1.6, c.base is b, and c.base.base is a. In numpy 1.7,
c.base is a.

To increase backwards compatibility for software which relies on the old
behaviour of .base, we only ‘skip over’ objects which have exactly the same
type as the newly created view. This makes a difference if you use ndarray
subclasses. For example, if we have a mix of ndarray and matrix objects
which are all views on the same original ndarray:

a = np.arange(10)
b = np.asmatrix(a)
c = b[0, 1:]
d = c[0, 1:]

then d.base will be b. This is because d is a matrix object,
and so the collapsing process only continues so long as it encounters other
matrix objects. It considers c, b, and a in that order, and
b is the last entry in that list which is a matrix object.

Casting Rules

Casting rules have undergone some changes in corner cases, due to the
NA-related work. In particular for combinations of scalar+scalar:

	the longlong type (q) now stays longlong for operations with any other
number (? b h i l q p B H I), previously it was cast as int_ (l). The
ulonglong type (Q) now stays as ulonglong instead of uint (L).

	the timedelta64 type (m) can now be mixed with any integer type (b h i l
q p B H I L Q P), previously it raised TypeError.

For array + scalar, the above rules just broadcast except the case when
the array and scalars are unsigned/signed integers, then the result gets
converted to the array type (of possibly larger size) as illustrated by the
following examples:

>>> (np.zeros((2,), dtype=np.uint8) + np.int16(257)).dtype
dtype('uint16')
>>> (np.zeros((2,), dtype=np.int8) + np.uint16(257)).dtype
dtype('int16')
>>> (np.zeros((2,), dtype=np.int16) + np.uint32(2**17)).dtype
dtype('int32')

Whether the size gets increased depends on the size of the scalar, for
example:

>>> (np.zeros((2,), dtype=np.uint8) + np.int16(255)).dtype
dtype('uint8')
>>> (np.zeros((2,), dtype=np.uint8) + np.int16(256)).dtype
dtype('uint16')

Also a complex128 scalar + float32 array is cast to complex64.

In NumPy 1.7 the datetime64 type (M) must be constructed by explicitly
specifying the type as the second argument (e.g. np.datetime64(2000, 'Y')).

Deprecations

General

Specifying a custom string formatter with a _format array attribute is
deprecated. The new formatter [http://docs.python.org/dev/library/formatter.html#module-formatter] keyword in numpy.set_printoptions or
numpy.array2string can be used instead.

The deprecated imports in the polynomial package have been removed.

concatenate now raises DepractionWarning for 1D arrays if axis != 0.
Versions of numpy < 1.7.0 ignored axis argument value for 1D arrays. We
allow this for now, but in due course we will raise an error.

C-API

Direct access to the fields of PyArrayObject* has been deprecated. Direct
access has been recommended against for many releases. Expect similar
deprecations for PyArray_Descr* and other core objects in the future as
preparation for NumPy 2.0.

The macros in old_defines.h are deprecated and will be removed in the next
major release (>= 2.0). The sed script tools/replace_old_macros.sed can be
used to replace these macros with the newer versions.

You can test your code against the deprecated C API by #defining
NPY_NO_DEPRECATED_API to the target version number, for example
NPY_1_7_API_VERSION, before including any NumPy headers.

The NPY_CHAR member of the NPY_TYPES enum is deprecated and will be
removed in NumPy 1.8. See the discussion at
gh-2801 [https://github.com/numpy/numpy/issues/2801] for more details.

NumPy 1.6.2 Release Notes

This is a bugfix release in the 1.6.x series. Due to the delay of the NumPy
1.7.0 release, this release contains far more fixes than a regular NumPy bugfix
release. It also includes a number of documentation and build improvements.

Issues fixed

numpy.core

	#2063: make unique() return consistent index

	#1138: allow creating arrays from empty buffers or empty slices

	#1446: correct note about correspondence vstack and concatenate

	#1149: make argmin() work for datetime

	#1672: fix allclose() to work for scalar inf

	#1747: make np.median() work for 0-D arrays

	#1776: make complex division by zero to yield inf properly

	#1675: add scalar support for the format() function

	#1905: explicitly check for NaNs in allclose()

	#1952: allow floating ddof in std() and var()

	#1948: fix regression for indexing chararrays with empty list

	#2017: fix type hashing

	#2046: deleting array attributes causes segfault

	#2033: a**2.0 has incorrect type

	#2045: make attribute/iterator_element deletions not segfault

	#2021: fix segfault in searchsorted()

	#2073: fix float16 __array_interface__ bug

numpy.lib

	#2048: break reference cycle in NpzFile

	#1573: savetxt() now handles complex arrays

	#1387: allow bincount() to accept empty arrays

	#1899: fixed histogramdd() bug with empty inputs

	#1793: fix failing npyio test under py3k

	#1936: fix extra nesting for subarray dtypes

	#1848: make tril/triu return the same dtype as the original array

	#1918: use Py_TYPE to access ob_type, so it works also on Py3

numpy.distutils

	#1261: change compile flag on AIX from -O5 to -O3

	#1377: update HP compiler flags

	#1383: provide better support for C++ code on HPUX

	#1857: fix build for py3k + pip

	BLD: raise a clearer warning in case of building without cleaning up first

	BLD: follow build_ext coding convention in build_clib

	BLD: fix up detection of Intel CPU on OS X in system_info.py

	BLD: add support for the new X11 directory structure on Ubuntu & co.

	BLD: add ufsparse to the libraries search path.

	BLD: add ‘pgfortran’ as a valid compiler in the Portland Group

	BLD: update version match regexp for IBM AIX Fortran compilers.

numpy.random

	BUG: Use npy_intp instead of long in mtrand

Changes

numpy.f2py

	ENH: Introduce new options extra_f77_compiler_args and extra_f90_compiler_args

	BLD: Improve reporting of fcompiler value

	BUG: Fix f2py test_kind.py test

numpy.poly

	ENH: Add some tests for polynomial printing

	ENH: Add companion matrix functions

	DOC: Rearrange the polynomial documents

	BUG: Fix up links to classes

	DOC: Add version added to some of the polynomial package modules

	DOC: Document xxxfit functions in the polynomial package modules

	BUG: The polynomial convenience classes let different types interact

	DOC: Document the use of the polynomial convenience classes

	DOC: Improve numpy reference documentation of polynomial classes

	ENH: Improve the computation of polynomials from roots

	STY: Code cleanup in polynomial [*]fromroots functions

	DOC: Remove references to cast and NA, which were added in 1.7

NumPy 1.6.1 Release Notes

This is a bugfix only release in the 1.6.x series.

Issues Fixed

	#1834: einsum fails for specific shapes

	#1837: einsum throws nan or freezes python for specific array shapes

	#1838: object <-> structured type arrays regression

	#1851: regression for SWIG based code in 1.6.0

	#1863: Buggy results when operating on array copied with astype()

	#1870: Fix corner case of object array assignment

	#1843: Py3k: fix error with recarray

	#1885: nditer: Error in detecting double reduction loop

	#1874: f2py: fix –include_paths bug

	#1749: Fix ctypes.load_library()

	#1895/1896: iter: writeonly operands weren’t always being buffered correctly

NumPy 1.6.0 Release Notes

This release includes several new features as well as numerous bug fixes and
improved documentation. It is backward compatible with the 1.5.0 release, and
supports Python 2.4 - 2.7 and 3.1 - 3.2.

Highlights

	Re-introduction of datetime dtype support to deal with dates in arrays.

	A new 16-bit floating point type.

	A new iterator, which improves performance of many functions.

New features

New 16-bit floating point type

This release adds support for the IEEE 754-2008 binary16 format, available as
the data type numpy.half. Within Python, the type behaves similarly to
float or double, and C extensions can add support for it with the exposed
half-float API.

New iterator

A new iterator has been added, replacing the functionality of the
existing iterator and multi-iterator with a single object and API.
This iterator works well with general memory layouts different from
C or Fortran contiguous, and handles both standard NumPy and
customized broadcasting. The buffering, automatic data type
conversion, and optional output parameters, offered by
ufuncs but difficult to replicate elsewhere, are now exposed by this
iterator.

Legendre, Laguerre, Hermite, HermiteE polynomials in numpy.polynomial

Extend the number of polynomials available in the polynomial package. In
addition, a new window attribute has been added to the classes in
order to specify the range the domain maps to. This is mostly useful
for the Laguerre, Hermite, and HermiteE polynomials whose natural domains
are infinite and provides a more intuitive way to get the correct mapping
of values without playing unnatural tricks with the domain.

Fortran assumed shape array and size function support in numpy.f2py

F2py now supports wrapping Fortran 90 routines that use assumed shape
arrays. Before such routines could be called from Python but the
corresponding Fortran routines received assumed shape arrays as zero
length arrays which caused unpredicted results. Thanks to Lorenz
Hüdepohl for pointing out the correct way to interface routines with
assumed shape arrays.

In addition, f2py supports now automatic wrapping of Fortran routines
that use two argument size function in dimension specifications.

Other new functions

numpy.ravel_multi_index : Converts a multi-index tuple into
an array of flat indices, applying boundary modes to the indices.

numpy.einsum : Evaluate the Einstein summation convention. Using the
Einstein summation convention, many common multi-dimensional array operations
can be represented in a simple fashion. This function provides a way compute
such summations.

numpy.count_nonzero : Counts the number of non-zero elements in an array.

numpy.result_type and numpy.min_scalar_type : These functions expose
the underlying type promotion used by the ufuncs and other operations to
determine the types of outputs. These improve upon the numpy.common_type
and numpy.mintypecode which provide similar functionality but do
not match the ufunc implementation.

Changes

default error handling

The default error handling has been change from print to warn for
all except for underflow, which remains as ignore.

numpy.distutils

Several new compilers are supported for building Numpy: the Portland Group
Fortran compiler on OS X, the PathScale compiler suite and the 64-bit Intel C
compiler on Linux.

numpy.testing

The testing framework gained numpy.testing.assert_allclose, which provides
a more convenient way to compare floating point arrays than
assert_almost_equal, assert_approx_equal and assert_array_almost_equal.

C API

In addition to the APIs for the new iterator and half data type, a number
of other additions have been made to the C API. The type promotion
mechanism used by ufuncs is exposed via PyArray_PromoteTypes,
PyArray_ResultType, and PyArray_MinScalarType. A new enumeration
NPY_CASTING has been added which controls what types of casts are
permitted. This is used by the new functions PyArray_CanCastArrayTo
and PyArray_CanCastTypeTo. A more flexible way to handle
conversion of arbitrary python objects into arrays is exposed by
PyArray_GetArrayParamsFromObject.

Deprecated features

The “normed” keyword in numpy.histogram is deprecated. Its functionality
will be replaced by the new “density” keyword.

Removed features

numpy.fft

The functions refft, refft2, refftn, irefft, irefft2, irefftn,
which were aliases for the same functions without the ‘e’ in the name, were
removed.

numpy.memmap

The sync() and close() methods of memmap were removed. Use flush() and
“del memmap” instead.

numpy.lib

The deprecated functions numpy.unique1d, numpy.setmember1d,
numpy.intersect1d_nu and numpy.lib.ufunclike.log2 were removed.

numpy.ma

Several deprecated items were removed from the numpy.ma module:

* ``numpy.ma.MaskedArray`` "raw_data" method
* ``numpy.ma.MaskedArray`` constructor "flag" keyword
* ``numpy.ma.make_mask`` "flag" keyword
* ``numpy.ma.allclose`` "fill_value" keyword

numpy.distutils

The numpy.get_numpy_include function was removed, use numpy.get_include
instead.

NumPy 1.5.0 Release Notes

Highlights

Python 3 compatibility

This is the first NumPy release which is compatible with Python 3. Support for
Python 3 and Python 2 is done from a single code base. Extensive notes on
changes can be found at
http://projects.scipy.org/numpy/browser/trunk/doc/Py3K.txt.

Note that the Numpy testing framework relies on nose, which does not have a
Python 3 compatible release yet. A working Python 3 branch of nose can be found
at http://bitbucket.org/jpellerin/nose3/ however.

Porting of SciPy to Python 3 is expected to be completed soon.

PEP 3118 [http://www.python.org/dev/peps/pep-3118] compatibility

The new buffer protocol described by PEP 3118 is fully supported in this
version of Numpy. On Python versions >= 2.6 Numpy arrays expose the buffer
interface, and array(), asarray() and other functions accept new-style buffers
as input.

New features

Warning on casting complex to real

Numpy now emits a numpy.ComplexWarning when a complex number is cast
into a real number. For example:

>>> x = np.array([1,2,3])
>>> x[:2] = np.array([1+2j, 1-2j])
ComplexWarning: Casting complex values to real discards the imaginary part

The cast indeed discards the imaginary part, and this may not be the
intended behavior in all cases, hence the warning. This warning can be
turned off in the standard way:

>>> import warnings
>>> warnings.simplefilter("ignore", np.ComplexWarning)

Dot method for ndarrays

Ndarrays now have the dot product also as a method, which allows writing
chains of matrix products as

>>> a.dot(b).dot(c)

instead of the longer alternative

>>> np.dot(a, np.dot(b, c))

linalg.slogdet function

The slogdet function returns the sign and logarithm of the determinant
of a matrix. Because the determinant may involve the product of many
small/large values, the result is often more accurate than that obtained
by simple multiplication.

new header

The new header file ndarraytypes.h contains the symbols from
ndarrayobject.h that do not depend on the PY_ARRAY_UNIQUE_SYMBOL and
NO_IMPORT/_ARRAY macros. Broadly, these symbols are types, typedefs,
and enumerations; the array function calls are left in
ndarrayobject.h. This allows users to include array-related types and
enumerations without needing to concern themselves with the macro
expansions and their side- effects.

Changes

polynomial.polynomial

	The polyint and polyder functions now check that the specified number
integrations or derivations is a non-negative integer. The number 0 is
a valid value for both functions.

	A degree method has been added to the Polynomial class.

	A trimdeg method has been added to the Polynomial class. It operates like
truncate except that the argument is the desired degree of the result,
not the number of coefficients.

	Polynomial.fit now uses None as the default domain for the fit. The default
Polynomial domain can be specified by using [] as the domain value.

	Weights can be used in both polyfit and Polynomial.fit

	A linspace method has been added to the Polynomial class to ease plotting.

	The polymulx function was added.

polynomial.chebyshev

	The chebint and chebder functions now check that the specified number
integrations or derivations is a non-negative integer. The number 0 is
a valid value for both functions.

	A degree method has been added to the Chebyshev class.

	A trimdeg method has been added to the Chebyshev class. It operates like
truncate except that the argument is the desired degree of the result,
not the number of coefficients.

	Chebyshev.fit now uses None as the default domain for the fit. The default
Chebyshev domain can be specified by using [] as the domain value.

	Weights can be used in both chebfit and Chebyshev.fit

	A linspace method has been added to the Chebyshev class to ease plotting.

	The chebmulx function was added.

	Added functions for the Chebyshev points of the first and second kind.

histogram

After a two years transition period, the old behavior of the histogram function
has been phased out, and the “new” keyword has been removed.

correlate

The old behavior of correlate was deprecated in 1.4.0, the new behavior (the
usual definition for cross-correlation) is now the default.

NumPy 1.4.0 Release Notes

This minor includes numerous bug fixes, as well as a few new features. It
is backward compatible with 1.3.0 release.

Highlights

	New datetime dtype support to deal with dates in arrays

	Faster import time

	Extended array wrapping mechanism for ufuncs

	New Neighborhood iterator (C-level only)

	C99-like complex functions in npymath

New features

Extended array wrapping mechanism for ufuncs

An __array_prepare__ method has been added to ndarray to provide subclasses
greater flexibility to interact with ufuncs and ufunc-like functions. ndarray
already provided __array_wrap__, which allowed subclasses to set the array type
for the result and populate metadata on the way out of the ufunc (as seen in
the implementation of MaskedArray). For some applications it is necessary to
provide checks and populate metadata on the way in. __array_prepare__ is
therefore called just after the ufunc has initialized the output array but
before computing the results and populating it. This way, checks can be made
and errors raised before operations which may modify data in place.

Automatic detection of forward incompatibilities

Previously, if an extension was built against a version N of NumPy, and used on
a system with NumPy M < N, the import_array was successfull, which could cause
crashes because the version M does not have a function in N. Starting from
NumPy 1.4.0, this will cause a failure in import_array, so the error will be
catched early on.

New iterators

A new neighborhood iterator has been added to the C API. It can be used to
iterate over the items in a neighborhood of an array, and can handle boundaries
conditions automatically. Zero and one padding are available, as well as
arbitrary constant value, mirror and circular padding.

New polynomial support

New modules chebyshev and polynomial have been added. The new polynomial module
is not compatible with the current polynomial support in numpy, but is much
like the new chebyshev module. The most noticeable difference to most will
be that coefficients are specified from low to high power, that the low
level functions do not work with the Chebyshev and Polynomial classes as
arguements, and that the Chebyshev and Polynomial classes include a domain.
Mapping between domains is a linear substitution and the two classes can be
converted one to the other, allowing, for instance, a Chebyshev series in
one domain to be expanded as a polynomial in another domain. The new classes
should generally be used instead of the low level functions, the latter are
provided for those who wish to build their own classes.

The new modules are not automatically imported into the numpy namespace,
they must be explicitly brought in with an “import numpy.polynomial”
statement.

New C API

The following C functions have been added to the C API:

	PyArray_GetNDArrayCFeatureVersion: return the API version of the
loaded numpy.

	PyArray_Correlate2 - like PyArray_Correlate, but implements the usual
definition of correlation. Inputs are not swapped, and conjugate is
taken for complex arrays.

	PyArray_NeighborhoodIterNew - a new iterator to iterate over a
neighborhood of a point, with automatic boundaries handling. It is
documented in the iterators section of the C-API reference, and you can
find some examples in the multiarray_test.c.src file in numpy.core.

New ufuncs

The following ufuncs have been added to the C API:

	copysign - return the value of the first argument with the sign copied
from the second argument.

	nextafter - return the next representable floating point value of the
first argument toward the second argument.

New defines

The alpha processor is now defined and available in numpy/npy_cpu.h. The
failed detection of the PARISC processor has been fixed. The defines are:

	NPY_CPU_HPPA: PARISC

	NPY_CPU_ALPHA: Alpha

Testing

	deprecated decorator: this decorator may be used to avoid cluttering
testing output while testing DeprecationWarning is effectively raised by
the decorated test.

	assert_array_almost_equal_nulps: new method to compare two arrays of
floating point values. With this function, two values are considered
close if there are not many representable floating point values in
between, thus being more robust than assert_array_almost_equal when the
values fluctuate a lot.

	assert_array_max_ulp: raise an assertion if there are more than N
representable numbers between two floating point values.

	assert_warns: raise an AssertionError if a callable does not generate a
warning of the appropriate class, without altering the warning state.

Reusing npymath

In 1.3.0, we started putting portable C math routines in npymath library, so
that people can use those to write portable extensions. Unfortunately, it was
not possible to easily link against this library: in 1.4.0, support has been
added to numpy.distutils so that 3rd party can reuse this library. See coremath
documentation for more information.

Improved set operations

In previous versions of NumPy some set functions (intersect1d,
setxor1d, setdiff1d and setmember1d) could return incorrect results if
the input arrays contained duplicate items. These now work correctly
for input arrays with duplicates. setmember1d has been renamed to
in1d, as with the change to accept arrays with duplicates it is
no longer a set operation, and is conceptually similar to an
elementwise version of the Python operator ‘in’. All of these
functions now accept the boolean keyword assume_unique. This is False
by default, but can be set True if the input arrays are known not
to contain duplicates, which can increase the functions’ execution
speed.

Improvements

	numpy import is noticeably faster (from 20 to 30 % depending on the
platform and computer)

	The sort functions now sort nans to the end.

	Real sort order is [R, nan]

	Complex sort order is [R + Rj, R + nanj, nan + Rj, nan + nanj]

Complex numbers with the same nan placements are sorted according to
the non-nan part if it exists.

	The type comparison functions have been made consistent with the new
sort order of nans. Searchsorted now works with sorted arrays
containing nan values.

	Complex division has been made more resistent to overflow.

	Complex floor division has been made more resistent to overflow.

Deprecations

The following functions are deprecated:

	correlate: it takes a new keyword argument old_behavior. When True (the
default), it returns the same result as before. When False, compute the
conventional correlation, and take the conjugate for complex arrays. The
old behavior will be removed in NumPy 1.5, and raises a
DeprecationWarning in 1.4.

	unique1d: use unique instead. unique1d raises a deprecation
warning in 1.4, and will be removed in 1.5.

	intersect1d_nu: use intersect1d instead. intersect1d_nu raises
a deprecation warning in 1.4, and will be removed in 1.5.

	setmember1d: use in1d instead. setmember1d raises a deprecation
warning in 1.4, and will be removed in 1.5.

The following raise errors:

	When operating on 0-d arrays, numpy.max and other functions accept
only axis=0, axis=-1 and axis=None. Using an out-of-bounds
axes is an indication of a bug, so Numpy raises an error for these cases
now.

	Specifying axis > MAX_DIMS is no longer allowed; Numpy raises now an
error instead of behaving similarly as for axis=None.

Internal changes

Use C99 complex functions when available

The numpy complex types are now guaranteed to be ABI compatible with C99
complex type, if availble on the platform. Moreoever, the complex ufunc now use
the platform C99 functions intead of our own.

split multiarray and umath source code

The source code of multiarray and umath has been split into separate logic
compilation units. This should make the source code more amenable for
newcomers.

Separate compilation

By default, every file of multiarray (and umath) is merged into one for
compilation as was the case before, but if NPY_SEPARATE_COMPILATION env
variable is set to a non-negative value, experimental individual compilation of
each file is enabled. This makes the compile/debug cycle much faster when
working on core numpy.

Separate core math library

New functions which have been added:

	npy_copysign

	npy_nextafter

	npy_cpack

	npy_creal

	npy_cimag

	npy_cabs

	npy_cexp

	npy_clog

	npy_cpow

	npy_csqr

	npy_ccos

	npy_csin

NumPy 1.3.0 Release Notes

This minor includes numerous bug fixes, official python 2.6 support, and
several new features such as generalized ufuncs.

Highlights

Python 2.6 support

Python 2.6 is now supported on all previously supported platforms, including
windows.

http://www.python.org/dev/peps/pep-0361/

Generalized ufuncs

There is a general need for looping over not only functions on scalars but also
over functions on vectors (or arrays), as explained on
http://scipy.org/scipy/numpy/wiki/GeneralLoopingFunctions. We propose to
realize this concept by generalizing the universal functions (ufuncs), and
provide a C implementation that adds ~500 lines to the numpy code base. In
current (specialized) ufuncs, the elementary function is limited to
element-by-element operations, whereas the generalized version supports
“sub-array” by “sub-array” operations. The Perl vector library PDL provides a
similar functionality and its terms are re-used in the following.

Each generalized ufunc has information associated with it that states what the
“core” dimensionality of the inputs is, as well as the corresponding
dimensionality of the outputs (the element-wise ufuncs have zero core
dimensions). The list of the core dimensions for all arguments is called the
“signature” of a ufunc. For example, the ufunc numpy.add has signature
“(),()->()” defining two scalar inputs and one scalar output.

Another example is (see the GeneralLoopingFunctions page) the function
inner1d(a,b) with a signature of “(i),(i)->()”. This applies the inner product
along the last axis of each input, but keeps the remaining indices intact. For
example, where a is of shape (3,5,N) and b is of shape (5,N), this will return
an output of shape (3,5). The underlying elementary function is called 3*5
times. In the signature, we specify one core dimension “(i)” for each input and
zero core dimensions “()” for the output, since it takes two 1-d arrays and
returns a scalar. By using the same name “i”, we specify that the two
corresponding dimensions should be of the same size (or one of them is of size
1 and will be broadcasted).

The dimensions beyond the core dimensions are called “loop” dimensions. In the
above example, this corresponds to (3,5).

The usual numpy “broadcasting” rules apply, where the signature determines how
the dimensions of each input/output object are split into core and loop
dimensions:

While an input array has a smaller dimensionality than the corresponding number
of core dimensions, 1’s are pre-pended to its shape. The core dimensions are
removed from all inputs and the remaining dimensions are broadcasted; defining
the loop dimensions. The output is given by the loop dimensions plus the
output core dimensions.

Experimental Windows 64 bits support

Numpy can now be built on windows 64 bits (amd64 only, not IA64), with both MS
compilers and mingw-w64 compilers:

This is highly experimental: DO NOT USE FOR PRODUCTION USE. See INSTALL.txt,
Windows 64 bits section for more information on limitations and how to build it
by yourself.

New features

Formatting issues

Float formatting is now handled by numpy instead of the C runtime: this enables
locale independent formatting, more robust fromstring and related methods.
Special values (inf and nan) are also more consistent across platforms (nan vs
IND/NaN, etc...), and more consistent with recent python formatting work (in
2.6 and later).

Nan handling in max/min

The maximum/minimum ufuncs now reliably propagate nans. If one of the
arguments is a nan, then nan is retured. This affects np.min/np.max, amin/amax
and the array methods max/min. New ufuncs fmax and fmin have been added to deal
with non-propagating nans.

Nan handling in sign

The ufunc sign now returns nan for the sign of anan.

New ufuncs

	fmax - same as maximum for integer types and non-nan floats. Returns the
non-nan argument if one argument is nan and returns nan if both arguments
are nan.

	fmin - same as minimum for integer types and non-nan floats. Returns the
non-nan argument if one argument is nan and returns nan if both arguments
are nan.

	deg2rad - converts degrees to radians, same as the radians ufunc.

	rad2deg - converts radians to degrees, same as the degrees ufunc.

	log2 - base 2 logarithm.

	exp2 - base 2 exponential.

	trunc - truncate floats to nearest integer towards zero.

	logaddexp - add numbers stored as logarithms and return the logarithm
of the result.

	logaddexp2 - add numbers stored as base 2 logarithms and return the base 2
logarithm of the result result.

Masked arrays

Several new features and bug fixes, including:

	structured arrays should now be fully supported by MaskedArray
(r6463, r6324, r6305, r6300, r6294...)

	Minor bug fixes (r6356, r6352, r6335, r6299, r6298)

	Improved support for __iter__ (r6326)

	made baseclass, sharedmask and hardmask accesible to the user (but
read-only)

	doc update

gfortran support on windows

Gfortran can now be used as a fortran compiler for numpy on windows, even when
the C compiler is Visual Studio (VS 2005 and above; VS 2003 will NOT work).
Gfortran + Visual studio does not work on windows 64 bits (but gcc + gfortran
does). It is unclear whether it will be possible to use gfortran and visual
studio at all on x64.

Arch option for windows binary

Automatic arch detection can now be bypassed from the command line for the superpack installed:

numpy-1.3.0-superpack-win32.exe /arch=nosse

will install a numpy which works on any x86, even if the running computer
supports SSE set.

Deprecated features

Histogram

The semantics of histogram has been modified to fix long-standing issues
with outliers handling. The main changes concern

	the definition of the bin edges, now including the rightmost edge, and

	the handling of upper outliers, now ignored rather than tallied in the
rightmost bin.

The previous behavior is still accessible using new=False, but this is
deprecated, and will be removed entirely in 1.4.0.

Documentation changes

A lot of documentation has been added. Both user guide and references can be
built from sphinx.

New C API

Multiarray API

The following functions have been added to the multiarray C API:

	PyArray_GetEndianness: to get runtime endianness

Ufunc API

The following functions have been added to the ufunc API:

	PyUFunc_FromFuncAndDataAndSignature: to declare a more general ufunc
(generalized ufunc).

New defines

New public C defines are available for ARCH specific code through numpy/npy_cpu.h:

	NPY_CPU_X86: x86 arch (32 bits)

	NPY_CPU_AMD64: amd64 arch (x86_64, NOT Itanium)

	NPY_CPU_PPC: 32 bits ppc

	NPY_CPU_PPC64: 64 bits ppc

	NPY_CPU_SPARC: 32 bits sparc

	NPY_CPU_SPARC64: 64 bits sparc

	NPY_CPU_S390: S390

	NPY_CPU_IA64: ia64

	NPY_CPU_PARISC: PARISC

New macros for CPU endianness has been added as well (see internal changes
below for details):

	NPY_BYTE_ORDER: integer

	NPY_LITTLE_ENDIAN/NPY_BIG_ENDIAN defines

Those provide portable alternatives to glibc endian.h macros for platforms
without it.

Portable NAN, INFINITY, etc...

npy_math.h now makes available several portable macro to get NAN, INFINITY:

	NPY_NAN: equivalent to NAN, which is a GNU extension

	NPY_INFINITY: equivalent to C99 INFINITY

	NPY_PZERO, NPY_NZERO: positive and negative zero respectively

Corresponding single and extended precision macros are available as well. All
references to NAN, or home-grown computation of NAN on the fly have been
removed for consistency.

Internal changes

numpy.core math configuration revamp

This should make the porting to new platforms easier, and more robust. In
particular, the configuration stage does not need to execute any code on the
target platform, which is a first step toward cross-compilation.

http://projects.scipy.org/numpy/browser/trunk/doc/neps/math_config_clean.txt

umath refactor

A lot of code cleanup for umath/ufunc code (charris).

Improvements to build warnings

Numpy can now build with -W -Wall without warnings

http://projects.scipy.org/numpy/browser/trunk/doc/neps/warnfix.txt

Separate core math library

The core math functions (sin, cos, etc... for basic C types) have been put into
a separate library; it acts as a compatibility layer, to support most C99 maths
functions (real only for now). The library includes platform-specific fixes for
various maths functions, such as using those versions should be more robust
than using your platform functions directly. The API for existing functions is
exactly the same as the C99 math functions API; the only difference is the npy
prefix (npy_cos vs cos).

The core library will be made available to any extension in 1.4.0.

CPU arch detection

npy_cpu.h defines numpy specific CPU defines, such as NPY_CPU_X86, etc...
Those are portable across OS and toolchains, and set up when the header is
parsed, so that they can be safely used even in the case of cross-compilation
(the values is not set when numpy is built), or for multi-arch binaries (e.g.
fat binaries on Max OS X).

npy_endian.h defines numpy specific endianness defines, modeled on the glibc
endian.h. NPY_BYTE_ORDER is equivalent to BYTE_ORDER, and one of
NPY_LITTLE_ENDIAN or NPY_BIG_ENDIAN is defined. As for CPU archs, those are set
when the header is parsed by the compiler, and as such can be used for
cross-compilation and multi-arch binaries.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

About NumPy

NumPy [http://www.scipy.org/NumpPy/] is the fundamental package
needed for scientific computing with Python. This package contains:

	a powerful N-dimensional array object

	sophisticated (broadcasting) functions

	basic linear algebra functions

	basic Fourier transforms

	sophisticated random number capabilities

	tools for integrating Fortran code

	tools for integrating C/C++ code

Besides its obvious scientific uses, NumPy can also be used as an
efficient multi-dimensional container of generic data. Arbitrary
data types can be defined. This allows NumPy to seamlessly and
speedily integrate with a wide variety of databases.

NumPy is a successor for two earlier scientific Python libraries:
NumPy derives from the old Numeric code base and can be used
as a replacement for Numeric. It also adds the features introduced
by Numarray and can also be used to replace Numarray.

NumPy community

Numpy is a distributed, volunteer, open-source project. You can help
us make it better; if you believe something should be improved either
in functionality or in documentation, don’t hesitate to contact us — or
even better, contact us and participate in fixing the problem.

Our main means of communication are:

	scipy.org website [http://scipy.org/]

	Mailing lists [http://scipy.org/Mailing_Lists]

	Numpy Issues [https://github.com/numpy/numpy/issues] (bug reports go here)

	Old Numpy Trac [http://projects.scipy.org/numpy] (no longer used)

More information about the development of Numpy can be found at
http://scipy.org/Developer_Zone

If you want to fix issues in this documentation, the easiest way
is to participate in our ongoing documentation marathon [http://scipy.org/Developer_Zone/DocMarathon2008].

About this documentation

Conventions

Names of classes, objects, constants, etc. are given in boldface font.
Often they are also links to a more detailed documentation of the
referred object.

This manual contains many examples of use, usually prefixed with the
Python prompt >>> (which is not a part of the example code). The
examples assume that you have first entered:

>>> import numpy as np

before running the examples.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

Reporting bugs

File bug reports or feature requests, and make contributions
(e.g. code patches), by opening a “new issue” on GitHub:

	Numpy Issues: http://github.com/numpy/numpy/issues

Please give as much information as you can in the ticket. It is extremely
useful if you can supply a small self-contained code snippet that reproduces
the problem. Also specify the component, the version you are referring to and
the milestone.

Report bugs to the appropriate GitHub project (there is one for NumPy
and a different one for SciPy).

More information can be found on the http://scipy.org/Developer_Zone
website.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NumPy v1.9 Manual

Numpy License

Copyright (c) 2005, NumPy Developers

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the NumPy Developers nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	NumPy v1.9 Manual

Glossary

	along an axis

	Axes are defined for arrays with more than one dimension. A
2-dimensional array has two corresponding axes: the first running
vertically downwards across rows (axis 0), and the second running
horizontally across columns (axis 1).

Many operation can take place along one of these axes. For example,
we can sum each row of an array, in which case we operate along
columns, or axis 1:

>>> x = np.arange(12).reshape((3,4))

>>> x
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

>>> x.sum(axis=1)
array([6, 22, 38])

	array

	A homogeneous container of numerical elements. Each element in the
array occupies a fixed amount of memory (hence homogeneous), and
can be a numerical element of a single type (such as float, int
or complex) or a combination (such as (float, int, float)). Each
array has an associated data-type (or dtype), which describes
the numerical type of its elements:

>>> x = np.array([1, 2, 3], float)

>>> x
array([1., 2., 3.])

>>> x.dtype # floating point number, 64 bits of memory per element
dtype('float64')

More complicated data type: each array element is a combination of
and integer and a floating point number
>>> np.array([(1, 2.0), (3, 4.0)], dtype=[('x', int), ('y', float)])
array([(1, 2.0), (3, 4.0)],
 dtype=[('x', '<i4'), ('y', '<f8')])

Fast element-wise operations, called `ufuncs`_, operate on arrays.

	array_like

	Any sequence that can be interpreted as an ndarray. This includes
nested lists, tuples, scalars and existing arrays.

	attribute

	A property of an object that can be accessed using obj.attribute,
e.g., shape is an attribute of an array:

>>> x = np.array([1, 2, 3])
>>> x.shape
(3,)

	BLAS

	Basic Linear Algebra Subprograms [http://en.wikipedia.org/wiki/BLAS]

	broadcast

	NumPy can do operations on arrays whose shapes are mismatched:

>>> x = np.array([1, 2])
>>> y = np.array([[3], [4]])

>>> x
array([1, 2])

>>> y
array([[3],
 [4]])

>>> x + y
array([[4, 5],
 [5, 6]])

See `doc.broadcasting`_ for more information.

	C order

	See row-major

	column-major

	A way to represent items in a N-dimensional array in the 1-dimensional
computer memory. In column-major order, the leftmost index “varies the
fastest”: for example the array:

[[1, 2, 3],
 [4, 5, 6]]

is represented in the column-major order as:

[1, 4, 2, 5, 3, 6]

Column-major order is also known as the Fortran order, as the Fortran
programming language uses it.

	decorator

	An operator that transforms a function. For example, a log
decorator may be defined to print debugging information upon
function execution:

>>> def log(f):
... def new_logging_func(*args, **kwargs):
... print "Logging call with parameters:", args, kwargs
... return f(*args, **kwargs)
...
... return new_logging_func

Now, when we define a function, we can “decorate” it using log:

>>> @log
... def add(a, b):
... return a + b

Calling add then yields:

>>> add(1, 2)
Logging call with parameters: (1, 2) {}
3

	dictionary

	Resembling a language dictionary, which provides a mapping between
words and descriptions thereof, a Python dictionary is a mapping
between two objects:

>>> x = {1: 'one', 'two': [1, 2]}

Here, x is a dictionary mapping keys to values, in this case
the integer 1 to the string “one”, and the string “two” to
the list [1, 2]. The values may be accessed using their
corresponding keys:

>>> x[1]
'one'

>>> x['two']
[1, 2]

Note that dictionaries are not stored in any specific order. Also,
most mutable (see immutable below) objects, such as lists, may not
be used as keys.

For more information on dictionaries, read the
Python tutorial [http://docs.python.org/tut].

	Fortran order

	See column-major

	flattened

	Collapsed to a one-dimensional array. See `ndarray.flatten`_ for details.

	immutable

	An object that cannot be modified after execution is called
immutable. Two common examples are strings and tuples.

	instance

	A class definition gives the blueprint for constructing an object:

>>> class House(object):
... wall_colour = 'white'

Yet, we have to build a house before it exists:

>>> h = House() # build a house

Now, h is called a House instance. An instance is therefore
a specific realisation of a class.

	iterable

	A sequence that allows “walking” (iterating) over items, typically
using a loop such as:

>>> x = [1, 2, 3]
>>> [item**2 for item in x]
[1, 4, 9]

	It is often used in combintion with enumerate::

	>>> keys = ['a','b','c']
>>> for n, k in enumerate(keys):
... print "Key %d: %s" % (n, k)
...
Key 0: a
Key 1: b
Key 2: c

	list

	A Python container that can hold any number of objects or items.
The items do not have to be of the same type, and can even be
lists themselves:

>>> x = [2, 2.0, "two", [2, 2.0]]

The list x contains 4 items, each which can be accessed individually:

>>> x[2] # the string 'two'
'two'

>>> x[3] # a list, containing an integer 2 and a float 2.0
[2, 2.0]

It is also possible to select more than one item at a time,
using slicing:

>>> x[0:2] # or, equivalently, x[:2]
[2, 2.0]

In code, arrays are often conveniently expressed as nested lists:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],
 [3, 4]])

For more information, read the section on lists in the Python
tutorial [http://docs.python.org/tut]. For a mapping
type (key-value), see dictionary.

	mask

	A boolean array, used to select only certain elements for an operation:

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])

>>> mask = (x > 2)
>>> mask
array([False, False, False, True, True], dtype=bool)

>>> x[mask] = -1
>>> x
array([0, 1, 2, -1, -1])

	masked array

	Array that suppressed values indicated by a mask:

>>> x = np.ma.masked_array([np.nan, 2, np.nan], [True, False, True])
>>> x
masked_array(data = [-- 2.0 --],
 mask = [True False True],
 fill_value = 1e+20)

>>> x + [1, 2, 3]
masked_array(data = [-- 4.0 --],
 mask = [True False True],
 fill_value = 1e+20)

Masked arrays are often used when operating on arrays containing
missing or invalid entries.

	matrix

	A 2-dimensional ndarray that preserves its two-dimensional nature
throughout operations. It has certain special operations, such as *
(matrix multiplication) and ** (matrix power), defined:

>>> x = np.mat([[1, 2], [3, 4]])

>>> x
matrix([[1, 2],
 [3, 4]])

>>> x**2
matrix([[7, 10],
 [15, 22]])

	method

	A function associated with an object. For example, each ndarray has a
method called repeat:

>>> x = np.array([1, 2, 3])

>>> x.repeat(2)
array([1, 1, 2, 2, 3, 3])

	ndarray

	See array.

	reference

	If a is a reference to b, then (a is b) == True. Therefore,
a and b are different names for the same Python object.

	row-major

	A way to represent items in a N-dimensional array in the 1-dimensional
computer memory. In row-major order, the rightmost index “varies
the fastest”: for example the array:

[[1, 2, 3],
 [4, 5, 6]]

is represented in the row-major order as:

[1, 2, 3, 4, 5, 6]

Row-major order is also known as the C order, as the C programming
language uses it. New Numpy arrays are by default in row-major order.

	self

	Often seen in method signatures, self refers to the instance
of the associated class. For example:

>>> class Paintbrush(object):
... color = 'blue'
...
... def paint(self):
... print "Painting the city %s!" % self.color
...
>>> p = Paintbrush()
>>> p.color = 'red'
>>> p.paint() # self refers to 'p'
Painting the city red!

	slice

	Used to select only certain elements from a sequence:

>>> x = range(5)
>>> x
[0, 1, 2, 3, 4]

>>> x[1:3] # slice from 1 to 3 (excluding 3 itself)
[1, 2]

>>> x[1:5:2] # slice from 1 to 5, but skipping every second element
[1, 3]

>>> x[::-1] # slice a sequence in reverse
[4, 3, 2, 1, 0]

Arrays may have more than one dimension, each which can be sliced
individually:

>>> x = np.array([[1, 2], [3, 4]])
>>> x
array([[1, 2],
 [3, 4]])

>>> x[:, 1]
array([2, 4])

	tuple

	A sequence that may contain a variable number of types of any
kind. A tuple is immutable, i.e., once constructed it cannot be
changed. Similar to a list, it can be indexed and sliced:

>>> x = (1, 'one', [1, 2])

>>> x
(1, 'one', [1, 2])

>>> x[0]
1

>>> x[:2]
(1, 'one')

A useful concept is “tuple unpacking”, which allows variables to
be assigned to the contents of a tuple:

>>> x, y = (1, 2)
>>> x, y = 1, 2

This is often used when a function returns multiple values:

>>> def return_many():
... return 1, 'alpha', None

>>> a, b, c = return_many()
>>> a, b, c
(1, 'alpha', None)

>>> a
1
>>> b
'alpha'

	ufunc

	Universal function. A fast element-wise array operation. Examples include
add, sin and logical_or.

	view

	An array that does not own its data, but refers to another array’s
data instead. For example, we may create a view that only shows
every second element of another array:

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])

>>> y = x[::2]
>>> y
array([0, 2, 4])

>>> x[0] = 3 # changing x changes y as well, since y is a view on x
>>> y
array([3, 2, 4])

	wrapper

	Python is a high-level (highly abstracted, or English-like) language.
This abstraction comes at a price in execution speed, and sometimes
it becomes necessary to use lower level languages to do fast
computations. A wrapper is code that provides a bridge between
high and the low level languages, allowing, e.g., Python to execute
code written in C or Fortran.

Examples include ctypes, SWIG and Cython (which wraps C and C++)
and f2py (which wraps Fortran).

Jargon

Placeholder for computer science, engineering and other jargon.

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	NumPy v1.9 Manual

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

_

 	

 	__abs__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__add__ (numpy.ndarray attribute)

 	__add__() (numpy.ma.MaskedArray method)

 	__and__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__array__() (numpy.generic method)

 	

 	(numpy.ma.MaskedArray method)

 	(numpy.ndarray method)

 	__array_finalize__ (ndarray attribute)

 	__array_interface__ (built-in variable)

 	

 	(numpy.generic attribute)

 	__array_priority__ (ndarray attribute)

 	

 	(numpy.generic attribute)

 	(numpy.ma.MaskedArray attribute)

 	__array_struct__ (C variable)

 	

 	(numpy.generic attribute)

 	__array_wrap__ (ndarray attribute)

 	__array_wrap__() (numpy.generic method)

 	

 	(numpy.ma.MaskedArray method)

 	(numpy.ndarray method)

 	__call__() (numpy.poly1d method)

 	

 	(numpy.polynomial.chebyshev.Chebyshev method)

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	(numpy.vectorize method)

 	__contains__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__copy__() (numpy.ma.MaskedArray method)

 	

 	(numpy.ndarray method)

 	__deepcopy__() (numpy.ma.MaskedArray method)

 	

 	(numpy.ndarray method)

 	__delitem__ (numpy.ma.MaskedArray attribute)

 	__div__ (numpy.ndarray attribute)

 	__div__() (numpy.ma.MaskedArray method)

 	__divmod__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__eq__ (numpy.ndarray attribute)

 	__eq__() (numpy.ma.MaskedArray method)

 	__float__ (numpy.ndarray attribute)

 	__float__() (numpy.ma.MaskedArray method)

 	__floordiv__ (numpy.ndarray attribute)

 	__floordiv__() (numpy.ma.MaskedArray method)

 	__ge__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__getitem__ (numpy.ndarray attribute)

 	__getitem__() (numpy.ma.MaskedArray method)

 	__getslice__ (numpy.ndarray attribute)

 	__getslice__() (numpy.ma.MaskedArray method)

 	__getstate__() (numpy.ma.MaskedArray method)

 	__gt__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__hex__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__iadd__ (numpy.ndarray attribute)

 	__iadd__() (numpy.ma.MaskedArray method)

 	__iand__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__idiv__ (numpy.ndarray attribute)

 	__idiv__() (numpy.ma.MaskedArray method)

 	__ifloordiv__ (numpy.ndarray attribute)

 	__ifloordiv__() (numpy.ma.MaskedArray method)

 	__ilshift__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__imod__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__imul__ (numpy.ndarray attribute)

 	__imul__() (numpy.ma.MaskedArray method)

 	__int__ (numpy.ndarray attribute)

 	__int__() (numpy.ma.MaskedArray method)

 	__invert__ (numpy.ndarray attribute)

 	__ior__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__ipow__ (numpy.ndarray attribute)

 	__ipow__() (numpy.ma.MaskedArray method)

 	__irshift__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__isub__ (numpy.ndarray attribute)

 	__isub__() (numpy.ma.MaskedArray method)

 	

 	__itruediv__ (numpy.ndarray attribute)

 	__itruediv__() (numpy.ma.MaskedArray method)

 	__ixor__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__le__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__len__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__long__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__lshift__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__lt__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__mod__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__mul__ (numpy.ndarray attribute)

 	__mul__() (numpy.ma.MaskedArray method)

 	__ne__ (numpy.ndarray attribute)

 	__ne__() (numpy.ma.MaskedArray method)

 	__neg__ (numpy.ndarray attribute)

 	__new__() (numpy.ma.MaskedArray static method)

 	

 	(numpy.ndarray static method)

 	__nonzero__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__oct__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__or__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__pos__ (numpy.ndarray attribute)

 	__pow__ (numpy.ndarray attribute)

 	__pow__() (numpy.ma.MaskedArray method)

 	__radd__() (numpy.ma.MaskedArray method)

 	__rand__ (numpy.ma.MaskedArray attribute)

 	__rdiv__ (numpy.ma.MaskedArray attribute)

 	__rdivmod__ (numpy.ma.MaskedArray attribute)

 	__reduce__() (numpy.dtype method)

 	

 	(numpy.generic method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ndarray method)

 	__repr__ (numpy.ndarray attribute)

 	__repr__() (numpy.ma.MaskedArray method)

 	__rfloordiv__() (numpy.ma.MaskedArray method)

 	__rlshift__ (numpy.ma.MaskedArray attribute)

 	__rmod__ (numpy.ma.MaskedArray attribute)

 	__rmul__() (numpy.ma.MaskedArray method)

 	__ror__ (numpy.ma.MaskedArray attribute)

 	__rpow__() (numpy.ma.MaskedArray method)

 	__rrshift__ (numpy.ma.MaskedArray attribute)

 	__rshift__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

 	__rsub__() (numpy.ma.MaskedArray method)

 	__rtruediv__() (numpy.ma.MaskedArray method)

 	__rxor__ (numpy.ma.MaskedArray attribute)

 	__setitem__ (numpy.ndarray attribute)

 	__setitem__() (numpy.ma.MaskedArray method)

 	__setmask__() (numpy.ma.MaskedArray method)

 	__setslice__ (numpy.ndarray attribute)

 	__setslice__() (numpy.ma.MaskedArray method)

 	__setstate__() (numpy.dtype method)

 	

 	(numpy.generic method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ndarray method)

 	__str__ (numpy.ndarray attribute)

 	__str__() (numpy.ma.MaskedArray method)

 	__sub__ (numpy.ndarray attribute)

 	__sub__() (numpy.ma.MaskedArray method)

 	__truediv__ (numpy.ndarray attribute)

 	__truediv__() (numpy.ma.MaskedArray method)

 	__xor__ (numpy.ma.MaskedArray attribute)

 	

 	(numpy.ndarray attribute)

A

 	

 	A (numpy.matrix attribute)

 	A1 (numpy.matrix attribute)

 	absolute (in module numpy)

 	abspath() (numpy.DataSource method)

 	
 accumulate

 	

 	ufunc methods

 	accumulate() (numpy.ufunc method)

 	add (in module numpy)

 	add() (in module numpy.core.defchararray)

 	add_data_dir() (numpy.distutils.misc_util.Configuration method)

 	add_data_files() (numpy.distutils.misc_util.Configuration method)

 	add_extension() (numpy.distutils.misc_util.Configuration method)

 	add_headers() (numpy.distutils.misc_util.Configuration method)

 	add_include_dirs() (numpy.distutils.misc_util.Configuration method)

 	add_installed_library() (numpy.distutils.misc_util.Configuration method)

 	add_library() (numpy.distutils.misc_util.Configuration method)

 	add_npy_pkg_config() (numpy.distutils.misc_util.Configuration method)

 	add_scripts() (numpy.distutils.misc_util.Configuration method)

 	add_subpackage() (numpy.distutils.misc_util.Configuration method)

 	
 adding new

 	

 	dtype

 	ufunc, [1], [2], [3], [4]

 	aligned

 	alignment (numpy.dtype attribute)

 	all (in module numpy.ma)

 	all() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	all_strings() (in module numpy.distutils.misc_util)

 	allclose() (in module numpy)

 	

 	(in module numpy.ma)

 	allequal() (in module numpy.ma)

 	allpath() (in module numpy.distutils.misc_util)

 	along an axis

 	alterdot() (in module numpy)

 	amax() (in module numpy)

 	amin() (in module numpy)

 	angle() (in module numpy)

 	anom (in module numpy.ma)

 	anom() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	anomalies (in module numpy.ma)

 	any (in module numpy.ma)

 	any() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	append() (in module numpy)

 	

 	(in module numpy.ma)

 	appendpath() (in module numpy.distutils.misc_util)

 	apply_along_axis() (in module numpy)

 	

 	(in module numpy.ma)

 	apply_over_axes() (in module numpy)

 	arange (in module numpy.ma)

 	arange() (in module numpy)

 	arccos (in module numpy)

 	arccosh (in module numpy)

 	arcsin (in module numpy)

 	arcsinh (in module numpy)

 	arctan (in module numpy)

 	arctan2 (in module numpy)

 	arctanh (in module numpy)

 	argmax() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	argmin() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	

 	argpartition() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	argsort() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	argwhere() (in module numpy)

 	arithmetic, [1]

 	around (in module numpy.ma)

 	around() (in module numpy)

 	array

 	

 	C-API

 	interface

 	protocol

 	array iterator, [1], [2], [3]

 	array scalars

 	array() (in module numpy)

 	

 	(in module numpy.core.defchararray)

 	(in module numpy.core.records)

 	(in module numpy.ma)

 	array_equal() (in module numpy)

 	array_equiv() (in module numpy)

 	array_like

 	array_repr() (in module numpy)

 	array_split() (in module numpy)

 	array_str() (in module numpy)

 	as_array() (in module numpy.ctypeslib)

 	as_ctypes() (in module numpy.ctypeslib)

 	asanyarray() (in module numpy)

 	

 	(in module numpy.ma)

 	asarray() (in module numpy)

 	

 	(in module numpy.core.defchararray)

 	(in module numpy.ma)

 	asarray_chkfinite() (in module numpy)

 	ascontiguousarray() (in module numpy)

 	asfarray() (in module numpy)

 	asfortranarray() (in module numpy)

 	asmatrix() (in module numpy)

 	asscalar() (in module numpy)

 	assert_allclose() (in module numpy.testing)

 	assert_almost_equal() (in module numpy.testing)

 	assert_approx_equal() (in module numpy.testing)

 	assert_array_almost_equal() (in module numpy.testing)

 	assert_array_almost_equal_nulp() (in module numpy.testing)

 	assert_array_equal() (in module numpy.testing)

 	assert_array_less() (in module numpy.testing)

 	assert_array_max_ulp() (in module numpy.testing)

 	assert_equal() (in module numpy.testing)

 	assert_raises() (in module numpy.testing)

 	assert_raises_regex() (in module numpy.testing)

 	assert_string_equal() (in module numpy.testing)

 	assert_warns() (in module numpy.testing)

 	astype() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.lib.user_array.container method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	at() (numpy.ufunc method)

 	atleast_1d (in module numpy.ma)

 	atleast_1d() (in module numpy)

 	atleast_2d (in module numpy.ma)

 	atleast_2d() (in module numpy)

 	atleast_3d (in module numpy.ma)

 	atleast_3d() (in module numpy)

 	attribute

 	
 attributes

 	

 	ufunc

 	average() (in module numpy)

 	

 	(in module numpy.ma)

 	axis

B

 	

 	bartlett() (in module numpy)

 	base

 	

 	(numpy.chararray attribute)

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.dtype attribute)

 	(numpy.flatiter attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	base_repr() (in module numpy)

 	baseclass (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	basis() (numpy.polynomial.chebyshev.Chebyshev class method)

 	

 	(numpy.polynomial.hermite.Hermite class method)

 	(numpy.polynomial.hermite_e.HermiteE class method)

 	(numpy.polynomial.laguerre.Laguerre class method)

 	(numpy.polynomial.legendre.Legendre class method)

 	(numpy.polynomial.polynomial.Polynomial class method)

 	bench() (numpy.testing.Tester method)

 	beta() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	binary_repr() (in module numpy)

 	bincount() (in module numpy)

 	binomial() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	bitwise_and (in module numpy)

 	bitwise_or (in module numpy)

 	bitwise_xor (in module numpy)

 	blackman() (in module numpy)

 	BLAS

 	

 	blue_text() (in module numpy.distutils.misc_util)

 	bmat() (in module numpy)

 	Boost.Python

 	broadcast

 	

 	(class in numpy)

 	broadcast_arrays() (in module numpy)

 	broadcastable

 	broadcasting, [1], [2]

 	buffers

 	busday_count() (in module numpy)

 	busday_offset() (in module numpy)

 	busdaycalendar (class in numpy)

 	byteorder (numpy.dtype attribute)

 	bytes() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	byteswap() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.lib.user_array.container method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

C

 	

 	C order

 	
 C-API

 	

 	array

 	iterator, [1], [2]

 	ndarray, [1]

 	ufunc, [1]

 	C-order

 	c_ (in module numpy)

 	can_cast() (in module numpy)

 	capitalize() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	cast() (numpy.polynomial.chebyshev.Chebyshev class method)

 	

 	(numpy.polynomial.hermite.Hermite class method)

 	(numpy.polynomial.hermite_e.HermiteE class method)

 	(numpy.polynomial.laguerre.Laguerre class method)

 	(numpy.polynomial.legendre.Legendre class method)

 	(numpy.polynomial.polynomial.Polynomial class method)

 	
 casting rules

 	

 	ufunc

 	ceil (in module numpy)

 	center() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	char (numpy.dtype attribute)

 	character arrays

 	chararray (class in numpy)

 	

 	(class in numpy.core.defchararray)

 	cheb2poly() (in module numpy.polynomial.chebyshev)

 	chebadd() (in module numpy.polynomial.chebyshev)

 	chebcompanion() (in module numpy.polynomial.chebyshev)

 	chebder() (in module numpy.polynomial.chebyshev)

 	chebdiv() (in module numpy.polynomial.chebyshev)

 	chebdomain (in module numpy.polynomial.chebyshev)

 	chebfit() (in module numpy.polynomial.chebyshev)

 	chebfromroots() (in module numpy.polynomial.chebyshev)

 	chebgauss() (in module numpy.polynomial.chebyshev)

 	chebgrid2d() (in module numpy.polynomial.chebyshev)

 	chebgrid3d() (in module numpy.polynomial.chebyshev)

 	chebint() (in module numpy.polynomial.chebyshev)

 	chebline() (in module numpy.polynomial.chebyshev)

 	chebmul() (in module numpy.polynomial.chebyshev)

 	chebmulx() (in module numpy.polynomial.chebyshev)

 	chebone (in module numpy.polynomial.chebyshev)

 	chebpow() (in module numpy.polynomial.chebyshev)

 	chebroots() (in module numpy.polynomial.chebyshev)

 	chebsub() (in module numpy.polynomial.chebyshev)

 	chebtrim() (in module numpy.polynomial.chebyshev)

 	chebval() (in module numpy.polynomial.chebyshev)

 	chebval2d() (in module numpy.polynomial.chebyshev)

 	chebval3d() (in module numpy.polynomial.chebyshev)

 	chebvander() (in module numpy.polynomial.chebyshev)

 	chebvander2d() (in module numpy.polynomial.chebyshev)

 	chebvander3d() (in module numpy.polynomial.chebyshev)

 	chebweight() (in module numpy.polynomial.chebyshev)

 	chebx (in module numpy.polynomial.chebyshev)

 	Chebyshev (class in numpy.polynomial.chebyshev)

 	chebzero (in module numpy.polynomial.chebyshev)

 	chisquare() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	choice() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	cholesky() (in module numpy.linalg)

 	choose() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	class.__array__() (in module numpy)

 	class.__array_finalize__() (in module numpy)

 	class.__array_prepare__() (in module numpy)

 	class.__array_priority__ (in module numpy)

 	class.__array_wrap__() (in module numpy)

 	class.__numpy_ufunc__() (in module numpy)

 	

 	clip (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	clip() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	code generation

 	coeffs (numpy.poly1d attribute)

 	column-major, [1]

 	column_stack (in module numpy.ma)

 	column_stack() (in module numpy)

 	common_fill_value() (in module numpy.ma)

 	common_type() (in module numpy)

 	comparison, [1]

 	compress() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	compress_cols() (in module numpy.ma)

 	compress_rowcols() (in module numpy.ma)

 	compress_rows() (in module numpy.ma)

 	compressed() (in module numpy.ma)

 	

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	concatenate() (in module numpy)

 	

 	(in module numpy.ma)

 	cond() (in module numpy.linalg)

 	Configuration (class in numpy.distutils.misc_util)

 	conj (in module numpy)

 	conj() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	conjugate (in module numpy.ma)

 	conjugate() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	
 construction

 	

 	from None, dtype

 	from dict, dtype

 	from dtype, dtype

 	from list, dtype

 	from string, dtype

 	from tuple, dtype

 	from type, dtype

 	container (class in numpy.lib.user_array)

 	container class

 	contiguous

 	convert() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	convolve() (in module numpy)

 	coords (numpy.flatiter attribute)

 	copy (in module numpy.ma)

 	

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	copy() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.flatiter method)

 	(numpy.generic method)

 	(numpy.lib.user_array.container method)

 	(numpy.ma.MaskType method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.nditer method)

 	(numpy.polynomial.chebyshev.Chebyshev method)

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	(numpy.recarray method)

 	(numpy.record method)

 	copysign (in module numpy)

 	copyto() (in module numpy)

 	corrcoef() (in module numpy)

 	

 	(in module numpy.ma)

 	correlate() (in module numpy)

 	cos (in module numpy)

 	cosh (in module numpy)

 	count() (in module numpy.core.defchararray)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	count_masked() (in module numpy.ma)

 	count_nonzero() (in module numpy)

 	cov() (in module numpy)

 	

 	(in module numpy.ma)

 	cpu (in module numpy.distutils.cpuinfo)

 	cross() (in module numpy)

 	ctypes, [1]

 	

 	(numpy.chararray attribute)

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	ctypes_load_library() (in module numpy.ctypeslib)

 	cumprod (in module numpy.ma)

 	cumprod() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	cumsum (in module numpy.ma)

 	cumsum() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	cutdeg() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	cyan_text() (in module numpy.distutils.misc_util)

 	cyg2win32() (in module numpy.distutils.misc_util)

 	cython, [1]

D

 	

 	data (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute), [1]

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	DataSource (class in numpy)

 	debug_print() (numpy.nditer method)

 	decode() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	decorate_methods() (in module numpy.testing)

 	decorator

 	default_fill_value() (in module numpy.ma)

 	deg2rad (in module numpy)

 	degree() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	degrees (in module numpy)

 	delete() (in module numpy)

 	deprecated() (in module numpy.testing.decorators)

 	deriv() (numpy.poly1d method)

 	

 	(numpy.polynomial.chebyshev.Chebyshev method)

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	descr (numpy.dtype attribute)

 	det() (in module numpy.linalg)

 	diag() (in module numpy)

 	

 	(in module numpy.ma)

 	diag_indices() (in module numpy)

 	diag_indices_from() (in module numpy)

 	diagflat() (in module numpy)

 	diagonal (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	

 	diagonal() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	dict_append() (in module numpy.distutils.misc_util)

 	dictionary

 	diff() (in module numpy)

 	digitize() (in module numpy)

 	dirichlet() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	distutils

 	divide (in module numpy)

 	domain (numpy.polynomial.chebyshev.Chebyshev attribute)

 	

 	(numpy.polynomial.hermite.Hermite attribute)

 	(numpy.polynomial.hermite_e.HermiteE attribute)

 	(numpy.polynomial.laguerre.Laguerre attribute)

 	(numpy.polynomial.legendre.Legendre attribute)

 	(numpy.polynomial.polynomial.Polynomial attribute)

 	dot() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	dot_join() (in module numpy.distutils.misc_util)

 	dsplit() (in module numpy)

 	dstack (in module numpy.ma)

 	dstack() (in module numpy)

 	dtype

 	

 	adding new

 	construction from None

 	construction from dict

 	construction from dtype

 	construction from list

 	construction from string

 	construction from tuple

 	construction from type

 	field

 	record

 	scalar

 	sub-array, [1]

 	dtype (class in numpy)

 	

 	(numpy.chararray attribute)

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	dtypes (numpy.nditer attribute)

 	dump() (in module numpy.ma)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	dumps() (in module numpy.ma)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

E

 	

 	ediff1d() (in module numpy)

 	

 	(in module numpy.ma)

 	eig() (in module numpy.linalg)

 	eigh() (in module numpy.linalg)

 	eigvals() (in module numpy.linalg)

 	eigvalsh() (in module numpy.linalg)

 	einsum() (in module numpy)

 	ellipsis

 	empty (in module numpy.ma)

 	empty() (in module numpy)

 	

 	(in module numpy.matlib)

 	empty_like (in module numpy.ma)

 	empty_like() (in module numpy)

 	enable_external_loop() (numpy.nditer method)

 	encode() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	endswith() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	equal (in module numpy)

 	

 	equal() (in module numpy.core.defchararray)

 	error handling

 	errstate (class in numpy)

 	excludes (numpy.testing.Tester attribute)

 	exists() (numpy.DataSource method)

 	exp (in module numpy)

 	exp2 (in module numpy)

 	expand_dims() (in module numpy)

 	

 	(in module numpy.ma)

 	expandtabs() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	expm1 (in module numpy)

 	exponential() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	extension module, [1]

 	extract() (in module numpy)

 	eye() (in module numpy)

 	

 	(in module numpy.matlib)

F

 	

 	f() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	f2py, [1]

 	fabs (in module numpy)

 	fft() (in module numpy.fft)

 	fft2() (in module numpy.fft)

 	fftfreq() (in module numpy.fft)

 	fftn() (in module numpy.fft)

 	fftshift() (in module numpy.fft)

 	
 field

 	

 	dtype

 	field() (numpy.recarray method)

 	fields (numpy.dtype attribute)

 	fill() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	fill_diagonal() (in module numpy)

 	fill_value (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute), [1]

 	filled() (in module numpy.ma)

 	

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	filter_sources() (in module numpy.distutils.misc_util)

 	find() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	find_common_type() (in module numpy)

 	finfo (class in numpy)

 	finished (numpy.nditer attribute)

 	fit() (numpy.polynomial.chebyshev.Chebyshev class method)

 	

 	(numpy.polynomial.hermite.Hermite class method)

 	(numpy.polynomial.hermite_e.HermiteE class method)

 	(numpy.polynomial.laguerre.Laguerre class method)

 	(numpy.polynomial.legendre.Legendre class method)

 	(numpy.polynomial.polynomial.Polynomial class method)

 	fix() (in module numpy)

 	fix_invalid() (in module numpy.ma)

 	flags (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.dtype attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	flat (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	flatiter (class in numpy)

 	flatnonzero() (in module numpy)

 	flatnotmasked_contiguous() (in module numpy.ma)

 	flatnotmasked_edges() (in module numpy.ma)

 	flatten (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	flatten() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	flattened

 	fliplr() (in module numpy)

 	

 	flipud() (in module numpy)

 	floor (in module numpy)

 	floor_divide (in module numpy)

 	flush() (numpy.memmap method)

 	fmax (in module numpy)

 	fmin (in module numpy)

 	fmod (in module numpy)

 	format_parser (class in numpy)

 	Fortran order

 	Fortran-order

 	frexp (in module numpy)

 	
 from dict

 	

 	dtype construction

 	
 from dtype

 	

 	dtype construction

 	
 from list

 	

 	dtype construction

 	
 from None

 	

 	dtype construction

 	
 from string

 	

 	dtype construction

 	
 from tuple

 	

 	dtype construction

 	
 from type

 	

 	dtype construction

 	fromarrays() (in module numpy.core.records)

 	frombuffer (in module numpy.ma)

 	frombuffer() (in module numpy)

 	fromfile() (in module numpy)

 	

 	(in module numpy.core.records)

 	fromfunction (in module numpy.ma)

 	fromfunction() (in module numpy)

 	fromiter() (in module numpy)

 	frompyfunc() (in module numpy)

 	fromrecords() (in module numpy.core.records)

 	fromregex() (in module numpy)

 	fromroots() (numpy.polynomial.chebyshev.Chebyshev class method)

 	

 	(numpy.polynomial.hermite.Hermite class method)

 	(numpy.polynomial.hermite_e.HermiteE class method)

 	(numpy.polynomial.laguerre.Laguerre class method)

 	(numpy.polynomial.legendre.Legendre class method)

 	(numpy.polynomial.polynomial.Polynomial class method)

 	fromstring() (in module numpy)

 	

 	(in module numpy.core.records)

 	full() (in module numpy)

 	full_like() (in module numpy)

 	fv() (in module numpy)

G

 	

 	gamma() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	generate_config_py() (in module numpy.distutils.misc_util)

 	generic (class in numpy)

 	genfromtxt() (in module numpy)

 	geometric() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	get_build_temp_dir() (numpy.distutils.misc_util.Configuration method)

 	get_cmd() (in module numpy.distutils.misc_util)

 	get_config_cmd() (numpy.distutils.misc_util.Configuration method)

 	get_dependencies() (in module numpy.distutils.misc_util)

 	get_distribution() (numpy.distutils.misc_util.Configuration method)

 	get_ext_source_files() (in module numpy.distutils.misc_util)

 	get_fill_value() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	get_imag() (numpy.ma.masked_array method)

 	get_info() (in module numpy.distutils.system_info)

 	

 	(numpy.distutils.misc_util.Configuration method)

 	get_numpy_include_dirs() (in module numpy.distutils.misc_util)

 	get_printoptions() (in module numpy)

 	get_real() (numpy.ma.masked_array method)

 	get_script_files() (in module numpy.distutils.misc_util)

 	get_standard_file() (in module numpy.distutils.system_info)

 	get_state() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	get_subpackage() (numpy.distutils.misc_util.Configuration method)

 	get_version() (numpy.distutils.misc_util.Configuration method)

 	

 	getA() (numpy.matrix method)

 	getA1() (numpy.matrix method)

 	getbuffer() (in module numpy)

 	getbufsize() (in module numpy)

 	getdata() (in module numpy.ma)

 	geterr() (in module numpy)

 	geterrcall() (in module numpy)

 	geterrobj() (in module numpy)

 	getfield() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	getH() (numpy.matrix method)

 	getI() (numpy.matrix method)

 	getmask() (in module numpy.ma)

 	getmaskarray() (in module numpy.ma)

 	
 getslice

 	

 	ndarray special methods

 	getT() (numpy.matrix method)

 	gradient() (in module numpy)

 	greater (in module numpy)

 	greater() (in module numpy.core.defchararray)

 	greater_equal (in module numpy)

 	greater_equal() (in module numpy.core.defchararray)

 	green_text() (in module numpy.distutils.misc_util)

 	gumbel() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

H

 	

 	H (numpy.matrix attribute)

 	hamming() (in module numpy)

 	hanning() (in module numpy)

 	harden_mask (in module numpy.ma)

 	harden_mask() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	hardmask (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	has_cxx_sources() (in module numpy.distutils.misc_util)

 	has_delayed_bufalloc (numpy.nditer attribute)

 	has_f_sources() (in module numpy.distutils.misc_util)

 	has_index (numpy.nditer attribute)

 	has_multi_index (numpy.nditer attribute)

 	has_samecoef() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	has_samedomain() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	has_sametype() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	has_samewindow() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	hasobject (numpy.dtype attribute)

 	have_f77c() (numpy.distutils.misc_util.Configuration method)

 	have_f90c() (numpy.distutils.misc_util.Configuration method)

 	herm2poly() (in module numpy.polynomial.hermite)

 	hermadd() (in module numpy.polynomial.hermite)

 	hermcompanion() (in module numpy.polynomial.hermite)

 	hermder() (in module numpy.polynomial.hermite)

 	hermdiv() (in module numpy.polynomial.hermite)

 	hermdomain (in module numpy.polynomial.hermite)

 	herme2poly() (in module numpy.polynomial.hermite_e)

 	hermeadd() (in module numpy.polynomial.hermite_e)

 	hermecompanion() (in module numpy.polynomial.hermite_e)

 	hermeder() (in module numpy.polynomial.hermite_e)

 	hermediv() (in module numpy.polynomial.hermite_e)

 	hermedomain (in module numpy.polynomial.hermite_e)

 	hermefit() (in module numpy.polynomial.hermite_e)

 	hermefromroots() (in module numpy.polynomial.hermite_e)

 	hermegauss() (in module numpy.polynomial.hermite_e)

 	hermegrid2d() (in module numpy.polynomial.hermite_e)

 	hermegrid3d() (in module numpy.polynomial.hermite_e)

 	hermeint() (in module numpy.polynomial.hermite_e)

 	hermeline() (in module numpy.polynomial.hermite_e)

 	hermemul() (in module numpy.polynomial.hermite_e)

 	hermemulx() (in module numpy.polynomial.hermite_e)

 	hermeone (in module numpy.polynomial.hermite_e)

 	hermepow() (in module numpy.polynomial.hermite_e)

 	hermeroots() (in module numpy.polynomial.hermite_e)

 	hermesub() (in module numpy.polynomial.hermite_e)

 	hermetrim() (in module numpy.polynomial.hermite_e)

 	hermeval() (in module numpy.polynomial.hermite_e)

 	

 	hermeval2d() (in module numpy.polynomial.hermite_e)

 	hermeval3d() (in module numpy.polynomial.hermite_e)

 	hermevander() (in module numpy.polynomial.hermite_e)

 	hermevander2d() (in module numpy.polynomial.hermite_e)

 	hermevander3d() (in module numpy.polynomial.hermite_e)

 	hermeweight() (in module numpy.polynomial.hermite_e)

 	hermex (in module numpy.polynomial.hermite_e)

 	hermezero (in module numpy.polynomial.hermite_e)

 	hermfit() (in module numpy.polynomial.hermite)

 	hermfromroots() (in module numpy.polynomial.hermite)

 	hermgauss() (in module numpy.polynomial.hermite)

 	hermgrid2d() (in module numpy.polynomial.hermite)

 	hermgrid3d() (in module numpy.polynomial.hermite)

 	hermint() (in module numpy.polynomial.hermite)

 	Hermite (class in numpy.polynomial.hermite)

 	HermiteE (class in numpy.polynomial.hermite_e)

 	hermline() (in module numpy.polynomial.hermite)

 	hermmul() (in module numpy.polynomial.hermite)

 	hermmulx() (in module numpy.polynomial.hermite)

 	hermone (in module numpy.polynomial.hermite)

 	hermpow() (in module numpy.polynomial.hermite)

 	hermroots() (in module numpy.polynomial.hermite)

 	hermsub() (in module numpy.polynomial.hermite)

 	hermtrim() (in module numpy.polynomial.hermite)

 	hermval() (in module numpy.polynomial.hermite)

 	hermval2d() (in module numpy.polynomial.hermite)

 	hermval3d() (in module numpy.polynomial.hermite)

 	hermvander() (in module numpy.polynomial.hermite)

 	hermvander2d() (in module numpy.polynomial.hermite)

 	hermvander3d() (in module numpy.polynomial.hermite)

 	hermweight() (in module numpy.polynomial.hermite)

 	hermx (in module numpy.polynomial.hermite)

 	hermzero (in module numpy.polynomial.hermite)

 	hfft() (in module numpy.fft)

 	histogram() (in module numpy)

 	histogram2d() (in module numpy)

 	histogramdd() (in module numpy)

 	holidays (numpy.busdaycalendar attribute)

 	hsplit (in module numpy.ma)

 	hsplit() (in module numpy)

 	hstack (in module numpy.ma)

 	hstack() (in module numpy)

 	hypergeometric() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	hypot (in module numpy)

I

 	

 	I (numpy.matrix attribute)

 	i0() (in module numpy)

 	identity (in module numpy.ma)

 	

 	(numpy.ufunc attribute)

 	identity() (in module numpy)

 	

 	(in module numpy.matlib)

 	(numpy.polynomial.chebyshev.Chebyshev class method)

 	(numpy.polynomial.hermite.Hermite class method)

 	(numpy.polynomial.hermite_e.HermiteE class method)

 	(numpy.polynomial.laguerre.Laguerre class method)

 	(numpy.polynomial.legendre.Legendre class method)

 	(numpy.polynomial.polynomial.Polynomial class method)

 	ids() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	ifft() (in module numpy.fft)

 	ifft2() (in module numpy.fft)

 	ifftn() (in module numpy.fft)

 	ifftshift() (in module numpy.fft)

 	ihfft() (in module numpy.fft)

 	iinfo (class in numpy)

 	imag (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	imag() (in module numpy)

 	immutable

 	import_array (C function)

 	import_ufunc (C function)

 	in1d() (in module numpy)

 	index (numpy.broadcast attribute)

 	

 	(numpy.flatiter attribute)

 	(numpy.nditer attribute)

 	index() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	indexing, [1], [2]

 	indices() (in module numpy)

 	

 	(in module numpy.ma)

 	info() (in module numpy)

 	inner() (in module numpy)

 	

 	(in module numpy.ma)

 	innerproduct() (in module numpy.ma)

 	insert() (in module numpy)

 	instance

 	integ() (numpy.poly1d method)

 	

 	(numpy.polynomial.chebyshev.Chebyshev method)

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	
 interface

 	

 	array

 	interp() (in module numpy)

 	intersect1d() (in module numpy)

 	inv() (in module numpy.linalg)

 	invert (in module numpy)

 	ipmt() (in module numpy)

 	irfft() (in module numpy.fft)

 	irfft2() (in module numpy.fft)

 	irfftn() (in module numpy.fft)

 	irr() (in module numpy)

 	is_busday() (in module numpy)

 	is_local_src_dir() (in module numpy.distutils.misc_util)

 	is_mask() (in module numpy.ma)

 	is_masked() (in module numpy.ma)

 	isalignedstruct (numpy.dtype attribute)

 	

 	isalnum() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	isalpha() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	isbuiltin (numpy.dtype attribute)

 	isclose() (in module numpy)

 	iscomplex() (in module numpy)

 	iscomplexobj() (in module numpy)

 	iscontiguous() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	isdecimal() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	isdigit() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	isfinite (in module numpy)

 	isfortran() (in module numpy)

 	isinf (in module numpy)

 	islower() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	isnan (in module numpy)

 	isnative (numpy.dtype attribute)

 	isneginf() (in module numpy)

 	isnumeric() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	isposinf() (in module numpy)

 	isreal() (in module numpy)

 	isrealobj() (in module numpy)

 	isscalar() (in module numpy)

 	issctype() (in module numpy)

 	isspace() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	issubclass_() (in module numpy)

 	issubdtype() (in module numpy)

 	issubsctype() (in module numpy)

 	istitle() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	isupper() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	item() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	itemset() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	itemsize (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.dtype attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	iterable

 	iterationneedsapi (numpy.nditer attribute)

 	
 iterator

 	

 	C-API, [1], [2]

 	iterindex (numpy.nditer attribute)

 	iternext() (numpy.nditer method)

 	iterrange (numpy.nditer attribute)

 	iters (numpy.broadcast attribute)

 	itersize (numpy.nditer attribute)

 	itviews (numpy.nditer attribute)

 	ix_() (in module numpy)

J

 	

 	join() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

K

 	

 	kaiser() (in module numpy)

 	
 keyword arguments

 	

 	ufunc

 	kind (numpy.dtype attribute)

 	

 	knownfailureif() (in module numpy.testing.decorators)

 	kron() (in module numpy)

L

 	

 	lag2poly() (in module numpy.polynomial.laguerre)

 	lagadd() (in module numpy.polynomial.laguerre)

 	lagcompanion() (in module numpy.polynomial.laguerre)

 	lagder() (in module numpy.polynomial.laguerre)

 	lagdiv() (in module numpy.polynomial.laguerre)

 	lagdomain (in module numpy.polynomial.laguerre)

 	lagfit() (in module numpy.polynomial.laguerre)

 	lagfromroots() (in module numpy.polynomial.laguerre)

 	laggauss() (in module numpy.polynomial.laguerre)

 	laggrid2d() (in module numpy.polynomial.laguerre)

 	laggrid3d() (in module numpy.polynomial.laguerre)

 	lagint() (in module numpy.polynomial.laguerre)

 	lagline() (in module numpy.polynomial.laguerre)

 	lagmul() (in module numpy.polynomial.laguerre)

 	lagmulx() (in module numpy.polynomial.laguerre)

 	lagone (in module numpy.polynomial.laguerre)

 	lagpow() (in module numpy.polynomial.laguerre)

 	lagroots() (in module numpy.polynomial.laguerre)

 	lagsub() (in module numpy.polynomial.laguerre)

 	lagtrim() (in module numpy.polynomial.laguerre)

 	Laguerre (class in numpy.polynomial.laguerre)

 	lagval() (in module numpy.polynomial.laguerre)

 	lagval2d() (in module numpy.polynomial.laguerre)

 	lagval3d() (in module numpy.polynomial.laguerre)

 	lagvander() (in module numpy.polynomial.laguerre)

 	lagvander2d() (in module numpy.polynomial.laguerre)

 	lagvander3d() (in module numpy.polynomial.laguerre)

 	lagweight() (in module numpy.polynomial.laguerre)

 	lagx (in module numpy.polynomial.laguerre)

 	lagzero (in module numpy.polynomial.laguerre)

 	laplace() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	ldexp (in module numpy)

 	left_shift (in module numpy)

 	leg2poly() (in module numpy.polynomial.legendre)

 	legadd() (in module numpy.polynomial.legendre)

 	legcompanion() (in module numpy.polynomial.legendre)

 	legder() (in module numpy.polynomial.legendre)

 	legdiv() (in module numpy.polynomial.legendre)

 	legdomain (in module numpy.polynomial.legendre)

 	Legendre (class in numpy.polynomial.legendre)

 	legfit() (in module numpy.polynomial.legendre)

 	legfromroots() (in module numpy.polynomial.legendre)

 	leggauss() (in module numpy.polynomial.legendre)

 	leggrid2d() (in module numpy.polynomial.legendre)

 	leggrid3d() (in module numpy.polynomial.legendre)

 	legint() (in module numpy.polynomial.legendre)

 	legline() (in module numpy.polynomial.legendre)

 	

 	legmul() (in module numpy.polynomial.legendre)

 	legmulx() (in module numpy.polynomial.legendre)

 	legone (in module numpy.polynomial.legendre)

 	legpow() (in module numpy.polynomial.legendre)

 	legroots() (in module numpy.polynomial.legendre)

 	legsub() (in module numpy.polynomial.legendre)

 	legtrim() (in module numpy.polynomial.legendre)

 	legval() (in module numpy.polynomial.legendre)

 	legval2d() (in module numpy.polynomial.legendre)

 	legval3d() (in module numpy.polynomial.legendre)

 	legvander() (in module numpy.polynomial.legendre)

 	legvander2d() (in module numpy.polynomial.legendre)

 	legvander3d() (in module numpy.polynomial.legendre)

 	legweight() (in module numpy.polynomial.legendre)

 	legx (in module numpy.polynomial.legendre)

 	legzero (in module numpy.polynomial.legendre)

 	less (in module numpy)

 	less() (in module numpy.core.defchararray)

 	less_equal (in module numpy)

 	less_equal() (in module numpy.core.defchararray)

 	lexsort() (in module numpy)

 	LinAlgError

 	linspace() (in module numpy)

 	

 	(numpy.polynomial.chebyshev.Chebyshev method)

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	list

 	ljust() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	load() (in module numpy)

 	

 	(in module numpy.ma)

 	load_library() (in module numpy.ctypeslib)

 	loads() (in module numpy.ma)

 	loadtxt() (in module numpy)

 	log (in module numpy)

 	log10 (in module numpy)

 	log1p (in module numpy)

 	log2 (in module numpy)

 	logaddexp (in module numpy)

 	logaddexp2 (in module numpy)

 	logical_and (in module numpy)

 	logical_not (in module numpy)

 	logical_or (in module numpy)

 	logical_xor (in module numpy)

 	logistic() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	lognormal() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	logseries() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	logspace() (in module numpy)

 	lookfor() (in module numpy)

 	lower() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	lstrip() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	lstsq() (in module numpy.linalg)

M

 	

 	MachAr (class in numpy)

 	make_config_py() (numpy.distutils.misc_util.Configuration method)

 	make_mask() (in module numpy.ma)

 	make_mask_descr() (in module numpy.ma)

 	make_mask_none() (in module numpy.ma)

 	make_svn_version_py() (numpy.distutils.misc_util.Configuration method)

 	mapparms() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	mask

 	

 	(numpy.ma.MaskedArray attribute), [1]

 	(numpy.ma.masked_array attribute)

 	mask_cols() (in module numpy.ma)

 	mask_indices() (in module numpy)

 	mask_or() (in module numpy.ma)

 	mask_rowcols() (in module numpy.ma)

 	mask_rows() (in module numpy.ma)

 	masked (in module numpy.ma)

 	masked array

 	masked arrays

 	masked_all() (in module numpy.ma)

 	masked_all_like() (in module numpy.ma)

 	masked_array (in module numpy.ma)

 	masked_equal() (in module numpy.ma)

 	masked_greater() (in module numpy.ma)

 	masked_greater_equal() (in module numpy.ma)

 	masked_inside() (in module numpy.ma)

 	masked_invalid() (in module numpy.ma)

 	masked_less() (in module numpy.ma)

 	masked_less_equal() (in module numpy.ma)

 	masked_not_equal() (in module numpy.ma)

 	masked_object() (in module numpy.ma)

 	masked_outside() (in module numpy.ma)

 	masked_print_options (in module numpy.ma)

 	masked_values() (in module numpy.ma)

 	masked_where() (in module numpy.ma)

 	MaskedArray (class in numpy.ma)

 	MaskType (in module numpy.ma)

 	mat() (in module numpy)

 	matrix, [1]

 	

 	(class in numpy)

 	

 	matrix_power() (in module numpy.linalg)

 	matrix_rank() (in module numpy.linalg)

 	max (numpy.iinfo attribute)

 	max() (in module numpy.ma)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	maximum (in module numpy)

 	maximum_fill_value() (in module numpy.ma)

 	maxpower (numpy.polynomial.chebyshev.Chebyshev attribute)

 	

 	(numpy.polynomial.hermite.Hermite attribute)

 	(numpy.polynomial.hermite_e.HermiteE attribute)

 	(numpy.polynomial.laguerre.Laguerre attribute)

 	(numpy.polynomial.legendre.Legendre attribute)

 	(numpy.polynomial.polynomial.Polynomial attribute)

 	mean (in module numpy.ma)

 	mean() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	median() (in module numpy)

 	

 	(in module numpy.ma)

 	memmap (class in numpy)

 	memory maps

 	
 memory model

 	

 	ndarray

 	meshgrid() (in module numpy)

 	metadata (numpy.dtype attribute)

 	method

 	
 methods

 	

 	accumulate, ufunc

 	reduce, ufunc

 	reduceat, ufunc

 	ufunc

 	mgrid (in module numpy)

 	min (numpy.iinfo attribute)

 	min() (in module numpy.ma)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	min_scalar_type() (in module numpy)

 	mini() (numpy.ma.masked_array method)

 	minimum (in module numpy)

 	mintypecode() (in module numpy)

 	mirr() (in module numpy)

 	mod (in module numpy)

 	mod() (in module numpy.core.defchararray)

 	modf (in module numpy)

 	mr_ (in module numpy.ma)

 	msort() (in module numpy)

 	multi_index (numpy.nditer attribute)

 	multinomial() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	multiply (in module numpy)

 	multiply() (in module numpy.core.defchararray)

 	multivariate_normal() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

N

 	

 	name (numpy.dtype attribute)

 	names (numpy.dtype attribute)

 	nan_to_num() (in module numpy)

 	nanargmax() (in module numpy)

 	nanargmin() (in module numpy)

 	nanmax() (in module numpy)

 	nanmean() (in module numpy)

 	nanmin() (in module numpy)

 	nanstd() (in module numpy)

 	nansum() (in module numpy)

 	nanvar() (in module numpy)

 	nargs (numpy.ufunc attribute)

 	nbytes (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	nd (numpy.broadcast attribute)

 	ndarray, [1]

 	

 	C-API, [1]

 	memory model

 	special methods getslice

 	special methods setslice

 	subtyping, [1]

 	view

 	ndarray (class in numpy)

 	ndenumerate (class in numpy)

 	ndim (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.nditer attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	ndincr() (numpy.ndindex method)

 	ndindex (class in numpy)

 	nditer (class in numpy)

 	ndpointer() (built-in function)

 	

 	(in module numpy.ctypeslib)

 	negative (in module numpy)

 	negative_binomial() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	newaxis

 	

 	(in module numpy)

 	newbuffer() (in module numpy)

 	newbyteorder() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.dtype method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	next (numpy.broadcast attribute)

 	

 	(numpy.flatiter attribute)

 	(numpy.nditer attribute)

 	next() (numpy.ndenumerate method)

 	

 	(numpy.ndindex method)

 	nickname (numpy.polynomial.chebyshev.Chebyshev attribute)

 	

 	(numpy.polynomial.hermite.Hermite attribute)

 	(numpy.polynomial.hermite_e.HermiteE attribute)

 	(numpy.polynomial.laguerre.Laguerre attribute)

 	(numpy.polynomial.legendre.Legendre attribute)

 	(numpy.polynomial.polynomial.Polynomial attribute)

 	nin (numpy.ufunc attribute)

 	NO_IMPORT_ARRAY (C macro)

 	NO_IMPORT_UFUNC (C variable)

 	nomask (in module numpy.ma)

 	non-contiguous

 	noncentral_chisquare() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	noncentral_f() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	nonzero (in module numpy.ma)

 	nonzero() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	nop (numpy.nditer attribute)

 	norm() (in module numpy.linalg)

 	normal() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	not_equal (in module numpy)

 	not_equal() (in module numpy.core.defchararray)

 	notmasked_contiguous() (in module numpy.ma)

 	notmasked_edges() (in module numpy.ma)

 	nout (numpy.ufunc attribute)

 	nper() (in module numpy)

 	npv() (in module numpy)

 	NPY_1_PI (C variable)

 	NPY_2_PI (C variable)

 	NPY_ALLOW_C_API (C macro)

 	NPY_ALLOW_C_API_DEF (C macro)

 	NPY_ANYORDER (C variable)

 	NPY_ARRAY_ALIGNED (C variable), [1]

 	NPY_ARRAY_BEHAVED (C variable), [1]

 	NPY_ARRAY_BEHAVED_NS (C variable), [1]

 	NPY_ARRAY_C_CONTIGUOUS (C variable), [1]

 	NPY_ARRAY_CARRAY (C variable), [1]

 	NPY_ARRAY_CARRAY_RO (C variable), [1]

 	NPY_ARRAY_DEFAULT (C variable), [1]

 	NPY_ARRAY_ELEMENTSTRIDES (C variable)

 	NPY_ARRAY_ENSUREARRAY (C variable), [1], [2]

 	NPY_ARRAY_ENSURECOPY (C variable), [1], [2]

 	NPY_ARRAY_F_CONTIGUOUS (C variable), [1]

 	NPY_ARRAY_FARRAY (C variable), [1]

 	NPY_ARRAY_FARRAY_RO (C variable), [1]

 	NPY_ARRAY_FORCECAST (C variable), [1], [2]

 	NPY_ARRAY_IN_ARRAY (C variable), [1]

 	NPY_ARRAY_IN_FARRAY (C variable)

 	NPY_ARRAY_INOUT_ARRAY (C variable), [1]

 	NPY_ARRAY_INOUT_FARRAY (C variable)

 	NPY_ARRAY_NOTSWAPPED (C variable), [1]

 	NPY_ARRAY_OUT_ARRAY (C variable)

 	NPY_ARRAY_OUT_FARRAY (C variable)

 	NPY_ARRAY_OWNDATA (C variable)

 	NPY_ARRAY_UPDATE_ALL (C variable)

 	NPY_ARRAY_UPDATEIFCOPY (C variable), [1]

 	NPY_ARRAY_WRITEABLE (C variable), [1]

 	NPY_AUXDATA_CLONE (C function)

 	NPY_AUXDATA_FREE (C function)

 	NPY_BEGIN_ALLOW_THREADS (C macro)

 	NPY_BEGIN_THREADS (C macro)

 	NPY_BEGIN_THREADS_DEF (C macro)

 	NPY_BEGIN_THREADS_DESCR (C function)

 	NPY_BEGIN_THREADS_THRESHOLDED (C function)

 	NPY_BIG_ENDIAN (C variable)

 	npy_bool (C type)

 	NPY_BOOL (C variable)

 	NPY_BUFSIZE (C variable)

 	NPY_BYTE (C variable)

 	NPY_BYTE_ORDER (C variable)

 	NPY_CASTING (C type)

 	NPY_CDOUBLE (C variable)

 	NPY_CFLOAT (C variable)

 	npy_clear_floatstatus (C function)

 	NPY_CLIP (C variable), [1]

 	NPY_CLIPMODE (C type)

 	NPY_CLONGDOUBLE (C variable)

 	NPY_COMPLEX128 (C variable)

 	NPY_COMPLEX64 (C variable)

 	npy_copysign (C function)

 	NPY_CORDER (C variable)

 	NPY_CPU_AMD64 (C variable)

 	NPY_CPU_IA64 (C variable)

 	NPY_CPU_PARISC (C variable)

 	NPY_CPU_PPC (C variable)

 	NPY_CPU_PPC64 (C variable)

 	NPY_CPU_S390 (C variable)

 	NPY_CPU_SPARC (C variable)

 	NPY_CPU_SPARC64 (C variable)

 	NPY_CPU_X86 (C variable)

 	NPY_DATETIME (C variable)

 	NPY_DEFAULT_TYPE (C variable)

 	NPY_DISABLE_C_API (C macro)

 	NPY_DOUBLE (C variable)

 	npy_double_to_half (C function)

 	npy_doublebits_to_halfbits (C function)

 	NPY_E (C variable)

 	NPY_END_ALLOW_THREADS (C macro)

 	NPY_END_THREADS (C macro)

 	NPY_END_THREADS_DESCR (C function)

 	NPY_EQUIV_CASTING (C variable)

 	NPY_EULER (C variable)

 	NPY_FAIL (C variable)

 	NPY_FALSE (C variable)

 	NPY_FLOAT (C variable)

 	NPY_FLOAT16 (C variable)

 	NPY_FLOAT32 (C variable)

 	NPY_FLOAT64 (C variable)

 	npy_float_to_half (C function)

 	npy_floatbits_to_halfbits (C function)

 	NPY_FORTRANORDER (C variable)

 	NPY_FROM_FIELDS (C variable)

 	npy_get_floatstatus (C function)

 	NPY_HALF (C variable)

 	npy_half_copysign (C function)

 	npy_half_eq (C function)

 	npy_half_eq_nonan (C function)

 	npy_half_ge (C function)

 	npy_half_gt (C function)

 	npy_half_isfinite (C function)

 	npy_half_isinf (C function)

 	npy_half_isnan (C function)

 	npy_half_iszero (C function)

 	npy_half_le (C function)

 	npy_half_le_nonan (C function)

 	npy_half_lt (C function)

 	npy_half_lt_nonan (C function)

 	NPY_HALF_NAN (C variable)

 	npy_half_ne (C function)

 	NPY_HALF_NEGONE (C variable)

 	npy_half_nextafter (C function)

 	NPY_HALF_NINF (C variable)

 	NPY_HALF_NZERO (C variable)

 	NPY_HALF_ONE (C variable)

 	NPY_HALF_PINF (C variable)

 	NPY_HALF_PZERO (C variable)

 	npy_half_signbit (C function)

 	npy_half_spacing (C function)

 	npy_half_to_double (C function)

 	npy_half_to_float (C function)

 	NPY_HALF_ZERO (C variable)

 	npy_halfbits_to_doublebits (C function)

 	npy_halfbits_to_floatbits (C function)

 	NPY_INFINITY (C variable)

 	NPY_INT (C variable)

 	NPY_INT16 (C variable)

 	NPY_INT32 (C variable)

 	NPY_INT64 (C variable)

 	NPY_INT8 (C variable)

 	NPY_INTP (C variable)

 	npy_isfinite (C function)

 	npy_isinf (C function)

 	npy_isnan (C function)

 	NPY_ITEM_HASOBJECT (C variable)

 	NPY_ITEM_IS_POINTER (C variable)

 	NPY_ITEM_REFCOUNT (C variable)

 	NPY_ITER_ALIGNED (C variable)

 	NPY_ITER_ALLOCATE (C variable)

 	NPY_ITER_ARRAYMASK (C variable)

 	

 	NPY_ITER_BUFFERED (C variable)

 	NPY_ITER_C_INDEX (C variable)

 	NPY_ITER_COMMON_DTYPE (C variable)

 	NPY_ITER_CONTIG (C variable)

 	NPY_ITER_COPY (C variable)

 	NPY_ITER_DELAY_BUFALLOC (C variable)

 	NPY_ITER_DONT_NEGATE_STRIDES (C variable)

 	NPY_ITER_EXTERNAL_LOOP (C variable)

 	NPY_ITER_F_INDEX (C variable)

 	NPY_ITER_GROWINNER (C variable)

 	NPY_ITER_MULTI_INDEX (C variable)

 	NPY_ITER_NBO (C variable)

 	NPY_ITER_NO_BROADCAST (C variable)

 	NPY_ITER_NO_SUBTYPE (C variable)

 	NPY_ITER_RANGED (C variable)

 	NPY_ITER_READONLY (C variable)

 	NPY_ITER_READWRITE (C variable)

 	NPY_ITER_REDUCE_OK (C variable)

 	NPY_ITER_REFS_OK (C variable)

 	NPY_ITER_UPDATEIFCOPY (C variable)

 	NPY_ITER_WRITEMASKED (C variable)

 	NPY_ITER_WRITEONLY (C variable)

 	NPY_ITER_ZEROSIZE_OK (C variable)

 	NPY_KEEPORDER (C variable)

 	NPY_LIST_PICKLE (C variable)

 	NPY_LITTLE_ENDIAN (C variable)

 	NPY_LOG10E (C variable)

 	NPY_LOG2E (C variable)

 	NPY_LOGE10 (C variable)

 	NPY_LOGE2 (C variable)

 	NPY_LONG (C variable)

 	NPY_LONGDOUBLE (C variable)

 	NPY_LONGLONG (C variable)

 	NPY_LOOP_BEGIN_THREADS (C macro)

 	NPY_LOOP_END_THREADS (C macro)

 	NPY_MASK (C variable)

 	NPY_MAX_BUFSIZE (C variable)

 	NPY_MAXDIMS (C variable)

 	NPY_MIN_BUFSIZE (C variable)

 	NPY_NAN (C variable)

 	NPY_NEEDS_INIT (C variable)

 	NPY_NEEDS_PYAPI (C variable)

 	npy_nextafter (C function)

 	NPY_NO_CASTING (C variable)

 	NPY_NOTYPE (C variable)

 	NPY_NSCALARKINDS (C variable)

 	NPY_NSORTS (C variable)

 	NPY_NTYPES (C variable)

 	NPY_NUM_FLOATTYPE (C variable)

 	NPY_NZERO (C variable)

 	NPY_OBJECT (C variable)

 	NPY_OBJECT_DTYPE_FLAGS (C variable)

 	NPY_ORDER (C type)

 	NPY_OUT_ARRAY (C variable)

 	NPY_PI (C variable)

 	NPY_PI_2 (C variable)

 	NPY_PI_4 (C variable)

 	NPY_PRIORITY (C variable)

 	NPY_PZERO (C variable)

 	NPY_RAISE (C variable), [1]

 	NPY_SAFE_CASTING (C variable)

 	NPY_SAME_KIND_CASTING (C variable)

 	NPY_SCALAR_PRIORITY (C variable)

 	NPY_SCALARKIND (C type)

 	npy_set_floatstatus_divbyzero (C function)

 	npy_set_floatstatus_invalid (C function)

 	npy_set_floatstatus_overflow (C function)

 	npy_set_floatstatus_underflow (C function)

 	NPY_SHORT (C variable)

 	npy_signbit (C function)

 	NPY_SIZEOF_DOUBLE (C variable)

 	NPY_SIZEOF_FLOAT (C variable)

 	NPY_SIZEOF_INT (C variable)

 	NPY_SIZEOF_LONG (C variable)

 	NPY_SIZEOF_LONG_DOUBLE (C variable)

 	NPY_SIZEOF_LONGLONG (C variable)

 	NPY_SIZEOF_PY_INTPTR_T (C variable)

 	NPY_SIZEOF_PY_LONG_LONG (C variable)

 	NPY_SIZEOF_SHORT (C variable)

 	NPY_SORTKIND (C type)

 	npy_spacing (C function)

 	NPY_STRING (C variable)

 	NPY_SUBTYPE_PRIORITY (C variable)

 	NPY_SUCCEED (C variable)

 	NPY_TIMEDELTA (C variable)

 	NPY_TRUE (C variable)

 	NPY_UBYTE (C variable)

 	NPY_UINT (C variable)

 	NPY_UINT16 (C variable)

 	NPY_UINT32 (C variable)

 	NPY_UINT64 (C variable)

 	NPY_UINT8 (C variable)

 	NPY_UINTP (C variable)

 	NPY_ULONG (C variable)

 	NPY_ULONGLONG (C variable)

 	NPY_UNICODE (C variable)

 	NPY_UNSAFE_CASTING (C variable)

 	NPY_USE_GETITEM (C variable)

 	NPY_USE_SETITEM (C variable)

 	NPY_USERDEF (C variable)

 	NPY_USHORT (C variable)

 	NPY_VERSION (C variable)

 	NPY_VOID (C variable)

 	NPY_WRAP (C variable), [1]

 	NpyAuxData (C type)

 	NpyAuxData_CloneFunc (C type)

 	NpyAuxData_FreeFunc (C type)

 	NpyIter (C type)

 	NpyIter_AdvancedNew (C function)

 	NpyIter_Copy (C function)

 	NpyIter_CreateCompatibleStrides (C function)

 	NpyIter_Deallocate (C function)

 	NpyIter_EnableExternalLoop (C function)

 	NpyIter_GetAxisStrideArray (C function)

 	NpyIter_GetBufferSize (C function)

 	NpyIter_GetDataPtrArray (C function)

 	NpyIter_GetDescrArray (C function)

 	NpyIter_GetFirstMaskNAOp (C function)

 	NpyIter_GetGetMultiIndex (C function)

 	NpyIter_GetIndexPtr (C function)

 	NpyIter_GetInitialDataPtrArray (C function)

 	NpyIter_GetInnerFixedStrideArray (C function)

 	NpyIter_GetInnerLoopSizePtr (C function)

 	NpyIter_GetInnerStrideArray (C function)

 	NpyIter_GetIterIndex (C function)

 	NpyIter_GetIterIndexRange (C function)

 	NpyIter_GetIterNext (C function)

 	NpyIter_GetIterSize (C function)

 	NpyIter_GetIterView (C function)

 	NpyIter_GetMaskNAIndexArray (C function)

 	NpyIter_GetMultiIndexFunc (C type)

 	NpyIter_GetNDim (C function)

 	NpyIter_GetNOp (C function)

 	NpyIter_GetOperandArray (C function)

 	NpyIter_GetReadFlags (C function)

 	NpyIter_GetShape (C function)

 	NpyIter_GetWriteFlags (C function)

 	NpyIter_GotoIndex (C function)

 	NpyIter_GotoIterIndex (C function)

 	NpyIter_GotoMultiIndex (C function)

 	NpyIter_HasDelayedBufAlloc (C function)

 	NpyIter_HasExternalLoop (C function)

 	NpyIter_HasIndex (C function)

 	NpyIter_HasMultiIndex (C function)

 	NpyIter_IsBuffered (C function)

 	NpyIter_IsFirstVisit (C function)

 	NpyIter_IsGrowInner (C function)

 	NpyIter_IterNextFunc (C type)

 	NpyIter_MultiNew (C function)

 	NpyIter_New (C function)

 	NpyIter_RemoveMultiIndex (C function)

 	NpyIter_RequiresBuffering (C function)

 	NpyIter_Reset (C function)

 	NpyIter_ResetBasePointers (C function)

 	NpyIter_ResetToIterIndexRange (C function)

 	NpyIter_Type (C type)

 	ntypes (numpy.ufunc attribute)

 	num (numpy.dtype attribute)

 	numiter (numpy.broadcast attribute)

 	numpy (module)

 	numpy.distutils (module)

 	numpy.distutils.exec_command (module)

 	numpy.distutils.misc_util (module)

 	numpy.doc.basics (module)

 	numpy.doc.broadcasting (module)

 	numpy.doc.byteswapping (module)

 	numpy.doc.creation (module)

 	numpy.doc.glossary (module)

 	numpy.doc.howtofind (module)

 	numpy.doc.indexing (module)

 	numpy.doc.internals (module)

 	numpy.doc.jargon (module)

 	numpy.doc.methods_vs_functions (module)

 	numpy.doc.misc (module)

 	numpy.doc.performance (module)

 	numpy.doc.structured_arrays (module)

 	numpy.doc.subclassing (module)

 	numpy.dual (module)

 	numpy.fft (module)

 	numpy.lib.scimath (module)

O

 	

 	obj2sctype() (in module numpy)

 	offset

 	ogrid (in module numpy)

 	ones (in module numpy.ma)

 	ones() (in module numpy)

 	

 	(in module numpy.matlib)

 	ones_like() (in module numpy)

 	open() (numpy.DataSource method)

 	

 	operands (numpy.nditer attribute)

 	operation, [1]

 	operator, [1]

 	order (numpy.poly1d attribute)

 	outer() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.ufunc method)

 	outerproduct() (in module numpy.ma)

P

 	

 	packbits() (in module numpy)

 	pad() (in module numpy)

 	pareto() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	partition() (in module numpy)

 	

 	(in module numpy.core.defchararray)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	paths() (numpy.distutils.misc_util.Configuration method)

 	percentile() (in module numpy)

 	permutation() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	piecewise() (in module numpy)

 	pinv() (in module numpy.linalg)

 	place() (in module numpy)

 	pmt() (in module numpy)

 	poisson() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	poisson_lam_max (numpy.random.RandomState attribute)

 	poly() (in module numpy)

 	poly1d (class in numpy)

 	poly2cheb() (in module numpy.polynomial.chebyshev)

 	poly2herm() (in module numpy.polynomial.hermite)

 	poly2herme() (in module numpy.polynomial.hermite_e)

 	poly2lag() (in module numpy.polynomial.laguerre)

 	poly2leg() (in module numpy.polynomial.legendre)

 	polyadd() (in module numpy)

 	

 	(in module numpy.polynomial.polynomial)

 	polycompanion() (in module numpy.polynomial.polynomial)

 	polyder() (in module numpy)

 	

 	(in module numpy.polynomial.polynomial)

 	polydiv() (in module numpy)

 	

 	(in module numpy.polynomial.polynomial)

 	polydomain (in module numpy.polynomial.polynomial)

 	polyfit() (in module numpy)

 	

 	(in module numpy.ma)

 	(in module numpy.polynomial.polynomial)

 	polyfromroots() (in module numpy.polynomial.polynomial)

 	polygrid2d() (in module numpy.polynomial.polynomial)

 	polygrid3d() (in module numpy.polynomial.polynomial)

 	polyint() (in module numpy)

 	

 	(in module numpy.polynomial.polynomial)

 	polyline() (in module numpy.polynomial.polynomial)

 	polymul() (in module numpy)

 	

 	(in module numpy.polynomial.polynomial)

 	polymulx() (in module numpy.polynomial.polynomial)

 	Polynomial (class in numpy.polynomial.polynomial)

 	polyone (in module numpy.polynomial.polynomial)

 	polypow() (in module numpy.polynomial.polynomial)

 	polyroots() (in module numpy.polynomial.polynomial)

 	polysub() (in module numpy)

 	

 	(in module numpy.polynomial.polynomial)

 	polytrim() (in module numpy.polynomial.polynomial)

 	polyval() (in module numpy)

 	

 	(in module numpy.polynomial.polynomial)

 	polyval2d() (in module numpy.polynomial.polynomial)

 	polyval3d() (in module numpy.polynomial.polynomial)

 	polyvander() (in module numpy.polynomial.polynomial)

 	polyvander2d() (in module numpy.polynomial.polynomial)

 	polyvander3d() (in module numpy.polynomial.polynomial)

 	polyx (in module numpy.polynomial.polynomial)

 	polyzero (in module numpy.polynomial.polynomial)

 	power (in module numpy)

 	power() (in module numpy.ma)

 	

 	(in module numpy.random)

 	(numpy.random.RandomState method)

 	ppmt() (in module numpy)

 	pprint() (numpy.record method)

 	prepare_test_args() (numpy.testing.Tester method)

 	prod (in module numpy.ma)

 	prod() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	product() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	promote_types() (in module numpy)

 	
 protocol

 	

 	array

 	ptp() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	put() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	putmask() (in module numpy)

 	pv() (in module numpy)

 	PY_ARRAY_UNIQUE_SYMBOL (C macro)

 	PY_UFUNC_UNIQUE_SYMBOL (C variable)

 	PyArray_All (C function)

 	PyArray_Any (C function)

 	PyArray_Arange (C function)

 	PyArray_ArangeObj (C function)

 	PyArray_ArgMax (C function)

 	PyArray_ArgMin (C function)

 	PyArray_ArgPartition (C function)

 	PyArray_ArgSort (C function)

 	PyArray_ArrayDescr.base (C member)

 	PyArray_ArrayDescr.shape (C member)

 	PyArray_ArrayType (C function)

 	PyArray_ArrFuncs (C type)

 	PyArray_ArrFuncs.cancastscalarkindto (C member)

 	PyArray_ArrFuncs.cancastto (C member)

 	PyArray_ArrFuncs.castdict (C member)

 	PyArray_ArrFuncs.compare (C member)

 	PyArray_ArrFuncs.copyswap (C member)

 	PyArray_ArrFuncs.fill (C member)

 	PyArray_ArrFuncs.fromstr (C member)

 	PyArray_ArrFuncs.getitem (C member)

 	PyArray_ArrFuncs.listpickle (C member)

 	PyArray_ArrFuncs.nonzero (C member)

 	PyArray_ArrFuncs.scalarkind (C member)

 	PyArray_ArrFuncs.scanfunc (C member)

 	PyArray_ArrFuncs.setitem (C member)

 	PyArray_ArrFuncs.sort (C member)

 	PyArray_AsCArray (C function)

 	PyArray_AxisConverter (C function)

 	PyArray_BASE (C function)

 	PyArray_BoolConverter (C function)

 	PyArray_Broadcast (C function)

 	PyArray_BroadcastToShape (C function)

 	PyArray_BufferConverter (C function)

 	PyArray_ByteorderConverter (C function)

 	PyArray_BYTES (C function)

 	PyArray_Byteswap (C function)

 	PyArray_CanCastArrayTo (C function)

 	PyArray_CanCastSafely (C function)

 	PyArray_CanCastTo (C function)

 	PyArray_CanCastTypeTo (C function)

 	PyArray_CanCoerceScalar (C function)

 	PyArray_Cast (C function)

 	PyArray_CastingConverter (C function)

 	PyArray_CastScalarToCtype (C function)

 	PyArray_CastTo (C function)

 	PyArray_CastToType (C function)

 	PyArray_CEQ (C function)

 	PyArray_CGE (C function)

 	PyArray_CGT (C function)

 	PyArray_Check (C function)

 	PyArray_CheckAxis (C function)

 	PyArray_CheckExact (C function)

 	PyArray_CheckFromAny (C function)

 	PyArray_CheckScalar (C function)

 	PyArray_CheckStrides (C function)

 	PyArray_CHKFLAGS (C function)

 	PyArray_Choose (C function)

 	PyArray_Chunk (C type)

 	PyArray_Chunk.PyArray_Chunk.base (C member)

 	PyArray_Chunk.PyArray_Chunk.flags (C member)

 	PyArray_Chunk.PyArray_Chunk.len (C member)

 	PyArray_Chunk.PyArray_Chunk.ptr (C member)

 	PyArray_Chunk.PyObject_HEAD (C macro)

 	PyArray_CLE (C function)

 	PyArray_CLEARFLAGS (C function)

 	PyArray_Clip (C function)

 	PyArray_ClipmodeConverter (C function)

 	PyArray_CLT (C function)

 	PyArray_CNE (C function)

 	PyArray_CompareLists (C function)

 	PyArray_Compress (C function)

 	PyArray_Concatenate (C function)

 	PyArray_Conjugate (C function)

 	PyArray_ContiguousFromAny (C function)

 	PyArray_ConvertClipmodeSequence (C function)

 	PyArray_Converter (C function)

 	PyArray_ConvertToCommonType (C function)

 	PyArray_CopyAndTranspose (C function)

 	PyArray_CopyInto (C function)

 	PyArray_Correlate (C function)

 	PyArray_Correlate2 (C function)

 	PyArray_CountNonzero (C function)

 	PyArray_CumProd (C function)

 	PyArray_CumSum (C function)

 	PyArray_DATA (C function)

 	PyArray_DESCR (C function)

 	PyArray_Descr (C type)

 	PyArray_Descr.alignment (C member)

 	PyArray_Descr.byteorder (C member)

 	PyArray_Descr.elsize (C member)

 	PyArray_Descr.f (C member)

 	PyArray_Descr.fields (C member)

 	PyArray_Descr.flags (C member)

 	PyArray_Descr.kind (C member)

 	PyArray_Descr.subarray (C member)

 	PyArray_Descr.type (C member)

 	PyArray_Descr.type_num (C member)

 	PyArray_Descr.typeobj (C member)

 	Pyarray_DescrAlignConverter (C function)

 	Pyarray_DescrAlignConverter2 (C function)

 	PyArray_DescrCheck (C function)

 	PyArray_DescrConverter (C function)

 	PyArray_DescrConverter2 (C function)

 	PyArray_DescrFromObject (C function)

 	PyArray_DescrFromScalar (C function)

 	PyArray_DescrFromType (C function)

 	PyArray_DescrNew (C function)

 	PyArray_DescrNewByteorder (C function)

 	PyArray_DescrNewFromType (C function)

 	PyArray_Diagonal (C function)

 	PyArray_DIM (C function)

 	PyArray_DIMS (C function)

 	PyArray_Dims (C type)

 	PyArray_Dims.PyArray_Dims.len (C member)

 	PyArray_Dims.PyArray_Dims.ptr (C member)

 	PyArray_DTYPE (C function)

 	PyArray_Dump (C function)

 	PyArray_Dumps (C function)

 	PyArray_EinsteinSum (C function)

 	PyArray_Empty (C function)

 	PyArray_EMPTY (C function)

 	PyArray_ENABLEFLAGS (C function)

 	PyArray_EnsureArray (C function)

 	PyArray_EquivArrTypes (C function)

 	PyArray_EquivByteorders (C function)

 	PyArray_EquivTypenums (C function)

 	PyArray_EquivTypes (C function)

 	PyArray_FieldNames (C function)

 	PyArray_FillObjectArray (C function)

 	PyArray_FILLWBYTE (C function)

 	PyArray_FillWithScalar (C function)

 	PyArray_FLAGS (C function)

 	PyArray_Flatten (C function)

 	PyArray_free (C function)

 	PyArray_Free (C function)

 	PyArray_FROM_O (C function)

 	PyArray_FROM_OF (C function)

 	PyArray_FROM_OT (C function)

 	PyArray_FROM_OTF (C function), [1]

 	PyArray_FROMANY (C function)

 	PyArray_FromAny (C function)

 	PyArray_FromArray (C function)

 	PyArray_FromArrayAttr (C function)

 	PyArray_FromBuffer (C function)

 	PyArray_FromFile (C function)

 	PyArray_FromInterface (C function)

 	PyArray_FromObject (C function)

 	PyArray_FromScalar (C function)

 	PyArray_FromString (C function)

 	PyArray_FromStructInterface (C function)

 	PyArray_GetArrayParamsFromObject (C function)

 	PyArray_GetCastFunc (C function)

 	PyArray_GETCONTIGUOUS (C function)

 	PyArray_GetEndianness (C function)

 	PyArray_GetField (C function)

 	PyArray_GETITEM (C function)

 	PyArray_GetNDArrayCFeatureVersion (C function)

 	PyArray_GetNDArrayCVersion (C function)

 	PyArray_GetNumericOps (C function)

 	PyArray_GetPriority (C function)

 	PyArray_GetPtr (C function)

 	PyArray_GETPTR1 (C function)

 	PyArray_GETPTR2 (C function)

 	PyArray_GETPTR3 (C function)

 	PyArray_GETPTR4 (C function)

 	PyArray_HasArrayInterface (C function)

 	PyArray_HasArrayInterfaceType (C function)

 	PyArray_HASFIELDS (C function)

 	PyArray_INCREF (C function)

 	PyArray_InitArrFuncs (C function)

 	PyArray_InnerProduct (C function)

 	PyArray_IntpConverter (C function)

 	PyArray_IntpFromSequence (C function)

 	PyArray_IS_C_CONTIGUOUS (C function)

 	PyArray_IS_F_CONTIGUOUS (C function)

 	PyArray_ISALIGNED (C function)

 	PyArray_IsAnyScalar (C function)

 	PyArray_ISBEHAVED (C function)

 	PyArray_ISBEHAVED_RO (C function)

 	PyArray_ISBOOL (C function)

 	PyArray_ISBYTESWAPPED (C function)

 	PyArray_ISCARRAY (C function)

 	PyArray_ISCARRAY_RO (C function)

 	

 	PyArray_ISCOMPLEX (C function)

 	PyArray_ISEXTENDED (C function)

 	PyArray_ISFARRAY (C function)

 	PyArray_ISFARRAY_RO (C function)

 	PyArray_ISFLEXIBLE (C function)

 	PyArray_ISFLOAT (C function)

 	PyArray_ISFORTRAN (C function)

 	PyArray_ISINTEGER (C function)

 	PyArray_ISNOTSWAPPED (C function)

 	PyArray_ISNUMBER (C function)

 	PyArray_ISOBJECT (C function)

 	PyArray_ISONESEGMENT (C function)

 	PyArray_ISPYTHON (C function)

 	PyArray_IsPythonScalar (C function)

 	PyArray_IsScalar (C function)

 	PyArray_ISSIGNED (C function)

 	PyArray_ISSTRING (C function)

 	PyArray_ISUNSIGNED (C function)

 	PyArray_ISUSERDEF (C function)

 	PyArray_ISWRITEABLE (C function)

 	PyArray_IsZeroDim (C function)

 	PyArray_Item_INCREF (C function)

 	PyArray_Item_XDECREF (C function)

 	PyArray_ITEMSIZE (C function)

 	PyArray_ITER_DATA (C function)

 	PyArray_ITER_GOTO (C function)

 	PyArray_ITER_GOTO1D (C function)

 	PyArray_ITER_NEXT (C function)

 	PyArray_ITER_NOTDONE (C function)

 	PyArray_ITER_RESET (C function)

 	PyArray_IterAllButAxis (C function)

 	PyArray_IterNew (C function)

 	PyArray_LexSort (C function)

 	PyArray_malloc (C function)

 	PyArray_MatrixProduct (C function)

 	PyArray_MatrixProduct2 (C function)

 	PyArray_MAX (C function)

 	PyArray_Max (C function)

 	PyArray_Mean (C function)

 	PyArray_MIN (C function)

 	PyArray_Min (C function)

 	PyArray_MinScalarType (C function)

 	PyArray_MoveInto (C function)

 	PyArray_MultiIter_DATA (C function)

 	PyArray_MultiIter_GOTO (C function)

 	PyArray_MultiIter_GOTO1D (C function)

 	PyArray_MultiIter_NEXT (C function)

 	PyArray_MultiIter_NEXTi (C function)

 	PyArray_MultiIter_NOTDONE (C function)

 	PyArray_MultiIter_RESET (C function)

 	PyArray_MultiIterNew (C function)

 	PyArray_MultiplyIntList (C function)

 	PyArray_MultiplyList (C function)

 	PyArray_NBYTES (C function)

 	PyArray_NDIM (C function)

 	PyArray_NeighborhoodIterNew (C function)

 	PyArray_New (C function)

 	PyArray_NewCopy (C function)

 	PyArray_NewFromDescr (C function)

 	PyArray_NewLikeArray (C function)

 	PyArray_Newshape (C function)

 	PyArray_Nonzero (C function)

 	PyArray_ObjectType (C function)

 	PyArray_One (C function)

 	PyArray_OrderConverter (C function)

 	PyArray_OutputConverter (C function)

 	PyArray_Partition (C function)

 	PyArray_Prod (C function)

 	PyArray_PromoteTypes (C function)

 	PyArray_Ptp (C function)

 	PyArray_PutMask (C function)

 	PyArray_PutTo (C function)

 	PyArray_PyIntAsInt (C function)

 	PyArray_PyIntAsIntp (C function)

 	PyArray_Ravel (C function)

 	PyArray_realloc (C function)

 	PyArray_REFCOUNT (C function)

 	PyArray_RegisterCanCast (C function)

 	PyArray_RegisterCastFunc (C function)

 	PyArray_RegisterDataType (C function)

 	PyArray_RemoveSmallest (C function)

 	PyArray_Repeat (C function)

 	PyArray_Reshape (C function)

 	PyArray_Resize (C function)

 	PyArray_ResultType (C function)

 	PyArray_Return (C function)

 	PyArray_Round (C function)

 	PyArray_SAMESHAPE (C function)

 	PyArray_Scalar (C function)

 	PyArray_ScalarAsCtype (C function)

 	PyArray_ScalarKind (C function)

 	PyArray_SearchsideConverter (C function)

 	PyArray_SearchSorted (C function)

 	PyArray_SetBaseObject (C function)

 	PyArray_SetField (C function)

 	PyArray_SETITEM (C function)

 	PyArray_SetNumericOps (C function)

 	PyArray_SetStringFunction (C function)

 	PyArray_SHAPE (C function)

 	PyArray_SimpleNew (C function), [1]

 	PyArray_SimpleNewFromData (C function), [1]

 	PyArray_SimpleNewFromDescr (C function)

 	PyArray_Size (C function)

 	PyArray_SIZE (C function)

 	PyArray_Sort (C function)

 	PyArray_SortkindConverter (C function)

 	PyArray_Squeeze (C function)

 	PyArray_Std (C function)

 	PyArray_STRIDE (C function)

 	PyArray_STRIDES (C function)

 	PyArray_Sum (C function)

 	PyArray_SwapAxes (C function)

 	PyArray_TakeFrom (C function)

 	PyArray_ToFile (C function)

 	PyArray_ToList (C function)

 	PyArray_ToScalar (C function)

 	PyArray_ToString (C function)

 	PyArray_Trace (C function)

 	PyArray_Transpose (C function)

 	PyArray_TYPE (C function)

 	PyArray_Type (C variable)

 	PyArray_TypeObjectFromType (C function)

 	PyArray_TypestrConvert (C function)

 	PyArray_UpdateFlags (C function)

 	PyArray_ValidType (C function)

 	PyArray_View (C function)

 	PyArray_Where (C function)

 	PyArray_XDECREF (C function)

 	PyArray_XDECREF_ERR (C function)

 	PyArray_Zero (C function)

 	PyArray_ZEROS (C function)

 	PyArray_Zeros (C function)

 	PyArrayDescr_Type (C variable)

 	PyArrayFlags_Type (C variable)

 	PyArrayInterface (C type)

 	PyArrayInterface.PyArrayInterface.data (C member)

 	PyArrayInterface.PyArrayInterface.descr (C member)

 	PyArrayInterface.PyArrayInterface.flags (C member)

 	PyArrayInterface.PyArrayInterface.itemsize (C member)

 	PyArrayInterface.PyArrayInterface.nd (C member)

 	PyArrayInterface.PyArrayInterface.shape (C member)

 	PyArrayInterface.PyArrayInterface.strides (C member)

 	PyArrayInterface.PyArrayInterface.two (C member)

 	PyArrayInterface.PyArrayInterface.typekind (C member)

 	PyArrayIter_Check (C function)

 	PyArrayIter_Type (C variable)

 	PyArrayIterObject (C type)

 	PyArrayIterObject.PyArrayIterObject.ao (C member)

 	PyArrayIterObject.PyArrayIterObject.backstrides (C member)

 	PyArrayIterObject.PyArrayIterObject.contiguous (C member)

 	PyArrayIterObject.PyArrayIterObject.coordinates (C member)

 	PyArrayIterObject.PyArrayIterObject.dataptr (C member)

 	PyArrayIterObject.PyArrayIterObject.dims_m1 (C member)

 	PyArrayIterObject.PyArrayIterObject.factors (C member)

 	PyArrayIterObject.PyArrayIterObject.index (C member)

 	PyArrayIterObject.PyArrayIterObject.nd_m1 (C member)

 	PyArrayIterObject.PyArrayIterObject.size (C member)

 	PyArrayIterObject.PyArrayIterObject.strides (C member)

 	PyArrayMapIter_Type (C variable)

 	PyArrayMultiIter_Type (C variable)

 	PyArrayMultiIterObject (C type)

 	PyArrayMultiIterObject.PyArrayMultiIterObject.dimensions (C member)

 	PyArrayMultiIterObject.PyArrayMultiIterObject.index (C member)

 	PyArrayMultiIterObject.PyArrayMultiIterObject.iters (C member)

 	PyArrayMultiIterObject.PyArrayMultiIterObject.nd (C member)

 	PyArrayMultiIterObject.PyArrayMultiIterObject.numiter (C member)

 	PyArrayMultiIterObject.PyArrayMultiIterObject.size (C member)

 	PyArrayMultiIterObject.PyObject_HEAD (C macro)

 	PyArrayNeighborhoodIter_Next (C function)

 	PyArrayNeighborhoodIter_Reset (C function)

 	PyArrayNeighborhoodIter_Type (C variable)

 	PyArrayNeighborhoodIterObject (C type)

 	PyArrayObject (C type)

 	PyArrayObject.base (C member)

 	PyArrayObject.data (C member)

 	PyArrayObject.descr (C member)

 	PyArrayObject.dimensions (C member)

 	PyArrayObject.flags (C member)

 	PyArrayObject.nd (C member)

 	PyArrayObject.PyObject_HEAD (C macro)

 	PyArrayObject.strides (C member)

 	PyArrayObject.weakreflist (C member)

 	PyDataMem_FREE (C function)

 	PyDataMem_NEW (C function)

 	PyDataMem_RENEW (C function)

 	PyDataType_FLAGCHK (C function)

 	PyDataType_HASFIELDS (C function)

 	PyDataType_ISBOOL (C function)

 	PyDataType_ISCOMPLEX (C function)

 	PyDataType_ISEXTENDED (C function)

 	PyDataType_ISFLEXIBLE (C function)

 	PyDataType_ISFLOAT (C function)

 	PyDataType_ISINTEGER (C function)

 	PyDataType_ISNUMBER (C function)

 	PyDataType_ISOBJECT (C function)

 	PyDataType_ISPYTHON (C function)

 	PyDataType_ISSIGNED (C function)

 	PyDataType_ISSTRING (C function)

 	PyDataType_ISUNSIGNED (C function)

 	PyDataType_ISUSERDEF (C function)

 	PyDataType_REFCHK (C function)

 	PyDimMem_FREE (C function)

 	PyDimMem_NEW (C function)

 	PyDimMem_RENEW (C function)

 	PyModule_AddIntConstant (C function)

 	PyModule_AddObject (C function)

 	PyModule_AddStringConstant (C function)

 	
 Python Enhancement Proposals

 	

 	PEP 3118, [1], [2]

 	PyTypeNum_ISBOOL (C function)

 	PyTypeNum_ISCOMPLEX (C function)

 	PyTypeNum_ISEXTENDED (C function)

 	PyTypeNum_ISFLEXIBLE (C function)

 	PyTypeNum_ISFLOAT (C function)

 	PyTypeNum_ISINTEGER (C function)

 	PyTypeNum_ISNUMBER (C function)

 	PyTypeNum_ISOBJECT (C function)

 	PyTypeNum_ISPYTHON (C function)

 	PyTypeNum_ISSIGNED (C function)

 	PyTypeNum_ISSTRING (C function)

 	PyTypeNum_ISUNSIGNED (C function)

 	PyTypeNum_ISUSERDEF (C function)

 	PyUFunc_checkfperr (C function)

 	PyUFunc_clearfperr (C function)

 	PyUFunc_Loop1d (C type)

 	PyUFunc_PyFuncData (C type)

 	PyUFunc_Type (C variable)

 	PyUFuncLoopObject (C type)

 	PyUFuncObject (C type)

 	PyUFuncObject.PyObject_HEAD (C macro)

 	PyUFuncObject.PyUFuncObject.check_return (C member)

 	PyUFuncObject.PyUFuncObject.data (C member)

 	PyUFuncObject.PyUFuncObject.doc (C member)

 	PyUFuncObject.PyUFuncObject.identity (C member)

 	PyUFuncObject.PyUFuncObject.iter_flags (C member)

 	PyUFuncObject.PyUFuncObject.name (C member)

 	PyUFuncObject.PyUFuncObject.nargs (C member)

 	PyUFuncObject.PyUFuncObject.nin (C member)

 	PyUFuncObject.PyUFuncObject.nout (C member)

 	PyUFuncObject.PyUFuncObject.ntypes (C member)

 	PyUFuncObject.PyUFuncObject.obj (C member)

 	PyUFuncObject.PyUFuncObject.op_flags (C member)

 	PyUFuncObject.PyUFuncObject.ptr (C member)

 	PyUFuncObject.PyUFuncObject.types (C member)

 	PyUFuncObject.PyUFuncObject.userloops (C member)

 	PyUFuncReduceObject (C type)

Q

 	

 	qr() (in module numpy.linalg)

R

 	

 	r_ (in module numpy)

 	rad2deg (in module numpy)

 	radians (in module numpy)

 	rand() (in module numpy.matlib)

 	

 	(in module numpy.random)

 	(numpy.random.RandomState method)

 	randint() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	randn() (in module numpy.matlib)

 	

 	(in module numpy.random)

 	(numpy.random.RandomState method)

 	random() (in module numpy.random)

 	random_integers() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	random_sample() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	RandomState (class in numpy.random)

 	ranf() (in module numpy.random)

 	RankWarning

 	rate() (in module numpy)

 	ravel (in module numpy.ma)

 	ravel() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	ravel_multi_index() (in module numpy)

 	rayleigh() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	real (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	real() (in module numpy)

 	real_if_close() (in module numpy)

 	recarray (class in numpy)

 	reciprocal (in module numpy)

 	
 record

 	

 	dtype

 	record (class in numpy)

 	recordmask (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute), [1]

 	red_text() (in module numpy.distutils.misc_util)

 	
 reduce

 	

 	ufunc methods

 	reduce() (numpy.ufunc method)

 	
 reduceat

 	

 	ufunc methods

 	reduceat() (numpy.ufunc method)

 	reference

 	reference counting, [1]

 	remainder (in module numpy)

 	remove_axis() (numpy.nditer method)

 	

 	remove_multi_index() (numpy.nditer method)

 	repeat (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	repeat() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	replace() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	repmat() (in module numpy.matlib)

 	require() (in module numpy)

 	reset() (numpy.broadcast method)

 	

 	(numpy.nditer method)

 	reshape() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	resize() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	restoredot() (in module numpy)

 	result_type() (in module numpy)

 	rfft() (in module numpy.fft)

 	rfft2() (in module numpy.fft)

 	rfftfreq() (in module numpy.fft)

 	rfftn() (in module numpy.fft)

 	rfind() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	right_shift (in module numpy)

 	rindex() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	rint (in module numpy)

 	rjust() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	roll() (in module numpy)

 	rollaxis() (in module numpy)

 	roots() (in module numpy)

 	

 	(numpy.polynomial.chebyshev.Chebyshev method)

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	rot90() (in module numpy)

 	round() (in module numpy.ma)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	round_() (in module numpy)

 	row-major, [1]

 	row_stack (in module numpy.ma)

 	rpartition() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	rsplit() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	rstrip() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	run_module_suite() (in module numpy.testing)

 	rundocs() (in module numpy.testing)

S

 	

 	s_ (in module numpy)

 	sample() (in module numpy.random)

 	save() (in module numpy)

 	savetxt() (in module numpy)

 	savez() (in module numpy)

 	savez_compressed() (in module numpy)

 	
 scalar

 	

 	dtype

 	sctype2char() (in module numpy)

 	searchsorted() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	seed() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	select() (in module numpy)

 	self

 	set_fill_value() (in module numpy.ma)

 	

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	set_printoptions() (in module numpy)

 	set_state() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	set_string_function() (in module numpy)

 	set_verbosity() (in module numpy.distutils.log)

 	setastest() (in module numpy.testing.decorators)

 	setbufsize() (in module numpy)

 	setdiff1d() (in module numpy)

 	seterr() (in module numpy)

 	seterrcall() (in module numpy)

 	seterrobj() (in module numpy)

 	setfield() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	setflags() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	
 setslice

 	

 	ndarray special methods

 	setxor1d() (in module numpy)

 	shape (numpy.broadcast attribute)

 	

 	(numpy.chararray attribute)

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.dtype attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.nditer attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	shape() (in module numpy.ma)

 	sharedmask (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	shrink_mask() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	shuffle() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	sign (in module numpy)

 	signbit (in module numpy)

 	sin (in module numpy)

 	sinc() (in module numpy)

 	single-segment

 	sinh (in module numpy)

 	SIP

 	size (numpy.broadcast attribute)

 	

 	(numpy.chararray attribute)

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	size() (in module numpy.ma)

 	

 	skipif() (in module numpy.testing.decorators)

 	slice

 	slicing

 	slogdet() (in module numpy.linalg)

 	slow() (in module numpy.testing.decorators)

 	soften_mask (in module numpy.ma)

 	soften_mask() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	solve() (in module numpy.linalg)

 	sort() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	sort_complex() (in module numpy)

 	source() (in module numpy)

 	
 special methods

 	

 	getslice, ndarray

 	setslice, ndarray

 	split() (in module numpy)

 	

 	(in module numpy.core.defchararray)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	splitlines() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	sqrt (in module numpy)

 	square (in module numpy)

 	squeeze (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	squeeze() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	standard_cauchy() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	standard_exponential() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	standard_gamma() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	standard_normal() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	standard_t() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	startswith() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	std (in module numpy.ma)

 	std() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	str (numpy.dtype attribute)

 	stride

 	strides (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	strip() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	
 sub-array

 	

 	dtype, [1]

 	subdtype (numpy.dtype attribute)

 	subtract (in module numpy)

 	
 subtyping

 	

 	ndarray, [1]

 	sum (in module numpy.ma)

 	sum() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	svd() (in module numpy.linalg)

 	swapaxes (in module numpy.ma)

 	

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	swapaxes() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	swapcase() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	swig

T

 	

 	T (numpy.chararray attribute)

 	

 	(numpy.core.defchararray.chararray attribute)

 	(numpy.generic attribute)

 	(numpy.ma.MaskType attribute)

 	(numpy.ma.MaskedArray attribute)

 	(numpy.ma.masked_array attribute)

 	(numpy.matrix attribute)

 	(numpy.memmap attribute)

 	(numpy.ndarray attribute)

 	(numpy.recarray attribute)

 	(numpy.record attribute)

 	take() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	tan (in module numpy)

 	tanh (in module numpy)

 	tensordot() (in module numpy)

 	tensorinv() (in module numpy.linalg)

 	tensorsolve() (in module numpy.linalg)

 	terminal_has_colors() (in module numpy.distutils.misc_util)

 	test() (numpy.testing.Tester method)

 	Tester (in module numpy.testing)

 	tile() (in module numpy)

 	title() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	tobytes() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	todict() (numpy.distutils.misc_util.Configuration method)

 	tofile() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	toflex() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	tolist() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	tomaxint() (numpy.random.RandomState method)

 	torecords() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	tostring() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.lib.user_array.container method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	trace (in module numpy.ma)

 	trace() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	

 	translate() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	transpose (numpy.ma.masked_array attribute)

 	

 	(numpy.ma.MaskedArray attribute)

 	transpose() (in module numpy)

 	

 	(in module numpy.ma)

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	trapz() (in module numpy)

 	tri() (in module numpy)

 	triangular() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	tril() (in module numpy)

 	tril_indices() (in module numpy)

 	tril_indices_from() (in module numpy)

 	trim() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	trim_zeros() (in module numpy)

 	triu() (in module numpy)

 	triu_indices() (in module numpy)

 	triu_indices_from() (in module numpy)

 	true_divide (in module numpy)

 	trunc (in module numpy)

 	truncate() (numpy.polynomial.chebyshev.Chebyshev method)

 	

 	(numpy.polynomial.hermite.Hermite method)

 	(numpy.polynomial.hermite_e.HermiteE method)

 	(numpy.polynomial.laguerre.Laguerre method)

 	(numpy.polynomial.legendre.Legendre method)

 	(numpy.polynomial.polynomial.Polynomial method)

 	tuple

 	type (numpy.dtype attribute)

 	typename() (in module numpy)

 	types (numpy.ufunc attribute)

U

 	

 	ufunc, [1], [2]

 	

 	C-API, [1]

 	adding new, [1], [2], [3], [4]

 	attributes

 	casting rules

 	keyword arguments

 	methods

 	methods accumulate

 	methods reduce

 	methods reduceat

 	UFUNC_CHECK_ERROR (C function)

 	UFUNC_CHECK_STATUS (C function)

 	uniform() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	union1d() (in module numpy)

 	unique() (in module numpy)

 	

 	unpackbits() (in module numpy)

 	unravel_index() (in module numpy)

 	unshare_mask() (numpy.ma.masked_array method)

 	

 	(numpy.ma.MaskedArray method)

 	unwrap() (in module numpy)

 	upper() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	user_array

V

 	

 	value (numpy.nditer attribute)

 	vander() (in module numpy)

 	

 	(in module numpy.ma)

 	var (in module numpy.ma)

 	var() (in module numpy)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	variable (numpy.poly1d attribute)

 	vdot() (in module numpy)

 	vectorize (class in numpy)

 	

 	view, [1]

 	

 	ndarray

 	view() (numpy.chararray method)

 	

 	(numpy.core.defchararray.chararray method)

 	(numpy.generic method)

 	(numpy.ma.MaskType method)

 	(numpy.ma.MaskedArray method)

 	(numpy.ma.masked_array method)

 	(numpy.matrix method)

 	(numpy.memmap method)

 	(numpy.ndarray method)

 	(numpy.recarray method)

 	(numpy.record method)

 	vonmises() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	vsplit() (in module numpy)

 	vstack (in module numpy.ma)

 	vstack() (in module numpy)

W

 	

 	wald() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	weekmask (numpy.busdaycalendar attribute)

 	weibull() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 	

 	where() (in module numpy)

 	

 	(in module numpy.ma)

 	window (numpy.polynomial.chebyshev.Chebyshev attribute)

 	

 	(numpy.polynomial.hermite.Hermite attribute)

 	(numpy.polynomial.hermite_e.HermiteE attribute)

 	(numpy.polynomial.laguerre.Laguerre attribute)

 	(numpy.polynomial.legendre.Legendre attribute)

 	(numpy.polynomial.polynomial.Polynomial attribute)

 	wrapper

Y

 	

 	yellow_text() (in module numpy.distutils.misc_util)

Z

 	

 	zeros (in module numpy.ma)

 	zeros() (in module numpy)

 	

 	(in module numpy.matlib)

 	zeros_like() (in module numpy)

 	

 	zfill() (in module numpy.core.defchararray)

 	

 	(numpy.chararray method)

 	(numpy.core.defchararray.chararray method)

 	zipf() (in module numpy.random)

 	

 	(numpy.random.RandomState method)

 Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

 _images/math/679bc177e1e9a9e01781bb860c956dc85d798b15.png

_images/math/6743bc74d241f8b198daf8f5bb91a4f3f1fbabca.png

_images/math/691486d570dda0e8767db836ebcd4265f8733eda.png
2_c &2

2 ik * Ti(w) * Ty
() * Te(
T =)

p(z.v.

_images/math/62494ad46772c68b86d00123a1ea8f195a7864b2.png

reference/generated/numpy.ma.MaskType.transpose.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.transpose

		
MaskType.transpose()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/6504cf0a1ed380c6b82ca483201dec95f988924e.png

reference/generated/numpy.ma.MaskType.var.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.var

		
MaskType.var()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/630d2570173a6a9060edf98c1ea082e60b502e53.png
e

reference/generated/numpy.ma.MaskType.view.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.view

		
MaskType.view()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/656cd9592a3e4397ccf4f46857bd62c70f4834c0.png

_images/math/6560e69a1c35eb96c2addf52b0a1355a36dbf412.png

_images/math/667adf08b7d956c97ccf367027e76661c41c82ea.png

_images/math/660a063160ffc7db13baf8d480997366418094f8.png

_images/math/72fd1fb9acb012efda310c76f34f50bd3cf0307d.png

_images/math/7156f0fdc4742da88ae15c8c6551071544f8e93c.png

_images/math/69be2f8726da824fdb2fb37986d0536d74d58fe6.png
= §c.“ * Hi(a) = Hi(b) * Hi(c)

pla,b,

_images/math/697694bd1a87bde4fb9d9afc912f5f9a0272891a.png

_images/math/6d7501eb486456159a55b1c3f0329042968f7e9a.png

_images/math/6a2d6718ba45aae0eec845b2aac60cb423061a8f.png

_images/math/6ed044266841f5e2805f63a34712a3d3a4b2a812.png
2
2k * Hei(z) H
cjy) * Hej
*(2)

p(z.v.

_images/math/6e838b52d1729b70e5a719aa3e2f5392b55175d7.png

_images/math/6f983879b9d7e8d007b128495c10ab1ec9c63a6d.png
P(k)

_images/math/6f934962f47c175bb1b31a072ab335627a23d448.png

_images/math/7321e712e2b80bb4b00be0d9faaa525e3f53cde4.png

_images/math/7cd8b54c3097c3343ae058f6be2e7e8888f8cff8.png

_images/math/755b662e28ab45da3b0db9e8eb73eda7f63c73c9.png
p(x) =) _clil* 2"

_images/math/73f95067c18b006b60298696af153e54eca1f74c.png
P —(z-u)s

P(x)=

_images/math/7684e2e27ec39e9a8cdc8f40b7b668cfa06f8dd6.png
@xv)ln) = 3 almlvln - m]

_images/math/759203e0442d2540d2f155ea661b247bf79f0aa2.png

_images/math/77b2a5fe4f2c5af0a410542f722e6bf7c45b0e50.png
J-th

_images/math/7761771d272672427583c64d7ff02b3076bff97d.png
D¢
ik * Lix) * L,
i(y) = L
(@)

r

p(z.v.

_images/math/7bbf325e108c6f29b5e02379c54fd021437e3ac8.png

_images/math/786dd9fc03007674d0c145849e70df75ef56d8a4.png
(22 + 10x — 2) — (3z° + 10z — 4

(—x° + 2)

reference/generated/numpy.ma.MaskType.imag.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.imag

		
MaskType.imag

		imaginary part of scalar

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/3e125ffecb04217922f4cb0a04367165ebf64864.png
l
E=Ylpx;) -yl

reference/generated/numpy.ma.MaskType.item.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.item

		
MaskType.item()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/3df3720a46a79c496081a412443b924e4cf5b428.png

reference/generated/numpy.ma.MaskType.itemset.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.itemset

		
MaskType.itemset()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/3e54a43d301156e5d4c71016622f0f0f5b7adad4.png
pla,b) =) cij= Hi(a) x Hj(b)

o

reference/generated/numpy.ma.MaskType.itemsize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.itemsize

		
MaskType.itemsize

		length of one element in bytes

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/3e212c37c0b7715677a4d6378e23ea2f65560ac7.png
:']ZAM *Ti(a) « Ti(b) T(c)

pla,b,

reference/generated/numpy.ma.MaskType.max.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.max

		
MaskType.max()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/3f2a71db45790dbdb24a511e627ac8ad8168fd26.png
wy =c/(H (ry) * Hy_1(xk))

reference/generated/numpy.ma.MaskType.mean.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.mean

		
MaskType.mean()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/3eb913a18be9465256048200c180b1c8966d561f.png

reference/generated/numpy.ma.MaskType.min.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.min

		
MaskType.min()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.nbytes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.nbytes

		
MaskType.nbytes

		length of item in bytes

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/3f9785213b4a3eb3e0cc6ba20761b0a8b282a9ac.png
p(z) =) cli « Hi(z)

_images/math/3d0410be6e602bf046ca36ab88760c75c379f302.png

reference/generated/numpy.ma.MaskType.getfield.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.getfield

		
MaskType.getfield()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/3d9f0f318848197effbea2131f2f22fb3e8836a4.png

_images/math/3d1c0efd6604439c72fc4843af1dacf22845ee28.png
p(z.v.
W3 =2
']AojA*H.(z)tH
() * Hi
i(2)

reference/generated/numpy.ma.MaskType.prod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.prod

		
MaskType.prod()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.degree.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.degree

		
Chebyshev.degree()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L463]

		The degree of the series.

New in version 1.5.0.

		Returns:		degree : int

Degree of the series, one less than the number of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/46358d504324b83aa8533931eb6286eb8b65563e.png
ot

ity
s a0 = [o

Pty

reference/generated/numpy.ma.MaskType.ptp.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.ptp

		
MaskType.ptp()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.deriv.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.deriv

		
Chebyshev.deriv(m=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L655]

		Differentiate.

Return a series instance of that is the derivative of the current
series.

		Parameters:		m : non-negative int

The number of integrations to perform.

		Returns:		new_series : series

A new series representing the derivative. The domain is the same
as the domain of the differentiated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/44092c8309912b014df997830ba76675b2ef7332.png

reference/generated/numpy.ma.MaskType.put.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.put

		
MaskType.put()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.domain.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.chebyshev.Chebyshev.domain

		
Chebyshev.domain = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/471f61264a5c59a0a2a86a5628e354d5642f9a3f.png

reference/generated/numpy.ma.MaskType.ravel.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.ravel

		
MaskType.ravel()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/46537584c86a941bbd93041667d8860347d3ba15.png

reference/generated/numpy.ma.MaskType.real.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.real

		
MaskType.real

		real part of scalar

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/4c062e7a23e76e4d2667da92fd0146485cabf899.png

reference/generated/numpy.ma.MaskType.repeat.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.repeat

		
MaskType.repeat()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/47e8dd462a4e8572401586ac4e8cdbd2766ac8d1.png
i+

reference/generated/numpy.ma.MaskType.reshape.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.reshape

		
MaskType.reshape()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.basis.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.basis

		
classmethod Chebyshev.basis(deg, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L883]

		Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

		Parameters:		deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series with the coefficient of the deg term set to one and
all others zero.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.cast.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.cast

		
classmethod Chebyshev.cast(series, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L922]

		Convert series to series of this class.

The series is expected to be an instance of some polynomial
series of one of the types supported by by the numpy.polynomial
module, but could be some other class that supports the convert
method.

New in version 1.7.0.

		Parameters:		series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series of the same kind as the calling class and equal to
series when evaluated.

See also

		convert

		similar instance method

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/428fb1d74f9399a642115aa11d8ad0c853df2b98.png

reference/generated/numpy.ma.MaskType.ndim.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.ndim

		
MaskType.ndim

		number of array dimensions

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.convert.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.convert

		
Chebyshev.convert(domain=None, kind=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L553]

		Convert series to a different kind and/or domain and/or window.

		Parameters:		domain : array_like, optional

The domain of the converted series. If the value is None,
the default domain of kind is used.

kind : class, optional

The polynomial series type class to which the current instance
should be converted. If kind is None, then the class of the
current instance is used.

window : array_like, optional

The window of the converted series. If the value is None,
the default window of kind is used.

		Returns:		new_series : series

The returned class can be of different type than the current
instance and/or have a different domain and/or different
window.

Notes

Conversion between domains and class types can result in
numerically ill defined series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/4204552f1f6533576c2b1ec914f4abf1cdaeddcd.png

reference/generated/numpy.ma.MaskType.newbyteorder.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.newbyteorder

		
MaskType.newbyteorder(new_order='S')

		Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:

		{‘<’, ‘L’} - little endian

		{‘>’, ‘B’} - big endian

		{‘=’, ‘N’} - native order

		‘S’ - swap dtype from current to opposite endian

		{‘|’, ‘I’} - ignore (no change to byte order)

		Parameters:		new_order : str, optional

Byte order to force; a value from the byte order specifications
above. The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

		Returns:		new_dtype : dtype

New dtype object with the given change to the byte order.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.copy.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.copy

		
Chebyshev.copy()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L452]

		Return a copy.

		Returns:		new_series : series

Copy of self.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/4408f02d0076f683dfce9a229bdf4b06510b9674.png

reference/generated/numpy.ma.MaskType.nonzero.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.nonzero

		
MaskType.nonzero()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.cutdeg.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.cutdeg

		
Chebyshev.cutdeg(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L476]

		Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the
high order terms. If deg is greater than the current degree a
copy of the current series is returned. This can be useful in least
squares where the coefficients of the high degree terms may be very
small.

New in version 1.5.0.

		Parameters:		deg : non-negative int

The series is reduced to degree deg by discarding the high
order terms. The value of deg must be a non-negative integer.

		Returns:		new_series : series

New instance of series with reduced degree.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/43509cf81e2686a12a6296cb15db9f9220c409c1.png

reference/generated/numpy.ma.MaskType.setflags.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.setflags

		
MaskType.setflags()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5207fbc5c81de717782578cb4156d60d83c10a94.png
|1, 19, ..V |

reference/generated/numpy.ma.MaskType.shape.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.shape

		
MaskType.shape

		tuple of array dimensions

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/516f140f378b591b0bfffabb1ae75aef1a4e52ac.png

reference/generated/numpy.ma.MaskType.size.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.size

		
MaskType.size

		number of elements in the gentype

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/54b2f7ac367863da6ef0576f2204b6a4a85fe0dc.png
plx.y) =) cij=Ti(z)* T(y)

o

reference/generated/numpy.ma.MaskType.sort.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.sort

		
MaskType.sort()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5281327b77217c7529bc5c19e3fb3e8ed4dba989.png

reference/generated/numpy.ma.MaskType.squeeze.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.squeeze

		
MaskType.squeeze()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.std.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.std

		
MaskType.std()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/55e2912fdc1638596e19ae6361f2d2db30450efc.png
(ng, ny, ..., ny 1)

_images/math/4c695080debf26a6fc00ab35c5be79a1f03ce944.png

reference/generated/numpy.ma.MaskType.resize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.resize

		
MaskType.resize()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/4f8a204ae7e3bbb316bd64c2f5eb442e02520942.png

reference/generated/numpy.ma.MaskType.round.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.round

		
MaskType.round()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/4eb155e91e0cd74d0e76874e46314e8c6ae17d8b.png

reference/generated/numpy.ma.MaskType.searchsorted.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.searchsorted

		
MaskType.searchsorted()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5153e8664f9d327d346b0e55f4533ffcc82c96bc.png

reference/generated/numpy.ma.MaskType.setfield.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.setfield

		
MaskType.setfield()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/4fc2fc29911b6a4f05960ce0c1107face9f9790b.png
a?),M/u)/z
df

reference/generated/numpy.ma.MaskType.tobytes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.tobytes

		
MaskType.tobytes()

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5ec22f996a86d46f8a3be3d6f3167a1a3a258ab1.png
a1
et

M(x) /

reference/generated/numpy.ma.MaskType.tofile.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.tofile

		
MaskType.tofile()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5e4b84ea77a6121fafcbd1b2c65645cdf237d193.png
X = M-=In(U))V

reference/generated/numpy.ma.MaskType.tolist.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.tolist

		
MaskType.tolist()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/60fce0046242b8181cfabc4a0a674e375bc98193.png

reference/generated/numpy.ma.MaskType.tostring.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.tostring

		
MaskType.tostring()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5eccfce49af55eacd5ac77815cba6d2e40c43936.png

reference/generated/numpy.ma.MaskType.trace.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.trace

		
MaskType.trace()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/598e08c6293302c84bc852903d7b54c9462d041e.png
o,
(1—t)*at

reference/generated/numpy.ma.MaskType.strides.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.strides

		
MaskType.strides

		tuple of bytes steps in each dimension

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5929421e3ae3797513f769f715fc8fb7dbe0c104.png

reference/generated/numpy.ma.MaskType.sum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.sum

		
MaskType.sum()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5c8d50eedb78f47fa1c946e1a91bd06238f06ea1.png

reference/generated/numpy.ma.MaskType.swapaxes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.swapaxes

		
MaskType.swapaxes()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5a79068e7cb8b4f52d93a4502fc37e8fa106d62f.png

reference/generated/numpy.ma.MaskType.T.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.T

		
MaskType.T

		transpose

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5e127c8b3220e24da5a3dc9bfcb5d64ca53cb594.png

reference/generated/numpy.ma.MaskType.take.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.take

		
MaskType.take()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/5d7ec70ed2ef7b9456b4b7a73686f2369fbb7071.png
n; < U

reference/generated/numpy.polynomial.chebyshev.Chebyshev.fit.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.fit

		
classmethod Chebyshev.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L724]

		Least squares fit to data.

Return a series instance that is the least squares fit to the data
y sampled at x. The domain of the returned instance can be
specified and this will often result in a superior fit with less
chance of ill conditioning.

		Parameters:		x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If
[] the class domain is used. The default value was the
class domain in NumPy 1.4 and None in later versions.
The [] option was added in numpy 1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller
than this relative to the largest singular value will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most
cases.

full : bool, optional

Switch determining nature of return value. When it is False
(the default) just the coefficients are returned, when True
diagnostic information from the singular value decomposition is
also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is
None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default
value is the default class domain

New in version 1.6.0.

		Returns:		new_series : series

A series that represents the least squares fit to the data and
has the domain specified in the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.fromroots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.fromroots

		
classmethod Chebyshev.fromroots(roots, domain=[], window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L809]

		Return series instance that has the specified roots.

Returns a series representing the product
(x - r[0])*(x - r[1])*...*(x - r[n-1]), where r is a
list of roots.

		Parameters:		roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the
domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is
used. The default is None.

		Returns:		new_series : series

Series with the specified roots.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.has_samecoef.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.has_samecoef

		
Chebyshev.has_samecoef(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L133]

		Check if coefficients match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the coef attribute.

		Returns:		bool : boolean

True if the coefficients are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.has_samedomain.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.has_samedomain

		
Chebyshev.has_samedomain(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L156]

		Check if domains match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the domain attribute.

		Returns:		bool : boolean

True if the domains are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.has_sametype.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.has_sametype

		
Chebyshev.has_sametype(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L192]

		Check if types match.

New in version 1.7.0.

		Parameters:		other : object

Class instance.

		Returns:		bool : boolean

True if other is same class as self

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.has_samewindow.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.has_samewindow

		
Chebyshev.has_samewindow(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L174]

		Check if windows match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the window attribute.

		Returns:		bool : boolean

True if the windows are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.identity.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.identity

		
classmethod Chebyshev.identity(domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L850]

		Identity function.

If p is the returned series, then p(x) == x for all
values of x.

		Parameters:		domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

Series of representing the identity.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.integ.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.integ

		
Chebyshev.integ(m=1, k=[], lbnd=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L622]

		Integrate.

Return a series instance that is the definite integral of the
current series.

		Parameters:		m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the
first integration, the second to the second, and so on. The
list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

		Returns:		new_series : series

A new series representing the integral. The domain is the same
as the domain of the integrated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.linspace.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.linspace

		
Chebyshev.linspace(n=100, domain=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L692]

		Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the
domain. Here y is the value of the polynomial at the points x. By
default the domain is the same as that of the series instance.
This method is intended mostly as a plotting aid.

New in version 1.5.0.

		Parameters:		n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end].
The default is None which case the class domain is used.

		Returns:		x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and
y is the series evaluated at element of x.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.mapparms.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.mapparms

		
Chebyshev.mapparms()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L593]

		Return the mapping parameters.

The returned values define a linear map off + scl*x that is
applied to the input arguments before the series is evaluated. The
map depends on the domain and window; if the current
domain is equal to the window the resulting map is the
identity. If the coefficients of the series instance are to be
used by themselves outside this class, then the linear function
must be substituted for the x in the standard representation of
the base polynomials.

		Returns:		off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window
is [l2, r2], then the linear mapping function L is
defined by the equations:

L(l1) = l2
L(r1) = r2

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.maxpower.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.chebyshev.Chebyshev.maxpower

		
Chebyshev.maxpower = 100

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.nickname.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.chebyshev.Chebyshev.nickname

		
Chebyshev.nickname = 'cheb'

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.roots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.roots

		
Chebyshev.roots()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L677]

		Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the
roots decrease the further outside the domain they lie.

		Returns:		roots : ndarray

Array containing the roots of the series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.trim.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.trim

		
Chebyshev.trim(tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L501]

		Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose
absolute value greater than tol or the beginning of the series is
reached. If all the coefficients would be removed the series is set
to [0]. A new series instance is returned with the new
coefficients. The current instance remains unchanged.

		Parameters:		tol : non-negative number.

All trailing coefficients less than tol will be removed.

		Returns:		new_series : series

Contains the new set of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.truncate.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.truncate

		
Chebyshev.truncate(size)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L524]

		Truncate series to length size.

Reduce the series to length size by discarding the high
degree terms. The value of size must be a positive integer. This
can be useful in least squares where the coefficients of the
high degree terms may be very small.

		Parameters:		size : positive int

The series is reduced to length size by discarding the high
degree terms. The value of size must be a positive integer.

		Returns:		new_series : series

New instance of series with truncated coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.trace.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.trace

		
chararray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

		Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

		numpy.trace

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.var.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.var

		
chararray.var(axis=None, dtype=None, out=None, ddof=0)

		Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

		numpy.var

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.tobytes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.tobytes

		
chararray.tobytes(order='C')

		Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

New in version 1.9.0.

		Parameters:		order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

		Returns:		s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.sum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.sum

		
chararray.sum(axis=None, dtype=None, out=None)

		Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

		numpy.sum

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.std.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.std

		
chararray.std(axis=None, dtype=None, out=None, ddof=0)

		Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

		numpy.std

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/819519d114efc5fe188fba1bb3767e2679f68389.png

_images/math/80d946d264da07ced63cec416cea50a716739db4.png

_images/math/820575a3248a951f90af909f7c19f0c30d7679d6.png

reference/generated/numpy.core.defchararray.chararray.newbyteorder.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.newbyteorder

		
chararray.newbyteorder(new_order='S')

		Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

		Parameters:		new_order : string, optional

Byte order to force; a value from the byte order specifications
above. new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

		Returns:		new_arr : array

New array object with the dtype reflecting given change to the
byte order.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.prod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.prod

		
chararray.prod(axis=None, dtype=None, out=None)

		Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

		numpy.prod

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.partition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.partition

		
chararray.partition(sep)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2247]

		Partition each element in self around sep.

See also

partition

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/836bea12aabbc1e64e6f47057cca0e30e76968ec.png

_images/math/82c9f0e379754cdc10866a6f2cd453b7624c1056.png

reference/generated/numpy.core.defchararray.chararray.mean.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.mean

		
chararray.mean(axis=None, dtype=None, out=None)

		Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

		numpy.mean

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/85a60abbb0de95e06cfa9133d6356870c68d1dc4.png
49N-1 _

reference/generated/numpy.core.defchararray.chararray.max.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.max

		
chararray.max(axis=None, out=None)

		Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

		numpy.amax

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/83890c7a291b819b9b7010c378d4b04ca83b7360.png
p(z) =) _cli] + (=)

_images/math/88be3c037e50cbf5b5a76a02b7692e38d53c5064.png
p(z) =) cli] * Hei(x),

reference/generated/numpy.core.defchararray.chararray.min.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.min

		
chararray.min(axis=None, out=None)

		Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

		numpy.amin

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/862e4f6aea189d29854606d9c6596981cdebae3c.png

_images/math/8a927953157641e1a0e422de6ed62c3dd142c3ab.png
AThH

_images/math/892e752a6a260888cd8b3e4bb879c46d2880e359.png
pla.b) =) cijxa =V’
—

_images/math/8b937e7aecfd521fc14728f2eb21761db778fbbd.png

_images/math/8b6ef2b164339550990ba09fa5314d2d8e3c9daf.png

_images/math/8dd7e8aa7b9368772bf158411f5c32bfc2b57e3f.png

_images/math/8d14fb48024fc0aaeed58a8b7e012bf142402c41.png
1+

[r1, 9, ..xy]

_images/math/8f36430327e350fd5583002c178ca1949d485b21.png

_images/math/8f1fda8b758f62bab8920b303c33c2021ffaab1e.png

_images/math/93185e65576cafdf1d84242e01b880fef7a7a4d6.png

_images/math/9136b99c43faf05e04af34b43b87b2ff141b4c01.png
|AllF = [, ; abs(a; ;)*]'/?

reference/generated/numpy.core.defchararray.chararray.itemset.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.itemset

		
chararray.itemset(*args)

		Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

		Parameters:		*args : Arguments

If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/94c23c4f5ee5cb6a93ccd6ac8be500e000d2bbd8.png
E =) wi=lyi—p@)l,
-

_images/math/93af1f49bf6bbf05f549f49609becdb5f7039538.png

_images/math/8c182732b52e67b666e79da385165552d44fa68a.png
flziab) = IS
B(T “1-)",

_images/math/9580ff45e1de59ac41ec290ba717ba1e7d110f3c.png

reference/generated/numpy.core.defchararray.chararray.rpartition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.rpartition

		
chararray.rpartition(sep)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2306]

		Partition each element in self around sep.

See also

rpartition

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/991aa4b1f8dc7e87dc834a2b161a376e1b0d1e7e.png

reference/generated/numpy.core.defchararray.chararray.round.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.round

		
chararray.round(decimals=0, out=None)

		Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

		numpy.around

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/96c776a93fb59bb1d209e56851970258942c7b09.png

_images/math/9c40d8f4d851598074686c7f6db5eb6e8f3b10d2.png
A(a=L)l/a

_images/math/99faa10294b7b980a90fa78879d64df117fd0f3c.png

_images/math/9fb51b97133b32727dc325327036e3ea59075680.png

_images/math/9c50c28fe3f3d205af9ebf16fb3dedc3f84f4480.png
1
P(z;0,7) = AT EE

_images/math/9fed4bdf69e096e1239bd758fe79e8076f28d793.png

_images/math/9fc4b3e3c4da54352a8f4698afb620f73040dade.png
r=3m/2

_images/math/96c3428c856c9a2853987de5fe5618a45f7f3c00.png
ereoslz—u}
rlo(k) |

plx) =

_images/math/9655d43328526b2b7a337dba3e45750ed2a448e6.png

_images/math/a5fb52153321429a5267e5ca4acbed9a4501a412.png
2(Minputs + Moutputs)

reference/generated/numpy.core.defchararray.chararray.ptp.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.ptp

		
chararray.ptp(axis=None, out=None)

		Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

		numpy.ptp

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/a534a20441b7c41be0db61c7064adfe7370ac272.png

_images/math/a622397ef333b372450be79d7df9d019252e5e7b.png

_images/math/a60052665b1eac8b664a1ae6d9395449f1fa5284.png

_images/math/a79117703ed2daf9b2f39a44c1b4e69805d74a41.png

_images/math/a6345e315fb341b8e67520f432c92fd4fdf86262.png

_images/math/a904d5c880a6dcd03e7281f5cc55a2f1b5d03d27.png
pla,b) = p_cij+ Ti(a) + T;(b),

o

_images/math/a071ba5dd8727c3d4fc6922edb66f42afea17c4d.png

_images/math/a40a8b09fdcfba128e7e1e8b9cb2e2f5aacf1d73.png

_images/math/a1ecd80fb91f6e4a72d30663702d279822af8ca4.png
coshb+i1smmb

reference/generated/numpy.polynomial.chebyshev.Chebyshev.window.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.chebyshev.Chebyshev.window

		
Chebyshev.window = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.chebyshev.Chebyshev.__call__.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Chebyshev Module (numpy.polynomial.chebyshev) »

 		numpy.polynomial.chebyshev.Chebyshev »

numpy.polynomial.chebyshev.Chebyshev.__call__

		
Chebyshev.__call__(arg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L290]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.basis.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.basis

		
classmethod Hermite.basis(deg, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L883]

		Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

		Parameters:		deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series with the coefficient of the deg term set to one and
all others zero.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.cast.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.cast

		
classmethod Hermite.cast(series, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L922]

		Convert series to series of this class.

The series is expected to be an instance of some polynomial
series of one of the types supported by by the numpy.polynomial
module, but could be some other class that supports the convert
method.

New in version 1.7.0.

		Parameters:		series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series of the same kind as the calling class and equal to
series when evaluated.

See also

		convert

		similar instance method

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.convert.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.convert

		
Hermite.convert(domain=None, kind=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L553]

		Convert series to a different kind and/or domain and/or window.

		Parameters:		domain : array_like, optional

The domain of the converted series. If the value is None,
the default domain of kind is used.

kind : class, optional

The polynomial series type class to which the current instance
should be converted. If kind is None, then the class of the
current instance is used.

window : array_like, optional

The window of the converted series. If the value is None,
the default window of kind is used.

		Returns:		new_series : series

The returned class can be of different type than the current
instance and/or have a different domain and/or different
window.

Notes

Conversion between domains and class types can result in
numerically ill defined series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.copy.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.copy

		
Hermite.copy()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L452]

		Return a copy.

		Returns:		new_series : series

Copy of self.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.cutdeg.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.cutdeg

		
Hermite.cutdeg(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L476]

		Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the
high order terms. If deg is greater than the current degree a
copy of the current series is returned. This can be useful in least
squares where the coefficients of the high degree terms may be very
small.

New in version 1.5.0.

		Parameters:		deg : non-negative int

The series is reduced to degree deg by discarding the high
order terms. The value of deg must be a non-negative integer.

		Returns:		new_series : series

New instance of series with reduced degree.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.degree.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.degree

		
Hermite.degree()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L463]

		The degree of the series.

New in version 1.5.0.

		Returns:		degree : int

Degree of the series, one less than the number of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.deriv.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.deriv

		
Hermite.deriv(m=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L655]

		Differentiate.

Return a series instance of that is the derivative of the current
series.

		Parameters:		m : non-negative int

The number of integrations to perform.

		Returns:		new_series : series

A new series representing the derivative. The domain is the same
as the domain of the differentiated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.domain.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.hermite.Hermite.domain

		
Hermite.domain = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.fromroots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.fromroots

		
classmethod Hermite.fromroots(roots, domain=[], window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L809]

		Return series instance that has the specified roots.

Returns a series representing the product
(x - r[0])*(x - r[1])*...*(x - r[n-1]), where r is a
list of roots.

		Parameters:		roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the
domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is
used. The default is None.

		Returns:		new_series : series

Series with the specified roots.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.has_samecoef.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.has_samecoef

		
Hermite.has_samecoef(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L133]

		Check if coefficients match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the coef attribute.

		Returns:		bool : boolean

True if the coefficients are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.has_samedomain.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.has_samedomain

		
Hermite.has_samedomain(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L156]

		Check if domains match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the domain attribute.

		Returns:		bool : boolean

True if the domains are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.has_sametype.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.has_sametype

		
Hermite.has_sametype(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L192]

		Check if types match.

New in version 1.7.0.

		Parameters:		other : object

Class instance.

		Returns:		bool : boolean

True if other is same class as self

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.has_samewindow.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.has_samewindow

		
Hermite.has_samewindow(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L174]

		Check if windows match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the window attribute.

		Returns:		bool : boolean

True if the windows are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.identity.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.identity

		
classmethod Hermite.identity(domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L850]

		Identity function.

If p is the returned series, then p(x) == x for all
values of x.

		Parameters:		domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

Series of representing the identity.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.integ.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.integ

		
Hermite.integ(m=1, k=[], lbnd=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L622]

		Integrate.

Return a series instance that is the definite integral of the
current series.

		Parameters:		m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the
first integration, the second to the second, and so on. The
list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

		Returns:		new_series : series

A new series representing the integral. The domain is the same
as the domain of the integrated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.fit.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.fit

		
classmethod Hermite.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L724]

		Least squares fit to data.

Return a series instance that is the least squares fit to the data
y sampled at x. The domain of the returned instance can be
specified and this will often result in a superior fit with less
chance of ill conditioning.

		Parameters:		x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If
[] the class domain is used. The default value was the
class domain in NumPy 1.4 and None in later versions.
The [] option was added in numpy 1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller
than this relative to the largest singular value will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most
cases.

full : bool, optional

Switch determining nature of return value. When it is False
(the default) just the coefficients are returned, when True
diagnostic information from the singular value decomposition is
also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is
None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default
value is the default class domain

New in version 1.6.0.

		Returns:		new_series : series

A series that represents the least squares fit to the data and
has the domain specified in the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.linspace.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.linspace

		
Hermite.linspace(n=100, domain=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L692]

		Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the
domain. Here y is the value of the polynomial at the points x. By
default the domain is the same as that of the series instance.
This method is intended mostly as a plotting aid.

New in version 1.5.0.

		Parameters:		n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end].
The default is None which case the class domain is used.

		Returns:		x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and
y is the series evaluated at element of x.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.nickname.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.hermite.Hermite.nickname

		
Hermite.nickname = 'herm'

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/7e23a5c8039fd704053127ab284e8d44bc8ac0f9.png

reference/generated/numpy.polynomial.hermite.Hermite.roots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.roots

		
Hermite.roots()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L677]

		Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the
roots decrease the further outside the domain they lie.

		Returns:		roots : ndarray

Array containing the roots of the series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.trim.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.trim

		
Hermite.trim(tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L501]

		Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose
absolute value greater than tol or the beginning of the series is
reached. If all the coefficients would be removed the series is set
to [0]. A new series instance is returned with the new
coefficients. The current instance remains unchanged.

		Parameters:		tol : non-negative number.

All trailing coefficients less than tol will be removed.

		Returns:		new_series : series

Contains the new set of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/7effaa0673ea0ebcb95bb820f69a73e3fe584e53.png

reference/generated/numpy.polynomial.hermite.Hermite.truncate.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.truncate

		
Hermite.truncate(size)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L524]

		Truncate series to length size.

Reduce the series to length size by discarding the high
degree terms. The value of size must be a positive integer. This
can be useful in least squares where the coefficients of the
high degree terms may be very small.

		Parameters:		size : positive int

The series is reduced to length size by discarding the high
degree terms. The value of size must be a positive integer.

		Returns:		new_series : series

New instance of series with truncated coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/7eaa8cba4306ce878a6b13308ad882d6e706a645.png
plx.y) =) cij=Hi(z)* Hj(y)

o

reference/generated/numpy.polynomial.hermite.Hermite.window.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.hermite.Hermite.window

		
Hermite.window = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/8002a14dfa8d5544df2a972c6fa862705464d4fc.png

reference/generated/numpy.polynomial.hermite.Hermite.__call__.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.__call__

		
Hermite.__call__(arg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L290]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/7f1de15686fd0928019c705dee7e7af6ba070bd4.png

_images/math/80d50cc603c4f383fa1477e99e49b6526bf1ad9b.png
p(z) = (§)a4((z/»\)“

_images/math/8085c9bb05949f234d1c4312dac4d2b0e49d8d0b.png

reference/generated/numpy.polynomial.hermite.Hermite.mapparms.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Hermite Module, “Physicists’” (numpy.polynomial.hermite) »

 		numpy.polynomial.hermite.Hermite »

numpy.polynomial.hermite.Hermite.mapparms

		
Hermite.mapparms()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L593]

		Return the mapping parameters.

The returned values define a linear map off + scl*x that is
applied to the input arguments before the series is evaluated. The
map depends on the domain and window; if the current
domain is equal to the window the resulting map is the
identity. If the coefficients of the series instance are to be
used by themselves outside this class, then the linear function
must be substituted for the x in the standard representation of
the base polynomials.

		Returns:		off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window
is [l2, r2], then the linear mapping function L is
defined by the equations:

L(l1) = l2
L(r1) = r2

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite.Hermite.maxpower.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.hermite.Hermite.maxpower

		
Hermite.maxpower = 100

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ce29481448dcc47ec904767e71d98c82619f3d6a.png
U< n; < d;

_images/math/ce283e2289893317d6b437812aef57739bdedef2.png

_images/math/c8ff6dc362a9a07153582909d5a26898fae59569.png

_images/math/c7dcaad416050ac8a9433954404cb7c28e73be26.png

_images/math/ca709620f9788ebcdc00ce2fae435379687a3759.png

_images/math/c929f5ce07d91784b76935cac0256d2e20bc3d2e.png
range(N;)

reference/routines.oldnumeric.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

Old Numeric compatibility

The oldnumeric module was removed in Numpy 1.9.0.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/cbd5bf4758bd9b43dfef3dcbf87587b12f87c9df.png

_images/math/ca907ab79fe0188f51d0a5db04642f8042f779d5.png

_images/math/cd15eed20fa79ee66b7e4abe2a40d9b13ab0bfc4.png
2% deqg —

reference/routines.numarray.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

Numarray compatibility

The numarray module was removed in Numpy 1.9.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ccefd47a2c46e878bf0b6d71caf8e180307ef4cb.png

reference/generated/numpy.memmap.all.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.all

		
memmap.all(axis=None, out=None)

		Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

		numpy.all

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.any.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.any

		
memmap.any(axis=None, out=None)

		Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

		numpy.any

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.clip.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.clip

		
memmap.clip(a_min, a_max, out=None)

		Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

		numpy.clip

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.argmax.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.argmax

		
memmap.argmax(axis=None, out=None)

		Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

		numpy.argmax

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.argmin.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.argmin

		
memmap.argmin(axis=None, out=None)

		Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

		numpy.argmin

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.argpartition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.argpartition

		
memmap.argpartition(kth, axis=-1, kind='introselect', order=None)

		Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

		numpy.argpartition

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.argsort.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.argsort

		
memmap.argsort(axis=-1, kind='quicksort', order=None)

		Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

		numpy.argsort

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.astype.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.astype

		
memmap.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

		Copy of the array, cast to a specified type.

		Parameters:		dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

		‘no’ means the data types should not be cast at all.

		‘equiv’ means only byte-order changes are allowed.

		‘safe’ means only casts which can preserve values are allowed.

		‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

		‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

		Returns:		arr_t : ndarray

Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input paramter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

		Raises:		ComplexWarning

When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in ‘safe’ casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.base.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.base

		
memmap.base

		Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.byteswap.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.byteswap

		
memmap.byteswap(inplace)

		Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

		Parameters:		inplace : bool, optional

If True, swap bytes in-place, default is False.

		Returns:		out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.choose.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.choose

		
memmap.choose(choices, out=None, mode='raise')

		Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

		numpy.choose

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.compress.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.compress

		
memmap.compress(condition, axis=None, out=None)

		Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

		numpy.compress

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.conj.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.conj

		
memmap.conj()

		Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

		numpy.conjugate

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.conjugate.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.conjugate

		
memmap.conjugate()

		Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

		numpy.conjugate

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.copy.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.copy

		
memmap.copy(order='C')

		Return a copy of the array.

		Parameters:		order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.ctypes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.ctypes

		
memmap.ctypes

		An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

		Parameters:		None

		Returns:		c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

		data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

		shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

		strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

		data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

		shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

		strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.cumprod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.cumprod

		
memmap.cumprod(axis=None, dtype=None, out=None)

		Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

		numpy.cumprod

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.cumsum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.cumsum

		
memmap.cumsum(axis=None, dtype=None, out=None)

		Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

		numpy.cumsum

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.data.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.data

		
memmap.data

		Python buffer object pointing to the start of the array’s data.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.diagonal.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.diagonal

		
memmap.diagonal(offset=0, axis1=0, axis2=1)

		Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

		numpy.diagonal

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.dot.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.dot

		
memmap.dot(b, out=None)

		Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

		numpy.dot

		equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ad6d5400fce43a299a35b53a9661e54a284f1bad.png
Tr =+

_images/math/ad47d4d26a8cfe688df179057f5d78452296ad5b.png

_images/math/af3121546e330b56043e3c62262a23a4438ab65c.png
p(x)

= ((a)’

_images/math/ae410da349d05c4fb338df88cd9a205e562e4701.png

_images/math/afc908bfae697d204e08175b8bd0631c579c417e.png
oY
00+ et T T U T e

_images/math/af66ae03768d95d441cd1f37a0692f006344742c.png

_images/math/ab9ad2046bf25e4314d8b9c776ce53ba867dbd88.png
Au

Mota-t

> Zamexp{ zn(

mk
M

_images/math/a969f4cf6591cb400dba3614203089a627a49d5c.png

_images/math/ac94771d4e4116554201756243b9bf6fa9255371.png
wy =c/ (L (xk) * Lp_1(xk))

_images/math/ac6bc89219971cdae7996125804a02abc36a2438.png

reference/routines-polynomials-classes-2.png
400
300
200
100

~100
200
300

—a00

20

s

ET)

00

05

10

5

20

reference/routines-polynomials-classes-3.png
10

05

00

10

15

reference/routines-polynomials-classes-1.png
10

05

00

10
10

00

05

1o

_images/math/b86b4320b7fbbf2081b05c648c0468212092d555.png

_images/math/b691758bcc38e8ad34bfc32210ced3b900abd86f.png

_images/math/b922823f9f043ca3f4715b7602b5a3ee895241c3.png
pla.b,c)
2_cijkxd
2 BT

_images/math/b8e896b28c5e8e5906da9a926bb2083c4b59ff9f.png

_images/math/b9fdac2f43d1f178c590d808c23998dbb268b258.png
p(z.y) =) cij* Hei(z) = Hej(y)

o

_images/math/b0ccf1f8103de8aa42a1451b351f2fd1e2ae7108.png

_images/math/b1f5ca5a538abe6036ed478902bb5a03ef05f0c2.png

_images/math/b13515179d1379173b752dd278c816749aa58e5a.png

_images/math/b5f1a274501e678e222092e002f8754e947ce40d.png
p(z) = 3 cili(x)
o

_images/math/b32ba51d4738b85a7ac0d0fe922eabe016b9967b.png
32° + 5x+2
% = L5z + 175, remainder0.25
™

_images/math/bfbd957da16a86a9a5e686c5ce7c57c317c9f79d.png
1

_images/math/bf918a18b414f130634877423f80442335e74d5e.png

_images/math/c02a1f70d6cae9782d0235642763960eafac6d67.png

_images/math/c00a5965bda71daf2fca8ebbde7f3ce2ad905250.png

_images/math/bb1f6d132d0ad4542e8b3151bcb56de2246f1291.png

_images/math/ba61f05aa6c753e0816b3cbff7063f9a6728d4a7.png
At

QX
Q;

_images/math/bccbd580cb5c67a7ada48cc2f05b748560d81fdb.png

_images/math/bb6e1902efeb0b3704c6191ddce1f02707ab7d4b.png

_images/math/be32173d19a20fbde91c9a5c832b34034b42e237.png
= §c.]A * Hei(a) « He;j(b) = Hex(c)

pla,b,

_images/math/bd8507d40515f1544246d62e9e7d5a66f8b5f819.png
v, U1, U

_images/math/c65125e01c5bde86f99d5bd8480c3f9138e64531.png

_images/math/c5d4f91a81ba0aabee97b44d2fe76959bedcd12e.png

_images/math/c7201dfb8acbb9adb5fc06d19acb1604d16472f5.png

_images/math/c36fb0deb8a7c7db4c8b8ff4dfad03e40150c756.png
AT

_images/math/c3b8b3b6c1acc9da5c8e6e79430e60de668b064e.png

_images/math/c375e8b96fc69dad77ee104906be2a9df776ad66.png

_images/math/c41c0833b6729dc530ec01afec55a667221a56ff.png
(212

_images/math/c3c8d7517be66786e0112ecf67911ec0fd915350.png

_images/math/c5b47cd114d1cd218d587260b667ed59b7ace4a0.png

_images/math/c53a95e8e3df4adf767fb26bd1f054691bf92769.png

reference/generated/numpy.core.defchararray.chararray.diagonal.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.diagonal

		
chararray.diagonal(offset=0, axis1=0, axis2=1)

		Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

		numpy.diagonal

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.dot.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.dot

		
chararray.dot(b, out=None)

		Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

		numpy.dot

		equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.clip.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.clip

		
chararray.clip(a_min, a_max, out=None)

		Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

		numpy.clip

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.choose.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.choose

		
chararray.choose(choices, out=None, mode='raise')

		Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

		numpy.choose

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.conj.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.conj

		
chararray.conj()

		Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

		numpy.conjugate

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.compress.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.compress

		
chararray.compress(condition, axis=None, out=None)

		Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

		numpy.compress

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.basis.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.basis

		
classmethod HermiteE.basis(deg, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L883]

		Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

		Parameters:		deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series with the coefficient of the deg term set to one and
all others zero.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.cast.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.cast

		
classmethod HermiteE.cast(series, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L922]

		Convert series to series of this class.

The series is expected to be an instance of some polynomial
series of one of the types supported by by the numpy.polynomial
module, but could be some other class that supports the convert
method.

New in version 1.7.0.

		Parameters:		series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series of the same kind as the calling class and equal to
series when evaluated.

See also

		convert

		similar instance method

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.conjugate.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.conjugate

		
chararray.conjugate()

		Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

		numpy.conjugate

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.convert.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.convert

		
HermiteE.convert(domain=None, kind=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L553]

		Convert series to a different kind and/or domain and/or window.

		Parameters:		domain : array_like, optional

The domain of the converted series. If the value is None,
the default domain of kind is used.

kind : class, optional

The polynomial series type class to which the current instance
should be converted. If kind is None, then the class of the
current instance is used.

window : array_like, optional

The window of the converted series. If the value is None,
the default window of kind is used.

		Returns:		new_series : series

The returned class can be of different type than the current
instance and/or have a different domain and/or different
window.

Notes

Conversion between domains and class types can result in
numerically ill defined series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.copy.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.copy

		
HermiteE.copy()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L452]

		Return a copy.

		Returns:		new_series : series

Copy of self.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.cutdeg.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.cutdeg

		
HermiteE.cutdeg(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L476]

		Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the
high order terms. If deg is greater than the current degree a
copy of the current series is returned. This can be useful in least
squares where the coefficients of the high degree terms may be very
small.

New in version 1.5.0.

		Parameters:		deg : non-negative int

The series is reduced to degree deg by discarding the high
order terms. The value of deg must be a non-negative integer.

		Returns:		new_series : series

New instance of series with reduced degree.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.cumsum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.cumsum

		
chararray.cumsum(axis=None, dtype=None, out=None)

		Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

		numpy.cumsum

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.cumprod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.cumprod

		
chararray.cumprod(axis=None, dtype=None, out=None)

		Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

		numpy.cumprod

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.center.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.center

		
chararray.center(width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2017]

		Return a copy of self with its elements centered in a
string of length width.

See also

center

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.degree.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.degree

		
HermiteE.degree()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L463]

		The degree of the series.

New in version 1.5.0.

		Returns:		degree : int

Degree of the series, one less than the number of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.deriv.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.deriv

		
HermiteE.deriv(m=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L655]

		Differentiate.

Return a series instance of that is the derivative of the current
series.

		Parameters:		m : non-negative int

The number of integrations to perform.

		Returns:		new_series : series

A new series representing the derivative. The domain is the same
as the domain of the differentiated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.domain.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.hermite_e.HermiteE.domain

		
HermiteE.domain = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.fit.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.fit

		
classmethod HermiteE.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L724]

		Least squares fit to data.

Return a series instance that is the least squares fit to the data
y sampled at x. The domain of the returned instance can be
specified and this will often result in a superior fit with less
chance of ill conditioning.

		Parameters:		x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If
[] the class domain is used. The default value was the
class domain in NumPy 1.4 and None in later versions.
The [] option was added in numpy 1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller
than this relative to the largest singular value will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most
cases.

full : bool, optional

Switch determining nature of return value. When it is False
(the default) just the coefficients are returned, when True
diagnostic information from the singular value decomposition is
also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is
None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default
value is the default class domain

New in version 1.6.0.

		Returns:		new_series : series

A series that represents the least squares fit to the data and
has the domain specified in the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.fromroots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.fromroots

		
classmethod HermiteE.fromroots(roots, domain=[], window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L809]

		Return series instance that has the specified roots.

Returns a series representing the product
(x - r[0])*(x - r[1])*...*(x - r[n-1]), where r is a
list of roots.

		Parameters:		roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the
domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is
used. The default is None.

		Returns:		new_series : series

Series with the specified roots.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.has_samecoef.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.has_samecoef

		
HermiteE.has_samecoef(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L133]

		Check if coefficients match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the coef attribute.

		Returns:		bool : boolean

True if the coefficients are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.has_samedomain.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.has_samedomain

		
HermiteE.has_samedomain(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L156]

		Check if domains match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the domain attribute.

		Returns:		bool : boolean

True if the domains are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.has_sametype.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.has_sametype

		
HermiteE.has_sametype(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L192]

		Check if types match.

New in version 1.7.0.

		Parameters:		other : object

Class instance.

		Returns:		bool : boolean

True if other is same class as self

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.has_samewindow.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.has_samewindow

		
HermiteE.has_samewindow(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L174]

		Check if windows match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the window attribute.

		Returns:		bool : boolean

True if the windows are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.identity.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.identity

		
classmethod HermiteE.identity(domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L850]

		Identity function.

If p is the returned series, then p(x) == x for all
values of x.

		Parameters:		domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

Series of representing the identity.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.integ.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.integ

		
HermiteE.integ(m=1, k=[], lbnd=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L622]

		Integrate.

Return a series instance that is the definite integral of the
current series.

		Parameters:		m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the
first integration, the second to the second, and so on. The
list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

		Returns:		new_series : series

A new series representing the integral. The domain is the same
as the domain of the integrated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.linspace.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.linspace

		
HermiteE.linspace(n=100, domain=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L692]

		Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the
domain. Here y is the value of the polynomial at the points x. By
default the domain is the same as that of the series instance.
This method is intended mostly as a plotting aid.

New in version 1.5.0.

		Parameters:		n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end].
The default is None which case the class domain is used.

		Returns:		x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and
y is the series evaluated at element of x.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.mapparms.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.mapparms

		
HermiteE.mapparms()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L593]

		Return the mapping parameters.

The returned values define a linear map off + scl*x that is
applied to the input arguments before the series is evaluated. The
map depends on the domain and window; if the current
domain is equal to the window the resulting map is the
identity. If the coefficients of the series instance are to be
used by themselves outside this class, then the linear function
must be substituted for the x in the standard representation of
the base polynomials.

		Returns:		off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window
is [l2, r2], then the linear mapping function L is
defined by the equations:

L(l1) = l2
L(r1) = r2

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.maxpower.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.hermite_e.HermiteE.maxpower

		
HermiteE.maxpower = 100

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.nickname.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.hermite_e.HermiteE.nickname

		
HermiteE.nickname = 'herme'

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.roots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.roots

		
HermiteE.roots()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L677]

		Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the
roots decrease the further outside the domain they lie.

		Returns:		roots : ndarray

Array containing the roots of the series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.trim.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.trim

		
HermiteE.trim(tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L501]

		Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose
absolute value greater than tol or the beginning of the series is
reached. If all the coefficients would be removed the series is set
to [0]. A new series instance is returned with the new
coefficients. The current instance remains unchanged.

		Parameters:		tol : non-negative number.

All trailing coefficients less than tol will be removed.

		Returns:		new_series : series

Contains the new set of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.truncate.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.truncate

		
HermiteE.truncate(size)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L524]

		Truncate series to length size.

Reduce the series to length size by discarding the high
degree terms. The value of size must be a positive integer. This
can be useful in least squares where the coefficients of the
high degree terms may be very small.

		Parameters:		size : positive int

The series is reduced to length size by discarding the high
degree terms. The value of size must be a positive integer.

		Returns:		new_series : series

New instance of series with truncated coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.window.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.hermite_e.HermiteE.window

		
HermiteE.window = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.hermite_e.HermiteE.__call__.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		HermiteE Module, “Probabilists’” (numpy.polynomial.hermite_e) »

 		numpy.polynomial.hermite_e.HermiteE »

numpy.polynomial.hermite_e.HermiteE.__call__

		
HermiteE.__call__(arg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L290]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.var.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.var

		
chararray.var(axis=None, dtype=None, out=None, ddof=0)

		Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

		numpy.var

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.trace.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.trace

		
chararray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

		Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

		numpy.trace

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

search.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

index.html

 Navigation

 		
 index

 NumPy v1.9 Manual

 Welcome! This is
 the documentation for NumPy
 1.9.1, last updated Nov 30, 2014.

 Parts of the documentation:

 		
 Numpy User Guide

 start here

 Numpy Reference

 reference documentation

 F2Py Guide

 f2py documentation

 Numpy Developer Guide

 contributing to NumPy

 Indices and tables:

 		
 General Index

 all functions, classes, terms

 Glossary

 the most important terms explained

 		
 Search page

 search this documentation

 Complete Table of Contents

 lists all sections and subsections

 Meta information:

 		
 Reporting bugs

 About NumPy

 Numpy Enhancement Proposals

		
 Release Notes

 License of Numpy

 Acknowledgements

 Large parts of this manual originate from Travis E. Oliphant's book
 "Guide to Numpy" (which generously entered
 Public Domain in August 2008). The reference documentation for many of
 the functions are written by numerous contributors and developers of
 Numpy, both prior to and during the
 Numpy Documentation Marathon.

 The preferred way to update the documentation is by submitting a pull
 request on Github (see the
 Developer Guide.
 The Numpy Documentation Wiki
 can also still be used to submit documentation fixes.
 Please help us to further improve the Numpy documentation!

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.tobytes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.tobytes

		
chararray.tobytes(order='C')

		Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

New in version 1.9.0.

		Parameters:		order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

		Returns:		s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.sum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.sum

		
chararray.sum(axis=None, dtype=None, out=None)

		Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

		numpy.sum

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.any.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.any

		
chararray.any(axis=None, out=None)

		Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

		numpy.any

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.argmin.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.argmin

		
chararray.argmin(axis=None, out=None)

		Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

		numpy.argmin

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.argmax.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.argmax

		
chararray.argmax(axis=None, out=None)

		Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

		numpy.argmax

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.argsort.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.argsort

		
chararray.argsort(axis=-1, kind='quicksort', order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1984]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.argpartition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.argpartition

		
chararray.argpartition(kth, axis=-1, kind='introselect', order=None)

		Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

		numpy.argpartition

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.capitalize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.capitalize

		
chararray.capitalize()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2005]

		Return a copy of self with only the first character of each element
capitalized.

See also

char.capitalize

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.byteswap.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.byteswap

		
chararray.byteswap(inplace)

		Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

		Parameters:		inplace : bool, optional

If True, swap bytes in-place, default is False.

		Returns:		out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.core.defchararray.chararray.all.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.core.defchararray.chararray.all

		
chararray.all(axis=None, out=None)

		Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

		numpy.all

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e1c2036b297181c0e13bfe6ba86a1c33c37a77a5.png
Tk

_images/math/e1b4c161aa35bfc8dd13b2426893cd7409092c35.png

reference/generated/numpy.memmap.dtype.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.dtype

		
memmap.dtype

		Data-type of the array’s elements.

		Parameters:		None

		Returns:		d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e5a1f2330020fd6aed1d401cbd891cc6f31fdd75.png

reference/generated/numpy.memmap.dump.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.dump

		
memmap.dump(file)

		Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

		Parameters:		file : str

A string naming the dump file.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e58a2536cf795f5b9207a5eb03b9e21b4d42dc39.png
WD k-t o-apz
plx) = T

reference/generated/numpy.memmap.dumps.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.dumps

		
memmap.dumps()

		Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

		Parameters:		None

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e76342811b06d3703a2794f9744a8df6906f358f.png

reference/generated/numpy.chararray.newbyteorder.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.newbyteorder

		
chararray.newbyteorder(new_order='S')

		Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

		Parameters:		new_order : string, optional

Byte order to force; a value from the byte order specifications
above. new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

		Returns:		new_arr : array

New array object with the dtype reflecting given change to the
byte order.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.fill.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.fill

		
memmap.fill(value)

		Fill the array with a scalar value.

		Parameters:		value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e6c170635ca2703de256ca22be636c009ae8bf33.png

reference/generated/numpy.chararray.prod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.prod

		
chararray.prod(axis=None, dtype=None, out=None)

		Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

		numpy.prod

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.flags.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.flags

		
memmap.flags

		Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

		UPDATEIFCOPY can only be set False.

		ALIGNED can only be set True if the data is truly aligned.

		WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

		C_CONTIGUOUS (C)
		The data is in a single, C-style contiguous segment.

		F_CONTIGUOUS (F)
		The data is in a single, Fortran-style contiguous segment.

		OWNDATA (O)
		The array owns the memory it uses or borrows it from another object.

		WRITEABLE (W)
		The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

		ALIGNED (A)
		The data and all elements are aligned appropriately for the hardware.

		UPDATEIFCOPY (U)
		This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

		FNC
		F_CONTIGUOUS and not C_CONTIGUOUS.

		FORC
		F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

		BEHAVED (B)
		ALIGNED and WRITEABLE.

		CARRAY (CA)
		BEHAVED and C_CONTIGUOUS.

		FARRAY (FA)
		BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e84ac41da48293683e7736944c7b697b131a4dca.png
0]

k=
Jiopi.o
ilk]

reference/generated/numpy.chararray.partition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.partition

		
chararray.partition(sep)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2247]

		Partition each element in self around sep.

See also

partition

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.flat.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.flat

		
memmap.flat

		A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

		flatten

		Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e77607a19744406310c093481c802d45bc53f674.png

reference/generated/numpy.memmap.flatten.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.flatten

		
memmap.flatten(order='C')

		Return a copy of the array collapsed into one dimension.

		Parameters:		order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

		Returns:		y : ndarray

A copy of the input array, flattened to one dimension.

See also

		ravel

		Return a flattened array.

		flat

		A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e985856f5a67699b320fd6c1920efc5512a40bd7.png
HhEQ; =A

reference/generated/numpy.chararray.ptp.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.ptp

		
chararray.ptp(axis=None, out=None)

		Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

		numpy.ptp

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e8daa39af39b6c85f49ddd870efc40db5ba008c9.png
pr,y) =) cij* Lix) * Lj(y)

o

_images/math/e44617b3f45318515dc9b8be2551567c5de3f021.png

reference/generated/numpy.memmap.getfield.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.getfield

		
memmap.getfield(dtype, offset=0)

		Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

		Parameters:		dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e9a05a99f961e8f094b3869fcddd366857d7b0d9.png

reference/generated/numpy.chararray.min.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.min

		
chararray.min(axis=None, out=None)

		Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

		numpy.amin

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.mean.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.mean

		
chararray.mean(axis=None, dtype=None, out=None)

		Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

		numpy.mean

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.item.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.item

		
memmap.item(*args)

		Copy an element of an array to a standard Python scalar and return it.

		Parameters:		*args : Arguments (variable number and type)

		none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

		int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

		tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

		Returns:		z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.cast.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.cast

		
classmethod Legendre.cast(series, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L922]

		Convert series to series of this class.

The series is expected to be an instance of some polynomial
series of one of the types supported by by the numpy.polynomial
module, but could be some other class that supports the convert
method.

New in version 1.7.0.

		Parameters:		series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series of the same kind as the calling class and equal to
series when evaluated.

See also

		convert

		similar instance method

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/edc49861125a5414582c2ccb65270db45191b8b2.png

reference/generated/numpy.memmap.itemset.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.itemset

		
memmap.itemset(*args)

		Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

		Parameters:		*args : Arguments

If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.convert.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.convert

		
Legendre.convert(domain=None, kind=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L553]

		Convert series to a different kind and/or domain and/or window.

		Parameters:		domain : array_like, optional

The domain of the converted series. If the value is None,
the default domain of kind is used.

kind : class, optional

The polynomial series type class to which the current instance
should be converted. If kind is None, then the class of the
current instance is used.

window : array_like, optional

The window of the converted series. If the value is None,
the default window of kind is used.

		Returns:		new_series : series

The returned class can be of different type than the current
instance and/or have a different domain and/or different
window.

Notes

Conversion between domains and class types can result in
numerically ill defined series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ea7e70d8392beb70ffea7680e3c5cec18e5c9bf0.png

reference/generated/numpy.memmap.itemsize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.itemsize

		
memmap.itemsize

		Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.copy.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.copy

		
Legendre.copy()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L452]

		Return a copy.

		Returns:		new_series : series

Copy of self.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/eeaf4c567f496bf60a38e3f1a7ea1e801c3c8dfc.png

reference/generated/numpy.memmap.max.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.max

		
memmap.max(axis=None, out=None)

		Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

		numpy.amax

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.cutdeg.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.cutdeg

		
Legendre.cutdeg(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L476]

		Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the
high order terms. If deg is greater than the current degree a
copy of the current series is returned. This can be useful in least
squares where the coefficients of the high degree terms may be very
small.

New in version 1.5.0.

		Parameters:		deg : non-negative int

The series is reduced to degree deg by discarding the high
order terms. The value of deg must be a non-negative integer.

		Returns:		new_series : series

New instance of series with reduced degree.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ee2815119b4f9fbcb9e964b6252313c8bd075b23.png

reference/generated/numpy.memmap.mean.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.mean

		
memmap.mean(axis=None, dtype=None, out=None)

		Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

		numpy.mean

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.degree.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.degree

		
Legendre.degree()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L463]

		The degree of the series.

New in version 1.5.0.

		Returns:		degree : int

Degree of the series, one less than the number of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ef5ce46d904acb35f7f005b9ce1756aeeba145cb.png

reference/generated/numpy.memmap.min.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.min

		
memmap.min(axis=None, out=None)

		Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

		numpy.amin

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/eefd82bc21a0ee343759cfc7181817864a7b4204.png

reference/generated/numpy.memmap.nbytes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.nbytes

		
memmap.nbytes

		Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f08b1a2f0aaf98a3ec3af1adeb1bb5b269c814d4.png

reference/generated/numpy.memmap.ndim.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.ndim

		
memmap.ndim

		Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/efdc9203e8b3592a49d9b1f51abb4e66d91185c0.png
o+ Uo7i2lp

_images/math/ea56421a60292c53ce4a89b27741853349268d71.png

reference/generated/numpy.memmap.imag.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.imag

		
memmap.imag

		The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.basis.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.basis

		
classmethod Legendre.basis(deg, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L883]

		Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

		Parameters:		deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series with the coefficient of the deg term set to one and
all others zero.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ea2537b0d0cbfff18efbb40720fb87bedfef6b6e.png

reference/generated/numpy.memmap.newbyteorder.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.newbyteorder

		
memmap.newbyteorder(new_order='S')

		Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

		Parameters:		new_order : string, optional

Byte order to force; a value from the byte order specifications
above. new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

		Returns:		new_arr : array

New array object with the dtype reflecting given change to the
byte order.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.std.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.std

		
chararray.std(axis=None, dtype=None, out=None, ddof=0)

		Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

		numpy.std

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.prod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.prod

		
memmap.prod(axis=None, dtype=None, out=None)

		Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

		numpy.prod

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f29aa39b2ce5079c58c8dcc8bd1091902797e11a.png
L.HX =Y.

reference/generated/numpy.memmap.ptp.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.ptp

		
memmap.ptp(axis=None, out=None)

		Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

		numpy.ptp

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f23b7585b585e4c1237a6424ef72595c19d3445a.png

reference/generated/numpy.memmap.put.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.put

		
memmap.put(indices, values, mode='raise')

		Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

		numpy.put

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f4508138b0ae1b3bfac1bb3ff20d0b23561d69a4.png
Ko, oy ki1, Kig, .

k-1

reference/generated/numpy.memmap.ravel.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.ravel

		
memmap.ravel([order])

		Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

		numpy.ravel

		equivalent function

		ndarray.flat

		a flat iterator on the array.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f3886c4ca9a1ad47c0e7657603167e7ce146c41e.png

reference/generated/numpy.memmap.real.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.real

		
memmap.real

		The real part of the array.

See also

		numpy.real

		equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f6257282bf3e939895115b57774534e0d7b95db8.png

reference/generated/numpy.memmap.repeat.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.repeat

		
memmap.repeat(repeats, axis=None)

		Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

		numpy.repeat

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f50184ad483c78daaaee139682e9adb6098ff908.png

reference/generated/numpy.memmap.reshape.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.reshape

		
memmap.reshape(shape, order='C')

		Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

		numpy.reshape

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.resize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.resize

		
memmap.resize(new_shape, refcheck=True)

		Change shape and size of array in-place.

		Parameters:		new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

		Returns:		None

		Raises:		ValueError

If a does not own its own data or references or views to it exist,
and the data memory must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See also

		resize

		Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f79d95cb6c4d2c3e2639108fdd70dbad131454c4.png
T

et

_images/math/f155de8f6966032f4d527071a470e8719de09868.png
X = (=In(U))Ye

reference/generated/numpy.memmap.nonzero.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.nonzero

		
memmap.nonzero()

		Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

		numpy.nonzero

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f1701cdfd2f0a2c28f96ea4b10a33cfb272b4b55.png

reference/generated/numpy.memmap.partition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.partition

		
memmap.partition(kth, axis=-1, kind='introselect', order=None)

		Rearranges the elements in the array in such a way that value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

		Parameters:		kth : int or sequence of ints

Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

		numpy.partition

		Return a parititioned copy of an array.

		argpartition

		Indirect partition.

		sort

		Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f16c096ff2b578cce2fca0522fab08e0829bad6d.png

reference/generated/numpy.chararray.rpartition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.rpartition

		
chararray.rpartition(sep)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2306]

		Partition each element in self around sep.

See also

rpartition

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.setflags.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.setflags

		
memmap.setflags(write=None, align=None, uic=None)

		Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)

		Parameters:		write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/fb6d665bbe0c01fc1af5c5f5fa7df40dc71331d7.png
fL

reference/generated/numpy.memmap.shape.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.shape

		
memmap.shape

		Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/faca8896a4770863f653aa77b99c1f16ce4c84eb.png

reference/generated/numpy.memmap.size.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.size

		
memmap.size

		Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/fcb8668a36fc8e8f4e77abdfa9ea7793a4588ade.png

reference/generated/numpy.memmap.sort.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.sort

		
memmap.sort(axis=-1, kind='quicksort', order=None)

		Sort an array, in-place.

		Parameters:		axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

		numpy.sort

		Return a sorted copy of an array.

		argsort

		Indirect sort.

		lexsort

		Indirect stable sort on multiple keys.

		searchsorted

		Find elements in sorted array.

		partition

		Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/fb9b3a18a47e4ad4c9e895dcdfb13bb953ee272b.png
o+ c1Exr + ... Fepex”

reference/generated/numpy.memmap.squeeze.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.squeeze

		
memmap.squeeze(axis=None)

		Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

		numpy.squeeze

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ff3b0d5afbedf9ba21a1d082c6f7f033a51fc08a.png
= §c.]A * Lifa) Li(b) * Li(c)

pla,b,

reference/generated/numpy.memmap.std.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.std

		
memmap.std(axis=None, dtype=None, out=None, ddof=0)

		Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

		numpy.std

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/fd3512e9f7dec13e6defb1a51b94a1e31a8eca67.png

reference/generated/numpy.memmap.strides.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.strides

		
memmap.strides

		Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.round.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.round

		
chararray.round(decimals=0, out=None)

		Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

		numpy.around

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/fa3af8846dae3eb1c8913dace238ff110abb64b2.png

reference/generated/numpy.memmap.round.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.round

		
memmap.round(decimals=0, out=None)

		Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

		numpy.around

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/f7d9c302059f023f0dc8854bad19bb6b791b4326.png

reference/generated/numpy.memmap.searchsorted.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.searchsorted

		
memmap.searchsorted(v, side='left', sorter=None)

		Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

		numpy.searchsorted

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/fac0e54edf43615d84b2ccfcbd67579ff369733f.png

reference/generated/numpy.memmap.setfield.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.setfield

		
memmap.setfield(val, dtype, offset=0)

		Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset
bytes into the field.

		Parameters:		val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

		Returns:		None

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
 [1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
 [1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/fa79d996b59313c80b0971975825213b7b2ca11a.png
sin(mx)/(mr)

reference/generated/numpy.polynomial.laguerre.Laguerre.basis.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.basis

		
classmethod Laguerre.basis(deg, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L883]

		Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

		Parameters:		deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series with the coefficient of the deg term set to one and
all others zero.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.laguerre.Laguerre.cast.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.cast

		
classmethod Laguerre.cast(series, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L922]

		Convert series to series of this class.

The series is expected to be an instance of some polynomial
series of one of the types supported by by the numpy.polynomial
module, but could be some other class that supports the convert
method.

New in version 1.7.0.

		Parameters:		series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series of the same kind as the calling class and equal to
series when evaluated.

See also

		convert

		similar instance method

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d05f298257f5083394777a2e7f94d1c29117a893.png
¢ +2r +3

reference/generated/numpy.polynomial.laguerre.Laguerre.convert.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.convert

		
Laguerre.convert(domain=None, kind=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L553]

		Convert series to a different kind and/or domain and/or window.

		Parameters:		domain : array_like, optional

The domain of the converted series. If the value is None,
the default domain of kind is used.

kind : class, optional

The polynomial series type class to which the current instance
should be converted. If kind is None, then the class of the
current instance is used.

window : array_like, optional

The window of the converted series. If the value is None,
the default window of kind is used.

		Returns:		new_series : series

The returned class can be of different type than the current
instance and/or have a different domain and/or different
window.

Notes

Conversion between domains and class types can result in
numerically ill defined series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/cfd6360c5e99d00d308e535422fde58f0292fb2d.png
2(z—]
Tl

P(z;l,m,r) = %% form<z <,

0 otherwise.

forl<z<m,

reference/generated/numpy.polynomial.laguerre.Laguerre.copy.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.copy

		
Laguerre.copy()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L452]

		Return a copy.

		Returns:		new_series : series

Copy of self.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d0e9bf22b11bd63cac4e02feb23f7c40e2c26943.png
P(N) = (;)p“'u Y,

reference/generated/numpy.polynomial.laguerre.Laguerre.cutdeg.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.cutdeg

		
Laguerre.cutdeg(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L476]

		Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the
high order terms. If deg is greater than the current degree a
copy of the current series is returned. This can be useful in least
squares where the coefficients of the high degree terms may be very
small.

New in version 1.5.0.

		Parameters:		deg : non-negative int

The series is reduced to degree deg by discarding the high
order terms. The value of deg must be a non-negative integer.

		Returns:		new_series : series

New instance of series with reduced degree.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d062a127ede35244ac17c5e277e07ccbeaa4174e.png

reference/generated/numpy.polynomial.laguerre.Laguerre.degree.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.degree

		
Laguerre.degree()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L463]

		The degree of the series.

New in version 1.5.0.

		Returns:		degree : int

Degree of the series, one less than the number of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d2e32d7a254c59ef802d7bef8d21ac5a2e0b9b9b.png

reference/generated/numpy.polynomial.laguerre.Laguerre.deriv.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.deriv

		
Laguerre.deriv(m=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L655]

		Differentiate.

Return a series instance of that is the derivative of the current
series.

		Parameters:		m : non-negative int

The number of integrations to perform.

		Returns:		new_series : series

A new series representing the derivative. The domain is the same
as the domain of the differentiated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d2180b01936e5e97f5afa2049603094b85d03bb4.png

reference/generated/numpy.polynomial.laguerre.Laguerre.domain.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.laguerre.Laguerre.domain

		
Laguerre.domain = array([0, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d4e314ddaa82a5ae9f4e10ad31de17f47d40128a.png
~—
s = > s

_images/math/d30ddeec506e21052a8f2613a0219240077e08af.png

_images/math/d54327e6a802a38385738bc7c146cadefa43d3f3.png

_images/math/d534fb7daa71be6c5c6b41fd6ea0f53e13150f24.png
pla.y) =) cijea' =y
—

reference/generated/numpy.polynomial.laguerre.Laguerre.has_samecoef.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.has_samecoef

		
Laguerre.has_samecoef(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L133]

		Check if coefficients match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the coef attribute.

		Returns:		bool : boolean

True if the coefficients are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d5ab8e6081db79a4afcf29b7616b48025de0e80c.png

reference/generated/numpy.polynomial.laguerre.Laguerre.has_samedomain.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.has_samedomain

		
Laguerre.has_samedomain(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L156]

		Check if domains match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the domain attribute.

		Returns:		bool : boolean

True if the domains are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.laguerre.Laguerre.has_sametype.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.has_sametype

		
Laguerre.has_sametype(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L192]

		Check if types match.

New in version 1.7.0.

		Parameters:		other : object

Class instance.

		Returns:		bool : boolean

True if other is same class as self

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d71c74078e709f44826135f99abda79dc6926cbe.png

reference/generated/numpy.polynomial.laguerre.Laguerre.has_samewindow.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.has_samewindow

		
Laguerre.has_samewindow(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L174]

		Check if windows match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the window attribute.

		Returns:		bool : boolean

True if the windows are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d5d07b601f9aa0b20e05042df9e5ed96d1cb9145.png

_images/math/d93b9f0eae4904165246bd1fcbfbdee606ca1414.png

reference/generated/numpy.polynomial.laguerre.Laguerre.identity.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.identity

		
classmethod Laguerre.identity(domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L850]

		Identity function.

If p is the returned series, then p(x) == x for all
values of x.

		Parameters:		domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

Series of representing the identity.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d7ba451e95493b79a58a12206ce9ce68c2d3d7a5.png

reference/generated/numpy.polynomial.laguerre.Laguerre.integ.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.integ

		
Laguerre.integ(m=1, k=[], lbnd=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L622]

		Integrate.

Return a series instance that is the definite integral of the
current series.

		Parameters:		m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the
first integration, the second to the second, and so on. The
list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

		Returns:		new_series : series

A new series representing the integral. The domain is the same
as the domain of the integrated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d973fb32162e9d47561247273a88b29be620459e.png
exp(—x°)

reference/generated/numpy.polynomial.laguerre.Laguerre.linspace.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.linspace

		
Laguerre.linspace(n=100, domain=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L692]

		Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the
domain. Here y is the value of the polynomial at the points x. By
default the domain is the same as that of the series instance.
This method is intended mostly as a plotting aid.

New in version 1.5.0.

		Parameters:		n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end].
The default is None which case the class domain is used.

		Returns:		x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and
y is the series evaluated at element of x.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/d96c898e14704738c2a866adff83537ba4a6b1f4.png

reference/generated/numpy.polynomial.laguerre.Laguerre.fit.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.fit

		
classmethod Laguerre.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L724]

		Least squares fit to data.

Return a series instance that is the least squares fit to the data
y sampled at x. The domain of the returned instance can be
specified and this will often result in a superior fit with less
chance of ill conditioning.

		Parameters:		x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If
[] the class domain is used. The default value was the
class domain in NumPy 1.4 and None in later versions.
The [] option was added in numpy 1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller
than this relative to the largest singular value will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most
cases.

full : bool, optional

Switch determining nature of return value. When it is False
(the default) just the coefficients are returned, when True
diagnostic information from the singular value decomposition is
also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is
None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default
value is the default class domain

New in version 1.6.0.

		Returns:		new_series : series

A series that represents the least squares fit to the data and
has the domain specified in the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.laguerre.Laguerre.fromroots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.fromroots

		
classmethod Laguerre.fromroots(roots, domain=[], window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L809]

		Return series instance that has the specified roots.

Returns a series representing the product
(x - r[0])*(x - r[1])*...*(x - r[n-1]), where r is a
list of roots.

		Parameters:		roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the
domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is
used. The default is None.

		Returns:		new_series : series

Series with the specified roots.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/dbd1a15a739805bd305514e6f63fbee081ca29bd.png
win) =T | 8 e
n(G l)/ln(i)

_images/math/db41a756954179cffbe8aba824293affe4fa7f94.png
N+n-1
P(Nin,p) o1

Jra-n”,

_images/math/dc06339adc277dd5b113905df7c1d897f93577bb.png
—mome/2(nonc[2)"
Pl dfnon) =y~ D g)

—

reference/generated/numpy.polynomial.laguerre.Laguerre.roots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.roots

		
Laguerre.roots()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L677]

		Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the
roots decrease the further outside the domain they lie.

		Returns:		roots : ndarray

Array containing the roots of the series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/dd3f23ceebfef553bff1607f84667d5cc6af7587.png

reference/generated/numpy.polynomial.laguerre.Laguerre.trim.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.trim

		
Laguerre.trim(tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L501]

		Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose
absolute value greater than tol or the beginning of the series is
reached. If all the coefficients would be removed the series is set
to [0]. A new series instance is returned with the new
coefficients. The current instance remains unchanged.

		Parameters:		tol : non-negative number.

All trailing coefficients less than tol will be removed.

		Returns:		new_series : series

Contains the new set of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/dc7c7b77de9db11ee8c8687abf8b293cd005d383.png

reference/generated/numpy.polynomial.laguerre.Laguerre.truncate.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.truncate

		
Laguerre.truncate(size)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L524]

		Truncate series to length size.

Reduce the series to length size by discarding the high
degree terms. The value of size must be a positive integer. This
can be useful in least squares where the coefficients of the
high degree terms may be very small.

		Parameters:		size : positive int

The series is reduced to length size by discarding the high
degree terms. The value of size must be a positive integer.

		Returns:		new_series : series

New instance of series with truncated coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/dedebc497a90d67c63b4e9e12355180a29a24412.png

reference/generated/numpy.polynomial.laguerre.Laguerre.window.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.laguerre.Laguerre.window

		
Laguerre.window = array([0, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/de9e39842b5af56c05ea0e9e91dbe6c5cd22aed4.png

reference/generated/numpy.polynomial.laguerre.Laguerre.__call__.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.__call__

		
Laguerre.__call__(arg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L290]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/e001ab14b6a4d793ade226644a8fb97c386a9afe.png

_images/math/dfdda51c608b4c7d6ddae294f7ff2e5468ffd693.png
2mn.

054~ 046c0s (77—

0<n<M-1

_images/math/e1486dfed0186fae30752b33ae67b1cf7c705419.png
ol0f = (0]
olk] = ilkliopgolk —1] & =

_images/math/e09107c7b17a61fe3a54c576b6e74155ac3e4cb0.png

reference/generated/numpy.polynomial.laguerre.Laguerre.mapparms.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Laguerre Module (numpy.polynomial.laguerre) »

 		numpy.polynomial.laguerre.Laguerre »

numpy.polynomial.laguerre.Laguerre.mapparms

		
Laguerre.mapparms()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L593]

		Return the mapping parameters.

The returned values define a linear map off + scl*x that is
applied to the input arguments before the series is evaluated. The
map depends on the domain and window; if the current
domain is equal to the window the resulting map is the
identity. If the coefficients of the series instance are to be
used by themselves outside this class, then the linear function
must be substituted for the x in the standard representation of
the base polynomials.

		Returns:		off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window
is [l2, r2], then the linear mapping function L is
defined by the equations:

L(l1) = l2
L(r1) = r2

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.laguerre.Laguerre.maxpower.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.laguerre.Laguerre.maxpower

		
Laguerre.maxpower = 100

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.laguerre.Laguerre.nickname.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.laguerre.Laguerre.nickname

		
Laguerre.nickname = 'lag'

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.testing.Tester.excludes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.testing.Tester.excludes

		
Tester.excludes = ['f2py_ext', 'f2py_f90_ext', 'gen_ext', 'pyrex_ext', 'swig_ext']

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.testing.Tester.prepare_test_args.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.testing.Tester.prepare_test_args

		
Tester.prepare_test_args(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\nosetester.py#L272]

		Run tests for module using nose.

This method does the heavy lifting for the test method. It takes all
the same arguments, for details see test.

See also

test

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.testing.Tester.test.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.testing.Tester.test

		
Tester.test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, raise_warnings=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\nosetester.py#L318]

		Run tests for module using nose.

		Parameters:		label : {‘fast’, ‘full’, ‘’, attribute identifier}, optional

Identifies the tests to run. This can be a string to pass to
the nosetests executable with the ‘-A’ option, or one of several
special values. Special values are:
* ‘fast’ - the default - which corresponds to the nosetests -A

option of ‘not slow’.

		‘full’ - fast (as above) and slow tests as in the
‘no -A’ option to nosetests - this is the same as ‘’.

		None or ‘’ - run all tests.

attribute_identifier - string passed directly to nosetests as ‘-A’.

verbose : int, optional

Verbosity value for test outputs, in the range 1-10. Default is 1.

extra_argv : list, optional

List with any extra arguments to pass to nosetests.

doctests : bool, optional

If True, run doctests in module. Default is False.

coverage : bool, optional

If True, report coverage of NumPy code. Default is False.
(This requires the `coverage module:

<http://nedbatchelder.com/code/modules/coverage.html>`_).

raise_warnings : str or sequence of warnings, optional

This specifies which warnings to configure as ‘raise’ instead
of ‘warn’ during the test execution. Valid strings are:

		“develop” : equals (DeprecationWarning, RuntimeWarning)

		“release” : equals (), don’t raise on any warnings.

		Returns:		result : object

Returns the result of running the tests as a
nose.result.TextTestResult object.

Notes

Each NumPy module exposes test in its namespace to run all tests for it.
For example, to run all tests for numpy.lib:

>>> np.lib.test()

Examples

>>> result = np.lib.test()
Running unit tests for numpy.lib
...
Ran 976 tests in 3.933s

OK

>>> result.errors
[]
>>> result.knownfail
[]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.tobytes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.tobytes

		
memmap.tobytes(order='C')

		Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

New in version 1.9.0.

		Parameters:		order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

		Returns:		s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/comment.png

reference/generated/numpy.memmap.tofile.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.tofile

		
memmap.tofile(fid, sep="", format="%s")

		Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

		Parameters:		fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

format : str

Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/comment-close.png

reference/generated/numpy.memmap.tolist.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.tolist

		
memmap.tolist()

		Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.

		Parameters:		none

		Returns:		y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/down.png

reference/generated/numpy.memmap.tostring.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.tostring

		
memmap.tostring(order='C')

		Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

		Parameters:		order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

		Returns:		s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/down-pressed.png

reference/generated/numpy.memmap.trace.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.trace

		
memmap.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

		Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

		numpy.trace

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.memmap.transpose.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.transpose

		
memmap.transpose(*axes)

		Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

		Parameters:		axes : None, tuple of ints, or n ints

		None or no argument: reverses the order of the axes.

		tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

		n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

		Returns:		out : ndarray

View of a, with axes suitably permuted.

See also

		ndarray.T

		Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ff54afc2916e14c957ec40a69e13efcf50d467c4.png

reference/generated/numpy.memmap.sum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.sum

		
memmap.sum(axis=None, dtype=None, out=None)

		Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

		numpy.sum

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/ajax-loader.gif

reference/generated/numpy.memmap.swapaxes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.swapaxes

		
memmap.swapaxes(axis1, axis2)

		Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

		numpy.swapaxes

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/ffe0effd483db55fd035a61a4e539b3c5841a078.png

reference/generated/numpy.memmap.T.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.T

		
memmap.T

		Same as self.transpose(), except that self is returned if
self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/comment-bright.png

reference/generated/numpy.memmap.take.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.take

		
memmap.take(indices, axis=None, out=None, mode='raise')

		Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

		numpy.take

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_templates/autosummary/class.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

 {% extends ”!autosummary/class.rst” %}

{% block methods %}
{% if methods %}

{% endif %}
{% endblock %}

{% block attributes %}
{% if attributes %}

{% endif %}
{% endblock %}

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/minus.png

reference/generated/numpy.memmap.var.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.var

		
memmap.var(axis=None, dtype=None, out=None, ddof=0)

		Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

		numpy.var

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/file.png

reference/generated/numpy.memmap.view.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.memmap.view

		
memmap.view(dtype=None, type=None)

		New view of array with the same data.

		Parameters:		dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_static/plus.png

_static/up.png

_static/up-pressed.png

reference/generated/numpy.testing.Tester.bench.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.testing.Tester.bench

		
Tester.bench(label='fast', verbose=1, extra_argv=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/testing\nosetester.py#L435]

		Run benchmarks for module using nose.

		Parameters:		label : {‘fast’, ‘full’, ‘’, attribute identifier}, optional

Identifies the benchmarks to run. This can be a string to pass to
the nosetests executable with the ‘-A’ option, or one of several
special values. Special values are:
* ‘fast’ - the default - which corresponds to the nosetests -A

option of ‘not slow’.

		‘full’ - fast (as above) and slow benchmarks as in the
‘no -A’ option to nosetests - this is the same as ‘’.

		None or ‘’ - run all tests.

attribute_identifier - string passed directly to nosetests as ‘-A’.

verbose : int, optional

Verbosity value for benchmark outputs, in the range 1-10. Default is 1.

extra_argv : list, optional

List with any extra arguments to pass to nosetests.

		Returns:		success : bool

Returns True if running the benchmarks works, False if an error
occurred.

Notes

Benchmarks are like tests, but have names starting with “bench” instead
of “test”, and can be found under the “benchmarks” sub-directory of the
module.

Each NumPy module exposes bench in its namespace to run all benchmarks
for it.

Examples

>>> success = np.lib.bench()
Running benchmarks for numpy.lib
...
using 562341 items:
unique:
0.11
unique1d:
0.11
ratio: 1.0
nUnique: 56230 == 56230
...
OK

>>> success
True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.compress.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.compress

		
masked_array.compress(condition, axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3547]

		Return a where condition is True.

If condition is a MaskedArray, missing values are considered
as False.

		Parameters:		condition : var

Boolean 1-d array selecting which entries to return. If len(condition)
is less than the size of a along the axis, then output is truncated
to length of condition array.

axis : {None, int}, optional

Axis along which the operation must be performed.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

		Returns:		result : MaskedArray

A MaskedArray object.

Notes

Please note the difference with compressed !
The output of compress has a mask, the output of
compressed does not.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> x.compress([1, 0, 1])
masked_array(data = [1 3],
 mask = [False False],
 fill_value=999999)

>>> x.compress([1, 0, 1], axis=1)
masked_array(data =
 [[1 3]
 [-- --]
 [7 9]],
 mask =
 [[False False]
 [True True]
 [False False]],
 fill_value=999999)

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.compressed.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.compressed

		
masked_array.compressed()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3519]

		Return all the non-masked data as a 1-D array.

		Returns:		data : ndarray

A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
<type 'numpy.ndarray'>

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.conj.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.conj

		
masked_array.conj()

		Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

		numpy.conjugate

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.conjugate.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.conjugate

		
masked_array.conjugate()

		Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

		numpy.conjugate

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.copy.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.copy

		
masked_array.copy(order='C')

		Return a copy of the array.

		Parameters:		order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.count.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.count

		
masked_array.count(axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3979]

		Count the non-masked elements of the array along the given axis.

		Parameters:		axis : int, optional

Axis along which to count the non-masked elements. If axis is
None, all non-masked elements are counted.

		Returns:		result : int or ndarray

If axis is None, an integer count is returned. When axis is
not None, an array with shape determined by the lengths of the
remaining axes, is returned.

See also

		count_masked

		Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- -- --]],
 mask =
 [[False False False]
 [True True True]],
 fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is
returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.ctypes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.ctypes

		
masked_array.ctypes

		An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

		Parameters:		None

		Returns:		c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

		data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

		shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

		strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

		data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

		shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

		strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.cumprod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.cumprod

		
masked_array.cumprod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4677]

		Return the cumulative product of the elements along the given axis.
The cumulative product is taken over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

		Parameters:		axis : {None, -1, int}, optional

Axis along which the product is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the
default platform integer, then the default platform integer precision
is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

		Returns:		cumprod : ndarray

A new array holding the result is returned unless out is specified,
in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.cumsum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.cumsum

		
masked_array.cumsum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4548]

		Return the cumulative sum of the elements along the given axis.
The cumulative sum is calculated over the flattened array by
default, otherwise over the specified axis.

Masked values are set to 0 internally during the computation.
However, their position is saved, and the result will be masked at
the same locations.

		Parameters:		axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to
compute over the flattened array. axis may be negative, in which case
it counts from the last to the first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

		Returns:		cumsum : ndarray.

A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print marr.cumsum()
[0 1 3 -- -- -- 9 16 24 33]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.data.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.data

		
masked_array.data

		Return the current data, as a view of the original
underlying data.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.diagonal.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.diagonal

		
masked_array.diagonal(offset=0, axis1=0, axis2=1)

		Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

		numpy.diagonal

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.dot.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.dot

		
masked_array.dot(b, out=None)

		Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

		numpy.dot

		equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.dtype.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.dtype

		
masked_array.dtype

		Data-type of the array’s elements.

		Parameters:		None

		Returns:		d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.dump.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.dump

		
masked_array.dump(file)

		Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

		Parameters:		file : str

A string naming the dump file.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.dumps.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.dumps

		
masked_array.dumps()

		Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

		Parameters:		None

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.fill.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.fill

		
masked_array.fill(value)

		Fill the array with a scalar value.

		Parameters:		value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.filled.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.filled

		
masked_array.filled(fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3447]

		Return a copy of self, with masked values filled with a given value.

		Parameters:		fill_value : scalar, optional

The value to use for invalid entries (None by default).
If None, the fill_value attribute of the array is used instead.

		Returns:		filled_array : ndarray

A copy of self with invalid entries replaced by fill_value
(be it the function argument or the attribute of self.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> type(x.filled())
<type 'numpy.ndarray'>

Subclassing is preserved. This means that if the data part of the masked
array is a matrix, filled returns a matrix:

>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.filled()
matrix([[1, 999999],
 [999999, 4]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.fill_value.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.fill_value

		
masked_array.fill_value

		Filling value.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.flags.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.flags

		
masked_array.flags

		Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

		UPDATEIFCOPY can only be set False.

		ALIGNED can only be set True if the data is truly aligned.

		WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes

		C_CONTIGUOUS (C)
		The data is in a single, C-style contiguous segment.

		F_CONTIGUOUS (F)
		The data is in a single, Fortran-style contiguous segment.

		OWNDATA (O)
		The array owns the memory it uses or borrows it from another object.

		WRITEABLE (W)
		The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.

		ALIGNED (A)
		The data and all elements are aligned appropriately for the hardware.

		UPDATEIFCOPY (U)
		This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.

		FNC
		F_CONTIGUOUS and not C_CONTIGUOUS.

		FORC
		F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

		BEHAVED (B)
		ALIGNED and WRITEABLE.

		CARRAY (CA)
		BEHAVED and C_CONTIGUOUS.

		FARRAY (FA)
		BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.flat.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.flat

		
masked_array.flat

		Flat version of the array.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/branch_list_compare.png
NAME STATE

my-new-feature — BT
Lastupdated 18 mintes ago osenina

reference/generated/numpy.ma.masked_array.all.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.all

		
masked_array.all(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4280]

		Check if all of the elements of a are true.

Performs a logical_and over the given axis and returns the result.
Masked values are considered as True during computation.
For convenience, the output array is masked where ALL the values along the
current axis are masked: if the output would have been a scalar and that
all the values are masked, then the output is masked.

		Parameters:		axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

		all

		equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/branch_list.png
Source Commits Network (12) Fork Queue

Switch Branches (1) + Switch Tags (1) + Branch List

reference/generated/numpy.ma.masked_array.anom.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.anom

		
masked_array.anom(axis=None, dtype=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4794]

		Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Returns an array of anomalies, with the same shape as the input and
where the arithmetic mean is computed along the given axis.

		Parameters:		axis : int, optional

Axis over which the anomalies are taken.
The default is to use the mean of the flattened array as reference.

dtype : dtype, optional

		Type to use in computing the variance. For arrays of integer type

		the default is float32; for arrays of float types it is the same as
the array type.

See also

		mean

		Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],
 mask = False,
 fill_value = 1e+20)

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.any.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.any

		
masked_array.any(axis=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4327]

		Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result.
Masked values are considered as False during computation.

		Parameters:		axis : {None, integer}

Axis to perform the operation over.
If None, perform over flattened array and return a scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

See also

		any

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/dtype-hierarchy.png
generic

1

v

12

bool_

object_

flexible

csingle

complex|

dlongfloat

byte ubyte haif
short ushort single
inte uinte foat_
int_ uint longloat
onglong| ulongion;

»] unicoce |

reference/generated/numpy.ma.masked_array.argmax.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.argmax

		
masked_array.argmax(axis=None, fill_value=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5005]

		Returns array of indices of the maximum values along the given axis.
Masked values are treated as if they had the value fill_value.

		Parameters:		axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

		Returns:		index_array : {integer_array}

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.argmin.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.argmin

		
masked_array.argmin(axis=None, fill_value=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4963]

		Return array of indices to the minimum values along the given axis.

		Parameters:		axis : {None, integer}

If None, the index is into the flattened array, otherwise along
the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

		Returns:		{ndarray, scalar}

If multi-dimension input, returns a new ndarray of indices to the
minimum values along the given axis. Otherwise, returns a scalar
of index to the minimum values along the given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print x
[[-- --]
 [2 3]]
>>> print x.argmin(axis=0, fill_value=-1)
[0 0]
>>> print x.argmin(axis=0, fill_value=9)
[1 1]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.argpartition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.argpartition

		
masked_array.argpartition(kth, axis=-1, kind='introselect', order=None)

		Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

		numpy.argpartition

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.argsort.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.argsort

		
masked_array.argsort(axis=None, kind='quicksort', order=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4909]

		Return an ndarray of indices that sort the array along the
specified axis. Masked values are filled beforehand to
fill_value.

		Parameters:		axis : int, optional

Axis along which to sort. The default is -1 (last axis).
If None, the flattened array is used.

fill_value : var, optional

Value used to fill the array before sorting.
The default is the fill_value attribute of the input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

		Returns:		index_array : ndarray, int

Array of indices that sort a along the specified axis.
In other words, a[index_array] yields a sorted a.

See also

		sort

		Describes sorting algorithms used.

		lexsort

		Indirect stable sort with multiple keys.

		ndarray.sort

		Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.argsort()
array([1, 0, 2])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.astype.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.astype

		
masked_array.astype(newtype)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2988]

		Returns a copy of the MaskedArray cast to given newtype.

		Returns:		output : MaskedArray

A copy of self cast to input newtype.
The returned record shape matches self.shape.

Examples

>>> x = np.ma.array([[1,2,3.1],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1.0 -- 3.1]
 [-- 5.0 --]
 [7.0 -- 9.0]]
>>> print x.astype(int32)
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.base.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.base

		
masked_array.base

		Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.baseclass.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.baseclass

		
masked_array.baseclass

		Class of the underlying data (read-only).

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.byteswap.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.byteswap

		
masked_array.byteswap(inplace)

		Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

		Parameters:		inplace : bool, optional

If True, swap bytes in-place, default is False.

		Returns:		out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.choose.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.choose

		
masked_array.choose(choices, out=None, mode='raise')

		Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

		numpy.choose

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.clip.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.clip

		
masked_array.clip(a_min, a_max, out=None)

		Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

		numpy.clip

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.nickname.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.legendre.Legendre.nickname

		
Legendre.nickname = 'leg'

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.roots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.roots

		
Legendre.roots()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L677]

		Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the
roots decrease the further outside the domain they lie.

		Returns:		roots : ndarray

Array containing the roots of the series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.trim.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.trim

		
Legendre.trim(tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L501]

		Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose
absolute value greater than tol or the beginning of the series is
reached. If all the coefficients would be removed the series is set
to [0]. A new series instance is returned with the new
coefficients. The current instance remains unchanged.

		Parameters:		tol : non-negative number.

All trailing coefficients less than tol will be removed.

		Returns:		new_series : series

Contains the new set of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.truncate.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.truncate

		
Legendre.truncate(size)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L524]

		Truncate series to length size.

Reduce the series to length size by discarding the high
degree terms. The value of size must be a positive integer. This
can be useful in least squares where the coefficients of the
high degree terms may be very small.

		Parameters:		size : positive int

The series is reduced to length size by discarding the high
degree terms. The value of size must be a positive integer.

		Returns:		new_series : series

New instance of series with truncated coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.window.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.legendre.Legendre.window

		
Legendre.window = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.__call__.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.__call__

		
Legendre.__call__(arg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L290]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.cumprod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.cumprod

		
chararray.cumprod(axis=None, dtype=None, out=None)

		Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

		numpy.cumprod

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.cumsum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.cumsum

		
chararray.cumsum(axis=None, dtype=None, out=None)

		Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

		numpy.cumsum

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.diagonal.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.diagonal

		
chararray.diagonal(offset=0, axis1=0, axis2=1)

		Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also

		numpy.diagonal

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.dot.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.dot

		
chararray.dot(b, out=None)

		Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

		numpy.dot

		equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.conjugate.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.conjugate

		
chararray.conjugate()

		Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

		numpy.conjugate

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.itemset.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.itemset

		
chararray.itemset(*args)

		Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

		Parameters:		*args : Arguments

If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.max.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.max

		
chararray.max(axis=None, out=None)

		Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

		numpy.amax

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.basis.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.basis

		
classmethod Polynomial.basis(deg, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L883]

		Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

		Parameters:		deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series with the coefficient of the deg term set to one and
all others zero.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.broadcast.numiter.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.broadcast.numiter

		
broadcast.numiter

		Number of iterators possessed by the broadcasted result.

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.numiter
2

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.broadcast.nd.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.broadcast.nd

		
broadcast.nd

		Number of dimensions of broadcasted result.

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.nd
2

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.byteswap.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.byteswap

		
chararray.byteswap(inplace)

		Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

		Parameters:		inplace : bool, optional

If True, swap bytes in-place, default is False.

		Returns:		out : ndarray

The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.center.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.center

		
chararray.center(width, fillchar=' ')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2017]

		Return a copy of self with its elements centered in a
string of length width.

See also

center

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.capitalize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.capitalize

		
chararray.capitalize()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L2005]

		Return a copy of self with only the first character of each element
capitalized.

See also

char.capitalize

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.clip.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.clip

		
chararray.clip(a_min, a_max, out=None)

		Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

		numpy.clip

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.choose.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.choose

		
chararray.choose(choices, out=None, mode='raise')

		Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

		numpy.choose

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.conj.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.conj

		
chararray.conj()

		Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

		numpy.conjugate

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.compress.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.compress

		
chararray.compress(condition, axis=None, out=None)

		Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

		numpy.compress

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.argsort.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.argsort

		
chararray.argsort(axis=-1, kind='quicksort', order=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/core\defchararray.py#L1984]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.argpartition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.argpartition

		
chararray.argpartition(kth, axis=-1, kind='introselect', order=None)

		Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

		numpy.argpartition

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.deriv.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.deriv

		
Legendre.deriv(m=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L655]

		Differentiate.

Return a series instance of that is the derivative of the current
series.

		Parameters:		m : non-negative int

The number of integrations to perform.

		Returns:		new_series : series

A new series representing the derivative. The domain is the same
as the domain of the differentiated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.domain.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.legendre.Legendre.domain

		
Legendre.domain = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.fit.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.fit

		
classmethod Legendre.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L724]

		Least squares fit to data.

Return a series instance that is the least squares fit to the data
y sampled at x. The domain of the returned instance can be
specified and this will often result in a superior fit with less
chance of ill conditioning.

		Parameters:		x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If
[] the class domain is used. The default value was the
class domain in NumPy 1.4 and None in later versions.
The [] option was added in numpy 1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller
than this relative to the largest singular value will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most
cases.

full : bool, optional

Switch determining nature of return value. When it is False
(the default) just the coefficients are returned, when True
diagnostic information from the singular value decomposition is
also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is
None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default
value is the default class domain

New in version 1.6.0.

		Returns:		new_series : series

A series that represents the least squares fit to the data and
has the domain specified in the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.fromroots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.fromroots

		
classmethod Legendre.fromroots(roots, domain=[], window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L809]

		Return series instance that has the specified roots.

Returns a series representing the product
(x - r[0])*(x - r[1])*...*(x - r[n-1]), where r is a
list of roots.

		Parameters:		roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the
domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is
used. The default is None.

		Returns:		new_series : series

Series with the specified roots.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.has_samecoef.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.has_samecoef

		
Legendre.has_samecoef(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L133]

		Check if coefficients match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the coef attribute.

		Returns:		bool : boolean

True if the coefficients are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.has_samedomain.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.has_samedomain

		
Legendre.has_samedomain(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L156]

		Check if domains match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the domain attribute.

		Returns:		bool : boolean

True if the domains are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.has_sametype.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.has_sametype

		
Legendre.has_sametype(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L192]

		Check if types match.

New in version 1.7.0.

		Parameters:		other : object

Class instance.

		Returns:		bool : boolean

True if other is same class as self

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.any.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.any

		
chararray.any(axis=None, out=None)

		Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

		numpy.any

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.has_samewindow.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.has_samewindow

		
Legendre.has_samewindow(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L174]

		Check if windows match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the window attribute.

		Returns:		bool : boolean

True if the windows are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.all.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.all

		
chararray.all(axis=None, out=None)

		Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

		numpy.all

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.argmin.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.argmin

		
chararray.argmin(axis=None, out=None)

		Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

		numpy.argmin

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.identity.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.identity

		
classmethod Legendre.identity(domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L850]

		Identity function.

If p is the returned series, then p(x) == x for all
values of x.

		Parameters:		domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

Series of representing the identity.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.chararray.argmax.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.chararray.argmax

		
chararray.argmax(axis=None, out=None)

		Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

		numpy.argmax

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.integ.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.integ

		
Legendre.integ(m=1, k=[], lbnd=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L622]

		Integrate.

Return a series instance that is the definite integral of the
current series.

		Parameters:		m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the
first integration, the second to the second, and so on. The
list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

		Returns:		new_series : series

A new series representing the integral. The domain is the same
as the domain of the integrated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.linspace.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.linspace

		
Legendre.linspace(n=100, domain=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L692]

		Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the
domain. Here y is the value of the polynomial at the points x. By
default the domain is the same as that of the series instance.
This method is intended mostly as a plotting aid.

New in version 1.5.0.

		Parameters:		n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end].
The default is None which case the class domain is used.

		Returns:		x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and
y is the series evaluated at element of x.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.mapparms.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Legendre Module (numpy.polynomial.legendre) »

 		numpy.polynomial.legendre.Legendre »

numpy.polynomial.legendre.Legendre.mapparms

		
Legendre.mapparms()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L593]

		Return the mapping parameters.

The returned values define a linear map off + scl*x that is
applied to the input arguments before the series is evaluated. The
map depends on the domain and window; if the current
domain is equal to the window the resulting map is the
identity. If the coefficients of the series instance are to be
used by themselves outside this class, then the linear function
must be substituted for the x in the standard representation of
the base polynomials.

		Returns:		off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window
is [l2, r2], then the linear mapping function L is
defined by the equations:

L(l1) = l2
L(r1) = r2

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.legendre.Legendre.maxpower.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.legendre.Legendre.maxpower

		
Legendre.maxpower = 100

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

dev/gitwash/dot2_dot3.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

Two and three dots in difference specs

Thanks to Yarik Halchenko for this explanation.

Imagine a series of commits A, B, C, D... Imagine that there are two
branches, topic and master. You branched topic off master when
master was at commit ‘E’. The graph of the commits looks like this:

 A---B---C topic
 /
D---E---F---G master

Then:

git diff master..topic

will output the difference from G to C (i.e. with effects of F and G),
while:

git diff master...topic

would output just differences in the topic branch (i.e. only A, B, and
C).

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-absolute-1_01_00.png

_images/numpy-absolute-1_00_00.png
10

-10

10

_images/numpy-arctan-1.png
10

05

00

10

-10

10

_images/numpy-arccos-1.png
30

25

20

15

10

05

00,

“10

00

05

10

_images/numpy-exp-1.png
Magnitude of exp(x)

6-4-20 2 4

Phase (angle) of exp(x)

- 420

_images/numpy-cosh-1.png
EY

=

2

15

10

_images/numpy-fft-ifft-1.png
EY

100

50

200

250

00

Teal
imaginary.

350

a0

_images/numpy-fft-fftn-1.png
50

100 2

150

200

0 s 10 150 200

_images/forking_button.png
© Unwatch 4 Fork (i Pull Request

Issues (0) Downloads (0) Wiki(1) Graphs

reference/generated/numpy.polynomial.polynomial.Polynomial.cast.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.cast

		
classmethod Polynomial.cast(series, domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L922]

		Convert series to series of this class.

The series is expected to be an instance of some polynomial
series of one of the types supported by by the numpy.polynomial
module, but could be some other class that supports the convert
method.

New in version 1.7.0.

		Parameters:		series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

A series of the same kind as the calling class and equal to
series when evaluated.

See also

		convert

		similar instance method

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.convert.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.convert

		
Polynomial.convert(domain=None, kind=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L553]

		Convert series to a different kind and/or domain and/or window.

		Parameters:		domain : array_like, optional

The domain of the converted series. If the value is None,
the default domain of kind is used.

kind : class, optional

The polynomial series type class to which the current instance
should be converted. If kind is None, then the class of the
current instance is used.

window : array_like, optional

The window of the converted series. If the value is None,
the default window of kind is used.

		Returns:		new_series : series

The returned class can be of different type than the current
instance and/or have a different domain and/or different
window.

Notes

Conversion between domains and class types can result in
numerically ill defined series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.cutdeg.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.cutdeg

		
Polynomial.cutdeg(deg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L476]

		Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the
high order terms. If deg is greater than the current degree a
copy of the current series is returned. This can be useful in least
squares where the coefficients of the high degree terms may be very
small.

New in version 1.5.0.

		Parameters:		deg : non-negative int

The series is reduced to degree deg by discarding the high
order terms. The value of deg must be a non-negative integer.

		Returns:		new_series : series

New instance of series with reduced degree.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.degree.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.degree

		
Polynomial.degree()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L463]

		The degree of the series.

New in version 1.5.0.

		Returns:		degree : int

Degree of the series, one less than the number of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.deriv.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.deriv

		
Polynomial.deriv(m=1)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L655]

		Differentiate.

Return a series instance of that is the derivative of the current
series.

		Parameters:		m : non-negative int

The number of integrations to perform.

		Returns:		new_series : series

A new series representing the derivative. The domain is the same
as the domain of the differentiated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.domain.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.polynomial.Polynomial.domain

		
Polynomial.domain = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.fit.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.fit

		
classmethod Polynomial.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L724]

		Least squares fit to data.

Return a series instance that is the least squares fit to the data
y sampled at x. The domain of the returned instance can be
specified and this will often result in a superior fit with less
chance of ill conditioning.

		Parameters:		x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.

deg : int

Degree of the fitting polynomial.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None,
then a minimal domain that covers the points x is chosen. If
[] the class domain is used. The default value was the
class domain in NumPy 1.4 and None in later versions.
The [] option was added in numpy 1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller
than this relative to the largest singular value will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most
cases.

full : bool, optional

Switch determining nature of return value. When it is False
(the default) just the coefficients are returned, when True
diagnostic information from the singular value decomposition is
also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point
(x[i],y[i]) to the fit is weighted by w[i]. Ideally the
weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is
None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default
value is the default class domain

New in version 1.6.0.

		Returns:		new_series : series

A series that represents the least squares fit to the data and
has the domain specified in the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit
rank – the numerical rank of the scaled Vandermonde matrix
sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.fromroots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.fromroots

		
classmethod Polynomial.fromroots(roots, domain=[], window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L809]

		Return series instance that has the specified roots.

Returns a series representing the product
(x - r[0])*(x - r[1])*...*(x - r[n-1]), where r is a
list of roots.

		Parameters:		roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the
domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is
used. The default is None.

		Returns:		new_series : series

Series with the specified roots.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.has_samecoef.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.has_samecoef

		
Polynomial.has_samecoef(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L133]

		Check if coefficients match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the coef attribute.

		Returns:		bool : boolean

True if the coefficients are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.has_samedomain.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.has_samedomain

		
Polynomial.has_samedomain(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L156]

		Check if domains match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the domain attribute.

		Returns:		bool : boolean

True if the domains are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.copy.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.copy

		
Polynomial.copy()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L452]

		Return a copy.

		Returns:		new_series : series

Copy of self.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.has_sametype.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.has_sametype

		
Polynomial.has_sametype(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L192]

		Check if types match.

New in version 1.7.0.

		Parameters:		other : object

Class instance.

		Returns:		bool : boolean

True if other is same class as self

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.identity.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.identity

		
classmethod Polynomial.identity(domain=None, window=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L850]

		Identity function.

If p is the returned series, then p(x) == x for all
values of x.

		Parameters:		domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is
given then the class domain is used. The default is None.

window : {None, array_like}, optional

If given, the resulting array must be if the form
[beg, end], where beg and end are the endpoints of
the window. If None is given then the class window is used. The
default is None.

		Returns:		new_series : series

Series of representing the identity.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.integ.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.integ

		
Polynomial.integ(m=1, k=[], lbnd=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L622]

		Integrate.

Return a series instance that is the definite integral of the
current series.

		Parameters:		m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the
first integration, the second to the second, and so on. The
list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

		Returns:		new_series : series

A new series representing the integral. The domain is the same
as the domain of the integrated series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.linspace.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.linspace

		
Polynomial.linspace(n=100, domain=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L692]

		Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the
domain. Here y is the value of the polynomial at the points x. By
default the domain is the same as that of the series instance.
This method is intended mostly as a plotting aid.

New in version 1.5.0.

		Parameters:		n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end].
The default is None which case the class domain is used.

		Returns:		x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and
y is the series evaluated at element of x.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.mapparms.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.mapparms

		
Polynomial.mapparms()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L593]

		Return the mapping parameters.

The returned values define a linear map off + scl*x that is
applied to the input arguments before the series is evaluated. The
map depends on the domain and window; if the current
domain is equal to the window the resulting map is the
identity. If the coefficients of the series instance are to be
used by themselves outside this class, then the linear function
must be substituted for the x in the standard representation of
the base polynomials.

		Returns:		off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window
is [l2, r2], then the linear mapping function L is
defined by the equations:

L(l1) = l2
L(r1) = r2

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.maxpower.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.polynomial.Polynomial.maxpower

		
Polynomial.maxpower = 100

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.nickname.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.polynomial.Polynomial.nickname

		
Polynomial.nickname = 'poly'

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.roots.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.roots

		
Polynomial.roots()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L677]

		Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the
roots decrease the further outside the domain they lie.

		Returns:		roots : ndarray

Array containing the roots of the series.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.trim.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.trim

		
Polynomial.trim(tol=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L501]

		Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose
absolute value greater than tol or the beginning of the series is
reached. If all the coefficients would be removed the series is set
to [0]. A new series instance is returned with the new
coefficients. The current instance remains unchanged.

		Parameters:		tol : non-negative number.

All trailing coefficients less than tol will be removed.

		Returns:		new_series : series

Contains the new set of coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.has_samewindow.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.has_samewindow

		
Polynomial.has_samewindow(other)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L174]

		Check if windows match.

New in version 1.6.0.

		Parameters:		other : class instance

The other class must have the window attribute.

		Returns:		bool : boolean

True if the windows are the same, False otherwise.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.flatiter.index.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.flatiter.index

		
flatiter.index

		Current flat index into the array.

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> fl.index
0
>>> fl.next()
0
>>> fl.index
1

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.truncate.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.truncate

		
Polynomial.truncate(size)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L524]

		Truncate series to length size.

Reduce the series to length size by discarding the high
degree terms. The value of size must be a positive integer. This
can be useful in least squares where the coefficients of the
high degree terms may be very small.

		Parameters:		size : positive int

The series is reduced to length size by discarding the high
degree terms. The value of size must be a positive integer.

		Returns:		new_series : series

New instance of series with truncated coefficients.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.window.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.polynomial.polynomial.Polynomial.window

		
Polynomial.window = array([-1, 1])

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.polynomial.polynomial.Polynomial.__call__.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NumPy v1.9 Manual

 		NumPy Reference »

 		Routines »

 		Polynomials »

 		Polynomial Package »

 		Polynomial Module (numpy.polynomial.polynomial) »

 		numpy.polynomial.polynomial.Polynomial »

numpy.polynomial.polynomial.Polynomial.__call__

		
Polynomial.__call__(arg)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/polynomial_polybase.py#L290]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.flatiter.base.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.flatiter.base

		
flatiter.base

		A reference to the array that is iterated over.

Examples

>>> x = np.arange(5)
>>> fl = x.flat
>>> fl.base is x
True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.product.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.product

		
masked_array.product(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4605]

		Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.

		Parameters:		axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the
product is over all the array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

		Returns:		product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.

See also

		prod

		equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised
on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-zipf-1.png
10

08

05

04

02

00

10

£

EY

W

50

reference/generated/numpy.ma.masked_array.ptp.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.ptp

		
masked_array.ptp(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5301]

		Return (maximum - minimum) along the the given dimension
(i.e. peak-to-peak value).

		Parameters:		axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the
flattened array is used.

out : {None, array_like}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

		Returns:		ptp : ndarray.

A new array holding the result, unless out was
specified, in which case a reference to out is returned.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-weibull-1.png
250

reference/generated/numpy.ma.masked_array.put.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.put

		
masked_array.put(indices, values, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4158]

		Set storage-indexed locations to corresponding values.

Sets self._data.flat[n] = values[n] for each n in indices.
If values is shorter than indices then it will repeat.
If values has some masked values, the initial mask is updated
in consequence, else the corresponding values are unmasked.

		Parameters:		indices : 1-D array_like

Target indices, interpreted as integers.

values : array_like

Values to place in self._data copy at target indices.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave.
‘raise’ : raise an error.
‘wrap’ : wrap around.
‘clip’ : clip to the range.

Notes

values can be a scalar or length 1 array.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> x.put([0,4,8],[10,20,30])
>>> print x
[[10 -- 3]
 [-- 20 --]
 [7 -- 30]]

>>> x.put(4,999)
>>> print x
[[10 -- 3]
 [-- 999 --]
 [7 -- 30]]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/pull_button.png
#Admin | © Unwatch i Pull Roquost L1 Down!

Downloads (0) ~ Wiki (1) Graphs

reference/generated/numpy.ma.masked_array.ravel.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.ravel

		
masked_array.ravel()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4044]

		Returns a 1D version of self, as a view.

		Returns:		MaskedArray

Output view is of shape (self.size,) (or
(np.ma.product(self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.ravel()
[1 -- 3 -- 5 -- 7 -- 9]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-sin-1.png
snix)

10

05

00

=

o
Angle [rad]

reference/generated/numpy.ma.masked_array.real.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.real

		
masked_array.real

		Real part

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-standard_gamma-1.png
040

035
030
025
020
015
010

005

000

reference/generated/numpy.ma.masked_array.ndim.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.ndim

		
masked_array.ndim

		Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-random_integers-1.png

reference/generated/numpy.ma.masked_array.newbyteorder.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.newbyteorder

		
masked_array.newbyteorder(new_order='S')

		Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

		Parameters:		new_order : string, optional

Byte order to force; a value from the byte order specifications
above. new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

		Returns:		new_arr : array

New array object with the dtype reflecting given change to the
byte order.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-uniform-1.png
12

10

08

05

04

02

00,

10

08

00

reference/generated/numpy.ma.masked_array.nonzero.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.nonzero

		
masked_array.nonzero()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4363]

		Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the
indices of the non-zero elements in that dimension. The corresponding
non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use
instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero
element.

		Parameters:		None

		Returns:		tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also

		numpy.nonzero

		Function operating on ndarrays.

		flatnonzero

		Return indices that are non-zero in the flattened version of the input array.

		ndarray.nonzero

		Equivalent ndarray method.

		count_nonzero

		Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
 [[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]],
 mask =
 False,
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
 [[1.0 0.0 0.0]
 [0.0 -- 0.0]
 [0.0 0.0 1.0]],
 mask =
 [[False False False]
 [False True False]
 [False False False]],
 fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],
 [2, 2]])

A common use for nonzero is to find the indices of an array, where
a condition is True. Given an array a, the condition a > 3 is a
boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
yields the indices of the a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
 [[False False False]
 [True True True]
 [True True True]],
 mask =
 False,
 fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-triangular-1.png

reference/generated/numpy.ma.masked_array.partition.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.partition

		
masked_array.partition(kth, axis=-1, kind='introselect', order=None)

		Rearranges the elements in the array in such a way that value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

		Parameters:		kth : int or sequence of ints

Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the
last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : list, optional

When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.

See also

		numpy.partition

		Return a parititioned copy of an array.

		argpartition

		Indirect partition.

		sort

		Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-wald-1.png
045
040
035
030
025
020
015
010
005
000

10

£

0

a0

50

&0

7

E

reference/generated/numpy.ma.masked_array.prod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.prod

		
masked_array.prod(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4605]

		Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.

		Parameters:		axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the
product is over all the array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None
and the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

		Returns:		product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.

See also

		prod

		equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised
on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-vonmises-1.png
10

08

05

04

02

00

reference/generated/numpy.ma.masked_array.setfield.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.setfield

		
masked_array.setfield(val, dtype, offset=0)

		Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset
bytes into the field.

		Parameters:		val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

		Returns:		None

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
 [1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
 [1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/03eb2554999615a1e4e44880b814ca24bfb3fda8.png

reference/generated/numpy.ma.masked_array.setflags.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.setflags

		
masked_array.setflags(write=None, align=None, uic=None)

		Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)

		Parameters:		write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/03d4e8caffdd759ce30626c7d0c6cd5c88059f29.png
-

reference/generated/numpy.ma.masked_array.set_fill_value.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.set_fill_value

		
masked_array.set_fill_value(value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3404]

		Set the filling value of the masked array.

		Parameters:		value : scalar, optional

The new filling value. Default is None, in which case a default
based on the data type is used.

See also

		ma.set_fill_value

		Equivalent function.

Examples

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
-inf
>>> x.set_fill_value(np.pi)
>>> x.fill_value
3.1415926535897931

Reset to default:

>>> x.set_fill_value()
>>> x.fill_value
1e+20

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.shape.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.shape

		
masked_array.shape

		Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not
require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/08a5821b1285dfdf2e828600c79e28c85a15ac28.png

_images/routines-polynomials-classes-1.png
10

05

00

10
10

00

05

1o

reference/generated/numpy.ma.masked_array.recordmask.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.recordmask

		
masked_array.recordmask

		Return the mask of the records.
A record is masked when all the fields are masked.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/routines-polynomials-classes-3.png
10

05

00

10

15

reference/generated/numpy.ma.masked_array.repeat.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.repeat

		
masked_array.repeat(repeats, axis=None)

		Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

		numpy.repeat

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/routines-polynomials-classes-2.png
400
300
200
100

~100
200
300

—a00

20

s

ET)

00

05

10

5

20

reference/generated/numpy.ma.masked_array.reshape.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.reshape

		
masked_array.reshape(*s, **kwargs)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4075]

		Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape.
The result is a view on the original array; if this is not possible, a
ValueError is raised.

		Parameters:		shape : int or tuple of ints

The new shape should be compatible with the original shape. If an
integer is supplied, then the result will be a 1-D array of that
length.

order : {‘C’, ‘F’}, optional

Determines whether the array data should be viewed as in C
(row-major) or FORTRAN (column-major) order.

		Returns:		reshaped_array : array

A new view on the array.

See also

		reshape

		Equivalent function in the masked array module.

		numpy.ndarray.reshape

		Equivalent method on ndarray object.

		numpy.reshape

		Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made,
to modify the shape in place, use a.shape = s

Examples

>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> print x
[[-- 2]
 [3 --]]
>>> x = x.reshape((4,1))
>>> print x
[[--]
 [2]
 [3]
 [--]]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/00c3354e39e0ddafa0166158dc0d48f016b514d5.png

reference/generated/numpy.ma.masked_array.resize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.resize

		
masked_array.resize(newshape, refcheck=True, order=False)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4131]

		
Warning

This method does nothing, except raise a ValueError exception. A
masked array does not own its data and therefore cannot safely be
resized in place. Use the numpy.ma.resize function instead.

This method is difficult to implement safely and may be deprecated in
future releases of NumPy.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/threefundamental.png
ndarray

reference/generated/numpy.ma.masked_array.round.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.round

		
masked_array.round(decimals=0, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4886]

		Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

		numpy.around

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/0162b807852e8b7e3e771ef196f4827496a5a16a.png

reference/generated/numpy.ma.masked_array.searchsorted.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.searchsorted

		
masked_array.searchsorted(v, side='left', sorter=None)

		Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

		numpy.searchsorted

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/013cfbc6835b6f55ad2d0c6d5311c9fd9d709449.png

reference/generated/numpy.ma.masked_array.strides.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.strides

		
masked_array.strides

		Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/114bd703acc57874f4251ee5452c3d0ad8003eb6.png

reference/generated/numpy.ma.masked_array.sum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.sum

		
masked_array.sum(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4480]

		Return the sum of the array elements over the given axis.
Masked elements are set to 0 internally.

		Parameters:		axis : {None, -1, int}, optional

Axis along which the sum is computed. The default
(axis = None) is to compute over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.

		Returns:		sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified
axis removed. If self is a 0-d array, or if axis is None, a scalar
is returned. If an output array is specified, a reference to
out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.sum()
25
>>> print x.sum(axis=1)
[4 5 16]
>>> print x.sum(axis=0)
[8 5 12]
>>> print type(x.sum(axis=0, dtype=np.int64)[0])
<type 'numpy.int64'>

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/10f77f12438cb385098c4d2344aaa427d0a462a8.png

reference/generated/numpy.ma.masked_array.swapaxes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.swapaxes

		
masked_array.swapaxes(axis1, axis2)

		Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

		numpy.swapaxes

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/09614184392d1d0c17c933c71030b937df2c8355.png

reference/generated/numpy.ma.masked_array.sharedmask.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.sharedmask

		
masked_array.sharedmask

		Share status of the mask (read-only).

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/095eb5016f45d8291f2d1ccc6e6f93f236e4103e.png
ki1, 7 Kig1y o k-1

reference/generated/numpy.ma.masked_array.shrink_mask.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.shrink_mask

		
masked_array.shrink_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3321]

		Reduce a mask to nomask when possible.

		Parameters:		None

		Returns:		None

Examples

>>> x = np.ma.array([[1,2], [3, 4]], mask=[0]*4)
>>> x.mask
array([[False, False],
 [False, False]], dtype=bool)
>>> x.shrink_mask()
>>> x.mask
False

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/0b966a6d86e95c0bcb618bb730945530ed5b8e22.png

reference/generated/numpy.ma.masked_array.size.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.size

		
masked_array.size

		Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/09eebf681f60c452ad1907021adeb5797dccd06b.png
+T

reference/generated/numpy.ma.masked_array.soften_mask.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.soften_mask

		
masked_array.soften_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3281]

		Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. soften_mask sets hardmask to False.

See also

hardmask

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/0fbcdedf9b38fc5c1047ebadf8eb96fab9063933.png

reference/generated/numpy.ma.masked_array.sort.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.sort

		
masked_array.sort(axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5043]

		Sort the array, in-place

		Parameters:		a : array_like

Array to be sorted.

axis : int, optional

Axis along which to sort. If None, the array is flattened before
sorting. The default is -1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields
to compare first, second, and so on. This list does not need to
include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices
(at the end of the array) (True) or lower indices (at the beginning).
When the array contains unmasked values of the largest (or smallest if
False) representable value of the datatype the ordering of these values
and the masked values is undefined. To enforce the masked values are
at the end (beginning) in this case one must sort the mask.

fill_value : {var}, optional

Value used internally for the masked values.
If fill_value is not None, it supersedes endwith.

		Returns:		sorted_array : ndarray

Array of the same type and shape as a.

See also

		ndarray.sort

		Method to sort an array in-place.

		argsort

		Indirect sort.

		lexsort

		Indirect stable sort on multiple keys.

		searchsorted

		Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print a
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print a
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print a
[1 -- -- 3 5]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/0d3025b3449ee550b9cc5b92ca551b32c9d42d56.png

reference/generated/numpy.ma.masked_array.squeeze.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.squeeze

		
masked_array.squeeze(axis=None)

		Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

		numpy.squeeze

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/10d612c391028b5769f9fffa2bf839b094fcd7bc.png

reference/generated/numpy.ma.masked_array.std.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.std

		
masked_array.std(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4874]

		Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.

		Parameters:		a : array_like

Calculate the standard deviation of these values.

axis : int, optional

Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it is
the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the calculated
values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements.
By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

		Returns:		standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation,
otherwise return a reference to the output array.

See also

var, mean, nanmean, nanstd, nanvar

		numpy.doc.ufuncs

		Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as
x.sum() / N, where N = len(x). If, however, ddof is specified,
the divisor N - ddof is used instead. In standard statistical
practice, ddof=1 provides an unbiased estimator of the variance
of the infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables. The
standard deviation computed in this function is the square root of
the estimated variance, so even with ddof=1, it will not be an
unbiased estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

For floating-point input, the std is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dtype keyword can
alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/0fd237ce10d293b0e64ed3fb4b45e59ad541a794.png

_images/math/114c5f45409813eddd95cb59fe4d7e618f417d23.png

reference/generated/numpy.ma.masked_array.trace.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.trace

		
masked_array.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4465]

		Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

		numpy.trace

		equivalent function

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.transpose.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.transpose

		
masked_array.transpose(*axes)

		Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

		Parameters:		axes : None, tuple of ints, or n ints

		None or no argument: reverses the order of the axes.

		tuple of ints: i in the j-th place in the tuple means a‘s
i-th axis becomes a.transpose()‘s j-th axis.

		n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

		Returns:		out : ndarray

View of a, with axes suitably permuted.

See also

		ndarray.T

		Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/165672f6902427435b0c17813585b6e4e65d3263.png

reference/generated/numpy.ma.masked_array.T.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.T

		
masked_array.T

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/1238636295ae01e7d9660b43909be02f5250f593.png

reference/generated/numpy.ma.masked_array.take.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.take

		
masked_array.take(indices, axis=None, out=None, mode='raise')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5334]

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/1164bb56d951fead112dc347905d2c8598228818.png
o+ 1+ ... Fepex,

reference/generated/numpy.ma.masked_array.tobytes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.tobytes

		
masked_array.tobytes(fill_value=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5453]

		Return the array data as a string containing the raw bytes in the array.

The array is filled with a fill value before the string conversion.

New in version 1.9.0.

		Parameters:		fill_value : scalar, optional

Value used to fill in the masked values. Deafult is None, in which
case MaskedArray.fill_value is used.

order : {‘C’,’F’,’A’}, optional

Order of the data item in the copy. Default is ‘C’.

		‘C’ – C order (row major).

		‘F’ – Fortran order (column major).

		‘A’ – Any, current order of array.

		None – Same as ‘A’.

See also

ndarray.tobytes, tolist, tofile

Notes

As for ndarray.tobytes, information about the shape, dtype, etc.,
but also about fill_value, will be lost.

Examples

>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
'\x01\x00\x00\x00?B\x0f\x00?B\x0f\x00\x04\x00\x00\x00'

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/12c98ea646cced587241525c07f00ba03f16f840.png
1807 /.

reference/generated/numpy.ma.masked_array.tofile.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.tofile

		
masked_array.tofile(fid, sep='', format='%s')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5493]

		Save a masked array to a file in binary format.

Warning

This function is not implemented yet.

		Raises:		NotImplementedError

When tofile is called.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/125113f74c0b390f62eff33d19be4f4e42da7448.png

reference/generated/numpy.ma.masked_array.toflex.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.toflex

		
masked_array.toflex()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5508]

		Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

		the _data field stores the _data part of the array.

		the _mask field stores the _mask part of the array.

		Parameters:		None

		Returns:		record : ndarray

A new flexible-type ndarray with two fields: the first element
containing a value, the second element containing the corresponding
mask boolean. The returned record shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is
that meta information (fill_value, ...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.toflex()
[[(1, False) (2, True) (3, False)]
 [(4, True) (5, False) (6, True)]
 [(7, False) (8, True) (9, False)]]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/143d854fb865a4fb5147d3cc5d31426941bdd597.png

reference/generated/numpy.ma.masked_array.tolist.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.tolist

		
masked_array.tolist(fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5369]

		Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type.
Masked values are converted to fill_value. If fill_value is None,
the corresponding entries in the output list will be None.

		Parameters:		fill_value : scalar, optional

The value to use for invalid entries. Default is None.

		Returns:		result : list

The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
>>> x.tolist()
[[1, None, 3], [None, 5, None], [7, None, 9]]
>>> x.tolist(-999)
[[1, -999, 3], [-999, 5, -999], [7, -999, 9]]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/1376cd9d35e0587c834b5aca56fe6dddea650e22.png
ny

reference/generated/numpy.ma.masked_array.torecords.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.torecords

		
masked_array.torecords()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5508]

		Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

		the _data field stores the _data part of the array.

		the _mask field stores the _mask part of the array.

		Parameters:		None

		Returns:		record : ndarray

A new flexible-type ndarray with two fields: the first element
containing a value, the second element containing the corresponding
mask boolean. The returned record shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is
that meta information (fill_value, ...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
 [-- 5 --]
 [7 -- 9]]
>>> print x.toflex()
[[(1, False) (2, True) (3, False)]
 [(4, True) (5, False) (6, True)]
 [(7, False) (8, True) (9, False)]]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/15ff6b4079274e8153798ecf8b9351321bedb5fc.png

reference/generated/numpy.ma.masked_array.tostring.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.tostring

		
masked_array.tostring(fill_value=None, order='C')[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5445]

		This function is a compatibility alias for tobytes. Despite its name it
returns bytes not strings.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/15b77327597f739f3da24c17c641ce8419bb9a4e.png
Ay

k
—omi™
"

_images/numpy-fft-ifftn-1.png

_images/numpy-logspace-1.png
10

08

05

04

02

10

_images/numpy-linspace-1.png
10

08

05

04

02

00

10

_images/numpy-polyfit-1.png
20
15
10
05
00
05

10

_images/numpy-ma-polyfit-1.png
20
15
10
05
00
05

10

_images/numpy-random-gumbel-1_00_00.png

_images/numpy-random-gamma-1.png

_images/numpy-random-laplace-1.png
05

04

03

02

01

00

_images/numpy-random-gumbel-1_01_00.png

_images/numpy-linalg-lstsq-1.png
Original data.
— Fitted line

_images/numpy-interp-1.png
10

05

00

_images/numpy-random-poisson-1_00_00.png
030

_images/numpy-random-normal-1.png

_images/numpy-random-power-1_01_00.png
np.random power(s)

02

04 [

_images/numpy-random-power-1_00_00.png
140

120

100

&

&

W

2

_images/numpy-random-power-1_01_02.png
inverse of stats pareto(s)

02

04 05

_images/numpy-random-power-1_01_01.png
inverse of 1 + np random pareto(s)

02 04 05 [

_images/numpy-random-RandomState-gamma-1.png

_images/numpy-random-noncentral_chisquare-1_00_00.png
005

_images/numpy-random-noncentral_chisquare-1_02_00.png
005

_images/numpy-random-noncentral_chisquare-1_01_00.png
025

020

015

010

005

000

~0.05

reference/generated/numpy.ma.masked_array.get_imag.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.get_imag

		
masked_array.get_imag()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3909]

		Return the imaginary part of the masked array.

The returned array is a view on the imaginary part of the MaskedArray
whose get_imag method is called.

		Parameters:		None

		Returns:		result : MaskedArray

The imaginary part of the masked array.

See also

get_real, real, imag

Examples

>>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
>>> x.get_imag()
masked_array(data = [1.0 -- 1.6],
 mask = [False True False],
 fill_value = 1e+20)

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-noncentral_chisquare-1_02_00.png
005

reference/generated/numpy.ma.masked_array.get_real.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.get_real

		
masked_array.get_real()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3943]

		Return the real part of the masked array.

The returned array is a view on the real part of the MaskedArray
whose get_real method is called.

		Parameters:		None

		Returns:		result : MaskedArray

The real part of the masked array.

See also

get_imag, real, imag

Examples

>>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
>>> x.get_real()
masked_array(data = [1.0 -- 3.45],
 mask = [False True False],
 fill_value = 1e+20)

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-noncentral_chisquare-1_01_00.png
025

020

015

010

005

000

~0.05

reference/generated/numpy.ma.masked_array.harden_mask.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.harden_mask

		
masked_array.harden_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3266]

		Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by
its hardmask property. harden_mask sets hardmask to True.

See also

hardmask

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-poisson-1_00_00.png
030

reference/generated/numpy.ma.masked_array.hardmask.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.hardmask

		
masked_array.hardmask

		Hardness of the mask

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-normal-1.png

_images/numpy-random-RandomState-power-1_01_00.png
np.random power(s)

02

04 [

reference/generated/numpy.ma.masked_array.ids.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.ids

		
masked_array.ids()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4226]

		Return the addresses of the data and mask areas.

		Parameters:		None

Examples

>>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
>>> x.ids()
(166670640, 166659832)

If the array has no mask, the address of nomask is returned. This address
is typically not close to the data in memory:

>>> x = np.ma.array([1, 2, 3])
>>> x.ids()
(166691080, 3083169284L)

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-power-1_00_00.png
140

120

100

&

&

W

2

reference/generated/numpy.ma.masked_array.imag.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.imag

		
masked_array.imag

		Imaginary part.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-gumbel-1_01_00.png

reference/generated/numpy.ma.masked_array.flatten.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.flatten

		
masked_array.flatten(order='C')

		Return a copy of the array collapsed into one dimension.

		Parameters:		order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from a.
The default is ‘C’.

		Returns:		y : ndarray

A copy of the input array, flattened to one dimension.

See also

		ravel

		Return a flattened array.

		flat

		A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-gumbel-1_00_00.png

reference/generated/numpy.ma.masked_array.getfield.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.getfield

		
masked_array.getfield(dtype, offset=0)

		Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

		Parameters:		dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-noncentral_chisquare-1_00_00.png
005

reference/generated/numpy.ma.masked_array.get_fill_value.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.get_fill_value

		
masked_array.get_fill_value()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3376]

		Return the filling value of the masked array.

		Returns:		fill_value : scalar

The filling value.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
... np.ma.array([0, 1], dtype=dt).get_fill_value()
...
999999
999999
1e+20
(1e+20+0j)

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.get_fill_value()
-inf

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-laplace-1.png
05

04

03

02

01

00

_images/numpy-random-RandomState-vonmises-1.png
10

08

05

04

02

00

reference/generated/numpy.ma.masked_array.max.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.max

		
masked_array.max(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5241]

		Return the maximum along a given axis.

		Parameters:		axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of maximum_fill_value().

		Returns:		amax : array_like

New array holding the result.
If out was specified, out is returned.

See also

		maximum_fill_value

		Returns the maximum filling value for a given datatype.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-uniform-1.png
12

10

08

05

04

02

00,

10

08

00

reference/generated/numpy.ma.masked_array.mean.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.mean

		
masked_array.mean(axis=None, dtype=None, out=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4727]

		Returns the average of the array elements.

Masked entries are ignored.
The average is taken over the flattened array by default, otherwise over
the specified axis. Refer to numpy.mean for the full documentation.

		Parameters:		a : array_like

Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute
the mean of the flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default
is float64; for floating point, inputs it is the same as the input
dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.

		Returns:		mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

See also

		numpy.ma.mean

		Equivalent function.

		numpy.mean

		Equivalent function on non-masked arrays.

		numpy.ma.average

		Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],
 mask = [False False True],
 fill_value = 999999)
>>> a.mean()
1.5

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-weibull-1.png
250

reference/generated/numpy.ma.masked_array.min.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.min

		
masked_array.min(axis=None, out=None, fill_value=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5142]

		Return the minimum along a given axis.

		Parameters:		axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the
flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of
the same shape and buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values.
If None, use the output of minimum_fill_value.

		Returns:		amin : array_like

New array holding the result.
If out was specified, out is returned.

See also

		minimum_fill_value

		Returns the minimum filling value for a given datatype.

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-wald-1.png
045
040
035
030
025
020
015
010
005
000

10

£

0

a0

50

&0

7

E

reference/generated/numpy.ma.masked_array.mini.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.mini

		
masked_array.mini(axis=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L5201]

		Return the array minimum along the specified axis.

		Parameters:		axis : int, optional

The axis along which to find the minima. Default is None, in which case
the minimum value in the whole array is returned.

		Returns:		min : scalar or MaskedArray

If axis is None, the result is a scalar. Otherwise, if axis is
given and the array is at least 2-D, the result is a masked array with
dimension one smaller than the array on which mini is called.

Examples

>>> x = np.ma.array(np.arange(6), mask=[0 ,1, 0, 0, 0 ,1]).reshape(3, 2)
>>> print x
[[0 --]
 [2 3]
 [4 --]]
>>> x.mini()
0
>>> x.mini(axis=0)
masked_array(data = [0 3],
 mask = [False False],
 fill_value = 999999)
>>> print x.mini(axis=1)
[0 2 4]

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.masked_array.nbytes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.nbytes

		
masked_array.nbytes

		Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-zipf-1.png
10

08

05

04

02

00

10

£

EY

W

50

_images/numpy-random-RandomState-power-1_01_01.png
inverse of 1 + np random pareto(s)

02 04 05 [

reference/generated/numpy.ma.masked_array.iscontiguous.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.iscontiguous

		
masked_array.iscontiguous()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4252]

		Return a boolean indicating whether the data is contiguous.

		Parameters:		None

Examples

>>> x = np.ma.array([1, 2, 3])
>>> x.iscontiguous()
True

iscontiguous returns one of the flags of the masked array:

>>> x.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : True
 OWNDATA : False
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-random_integers-1.png

reference/generated/numpy.ma.masked_array.item.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.item

		
masked_array.item(*args)

		Copy an element of an array to a standard Python scalar and return it.

		Parameters:		*args : Arguments (variable number and type)

		none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

		int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

		tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

		Returns:		z : Standard Python scalar object

A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-power-1_01_02.png
inverse of stats pareto(s)

02

04 05

reference/generated/numpy.ma.masked_array.itemset.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.itemset

		
masked_array.itemset(*args)

		Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

		Parameters:		*args : Arguments

If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-triangular-1.png

reference/generated/numpy.ma.masked_array.itemsize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.itemsize

		
masked_array.itemsize

		Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/numpy-random-RandomState-standard_gamma-1.png
040

035
030
025
020
015
010

005

000

reference/generated/numpy.random.RandomState.poisson_lam_max.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.random.RandomState.poisson_lam_max

		
RandomState.poisson_lam_max = 2147020237.4999895

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/197f6cffbbb69e50e961b74f83d32ca69867cd79.png
to0<r<l,a=0.

reference/generated/numpy.ma.masked_array.unshare_mask.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.unshare_mask

		
masked_array.unshare_mask()[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L3300]

		Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from
the sharedmask property. unshare_mask ensures the mask is not shared.
A copy of the mask is only made if it was shared.

See also

sharedmask

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/18ee68ee16c7d563d35176d3e6ec70b03651e7c1.png
0.5 — 0.5c0s

<n<M-
o1 0<n<M-1

reference/generated/numpy.ma.masked_array.var.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.var

		
masked_array.var(axis=None, dtype=None, out=None, ddof=0)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L4831]

		Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.

		Parameters:		a : array_like

Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute
the variance of the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

		Returns:		variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance;
otherwise, a reference to the output array is returned.

See also

std, mean, nanmean, nanstd, nanvar

		numpy.doc.ufuncs

		Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean,
i.e., var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples

>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512*512), dtype=np.float32)
>>> a[0,:] = 1.0
>>> a[1,:] = 0.1
>>> np.var(a)
0.20405951142311096

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932997387
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.20250000000000001

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/1b4bb50f17092669c07993573d0d8704970123d2.png

reference/generated/numpy.ma.masked_array.view.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.masked_array.view

		
masked_array.view(dtype=None, type=None)[source] [http://github.com/numpy/numpy/blob/v1.9.1/numpy/ma\core.py#L2900]

		New view of array with the same data.

		Parameters:		dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/19e028e172248b5d4535373cc29c60c9a36bcf19.png

_images/math/1daa9ed65f94b79075ac6a9f7fb89ebee646c021.png

_images/math/1c179e259da5763ce4e5dd125cd5f80e1361eb2c.png
T

P(z: scale) = ——
—

_images/math/1f4f2fabb9b30baa436bd54998b80a49f601aa17.png

_images/math/1ed4c0dee383df4cafe2c7c4e91a344c75c70b56.png
dim"

_images/math/208c05105f46b94766ebfea27a8b027de4e9b515.png

_images/math/1fb989e4d2e3a56149f88a4bd3768931192affa7.png
Palt)

reference/generated/numpy.ma.MaskType.all.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.all

		
MaskType.all()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.any.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.any

		
MaskType.any()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.argmax.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.argmax

		
MaskType.argmax()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.argmin.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.argmin

		
MaskType.argmin()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.argsort.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.argsort

		
MaskType.argsort()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.astype.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.astype

		
MaskType.astype()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.base.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.base

		
MaskType.base

		base object

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.byteswap.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.byteswap

		
MaskType.byteswap()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.choose.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.choose

		
MaskType.choose()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.clip.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.clip

		
MaskType.clip()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.compress.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.compress

		
MaskType.compress()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.conj.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.conj

		
MaskType.conj()

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.conjugate.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.conjugate

		
MaskType.conjugate()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.copy.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.copy

		
MaskType.copy()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.cumprod.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.cumprod

		
MaskType.cumprod()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.cumsum.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.cumsum

		
MaskType.cumsum()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.data.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.data

		
MaskType.data

		pointer to start of data

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.diagonal.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.diagonal

		
MaskType.diagonal()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.dtype.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.dtype

		
MaskType.dtype

		get array data-descriptor

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.dump.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.dump

		
MaskType.dump()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.dumps.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.dumps

		
MaskType.dumps()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.fill.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.fill

		
MaskType.fill()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.flags.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.flags

		
MaskType.flags

		integer value of flags

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.flat.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.flat

		
MaskType.flat

		a 1-d view of scalar

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.ma.MaskType.flatten.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.ma.MaskType.flatten

		
MaskType.flatten()

		Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.

See also

The

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy-random-RandomState-normal-1.png

reference/generated/numpy-random-RandomState-power-1_00_00.png
140

120

100

&

&

W

2

reference/generated/numpy-random-RandomState-poisson-1_00_00.png
030

reference/generated/numpy-random-RandomState-power-1_01_01.png
inverse of 1 + np random pareto(s)

02 04 05 [

reference/generated/numpy-random-RandomState-power-1_01_00.png
np.random power(s)

02

04 [

reference/generated/numpy-random-RandomState-random_integers-1.png

reference/generated/numpy-random-RandomState-power-1_01_02.png
inverse of stats pareto(s)

02

04 05

reference/generated/numpy-random-RandomState-triangular-1.png

reference/generated/numpy-random-RandomState-standard_gamma-1.png
040

035
030
025
020
015
010

005

000

reference/generated/numpy-random-RandomState-noncentral_chisquare-1_02_00.png
005

reference/generated/numpy-random-RandomState-noncentral_chisquare-1_01_00.png
025

020

015

010

005

000

~0.05

reference/generated/numpy-random-power-1_01_01.png
inverse of 1 + np random pareto(s)

02 04 05 [

reference/generated/numpy-random-power-1_01_00.png
np.random power(s)

02

04 [

reference/generated/numpy-random-RandomState-gamma-1.png

reference/generated/numpy-random-power-1_01_02.png
inverse of stats pareto(s)

02

04 05

reference/generated/numpy-random-RandomState-gumbel-1_01_00.png

reference/generated/numpy-random-RandomState-gumbel-1_00_00.png

reference/generated/numpy-random-RandomState-noncentral_chisquare-1_00_00.png
005

reference/generated/numpy-random-RandomState-laplace-1.png
05

04

03

02

01

00

reference/generated/numpy-random-poisson-1_00_00.png
030

reference/generated/numpy-random-normal-1.png

reference/generated/numpy-random-power-1_00_00.png
140

120

100

&

&

W

2

reference/generated/numpy-random-weibull-1.png
250

reference/generated/numpy-sin-1.png
snix)

10

05

00

=

o
Angle [rad]

reference/generated/numpy-random-zipf-1.png
10

08

05

04

02

00

10

£

EY

W

50

reference/generated/numpy-random-RandomState-wald-1.png
045
040
035
030
025
020
015
010
005
000

10

£

0

a0

50

&0

7

E

reference/generated/numpy-random-RandomState-vonmises-1.png
10

08

05

04

02

00

reference/generated/numpy-random-RandomState-zipf-1.png
10

08

05

04

02

00

10

£

EY

W

50

reference/generated/numpy-random-RandomState-weibull-1.png
250

reference/generated/numpy-random-standard_gamma-1.png
040

035
030
025
020
015
010

005

000

reference/generated/numpy-random-random_integers-1.png

reference/generated/numpy-random-uniform-1.png
12

10

08

05

04

02

00,

10

08

00

reference/generated/numpy-random-triangular-1.png

reference/generated/numpy-random-wald-1.png
045
040
035
030
025
020
015
010
005
000

10

£

0

a0

50

&0

7

E

reference/generated/numpy-random-vonmises-1.png
10

08

05

04

02

00

reference/generated/numpy-random-RandomState-uniform-1.png
12

10

08

05

04

02

00,

10

08

00

reference/generated/numpy-random-gamma-1.png

reference/generated/numpy-random-gumbel-1_01_00.png

reference/generated/numpy-random-gumbel-1_00_00.png

reference/generated/numpy-random-noncentral_chisquare-1_00_00.png
005

reference/generated/numpy-random-laplace-1.png
05

04

03

02

01

00

reference/generated/numpy-random-noncentral_chisquare-1_02_00.png
005

reference/generated/numpy-random-noncentral_chisquare-1_01_00.png
025

020

015

010

005

000

~0.05

reference/generated/numpy-logspace-1.png
10

08

05

04

02

10

reference/generated/numpy-linspace-1.png
10

08

05

04

02

00

10

reference/generated/numpy-polyfit-1.png
20
15
10
05
00
05

10

reference/generated/numpy-ma-polyfit-1.png
20
15
10
05
00
05

10

reference/generated/numpy-fft-fftn-1.png
50

100 2

150

200

0 s 10 150 200

reference/generated/numpy-exp-1.png
Magnitude of exp(x)

6-4-20 2 4

Phase (angle) of exp(x)

- 420

reference/generated/numpy-fft-ifftn-1.png

reference/generated/numpy-fft-ifft-1.png
EY

100

50

200

250

00

Teal
imaginary.

350

a0

reference/generated/numpy-linalg-lstsq-1.png
Original data.
— Fitted line

reference/generated/numpy-interp-1.png
10

05

00

reference/generated/numpy-absolute-1_01_00.png

reference/generated/numpy-absolute-1_00_00.png
10

-10

10

reference/generated/numpy-arctan-1.png
10

05

00

10

-10

10

reference/generated/numpy-arccos-1.png
30

25

20

15

10

05

00,

“10

00

05

10

reference/generated/numpy-cosh-1.png
EY

=

2

15

10

_images/math/22cd9e547f8f77b32df1fcd92c6562d212d4491f.png
order = (deg|0| + 1) # (deg(|1

_images/math/20adedda64097d8328ed617bf7fba5d2ece0797c.png

reference/generated/numpy.poly1d.order.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.poly1d.order

		
poly1d.order = None

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/251c7b125ab9e2fd94938d97c29340026bafd769.png
o+t + gt +1

reference/generated/numpy.poly1d.variable.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.poly1d.variable

		
poly1d.variable = None

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/24506c9b416b179c3c89a9cd8b546ff3b96fe176.png

_images/math/257bb150bb440e2c2068e77118d1886097d1619a.png
In(e)
0]

_images/math/253f7d505acb498bc601700e27b2ab3b790586c2.png

_images/math/25e4a799fdd3746e28643cd360e873f8a1d4528a.png
le—nl

flaim A) = zf""(<)

_images/math/2595e12ec58446f99869c7c3ba70ea3be707d26a.png

reference/generated/numpy.poly1d.coeffs.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.poly1d.coeffs

		
poly1d.coeffs = None

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

_images/math/277b58121fe9a49b5047753eee6c2b98e67c1519.png

_images/math/260812782a8a4f35a929d637a38520175045eaa2.png
0,5/8,10/8,15/8,20/8

_images/math/279548c4bb305a69cfc0d248b956b3ac8ee12199.png

_images/math/2793e58732c8a479713fc0b5fc913cb6b1c08b2b.png
1()—decimals

_images/math/28ed35f81d6247735750dac3cec69a6f55b55cc4.png

_images/math/28e864b2645803a0e21b2fff9d13ff8b5252b9c9.png

_images/math/2a6f9b0b4119433a3eae475d163e0694af1ca408.png

_images/math/2a0d97627f0913283ff5f7cca3d436783ea12fc4.png

_images/math/2bd1ad86f3e5722728a00c972e436567397697f1.png
— i

_images/math/2af46e808b5bf07b795f9fd4a04cdde1104472c4.png
cg+cecrer+ .+

_images/math/278069d6afb88839c678d44d3d464b17ff39fd7b.png

_images/math/2c9edaec65f82b211c6a6b27a1277458d581b74a.png
V-

_images/math/2f8a02ce155191ed5a4ea8d776aa15fcaef26e1f.png

_images/math/2ef405fabb35c56f6831fc0d7da77b44f39dd52d.png

_images/math/361641d4095a1af4971c0f2bd3fddebb62664dd1.png

_images/math/318873ef7eb0485d47f02e45e6fdca7c0b05f8e1.png
pla,b) =) cij* Li(a) = Li(b)

o

_images/math/36e9c492db6f4ad8e065f978a3d4a33a3c6df086.png
Si1)

Al

_images/math/36691a2041c94e8fd34e7a15b7d488e559ea6844.png
p(x) =) cli] « Li(x)

_images/math/3af394137c1b2e9ae087e6eab40504be17bd63ce.png
Viz)sc

_images/math/36f4f5a0a2ce87c9eec9f9cd6c77f99c7a619d05.png
plr) =+ 1
(k)

_images/math/2e99d38d28003c7e37f4b144623fbe320c0beda1.png

_images/math/2cc591e36ba3e72bb62258a03a1c2c1acf479865.png
P(a;mean, scale) = || 3—5 el

reference/generated/numpy.nditer.dtypes.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.dtypes

		
nditer.dtypes

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.finished.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.finished

		
nditer.finished

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.has_delayed_bufalloc.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.has_delayed_bufalloc

		
nditer.has_delayed_bufalloc

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.has_index.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.has_index

		
nditer.has_index

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.has_multi_index.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.has_multi_index

		
nditer.has_multi_index

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.index.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.index

		
nditer.index

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.iterationneedsapi.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.iterationneedsapi

		
nditer.iterationneedsapi

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.iterindex.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.iterindex

		
nditer.iterindex

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.iterrange.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.iterrange

		
nditer.iterrange

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.itersize.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.itersize

		
nditer.itersize

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.itviews.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.itviews

		
nditer.itviews

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.multi_index.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.multi_index

		
nditer.multi_index

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.ndim.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.ndim

		
nditer.ndim

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.nop.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.nop

		
nditer.nop

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.operands.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.operands

		
nditer.operands

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.value.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.value

		
nditer.value

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

reference/generated/numpy.nditer.shape.html

 Navigation

 		
 index

 		NumPy v1.9 Manual

numpy.nditer.shape

		
nditer.shape

		

 © Copyright 2008-2009, The Scipy community.
 Last updated on Nov 30, 2014.
 Created using Sphinx 1.2.3.

